/rust/registry/src/index.crates.io-1949cf8c6b5b557f/jiff-0.2.15/src/fmt/rfc2822.rs
Line | Count | Source |
1 | | /*! |
2 | | Support for printing and parsing instants using the [RFC 2822] datetime format. |
3 | | |
4 | | RFC 2822 is most commonly found when dealing with email messages. |
5 | | |
6 | | Since RFC 2822 only supports specifying a complete instant in time, the parser |
7 | | and printer in this module only use [`Zoned`] and [`Timestamp`]. If you need |
8 | | inexact time, you can get it from [`Zoned`] via [`Zoned::datetime`]. |
9 | | |
10 | | [RFC 2822]: https://datatracker.ietf.org/doc/html/rfc2822 |
11 | | |
12 | | # Incomplete support |
13 | | |
14 | | The RFC 2822 support in this crate is technically incomplete. Specifically, |
15 | | it does not support parsing comments within folding whitespace. It will parse |
16 | | comments after the datetime itself (including nested comments). See [Issue |
17 | | #39][issue39] for an example. If you find a real world use case for parsing |
18 | | comments within whitespace at any point in the datetime string, please file |
19 | | an issue. That is, the main reason it isn't currently supported is because |
20 | | it didn't seem worth the implementation complexity to account for it. But if |
21 | | there are real world use cases that need it, then that would be sufficient |
22 | | justification for adding it. |
23 | | |
24 | | RFC 2822 support should otherwise be complete, including support for parsing |
25 | | obselete offsets. |
26 | | |
27 | | [issue39]: https://github.com/BurntSushi/jiff/issues/39 |
28 | | |
29 | | # Warning |
30 | | |
31 | | The RFC 2822 format only supports writing a precise instant in time |
32 | | expressed via a time zone offset. It does *not* support serializing |
33 | | the time zone itself. This means that if you format a zoned datetime |
34 | | in a time zone like `America/New_York` and then deserialize it, the |
35 | | zoned datetime you get back will be a "fixed offset" zoned datetime. |
36 | | This in turn means it will not perform daylight saving time safe |
37 | | arithmetic. |
38 | | |
39 | | Basically, you should use the RFC 2822 format if it's required (for |
40 | | example, when dealing with email). But you should not choose it as a |
41 | | general interchange format for new applications. |
42 | | */ |
43 | | |
44 | | use crate::{ |
45 | | civil::{Date, DateTime, Time, Weekday}, |
46 | | error::{err, ErrorContext}, |
47 | | fmt::{util::DecimalFormatter, Parsed, Write, WriteExt}, |
48 | | tz::{Offset, TimeZone}, |
49 | | util::{ |
50 | | escape, parse, |
51 | | rangeint::{ri8, RFrom}, |
52 | | t::{self, C}, |
53 | | }, |
54 | | Error, Timestamp, Zoned, |
55 | | }; |
56 | | |
57 | | /// The default date time parser that we use throughout Jiff. |
58 | | pub(crate) static DEFAULT_DATETIME_PARSER: DateTimeParser = |
59 | | DateTimeParser::new(); |
60 | | |
61 | | /// The default date time printer that we use throughout Jiff. |
62 | | pub(crate) static DEFAULT_DATETIME_PRINTER: DateTimePrinter = |
63 | | DateTimePrinter::new(); |
64 | | |
65 | | /// Convert a [`Zoned`] to an [RFC 2822] datetime string. |
66 | | /// |
67 | | /// This is a convenience function for using [`DateTimePrinter`]. In |
68 | | /// particular, this always creates and allocates a new `String`. For writing |
69 | | /// to an existing string, or converting a [`Timestamp`] to an RFC 2822 |
70 | | /// datetime string, you'll need to use `DateTimePrinter`. |
71 | | /// |
72 | | /// [RFC 2822]: https://datatracker.ietf.org/doc/html/rfc2822 |
73 | | /// |
74 | | /// # Warning |
75 | | /// |
76 | | /// The RFC 2822 format only supports writing a precise instant in time |
77 | | /// expressed via a time zone offset. It does *not* support serializing |
78 | | /// the time zone itself. This means that if you format a zoned datetime |
79 | | /// in a time zone like `America/New_York` and then deserialize it, the |
80 | | /// zoned datetime you get back will be a "fixed offset" zoned datetime. |
81 | | /// This in turn means it will not perform daylight saving time safe |
82 | | /// arithmetic. |
83 | | /// |
84 | | /// Basically, you should use the RFC 2822 format if it's required (for |
85 | | /// example, when dealing with email). But you should not choose it as a |
86 | | /// general interchange format for new applications. |
87 | | /// |
88 | | /// # Errors |
89 | | /// |
90 | | /// This returns an error if the year corresponding to this timestamp cannot be |
91 | | /// represented in the RFC 2822 format. For example, a negative year. |
92 | | /// |
93 | | /// # Example |
94 | | /// |
95 | | /// This example shows how to convert a zoned datetime to the RFC 2822 format: |
96 | | /// |
97 | | /// ``` |
98 | | /// use jiff::{civil::date, fmt::rfc2822}; |
99 | | /// |
100 | | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("Australia/Tasmania")?; |
101 | | /// assert_eq!(rfc2822::to_string(&zdt)?, "Sat, 15 Jun 2024 07:00:00 +1000"); |
102 | | /// |
103 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
104 | | /// ``` |
105 | | #[cfg(feature = "alloc")] |
106 | | #[inline] |
107 | 0 | pub fn to_string(zdt: &Zoned) -> Result<alloc::string::String, Error> { |
108 | 0 | let mut buf = alloc::string::String::new(); |
109 | 0 | DEFAULT_DATETIME_PRINTER.print_zoned(zdt, &mut buf)?; |
110 | 0 | Ok(buf) |
111 | 0 | } |
112 | | |
113 | | /// Parse an [RFC 2822] datetime string into a [`Zoned`]. |
114 | | /// |
115 | | /// This is a convenience function for using [`DateTimeParser`]. In particular, |
116 | | /// this takes a `&str` while the `DateTimeParser` accepts a `&[u8]`. |
117 | | /// Moreover, if any configuration options are added to RFC 2822 parsing (none |
118 | | /// currently exist at time of writing), then it will be necessary to use a |
119 | | /// `DateTimeParser` to toggle them. Additionally, a `DateTimeParser` is needed |
120 | | /// for parsing into a [`Timestamp`]. |
121 | | /// |
122 | | /// [RFC 2822]: https://datatracker.ietf.org/doc/html/rfc2822 |
123 | | /// |
124 | | /// # Warning |
125 | | /// |
126 | | /// The RFC 2822 format only supports writing a precise instant in time |
127 | | /// expressed via a time zone offset. It does *not* support serializing |
128 | | /// the time zone itself. This means that if you format a zoned datetime |
129 | | /// in a time zone like `America/New_York` and then deserialize it, the |
130 | | /// zoned datetime you get back will be a "fixed offset" zoned datetime. |
131 | | /// This in turn means it will not perform daylight saving time safe |
132 | | /// arithmetic. |
133 | | /// |
134 | | /// Basically, you should use the RFC 2822 format if it's required (for |
135 | | /// example, when dealing with email). But you should not choose it as a |
136 | | /// general interchange format for new applications. |
137 | | /// |
138 | | /// # Errors |
139 | | /// |
140 | | /// This returns an error if the datetime string given is invalid or if it |
141 | | /// is valid but doesn't fit in the datetime range supported by Jiff. For |
142 | | /// example, RFC 2822 supports offsets up to 99 hours and 59 minutes, |
143 | | /// but Jiff's maximum offset is 25 hours, 59 minutes and 59 seconds. |
144 | | /// |
145 | | /// # Example |
146 | | /// |
147 | | /// This example shows how serializing a zoned datetime to RFC 2822 format |
148 | | /// and then deserializing will drop information: |
149 | | /// |
150 | | /// ``` |
151 | | /// use jiff::{civil::date, fmt::rfc2822}; |
152 | | /// |
153 | | /// let zdt = date(2024, 7, 13) |
154 | | /// .at(15, 9, 59, 789_000_000) |
155 | | /// .in_tz("America/New_York")?; |
156 | | /// // The default format (i.e., Temporal) guarantees lossless |
157 | | /// // serialization. |
158 | | /// assert_eq!(zdt.to_string(), "2024-07-13T15:09:59.789-04:00[America/New_York]"); |
159 | | /// |
160 | | /// let rfc2822 = rfc2822::to_string(&zdt)?; |
161 | | /// // Notice that the time zone name and fractional seconds have been dropped! |
162 | | /// assert_eq!(rfc2822, "Sat, 13 Jul 2024 15:09:59 -0400"); |
163 | | /// // And of course, if we parse it back, all that info is still lost. |
164 | | /// // Which means this `zdt` cannot do DST safe arithmetic! |
165 | | /// let zdt = rfc2822::parse(&rfc2822)?; |
166 | | /// assert_eq!(zdt.to_string(), "2024-07-13T15:09:59-04:00[-04:00]"); |
167 | | /// |
168 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
169 | | /// ``` |
170 | | #[inline] |
171 | 0 | pub fn parse(string: &str) -> Result<Zoned, Error> { |
172 | 0 | DEFAULT_DATETIME_PARSER.parse_zoned(string) |
173 | 0 | } |
174 | | |
175 | | /// A parser for [RFC 2822] datetimes. |
176 | | /// |
177 | | /// [RFC 2822]: https://datatracker.ietf.org/doc/html/rfc2822 |
178 | | /// |
179 | | /// # Warning |
180 | | /// |
181 | | /// The RFC 2822 format only supports writing a precise instant in time |
182 | | /// expressed via a time zone offset. It does *not* support serializing |
183 | | /// the time zone itself. This means that if you format a zoned datetime |
184 | | /// in a time zone like `America/New_York` and then deserialize it, the |
185 | | /// zoned datetime you get back will be a "fixed offset" zoned datetime. |
186 | | /// This in turn means it will not perform daylight saving time safe |
187 | | /// arithmetic. |
188 | | /// |
189 | | /// Basically, you should use the RFC 2822 format if it's required (for |
190 | | /// example, when dealing with email). But you should not choose it as a |
191 | | /// general interchange format for new applications. |
192 | | /// |
193 | | /// # Example |
194 | | /// |
195 | | /// This example shows how serializing a zoned datetime to RFC 2822 format |
196 | | /// and then deserializing will drop information: |
197 | | /// |
198 | | /// ``` |
199 | | /// use jiff::{civil::date, fmt::rfc2822}; |
200 | | /// |
201 | | /// let zdt = date(2024, 7, 13) |
202 | | /// .at(15, 9, 59, 789_000_000) |
203 | | /// .in_tz("America/New_York")?; |
204 | | /// // The default format (i.e., Temporal) guarantees lossless |
205 | | /// // serialization. |
206 | | /// assert_eq!(zdt.to_string(), "2024-07-13T15:09:59.789-04:00[America/New_York]"); |
207 | | /// |
208 | | /// let rfc2822 = rfc2822::to_string(&zdt)?; |
209 | | /// // Notice that the time zone name and fractional seconds have been dropped! |
210 | | /// assert_eq!(rfc2822, "Sat, 13 Jul 2024 15:09:59 -0400"); |
211 | | /// // And of course, if we parse it back, all that info is still lost. |
212 | | /// // Which means this `zdt` cannot do DST safe arithmetic! |
213 | | /// let zdt = rfc2822::parse(&rfc2822)?; |
214 | | /// assert_eq!(zdt.to_string(), "2024-07-13T15:09:59-04:00[-04:00]"); |
215 | | /// |
216 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
217 | | /// ``` |
218 | | #[derive(Debug)] |
219 | | pub struct DateTimeParser { |
220 | | relaxed_weekday: bool, |
221 | | } |
222 | | |
223 | | impl DateTimeParser { |
224 | | /// Create a new RFC 2822 datetime parser with the default configuration. |
225 | | #[inline] |
226 | 0 | pub const fn new() -> DateTimeParser { |
227 | 0 | DateTimeParser { relaxed_weekday: false } |
228 | 0 | } |
229 | | |
230 | | /// When enabled, parsing will permit the weekday to be inconsistent with |
231 | | /// the date. When enabled, the weekday is still parsed and can result in |
232 | | /// an error if it isn't _a_ valid weekday. Only the error checking for |
233 | | /// whether it is _the_ correct weekday for the parsed date is disabled. |
234 | | /// |
235 | | /// This is sometimes useful for interaction with systems that don't do |
236 | | /// strict error checking. |
237 | | /// |
238 | | /// This is disabled by default. And note that RFC 2822 compliance requires |
239 | | /// that the weekday is consistent with the date. |
240 | | /// |
241 | | /// # Example |
242 | | /// |
243 | | /// ``` |
244 | | /// use jiff::{civil::date, fmt::rfc2822}; |
245 | | /// |
246 | | /// let string = "Sun, 13 Jul 2024 15:09:59 -0400"; |
247 | | /// // The above normally results in an error, since 2024-07-13 is a |
248 | | /// // Saturday: |
249 | | /// assert!(rfc2822::parse(string).is_err()); |
250 | | /// // But we can relax the error checking: |
251 | | /// static P: rfc2822::DateTimeParser = rfc2822::DateTimeParser::new() |
252 | | /// .relaxed_weekday(true); |
253 | | /// assert_eq!( |
254 | | /// P.parse_zoned(string)?, |
255 | | /// date(2024, 7, 13).at(15, 9, 59, 0).in_tz("America/New_York")?, |
256 | | /// ); |
257 | | /// // But note that something that isn't recognized as a valid weekday |
258 | | /// // will still result in an error: |
259 | | /// assert!(P.parse_zoned("Wat, 13 Jul 2024 15:09:59 -0400").is_err()); |
260 | | /// |
261 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
262 | | /// ``` |
263 | | #[inline] |
264 | 0 | pub const fn relaxed_weekday(self, yes: bool) -> DateTimeParser { |
265 | 0 | DateTimeParser { relaxed_weekday: yes, ..self } |
266 | 0 | } |
267 | | |
268 | | /// Parse a datetime string into a [`Zoned`] value. |
269 | | /// |
270 | | /// Note that RFC 2822 does not support time zone annotations. The zoned |
271 | | /// datetime returned will therefore always have a fixed offset time zone. |
272 | | /// |
273 | | /// # Warning |
274 | | /// |
275 | | /// The RFC 2822 format only supports writing a precise instant in time |
276 | | /// expressed via a time zone offset. It does *not* support serializing |
277 | | /// the time zone itself. This means that if you format a zoned datetime |
278 | | /// in a time zone like `America/New_York` and then deserialize it, the |
279 | | /// zoned datetime you get back will be a "fixed offset" zoned datetime. |
280 | | /// This in turn means it will not perform daylight saving time safe |
281 | | /// arithmetic. |
282 | | /// |
283 | | /// Basically, you should use the RFC 2822 format if it's required (for |
284 | | /// example, when dealing with email). But you should not choose it as a |
285 | | /// general interchange format for new applications. |
286 | | /// |
287 | | /// # Errors |
288 | | /// |
289 | | /// This returns an error if the datetime string given is invalid or if it |
290 | | /// is valid but doesn't fit in the datetime range supported by Jiff. For |
291 | | /// example, RFC 2822 supports offsets up to 99 hours and 59 minutes, |
292 | | /// but Jiff's maximum offset is 25 hours, 59 minutes and 59 seconds. |
293 | | /// |
294 | | /// # Example |
295 | | /// |
296 | | /// This shows a basic example of parsing a `Timestamp` from an RFC 2822 |
297 | | /// datetime string. |
298 | | /// |
299 | | /// ``` |
300 | | /// use jiff::fmt::rfc2822::DateTimeParser; |
301 | | /// |
302 | | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
303 | | /// |
304 | | /// let zdt = PARSER.parse_zoned("Thu, 29 Feb 2024 05:34 -0500")?; |
305 | | /// assert_eq!(zdt.to_string(), "2024-02-29T05:34:00-05:00[-05:00]"); |
306 | | /// |
307 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
308 | | /// ``` |
309 | 0 | pub fn parse_zoned<I: AsRef<[u8]>>( |
310 | 0 | &self, |
311 | 0 | input: I, |
312 | 0 | ) -> Result<Zoned, Error> { |
313 | 0 | let input = input.as_ref(); |
314 | 0 | let zdt = self |
315 | 0 | .parse_zoned_internal(input) |
316 | 0 | .context( |
317 | | "failed to parse RFC 2822 datetime into Jiff zoned datetime", |
318 | 0 | )? |
319 | 0 | .into_full()?; |
320 | 0 | Ok(zdt) |
321 | 0 | } |
322 | | |
323 | | /// Parse an RFC 2822 datetime string into a [`Timestamp`]. |
324 | | /// |
325 | | /// # Errors |
326 | | /// |
327 | | /// This returns an error if the datetime string given is invalid or if it |
328 | | /// is valid but doesn't fit in the datetime range supported by Jiff. For |
329 | | /// example, RFC 2822 supports offsets up to 99 hours and 59 minutes, |
330 | | /// but Jiff's maximum offset is 25 hours, 59 minutes and 59 seconds. |
331 | | /// |
332 | | /// # Example |
333 | | /// |
334 | | /// This shows a basic example of parsing a `Timestamp` from an RFC 2822 |
335 | | /// datetime string. |
336 | | /// |
337 | | /// ``` |
338 | | /// use jiff::fmt::rfc2822::DateTimeParser; |
339 | | /// |
340 | | /// static PARSER: DateTimeParser = DateTimeParser::new(); |
341 | | /// |
342 | | /// let timestamp = PARSER.parse_timestamp("Thu, 29 Feb 2024 05:34 -0500")?; |
343 | | /// assert_eq!(timestamp.to_string(), "2024-02-29T10:34:00Z"); |
344 | | /// |
345 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
346 | | /// ``` |
347 | 0 | pub fn parse_timestamp<I: AsRef<[u8]>>( |
348 | 0 | &self, |
349 | 0 | input: I, |
350 | 0 | ) -> Result<Timestamp, Error> { |
351 | 0 | let input = input.as_ref(); |
352 | 0 | let ts = self |
353 | 0 | .parse_timestamp_internal(input) |
354 | 0 | .context("failed to parse RFC 2822 datetime into Jiff timestamp")? |
355 | 0 | .into_full()?; |
356 | 0 | Ok(ts) |
357 | 0 | } |
358 | | |
359 | | /// Parses an RFC 2822 datetime as a zoned datetime. |
360 | | /// |
361 | | /// Note that this doesn't check that the input has been completely |
362 | | /// consumed. |
363 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
364 | 0 | fn parse_zoned_internal<'i>( |
365 | 0 | &self, |
366 | 0 | input: &'i [u8], |
367 | 0 | ) -> Result<Parsed<'i, Zoned>, Error> { |
368 | 0 | let Parsed { value: (dt, offset), input } = |
369 | 0 | self.parse_datetime_offset(input)?; |
370 | 0 | let ts = offset |
371 | 0 | .to_timestamp(dt) |
372 | 0 | .context("RFC 2822 datetime out of Jiff's range")?; |
373 | 0 | let zdt = ts.to_zoned(TimeZone::fixed(offset)); |
374 | 0 | Ok(Parsed { value: zdt, input }) |
375 | 0 | } |
376 | | |
377 | | /// Parses an RFC 2822 datetime as a timestamp. |
378 | | /// |
379 | | /// Note that this doesn't check that the input has been completely |
380 | | /// consumed. |
381 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
382 | 0 | fn parse_timestamp_internal<'i>( |
383 | 0 | &self, |
384 | 0 | input: &'i [u8], |
385 | 0 | ) -> Result<Parsed<'i, Timestamp>, Error> { |
386 | 0 | let Parsed { value: (dt, offset), input } = |
387 | 0 | self.parse_datetime_offset(input)?; |
388 | 0 | let ts = offset |
389 | 0 | .to_timestamp(dt) |
390 | 0 | .context("RFC 2822 datetime out of Jiff's range")?; |
391 | 0 | Ok(Parsed { value: ts, input }) |
392 | 0 | } |
393 | | |
394 | | /// Parse the entirety of the given input into RFC 2822 components: a civil |
395 | | /// datetime and its offset. |
396 | | /// |
397 | | /// This also consumes any trailing (superfluous) whitespace. |
398 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
399 | 0 | fn parse_datetime_offset<'i>( |
400 | 0 | &self, |
401 | 0 | input: &'i [u8], |
402 | 0 | ) -> Result<Parsed<'i, (DateTime, Offset)>, Error> { |
403 | 0 | let input = input.as_ref(); |
404 | 0 | let Parsed { value: dt, input } = self.parse_datetime(input)?; |
405 | 0 | let Parsed { value: offset, input } = self.parse_offset(input)?; |
406 | 0 | let Parsed { input, .. } = self.skip_whitespace(input); |
407 | 0 | let input = if input.is_empty() { |
408 | 0 | input |
409 | | } else { |
410 | 0 | self.skip_comment(input)?.input |
411 | | }; |
412 | 0 | Ok(Parsed { value: (dt, offset), input }) |
413 | 0 | } |
414 | | |
415 | | /// Parses a civil datetime from an RFC 2822 string. The input may have |
416 | | /// leading whitespace. |
417 | | /// |
418 | | /// This also parses and trailing whitespace, including requiring at least |
419 | | /// one whitespace character. |
420 | | /// |
421 | | /// This basically parses everything except for the zone. |
422 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
423 | 0 | fn parse_datetime<'i>( |
424 | 0 | &self, |
425 | 0 | input: &'i [u8], |
426 | 0 | ) -> Result<Parsed<'i, DateTime>, Error> { |
427 | 0 | if input.is_empty() { |
428 | 0 | return Err(err!( |
429 | 0 | "expected RFC 2822 datetime, but got empty string" |
430 | 0 | )); |
431 | 0 | } |
432 | 0 | let Parsed { input, .. } = self.skip_whitespace(input); |
433 | 0 | if input.is_empty() { |
434 | 0 | return Err(err!( |
435 | 0 | "expected RFC 2822 datetime, but got empty string after \ |
436 | 0 | trimming whitespace", |
437 | 0 | )); |
438 | 0 | } |
439 | 0 | let Parsed { value: wd, input } = self.parse_weekday(input)?; |
440 | 0 | let Parsed { value: day, input } = self.parse_day(input)?; |
441 | 0 | let Parsed { value: month, input } = self.parse_month(input)?; |
442 | 0 | let Parsed { value: year, input } = self.parse_year(input)?; |
443 | | |
444 | 0 | let Parsed { value: hour, input } = self.parse_hour(input)?; |
445 | 0 | let Parsed { input, .. } = self.skip_whitespace(input); |
446 | 0 | let Parsed { input, .. } = self.parse_time_separator(input)?; |
447 | 0 | let Parsed { input, .. } = self.skip_whitespace(input); |
448 | 0 | let Parsed { value: minute, input } = self.parse_minute(input)?; |
449 | | |
450 | 0 | let Parsed { value: whitespace_after_minute, input } = |
451 | 0 | self.skip_whitespace(input); |
452 | 0 | let (second, input) = if !input.starts_with(b":") { |
453 | 0 | if !whitespace_after_minute { |
454 | 0 | return Err(err!( |
455 | 0 | "expected whitespace after parsing time: \ |
456 | 0 | expected at least one whitespace character \ |
457 | 0 | (space or tab), but found none", |
458 | 0 | )); |
459 | 0 | } |
460 | 0 | (t::Second::N::<0>(), input) |
461 | | } else { |
462 | 0 | let Parsed { input, .. } = self.parse_time_separator(input)?; |
463 | 0 | let Parsed { input, .. } = self.skip_whitespace(input); |
464 | 0 | let Parsed { value: second, input } = self.parse_second(input)?; |
465 | 0 | let Parsed { input, .. } = |
466 | 0 | self.parse_whitespace(input).with_context(|| { |
467 | 0 | err!("expected whitespace after parsing time") |
468 | 0 | })?; |
469 | 0 | (second, input) |
470 | | }; |
471 | | |
472 | 0 | let date = |
473 | 0 | Date::new_ranged(year, month, day).context("invalid date")?; |
474 | 0 | let time = Time::new_ranged( |
475 | 0 | hour, |
476 | 0 | minute, |
477 | 0 | second, |
478 | 0 | t::SubsecNanosecond::N::<0>(), |
479 | | ); |
480 | 0 | let dt = DateTime::from_parts(date, time); |
481 | 0 | if let Some(wd) = wd { |
482 | 0 | if !self.relaxed_weekday && wd != dt.weekday() { |
483 | 0 | return Err(err!( |
484 | 0 | "found parsed weekday of {parsed}, \ |
485 | 0 | but parsed datetime of {dt} has weekday \ |
486 | 0 | {has}", |
487 | 0 | parsed = weekday_abbrev(wd), |
488 | 0 | has = weekday_abbrev(dt.weekday()), |
489 | 0 | )); |
490 | 0 | } |
491 | 0 | } |
492 | 0 | Ok(Parsed { value: dt, input }) |
493 | 0 | } |
494 | | |
495 | | /// Parses an optional weekday at the beginning of an RFC 2822 datetime. |
496 | | /// |
497 | | /// This expects that any optional whitespace preceding the start of an |
498 | | /// optional day has been stripped and that the input has at least one |
499 | | /// byte. |
500 | | /// |
501 | | /// When the first byte of the given input is a digit (or is empty), then |
502 | | /// this returns `None`, as it implies a day is not present. But if it |
503 | | /// isn't a digit, then we assume that it must be a weekday and return an |
504 | | /// error based on that assumption if we couldn't recognize a weekday. |
505 | | /// |
506 | | /// If a weekday is parsed, then this also skips any trailing whitespace |
507 | | /// (and requires at least one whitespace character). |
508 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
509 | 0 | fn parse_weekday<'i>( |
510 | 0 | &self, |
511 | 0 | input: &'i [u8], |
512 | 0 | ) -> Result<Parsed<'i, Option<Weekday>>, Error> { |
513 | | // An empty input is invalid, but we let that case be |
514 | | // handled by the caller. Otherwise, we know there MUST |
515 | | // be a present day if the first character isn't an ASCII |
516 | | // digit. |
517 | 0 | if matches!(input[0], b'0'..=b'9') { |
518 | 0 | return Ok(Parsed { value: None, input }); |
519 | 0 | } |
520 | 0 | if input.len() < 4 { |
521 | 0 | return Err(err!( |
522 | 0 | "expected day at beginning of RFC 2822 datetime \ |
523 | 0 | since first non-whitespace byte, {first:?}, \ |
524 | 0 | is not a digit, but given string is too short \ |
525 | 0 | (length is {length})", |
526 | 0 | first = escape::Byte(input[0]), |
527 | 0 | length = input.len(), |
528 | 0 | )); |
529 | 0 | } |
530 | 0 | let b1 = input[0]; |
531 | 0 | let b2 = input[1]; |
532 | 0 | let b3 = input[2]; |
533 | 0 | let wd = match &[ |
534 | 0 | b1.to_ascii_lowercase(), |
535 | 0 | b2.to_ascii_lowercase(), |
536 | 0 | b3.to_ascii_lowercase(), |
537 | 0 | ] { |
538 | 0 | b"sun" => Weekday::Sunday, |
539 | 0 | b"mon" => Weekday::Monday, |
540 | 0 | b"tue" => Weekday::Tuesday, |
541 | 0 | b"wed" => Weekday::Wednesday, |
542 | 0 | b"thu" => Weekday::Thursday, |
543 | 0 | b"fri" => Weekday::Friday, |
544 | 0 | b"sat" => Weekday::Saturday, |
545 | | _ => { |
546 | 0 | return Err(err!( |
547 | 0 | "expected day at beginning of RFC 2822 datetime \ |
548 | 0 | since first non-whitespace byte, {first:?}, \ |
549 | 0 | is not a digit, but did not recognize {got:?} \ |
550 | 0 | as a valid weekday abbreviation", |
551 | 0 | first = escape::Byte(input[0]), |
552 | 0 | got = escape::Bytes(&input[..3]), |
553 | 0 | )); |
554 | | } |
555 | | }; |
556 | 0 | let Parsed { input, .. } = self.skip_whitespace(&input[3..]); |
557 | 0 | let Some(should_be_comma) = input.get(0).copied() else { |
558 | 0 | return Err(err!( |
559 | 0 | "expected comma after parsed weekday `{weekday}` in \ |
560 | 0 | RFC 2822 datetime, but found end of string instead", |
561 | 0 | weekday = escape::Bytes(&[b1, b2, b3]), |
562 | 0 | )); |
563 | | }; |
564 | 0 | if should_be_comma != b',' { |
565 | 0 | return Err(err!( |
566 | 0 | "expected comma after parsed weekday `{weekday}` in \ |
567 | 0 | RFC 2822 datetime, but found `{got:?}` instead", |
568 | 0 | weekday = escape::Bytes(&[b1, b2, b3]), |
569 | 0 | got = escape::Byte(should_be_comma), |
570 | 0 | )); |
571 | 0 | } |
572 | 0 | let Parsed { input, .. } = self.skip_whitespace(&input[1..]); |
573 | 0 | Ok(Parsed { value: Some(wd), input }) |
574 | 0 | } |
575 | | |
576 | | /// Parses a 1 or 2 digit day. |
577 | | /// |
578 | | /// This assumes the input starts with what must be an ASCII digit (or it |
579 | | /// may be empty). |
580 | | /// |
581 | | /// This also parses at least one mandatory whitespace character after the |
582 | | /// day. |
583 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
584 | 0 | fn parse_day<'i>( |
585 | 0 | &self, |
586 | 0 | input: &'i [u8], |
587 | 0 | ) -> Result<Parsed<'i, t::Day>, Error> { |
588 | 0 | if input.is_empty() { |
589 | 0 | return Err(err!("expected day, but found end of input")); |
590 | 0 | } |
591 | 0 | let mut digits = 1; |
592 | 0 | if input.len() >= 2 && matches!(input[1], b'0'..=b'9') { |
593 | 0 | digits = 2; |
594 | 0 | } |
595 | 0 | let (day, input) = input.split_at(digits); |
596 | 0 | let day = parse::i64(day).with_context(|| { |
597 | 0 | err!("failed to parse {day:?} as day", day = escape::Bytes(day)) |
598 | 0 | })?; |
599 | 0 | let day = t::Day::try_new("day", day).context("day is not valid")?; |
600 | 0 | let Parsed { input, .. } = |
601 | 0 | self.parse_whitespace(input).with_context(|| { |
602 | 0 | err!("expected whitespace after parsing day {day}") |
603 | 0 | })?; |
604 | 0 | Ok(Parsed { value: day, input }) |
605 | 0 | } |
606 | | |
607 | | /// Parses an abbreviated month name. |
608 | | /// |
609 | | /// This assumes the input starts with what must be the beginning of a |
610 | | /// month name (or the input may be empty). |
611 | | /// |
612 | | /// This also parses at least one mandatory whitespace character after the |
613 | | /// month name. |
614 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
615 | 0 | fn parse_month<'i>( |
616 | 0 | &self, |
617 | 0 | input: &'i [u8], |
618 | 0 | ) -> Result<Parsed<'i, t::Month>, Error> { |
619 | 0 | if input.is_empty() { |
620 | 0 | return Err(err!( |
621 | 0 | "expected abbreviated month name, but found end of input" |
622 | 0 | )); |
623 | 0 | } |
624 | 0 | if input.len() < 3 { |
625 | 0 | return Err(err!( |
626 | 0 | "expected abbreviated month name, but remaining input \ |
627 | 0 | is too short (remaining bytes is {length})", |
628 | 0 | length = input.len(), |
629 | 0 | )); |
630 | 0 | } |
631 | 0 | let b1 = input[0].to_ascii_lowercase(); |
632 | 0 | let b2 = input[1].to_ascii_lowercase(); |
633 | 0 | let b3 = input[2].to_ascii_lowercase(); |
634 | 0 | let month = match &[b1, b2, b3] { |
635 | 0 | b"jan" => 1, |
636 | 0 | b"feb" => 2, |
637 | 0 | b"mar" => 3, |
638 | 0 | b"apr" => 4, |
639 | 0 | b"may" => 5, |
640 | 0 | b"jun" => 6, |
641 | 0 | b"jul" => 7, |
642 | 0 | b"aug" => 8, |
643 | 0 | b"sep" => 9, |
644 | 0 | b"oct" => 10, |
645 | 0 | b"nov" => 11, |
646 | 0 | b"dec" => 12, |
647 | | _ => { |
648 | 0 | return Err(err!( |
649 | 0 | "expected abbreviated month name, \ |
650 | 0 | but did not recognize {got:?} \ |
651 | 0 | as a valid month", |
652 | 0 | got = escape::Bytes(&input[..3]), |
653 | 0 | )); |
654 | | } |
655 | | }; |
656 | | // OK because we just assigned a numeric value ourselves |
657 | | // above, and all values are valid months. |
658 | 0 | let month = t::Month::new(month).unwrap(); |
659 | 0 | let Parsed { input, .. } = |
660 | 0 | self.parse_whitespace(&input[3..]).with_context(|| { |
661 | 0 | err!("expected whitespace after parsing month name") |
662 | 0 | })?; |
663 | 0 | Ok(Parsed { value: month, input }) |
664 | 0 | } |
665 | | |
666 | | /// Parses a 2, 3 or 4 digit year. |
667 | | /// |
668 | | /// This assumes the input starts with what must be an ASCII digit (or it |
669 | | /// may be empty). |
670 | | /// |
671 | | /// This also parses at least one mandatory whitespace character after the |
672 | | /// day. |
673 | | /// |
674 | | /// The 2 or 3 digit years are "obsolete," which we support by following |
675 | | /// the rules in RFC 2822: |
676 | | /// |
677 | | /// > Where a two or three digit year occurs in a date, the year is to be |
678 | | /// > interpreted as follows: If a two digit year is encountered whose |
679 | | /// > value is between 00 and 49, the year is interpreted by adding 2000, |
680 | | /// > ending up with a value between 2000 and 2049. If a two digit year is |
681 | | /// > encountered with a value between 50 and 99, or any three digit year |
682 | | /// > is encountered, the year is interpreted by adding 1900. |
683 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
684 | 0 | fn parse_year<'i>( |
685 | 0 | &self, |
686 | 0 | input: &'i [u8], |
687 | 0 | ) -> Result<Parsed<'i, t::Year>, Error> { |
688 | 0 | let mut digits = 0; |
689 | 0 | while digits <= 3 |
690 | 0 | && !input[digits..].is_empty() |
691 | 0 | && matches!(input[digits], b'0'..=b'9') |
692 | 0 | { |
693 | 0 | digits += 1; |
694 | 0 | } |
695 | 0 | if digits <= 1 { |
696 | 0 | return Err(err!( |
697 | 0 | "expected at least two ASCII digits for parsing \ |
698 | 0 | a year, but only found {digits}", |
699 | 0 | )); |
700 | 0 | } |
701 | 0 | let (year, input) = input.split_at(digits); |
702 | 0 | let year = parse::i64(year).with_context(|| { |
703 | 0 | err!( |
704 | 0 | "failed to parse {year:?} as year \ |
705 | 0 | (a two, three or four digit integer)", |
706 | 0 | year = escape::Bytes(year), |
707 | | ) |
708 | 0 | })?; |
709 | 0 | let year = match digits { |
710 | 0 | 2 if year <= 49 => year + 2000, |
711 | 0 | 2 | 3 => year + 1900, |
712 | 0 | 4 => year, |
713 | 0 | _ => unreachable!("digits={digits} must be 2, 3 or 4"), |
714 | | }; |
715 | 0 | let year = |
716 | 0 | t::Year::try_new("year", year).context("year is not valid")?; |
717 | 0 | let Parsed { input, .. } = self |
718 | 0 | .parse_whitespace(input) |
719 | 0 | .with_context(|| err!("expected whitespace after parsing year"))?; |
720 | 0 | Ok(Parsed { value: year, input }) |
721 | 0 | } |
722 | | |
723 | | /// Parses a 2-digit hour. This assumes the input begins with what should |
724 | | /// be an ASCII digit. (i.e., It doesn't trim leading whitespace.) |
725 | | /// |
726 | | /// This parses a mandatory trailing `:`, advancing the input to |
727 | | /// immediately after it. |
728 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
729 | 0 | fn parse_hour<'i>( |
730 | 0 | &self, |
731 | 0 | input: &'i [u8], |
732 | 0 | ) -> Result<Parsed<'i, t::Hour>, Error> { |
733 | 0 | let (hour, input) = parse::split(input, 2).ok_or_else(|| { |
734 | 0 | err!("expected two digit hour, but found end of input") |
735 | 0 | })?; |
736 | 0 | let hour = parse::i64(hour).with_context(|| { |
737 | 0 | err!( |
738 | 0 | "failed to parse {hour:?} as hour (a two digit integer)", |
739 | 0 | hour = escape::Bytes(hour), |
740 | | ) |
741 | 0 | })?; |
742 | 0 | let hour = |
743 | 0 | t::Hour::try_new("hour", hour).context("hour is not valid")?; |
744 | 0 | Ok(Parsed { value: hour, input }) |
745 | 0 | } |
746 | | |
747 | | /// Parses a 2-digit minute. This assumes the input begins with what should |
748 | | /// be an ASCII digit. (i.e., It doesn't trim leading whitespace.) |
749 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
750 | 0 | fn parse_minute<'i>( |
751 | 0 | &self, |
752 | 0 | input: &'i [u8], |
753 | 0 | ) -> Result<Parsed<'i, t::Minute>, Error> { |
754 | 0 | let (minute, input) = parse::split(input, 2).ok_or_else(|| { |
755 | 0 | err!("expected two digit minute, but found end of input") |
756 | 0 | })?; |
757 | 0 | let minute = parse::i64(minute).with_context(|| { |
758 | 0 | err!( |
759 | 0 | "failed to parse {minute:?} as minute (a two digit integer)", |
760 | 0 | minute = escape::Bytes(minute), |
761 | | ) |
762 | 0 | })?; |
763 | 0 | let minute = t::Minute::try_new("minute", minute) |
764 | 0 | .context("minute is not valid")?; |
765 | 0 | Ok(Parsed { value: minute, input }) |
766 | 0 | } |
767 | | |
768 | | /// Parses a 2-digit second. This assumes the input begins with what should |
769 | | /// be an ASCII digit. (i.e., It doesn't trim leading whitespace.) |
770 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
771 | 0 | fn parse_second<'i>( |
772 | 0 | &self, |
773 | 0 | input: &'i [u8], |
774 | 0 | ) -> Result<Parsed<'i, t::Second>, Error> { |
775 | 0 | let (second, input) = parse::split(input, 2).ok_or_else(|| { |
776 | 0 | err!("expected two digit second, but found end of input") |
777 | 0 | })?; |
778 | 0 | let mut second = parse::i64(second).with_context(|| { |
779 | 0 | err!( |
780 | 0 | "failed to parse {second:?} as second (a two digit integer)", |
781 | 0 | second = escape::Bytes(second), |
782 | | ) |
783 | 0 | })?; |
784 | 0 | if second == 60 { |
785 | 0 | second = 59; |
786 | 0 | } |
787 | 0 | let second = t::Second::try_new("second", second) |
788 | 0 | .context("second is not valid")?; |
789 | 0 | Ok(Parsed { value: second, input }) |
790 | 0 | } |
791 | | |
792 | | /// Parses a time zone offset (including obsolete offsets like EDT). |
793 | | /// |
794 | | /// This assumes the offset must begin at the beginning of `input`. That |
795 | | /// is, any leading whitespace should already have been trimmed. |
796 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
797 | 0 | fn parse_offset<'i>( |
798 | 0 | &self, |
799 | 0 | input: &'i [u8], |
800 | 0 | ) -> Result<Parsed<'i, Offset>, Error> { |
801 | | type ParsedOffsetHours = ri8<0, { t::SpanZoneOffsetHours::MAX }>; |
802 | | type ParsedOffsetMinutes = ri8<0, { t::SpanZoneOffsetMinutes::MAX }>; |
803 | | |
804 | 0 | let sign = input.get(0).copied().ok_or_else(|| { |
805 | 0 | err!( |
806 | 0 | "expected sign for time zone offset, \ |
807 | 0 | (or a legacy time zone name abbreviation), \ |
808 | 0 | but found end of input", |
809 | | ) |
810 | 0 | })?; |
811 | 0 | let sign = if sign == b'+' { |
812 | 0 | t::Sign::N::<1>() |
813 | 0 | } else if sign == b'-' { |
814 | 0 | t::Sign::N::<-1>() |
815 | | } else { |
816 | 0 | return self.parse_offset_obsolete(input); |
817 | | }; |
818 | 0 | let input = &input[1..]; |
819 | 0 | let (hhmm, input) = parse::split(input, 4).ok_or_else(|| { |
820 | 0 | err!( |
821 | 0 | "expected at least 4 digits for time zone offset \ |
822 | 0 | after sign, but found only {len} bytes remaining", |
823 | 0 | len = input.len(), |
824 | | ) |
825 | 0 | })?; |
826 | | |
827 | 0 | let hh = parse::i64(&hhmm[0..2]).with_context(|| { |
828 | 0 | err!( |
829 | 0 | "failed to parse hours from time zone offset {hhmm}", |
830 | 0 | hhmm = escape::Bytes(hhmm) |
831 | | ) |
832 | 0 | })?; |
833 | 0 | let hh = ParsedOffsetHours::try_new("zone-offset-hours", hh) |
834 | 0 | .context("time zone offset hours are not valid")?; |
835 | 0 | let hh = t::SpanZoneOffset::rfrom(hh); |
836 | | |
837 | 0 | let mm = parse::i64(&hhmm[2..4]).with_context(|| { |
838 | 0 | err!( |
839 | 0 | "failed to parse minutes from time zone offset {hhmm}", |
840 | 0 | hhmm = escape::Bytes(hhmm) |
841 | | ) |
842 | 0 | })?; |
843 | 0 | let mm = ParsedOffsetMinutes::try_new("zone-offset-minutes", mm) |
844 | 0 | .context("time zone offset minutes are not valid")?; |
845 | 0 | let mm = t::SpanZoneOffset::rfrom(mm); |
846 | | |
847 | 0 | let seconds = hh * C(3_600) + mm * C(60); |
848 | 0 | let offset = Offset::from_seconds_ranged(seconds * sign); |
849 | 0 | Ok(Parsed { value: offset, input }) |
850 | 0 | } |
851 | | |
852 | | /// Parses an obsolete time zone offset. |
853 | | #[inline(never)] |
854 | 0 | fn parse_offset_obsolete<'i>( |
855 | 0 | &self, |
856 | 0 | input: &'i [u8], |
857 | 0 | ) -> Result<Parsed<'i, Offset>, Error> { |
858 | 0 | let mut letters = [0; 5]; |
859 | 0 | let mut len = 0; |
860 | 0 | while len <= 4 |
861 | 0 | && !input[len..].is_empty() |
862 | 0 | && !is_whitespace(input[len]) |
863 | 0 | { |
864 | 0 | letters[len] = input[len].to_ascii_lowercase(); |
865 | 0 | len += 1; |
866 | 0 | } |
867 | 0 | if len == 0 { |
868 | 0 | return Err(err!( |
869 | 0 | "expected obsolete RFC 2822 time zone abbreviation, \ |
870 | 0 | but found no remaining non-whitespace characters \ |
871 | 0 | after time", |
872 | 0 | )); |
873 | 0 | } |
874 | 0 | let offset = match &letters[..len] { |
875 | 0 | b"ut" | b"gmt" | b"z" => Offset::UTC, |
876 | 0 | b"est" => Offset::constant(-5), |
877 | 0 | b"edt" => Offset::constant(-4), |
878 | 0 | b"cst" => Offset::constant(-6), |
879 | 0 | b"cdt" => Offset::constant(-5), |
880 | 0 | b"mst" => Offset::constant(-7), |
881 | 0 | b"mdt" => Offset::constant(-6), |
882 | 0 | b"pst" => Offset::constant(-8), |
883 | 0 | b"pdt" => Offset::constant(-7), |
884 | 0 | name => { |
885 | 0 | if name.len() == 1 |
886 | 0 | && matches!(name[0], b'a'..=b'i' | b'k'..=b'z') |
887 | | { |
888 | | // Section 4.3 indicates these as military time: |
889 | | // |
890 | | // > The 1 character military time zones were defined in |
891 | | // > a non-standard way in [RFC822] and are therefore |
892 | | // > unpredictable in their meaning. The original |
893 | | // > definitions of the military zones "A" through "I" are |
894 | | // > equivalent to "+0100" through "+0900" respectively; |
895 | | // > "K", "L", and "M" are equivalent to "+1000", "+1100", |
896 | | // > and "+1200" respectively; "N" through "Y" are |
897 | | // > equivalent to "-0100" through "-1200" respectively; |
898 | | // > and "Z" is equivalent to "+0000". However, because of |
899 | | // > the error in [RFC822], they SHOULD all be considered |
900 | | // > equivalent to "-0000" unless there is out-of-band |
901 | | // > information confirming their meaning. |
902 | | // |
903 | | // So just treat them as UTC. |
904 | 0 | Offset::UTC |
905 | 0 | } else if name.len() >= 3 |
906 | 0 | && name.iter().all(|&b| matches!(b, b'a'..=b'z')) |
907 | | { |
908 | | // Section 4.3 also says that anything that _looks_ like a |
909 | | // zone name should just be -0000 too: |
910 | | // |
911 | | // > Other multi-character (usually between 3 and 5) |
912 | | // > alphabetic time zones have been used in Internet |
913 | | // > messages. Any such time zone whose meaning is not |
914 | | // > known SHOULD be considered equivalent to "-0000" |
915 | | // > unless there is out-of-band information confirming |
916 | | // > their meaning. |
917 | 0 | Offset::UTC |
918 | | } else { |
919 | | // But anything else we throw our hands up I guess. |
920 | 0 | return Err(err!( |
921 | 0 | "expected obsolete RFC 2822 time zone abbreviation, \ |
922 | 0 | but found {found:?}", |
923 | 0 | found = escape::Bytes(&input[..len]), |
924 | 0 | )); |
925 | | } |
926 | | } |
927 | | }; |
928 | 0 | Ok(Parsed { value: offset, input: &input[len..] }) |
929 | 0 | } |
930 | | |
931 | | /// Parses a time separator. This returns an error if one couldn't be |
932 | | /// found. |
933 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
934 | 0 | fn parse_time_separator<'i>( |
935 | 0 | &self, |
936 | 0 | input: &'i [u8], |
937 | 0 | ) -> Result<Parsed<'i, ()>, Error> { |
938 | 0 | if input.is_empty() { |
939 | 0 | return Err(err!( |
940 | 0 | "expected time separator of ':', but found end of input", |
941 | 0 | )); |
942 | 0 | } |
943 | 0 | if input[0] != b':' { |
944 | 0 | return Err(err!( |
945 | 0 | "expected time separator of ':', but found {got}", |
946 | 0 | got = escape::Byte(input[0]), |
947 | 0 | )); |
948 | 0 | } |
949 | 0 | Ok(Parsed { value: (), input: &input[1..] }) |
950 | 0 | } |
951 | | |
952 | | /// Parses at least one whitespace character. If no whitespace was found, |
953 | | /// then this returns an error. |
954 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
955 | 0 | fn parse_whitespace<'i>( |
956 | 0 | &self, |
957 | 0 | input: &'i [u8], |
958 | 0 | ) -> Result<Parsed<'i, ()>, Error> { |
959 | 0 | let Parsed { input, value: had_whitespace } = |
960 | 0 | self.skip_whitespace(input); |
961 | 0 | if !had_whitespace { |
962 | 0 | return Err(err!( |
963 | 0 | "expected at least one whitespace character (space or tab), \ |
964 | 0 | but found none", |
965 | 0 | )); |
966 | 0 | } |
967 | 0 | Ok(Parsed { value: (), input }) |
968 | 0 | } |
969 | | |
970 | | /// Skips over any ASCII whitespace at the beginning of `input`. |
971 | | /// |
972 | | /// This returns the input unchanged if it does not begin with whitespace. |
973 | | /// The resulting value is `true` if any whitespace was consumed, |
974 | | /// and `false` if none was. |
975 | | #[cfg_attr(feature = "perf-inline", inline(always))] |
976 | 0 | fn skip_whitespace<'i>(&self, mut input: &'i [u8]) -> Parsed<'i, bool> { |
977 | 0 | let mut found_whitespace = false; |
978 | 0 | while input.first().map_or(false, |&b| is_whitespace(b)) { |
979 | 0 | input = &input[1..]; |
980 | 0 | found_whitespace = true; |
981 | 0 | } |
982 | 0 | Parsed { value: found_whitespace, input } |
983 | 0 | } |
984 | | |
985 | | /// This attempts to parse and skip any trailing "comment" in an RFC 2822 |
986 | | /// datetime. |
987 | | /// |
988 | | /// This is a bit more relaxed than what RFC 2822 specifies. We basically |
989 | | /// just try to balance parenthesis and skip over escapes. |
990 | | /// |
991 | | /// This assumes that if a comment exists, its opening parenthesis is at |
992 | | /// the beginning of `input`. That is, any leading whitespace has been |
993 | | /// stripped. |
994 | | #[inline(never)] |
995 | 0 | fn skip_comment<'i>( |
996 | 0 | &self, |
997 | 0 | mut input: &'i [u8], |
998 | 0 | ) -> Result<Parsed<'i, ()>, Error> { |
999 | 0 | if !input.starts_with(b"(") { |
1000 | 0 | return Ok(Parsed { value: (), input }); |
1001 | 0 | } |
1002 | 0 | input = &input[1..]; |
1003 | 0 | let mut depth: u8 = 1; |
1004 | 0 | let mut escape = false; |
1005 | 0 | for byte in input.iter().copied() { |
1006 | 0 | input = &input[1..]; |
1007 | 0 | if escape { |
1008 | 0 | escape = false; |
1009 | 0 | } else if byte == b'\\' { |
1010 | 0 | escape = true; |
1011 | 0 | } else if byte == b')' { |
1012 | | // I believe this error case is actually impossible, since as |
1013 | | // soon as we hit 0, we break out. If there is more "comment," |
1014 | | // then it will flag an error as unparsed input. |
1015 | 0 | depth = depth.checked_sub(1).ok_or_else(|| { |
1016 | 0 | err!( |
1017 | 0 | "found closing parenthesis in comment with \ |
1018 | 0 | no matching opening parenthesis" |
1019 | | ) |
1020 | 0 | })?; |
1021 | 0 | if depth == 0 { |
1022 | 0 | break; |
1023 | 0 | } |
1024 | 0 | } else if byte == b'(' { |
1025 | 0 | depth = depth.checked_add(1).ok_or_else(|| { |
1026 | 0 | err!("found too many nested parenthesis in comment") |
1027 | 0 | })?; |
1028 | 0 | } |
1029 | | } |
1030 | 0 | if depth > 0 { |
1031 | 0 | return Err(err!( |
1032 | 0 | "found opening parenthesis in comment with \ |
1033 | 0 | no matching closing parenthesis" |
1034 | 0 | )); |
1035 | 0 | } |
1036 | 0 | let Parsed { input, .. } = self.skip_whitespace(input); |
1037 | 0 | Ok(Parsed { value: (), input }) |
1038 | 0 | } |
1039 | | } |
1040 | | |
1041 | | /// A printer for [RFC 2822] datetimes. |
1042 | | /// |
1043 | | /// This printer converts an in memory representation of a precise instant in |
1044 | | /// time to an RFC 2822 formatted string. That is, [`Zoned`] or [`Timestamp`], |
1045 | | /// since all other datetime types in Jiff are inexact. |
1046 | | /// |
1047 | | /// [RFC 2822]: https://datatracker.ietf.org/doc/html/rfc2822 |
1048 | | /// |
1049 | | /// # Warning |
1050 | | /// |
1051 | | /// The RFC 2822 format only supports writing a precise instant in time |
1052 | | /// expressed via a time zone offset. It does *not* support serializing |
1053 | | /// the time zone itself. This means that if you format a zoned datetime |
1054 | | /// in a time zone like `America/New_York` and then deserialize it, the |
1055 | | /// zoned datetime you get back will be a "fixed offset" zoned datetime. |
1056 | | /// This in turn means it will not perform daylight saving time safe |
1057 | | /// arithmetic. |
1058 | | /// |
1059 | | /// Basically, you should use the RFC 2822 format if it's required (for |
1060 | | /// example, when dealing with email). But you should not choose it as a |
1061 | | /// general interchange format for new applications. |
1062 | | /// |
1063 | | /// # Example |
1064 | | /// |
1065 | | /// This example shows how to convert a zoned datetime to the RFC 2822 format: |
1066 | | /// |
1067 | | /// ``` |
1068 | | /// use jiff::{civil::date, fmt::rfc2822::DateTimePrinter}; |
1069 | | /// |
1070 | | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
1071 | | /// |
1072 | | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("Australia/Tasmania")?; |
1073 | | /// |
1074 | | /// let mut buf = String::new(); |
1075 | | /// PRINTER.print_zoned(&zdt, &mut buf)?; |
1076 | | /// assert_eq!(buf, "Sat, 15 Jun 2024 07:00:00 +1000"); |
1077 | | /// |
1078 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1079 | | /// ``` |
1080 | | /// |
1081 | | /// # Example: using adapters with `std::io::Write` and `std::fmt::Write` |
1082 | | /// |
1083 | | /// By using the [`StdIoWrite`](super::StdIoWrite) and |
1084 | | /// [`StdFmtWrite`](super::StdFmtWrite) adapters, one can print datetimes |
1085 | | /// directly to implementations of `std::io::Write` and `std::fmt::Write`, |
1086 | | /// respectively. The example below demonstrates writing to anything |
1087 | | /// that implements `std::io::Write`. Similar code can be written for |
1088 | | /// `std::fmt::Write`. |
1089 | | /// |
1090 | | /// ```no_run |
1091 | | /// use std::{fs::File, io::{BufWriter, Write}, path::Path}; |
1092 | | /// |
1093 | | /// use jiff::{civil::date, fmt::{StdIoWrite, rfc2822::DateTimePrinter}}; |
1094 | | /// |
1095 | | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("Asia/Kolkata")?; |
1096 | | /// |
1097 | | /// let path = Path::new("/tmp/output"); |
1098 | | /// let mut file = BufWriter::new(File::create(path)?); |
1099 | | /// DateTimePrinter::new().print_zoned(&zdt, StdIoWrite(&mut file)).unwrap(); |
1100 | | /// file.flush()?; |
1101 | | /// assert_eq!( |
1102 | | /// std::fs::read_to_string(path)?, |
1103 | | /// "Sat, 15 Jun 2024 07:00:00 +0530", |
1104 | | /// ); |
1105 | | /// |
1106 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1107 | | /// ``` |
1108 | | #[derive(Debug)] |
1109 | | pub struct DateTimePrinter { |
1110 | | // The RFC 2822 printer has no configuration at present. |
1111 | | _private: (), |
1112 | | } |
1113 | | |
1114 | | impl DateTimePrinter { |
1115 | | /// Create a new RFC 2822 datetime printer with the default configuration. |
1116 | | #[inline] |
1117 | 0 | pub const fn new() -> DateTimePrinter { |
1118 | 0 | DateTimePrinter { _private: () } |
1119 | 0 | } |
1120 | | |
1121 | | /// Format a `Zoned` datetime into a string. |
1122 | | /// |
1123 | | /// This never emits `-0000` as the offset in the RFC 2822 format. If you |
1124 | | /// desire a `-0000` offset, use [`DateTimePrinter::print_timestamp`] via |
1125 | | /// [`Zoned::timestamp`]. |
1126 | | /// |
1127 | | /// Moreover, since RFC 2822 does not support fractional seconds, this |
1128 | | /// routine prints the zoned datetime as if truncating any fractional |
1129 | | /// seconds. |
1130 | | /// |
1131 | | /// This is a convenience routine for [`DateTimePrinter::print_zoned`] |
1132 | | /// with a `String`. |
1133 | | /// |
1134 | | /// # Warning |
1135 | | /// |
1136 | | /// The RFC 2822 format only supports writing a precise instant in time |
1137 | | /// expressed via a time zone offset. It does *not* support serializing |
1138 | | /// the time zone itself. This means that if you format a zoned datetime |
1139 | | /// in a time zone like `America/New_York` and then deserialize it, the |
1140 | | /// zoned datetime you get back will be a "fixed offset" zoned datetime. |
1141 | | /// This in turn means it will not perform daylight saving time safe |
1142 | | /// arithmetic. |
1143 | | /// |
1144 | | /// Basically, you should use the RFC 2822 format if it's required (for |
1145 | | /// example, when dealing with email). But you should not choose it as a |
1146 | | /// general interchange format for new applications. |
1147 | | /// |
1148 | | /// # Errors |
1149 | | /// |
1150 | | /// This can return an error if the year corresponding to this timestamp |
1151 | | /// cannot be represented in the RFC 2822 format. For example, a negative |
1152 | | /// year. |
1153 | | /// |
1154 | | /// # Example |
1155 | | /// |
1156 | | /// ``` |
1157 | | /// use jiff::{civil::date, fmt::rfc2822::DateTimePrinter}; |
1158 | | /// |
1159 | | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
1160 | | /// |
1161 | | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York")?; |
1162 | | /// assert_eq!( |
1163 | | /// PRINTER.zoned_to_string(&zdt)?, |
1164 | | /// "Sat, 15 Jun 2024 07:00:00 -0400", |
1165 | | /// ); |
1166 | | /// |
1167 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1168 | | /// ``` |
1169 | | #[cfg(feature = "alloc")] |
1170 | 0 | pub fn zoned_to_string( |
1171 | 0 | &self, |
1172 | 0 | zdt: &Zoned, |
1173 | 0 | ) -> Result<alloc::string::String, Error> { |
1174 | 0 | let mut buf = alloc::string::String::with_capacity(4); |
1175 | 0 | self.print_zoned(zdt, &mut buf)?; |
1176 | 0 | Ok(buf) |
1177 | 0 | } |
1178 | | |
1179 | | /// Format a `Timestamp` datetime into a string. |
1180 | | /// |
1181 | | /// This always emits `-0000` as the offset in the RFC 2822 format. If you |
1182 | | /// desire a `+0000` offset, use [`DateTimePrinter::print_zoned`] with a |
1183 | | /// zoned datetime with [`TimeZone::UTC`]. |
1184 | | /// |
1185 | | /// Moreover, since RFC 2822 does not support fractional seconds, this |
1186 | | /// routine prints the timestamp as if truncating any fractional seconds. |
1187 | | /// |
1188 | | /// This is a convenience routine for [`DateTimePrinter::print_timestamp`] |
1189 | | /// with a `String`. |
1190 | | /// |
1191 | | /// # Errors |
1192 | | /// |
1193 | | /// This returns an error if the year corresponding to this |
1194 | | /// timestamp cannot be represented in the RFC 2822 format. For example, a |
1195 | | /// negative year. |
1196 | | /// |
1197 | | /// # Example |
1198 | | /// |
1199 | | /// ``` |
1200 | | /// use jiff::{fmt::rfc2822::DateTimePrinter, Timestamp}; |
1201 | | /// |
1202 | | /// let timestamp = Timestamp::from_second(1) |
1203 | | /// .expect("one second after Unix epoch is always valid"); |
1204 | | /// assert_eq!( |
1205 | | /// DateTimePrinter::new().timestamp_to_string(×tamp)?, |
1206 | | /// "Thu, 1 Jan 1970 00:00:01 -0000", |
1207 | | /// ); |
1208 | | /// |
1209 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1210 | | /// ``` |
1211 | | #[cfg(feature = "alloc")] |
1212 | 0 | pub fn timestamp_to_string( |
1213 | 0 | &self, |
1214 | 0 | timestamp: &Timestamp, |
1215 | 0 | ) -> Result<alloc::string::String, Error> { |
1216 | 0 | let mut buf = alloc::string::String::with_capacity(4); |
1217 | 0 | self.print_timestamp(timestamp, &mut buf)?; |
1218 | 0 | Ok(buf) |
1219 | 0 | } |
1220 | | |
1221 | | /// Format a `Timestamp` datetime into a string in a way that is explicitly |
1222 | | /// compatible with [RFC 9110]. This is typically useful in contexts where |
1223 | | /// strict compatibility with HTTP is desired. |
1224 | | /// |
1225 | | /// This always emits `GMT` as the offset and always uses two digits for |
1226 | | /// the day. This results in a fixed length format that always uses 29 |
1227 | | /// characters. |
1228 | | /// |
1229 | | /// Since neither RFC 2822 nor RFC 9110 supports fractional seconds, this |
1230 | | /// routine prints the timestamp as if truncating any fractional seconds. |
1231 | | /// |
1232 | | /// This is a convenience routine for |
1233 | | /// [`DateTimePrinter::print_timestamp_rfc9110`] with a `String`. |
1234 | | /// |
1235 | | /// # Errors |
1236 | | /// |
1237 | | /// This returns an error if the year corresponding to this timestamp |
1238 | | /// cannot be represented in the RFC 2822 or RFC 9110 format. For example, |
1239 | | /// a negative year. |
1240 | | /// |
1241 | | /// # Example |
1242 | | /// |
1243 | | /// ``` |
1244 | | /// use jiff::{fmt::rfc2822::DateTimePrinter, Timestamp}; |
1245 | | /// |
1246 | | /// let timestamp = Timestamp::from_second(1) |
1247 | | /// .expect("one second after Unix epoch is always valid"); |
1248 | | /// assert_eq!( |
1249 | | /// DateTimePrinter::new().timestamp_to_rfc9110_string(×tamp)?, |
1250 | | /// "Thu, 01 Jan 1970 00:00:01 GMT", |
1251 | | /// ); |
1252 | | /// |
1253 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1254 | | /// ``` |
1255 | | /// |
1256 | | /// [RFC 9110]: https://datatracker.ietf.org/doc/html/rfc9110#section-5.6.7-15 |
1257 | | #[cfg(feature = "alloc")] |
1258 | 0 | pub fn timestamp_to_rfc9110_string( |
1259 | 0 | &self, |
1260 | 0 | timestamp: &Timestamp, |
1261 | 0 | ) -> Result<alloc::string::String, Error> { |
1262 | 0 | let mut buf = alloc::string::String::with_capacity(29); |
1263 | 0 | self.print_timestamp_rfc9110(timestamp, &mut buf)?; |
1264 | 0 | Ok(buf) |
1265 | 0 | } |
1266 | | |
1267 | | /// Print a `Zoned` datetime to the given writer. |
1268 | | /// |
1269 | | /// This never emits `-0000` as the offset in the RFC 2822 format. If you |
1270 | | /// desire a `-0000` offset, use [`DateTimePrinter::print_timestamp`] via |
1271 | | /// [`Zoned::timestamp`]. |
1272 | | /// |
1273 | | /// Moreover, since RFC 2822 does not support fractional seconds, this |
1274 | | /// routine prints the zoned datetime as if truncating any fractional |
1275 | | /// seconds. |
1276 | | /// |
1277 | | /// # Warning |
1278 | | /// |
1279 | | /// The RFC 2822 format only supports writing a precise instant in time |
1280 | | /// expressed via a time zone offset. It does *not* support serializing |
1281 | | /// the time zone itself. This means that if you format a zoned datetime |
1282 | | /// in a time zone like `America/New_York` and then deserialize it, the |
1283 | | /// zoned datetime you get back will be a "fixed offset" zoned datetime. |
1284 | | /// This in turn means it will not perform daylight saving time safe |
1285 | | /// arithmetic. |
1286 | | /// |
1287 | | /// Basically, you should use the RFC 2822 format if it's required (for |
1288 | | /// example, when dealing with email). But you should not choose it as a |
1289 | | /// general interchange format for new applications. |
1290 | | /// |
1291 | | /// # Errors |
1292 | | /// |
1293 | | /// This returns an error when writing to the given [`Write`] |
1294 | | /// implementation would fail. Some such implementations, like for `String` |
1295 | | /// and `Vec<u8>`, never fail (unless memory allocation fails). |
1296 | | /// |
1297 | | /// This can also return an error if the year corresponding to this |
1298 | | /// timestamp cannot be represented in the RFC 2822 format. For example, a |
1299 | | /// negative year. |
1300 | | /// |
1301 | | /// # Example |
1302 | | /// |
1303 | | /// ``` |
1304 | | /// use jiff::{civil::date, fmt::rfc2822::DateTimePrinter}; |
1305 | | /// |
1306 | | /// const PRINTER: DateTimePrinter = DateTimePrinter::new(); |
1307 | | /// |
1308 | | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York")?; |
1309 | | /// |
1310 | | /// let mut buf = String::new(); |
1311 | | /// PRINTER.print_zoned(&zdt, &mut buf)?; |
1312 | | /// assert_eq!(buf, "Sat, 15 Jun 2024 07:00:00 -0400"); |
1313 | | /// |
1314 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1315 | | /// ``` |
1316 | 0 | pub fn print_zoned<W: Write>( |
1317 | 0 | &self, |
1318 | 0 | zdt: &Zoned, |
1319 | 0 | wtr: W, |
1320 | 0 | ) -> Result<(), Error> { |
1321 | 0 | self.print_civil_with_offset(zdt.datetime(), Some(zdt.offset()), wtr) |
1322 | 0 | } |
1323 | | |
1324 | | /// Print a `Timestamp` datetime to the given writer. |
1325 | | /// |
1326 | | /// This always emits `-0000` as the offset in the RFC 2822 format. If you |
1327 | | /// desire a `+0000` offset, use [`DateTimePrinter::print_zoned`] with a |
1328 | | /// zoned datetime with [`TimeZone::UTC`]. |
1329 | | /// |
1330 | | /// Moreover, since RFC 2822 does not support fractional seconds, this |
1331 | | /// routine prints the timestamp as if truncating any fractional seconds. |
1332 | | /// |
1333 | | /// # Errors |
1334 | | /// |
1335 | | /// This returns an error when writing to the given [`Write`] |
1336 | | /// implementation would fail. Some such implementations, like for `String` |
1337 | | /// and `Vec<u8>`, never fail (unless memory allocation fails). |
1338 | | /// |
1339 | | /// This can also return an error if the year corresponding to this |
1340 | | /// timestamp cannot be represented in the RFC 2822 format. For example, a |
1341 | | /// negative year. |
1342 | | /// |
1343 | | /// # Example |
1344 | | /// |
1345 | | /// ``` |
1346 | | /// use jiff::{fmt::rfc2822::DateTimePrinter, Timestamp}; |
1347 | | /// |
1348 | | /// let timestamp = Timestamp::from_second(1) |
1349 | | /// .expect("one second after Unix epoch is always valid"); |
1350 | | /// |
1351 | | /// let mut buf = String::new(); |
1352 | | /// DateTimePrinter::new().print_timestamp(×tamp, &mut buf)?; |
1353 | | /// assert_eq!(buf, "Thu, 1 Jan 1970 00:00:01 -0000"); |
1354 | | /// |
1355 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1356 | | /// ``` |
1357 | 0 | pub fn print_timestamp<W: Write>( |
1358 | 0 | &self, |
1359 | 0 | timestamp: &Timestamp, |
1360 | 0 | wtr: W, |
1361 | 0 | ) -> Result<(), Error> { |
1362 | 0 | let dt = TimeZone::UTC.to_datetime(*timestamp); |
1363 | 0 | self.print_civil_with_offset(dt, None, wtr) |
1364 | 0 | } |
1365 | | |
1366 | | /// Print a `Timestamp` datetime to the given writer in a way that is |
1367 | | /// explicitly compatible with [RFC 9110]. This is typically useful in |
1368 | | /// contexts where strict compatibility with HTTP is desired. |
1369 | | /// |
1370 | | /// This always emits `GMT` as the offset and always uses two digits for |
1371 | | /// the day. This results in a fixed length format that always uses 29 |
1372 | | /// characters. |
1373 | | /// |
1374 | | /// Since neither RFC 2822 nor RFC 9110 supports fractional seconds, this |
1375 | | /// routine prints the timestamp as if truncating any fractional seconds. |
1376 | | /// |
1377 | | /// # Errors |
1378 | | /// |
1379 | | /// This returns an error when writing to the given [`Write`] |
1380 | | /// implementation would fail. Some such implementations, like for `String` |
1381 | | /// and `Vec<u8>`, never fail (unless memory allocation fails). |
1382 | | /// |
1383 | | /// This can also return an error if the year corresponding to this |
1384 | | /// timestamp cannot be represented in the RFC 2822 or RFC 9110 format. For |
1385 | | /// example, a negative year. |
1386 | | /// |
1387 | | /// # Example |
1388 | | /// |
1389 | | /// ``` |
1390 | | /// use jiff::{fmt::rfc2822::DateTimePrinter, Timestamp}; |
1391 | | /// |
1392 | | /// let timestamp = Timestamp::from_second(1) |
1393 | | /// .expect("one second after Unix epoch is always valid"); |
1394 | | /// |
1395 | | /// let mut buf = String::new(); |
1396 | | /// DateTimePrinter::new().print_timestamp_rfc9110(×tamp, &mut buf)?; |
1397 | | /// assert_eq!(buf, "Thu, 01 Jan 1970 00:00:01 GMT"); |
1398 | | /// |
1399 | | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1400 | | /// ``` |
1401 | | /// |
1402 | | /// [RFC 9110]: https://datatracker.ietf.org/doc/html/rfc9110#section-5.6.7-15 |
1403 | 0 | pub fn print_timestamp_rfc9110<W: Write>( |
1404 | 0 | &self, |
1405 | 0 | timestamp: &Timestamp, |
1406 | 0 | wtr: W, |
1407 | 0 | ) -> Result<(), Error> { |
1408 | 0 | self.print_civil_always_utc(timestamp, wtr) |
1409 | 0 | } |
1410 | | |
1411 | 0 | fn print_civil_with_offset<W: Write>( |
1412 | 0 | &self, |
1413 | 0 | dt: DateTime, |
1414 | 0 | offset: Option<Offset>, |
1415 | 0 | mut wtr: W, |
1416 | 0 | ) -> Result<(), Error> { |
1417 | | static FMT_DAY: DecimalFormatter = DecimalFormatter::new(); |
1418 | | static FMT_YEAR: DecimalFormatter = DecimalFormatter::new().padding(4); |
1419 | | static FMT_TIME_UNIT: DecimalFormatter = |
1420 | | DecimalFormatter::new().padding(2); |
1421 | | |
1422 | 0 | if dt.year() < 0 { |
1423 | | // RFC 2822 actually says the year must be at least 1900, but |
1424 | | // other implementations (like Chrono) allow any positive 4-digit |
1425 | | // year. |
1426 | 0 | return Err(err!( |
1427 | 0 | "datetime {dt} has negative year, \ |
1428 | 0 | which cannot be formatted with RFC 2822", |
1429 | 0 | )); |
1430 | 0 | } |
1431 | | |
1432 | 0 | wtr.write_str(weekday_abbrev(dt.weekday()))?; |
1433 | 0 | wtr.write_str(", ")?; |
1434 | 0 | wtr.write_int(&FMT_DAY, dt.day())?; |
1435 | 0 | wtr.write_str(" ")?; |
1436 | 0 | wtr.write_str(month_name(dt.month()))?; |
1437 | 0 | wtr.write_str(" ")?; |
1438 | 0 | wtr.write_int(&FMT_YEAR, dt.year())?; |
1439 | 0 | wtr.write_str(" ")?; |
1440 | 0 | wtr.write_int(&FMT_TIME_UNIT, dt.hour())?; |
1441 | 0 | wtr.write_str(":")?; |
1442 | 0 | wtr.write_int(&FMT_TIME_UNIT, dt.minute())?; |
1443 | 0 | wtr.write_str(":")?; |
1444 | 0 | wtr.write_int(&FMT_TIME_UNIT, dt.second())?; |
1445 | 0 | wtr.write_str(" ")?; |
1446 | | |
1447 | 0 | let Some(offset) = offset else { |
1448 | 0 | wtr.write_str("-0000")?; |
1449 | 0 | return Ok(()); |
1450 | | }; |
1451 | 0 | wtr.write_str(if offset.is_negative() { "-" } else { "+" })?; |
1452 | 0 | let mut hours = offset.part_hours_ranged().abs().get(); |
1453 | 0 | let mut minutes = offset.part_minutes_ranged().abs().get(); |
1454 | | // RFC 2822, like RFC 3339, requires that time zone offsets are an |
1455 | | // integral number of minutes. While rounding based on seconds doesn't |
1456 | | // seem clearly indicated, we choose to do that here. An alternative |
1457 | | // would be to return an error. It isn't clear how important this is in |
1458 | | // practice though. |
1459 | 0 | if offset.part_seconds_ranged().abs() >= C(30) { |
1460 | 0 | if minutes == 59 { |
1461 | 0 | hours = hours.saturating_add(1); |
1462 | 0 | minutes = 0; |
1463 | 0 | } else { |
1464 | 0 | minutes = minutes.saturating_add(1); |
1465 | 0 | } |
1466 | 0 | } |
1467 | 0 | wtr.write_int(&FMT_TIME_UNIT, hours)?; |
1468 | 0 | wtr.write_int(&FMT_TIME_UNIT, minutes)?; |
1469 | 0 | Ok(()) |
1470 | 0 | } |
1471 | | |
1472 | 0 | fn print_civil_always_utc<W: Write>( |
1473 | 0 | &self, |
1474 | 0 | timestamp: &Timestamp, |
1475 | 0 | mut wtr: W, |
1476 | 0 | ) -> Result<(), Error> { |
1477 | | static FMT_DAY: DecimalFormatter = DecimalFormatter::new().padding(2); |
1478 | | static FMT_YEAR: DecimalFormatter = DecimalFormatter::new().padding(4); |
1479 | | static FMT_TIME_UNIT: DecimalFormatter = |
1480 | | DecimalFormatter::new().padding(2); |
1481 | | |
1482 | 0 | let dt = TimeZone::UTC.to_datetime(*timestamp); |
1483 | 0 | if dt.year() < 0 { |
1484 | | // RFC 2822 actually says the year must be at least 1900, but |
1485 | | // other implementations (like Chrono) allow any positive 4-digit |
1486 | | // year. |
1487 | 0 | return Err(err!( |
1488 | 0 | "datetime {dt} has negative year, \ |
1489 | 0 | which cannot be formatted with RFC 2822", |
1490 | 0 | )); |
1491 | 0 | } |
1492 | | |
1493 | 0 | wtr.write_str(weekday_abbrev(dt.weekday()))?; |
1494 | 0 | wtr.write_str(", ")?; |
1495 | 0 | wtr.write_int(&FMT_DAY, dt.day())?; |
1496 | 0 | wtr.write_str(" ")?; |
1497 | 0 | wtr.write_str(month_name(dt.month()))?; |
1498 | 0 | wtr.write_str(" ")?; |
1499 | 0 | wtr.write_int(&FMT_YEAR, dt.year())?; |
1500 | 0 | wtr.write_str(" ")?; |
1501 | 0 | wtr.write_int(&FMT_TIME_UNIT, dt.hour())?; |
1502 | 0 | wtr.write_str(":")?; |
1503 | 0 | wtr.write_int(&FMT_TIME_UNIT, dt.minute())?; |
1504 | 0 | wtr.write_str(":")?; |
1505 | 0 | wtr.write_int(&FMT_TIME_UNIT, dt.second())?; |
1506 | 0 | wtr.write_str(" ")?; |
1507 | 0 | wtr.write_str("GMT")?; |
1508 | 0 | Ok(()) |
1509 | 0 | } |
1510 | | } |
1511 | | |
1512 | 0 | fn weekday_abbrev(wd: Weekday) -> &'static str { |
1513 | 0 | match wd { |
1514 | 0 | Weekday::Sunday => "Sun", |
1515 | 0 | Weekday::Monday => "Mon", |
1516 | 0 | Weekday::Tuesday => "Tue", |
1517 | 0 | Weekday::Wednesday => "Wed", |
1518 | 0 | Weekday::Thursday => "Thu", |
1519 | 0 | Weekday::Friday => "Fri", |
1520 | 0 | Weekday::Saturday => "Sat", |
1521 | | } |
1522 | 0 | } |
1523 | | |
1524 | 0 | fn month_name(month: i8) -> &'static str { |
1525 | 0 | match month { |
1526 | 0 | 1 => "Jan", |
1527 | 0 | 2 => "Feb", |
1528 | 0 | 3 => "Mar", |
1529 | 0 | 4 => "Apr", |
1530 | 0 | 5 => "May", |
1531 | 0 | 6 => "Jun", |
1532 | 0 | 7 => "Jul", |
1533 | 0 | 8 => "Aug", |
1534 | 0 | 9 => "Sep", |
1535 | 0 | 10 => "Oct", |
1536 | 0 | 11 => "Nov", |
1537 | 0 | 12 => "Dec", |
1538 | 0 | _ => unreachable!("invalid month value {month}"), |
1539 | | } |
1540 | 0 | } |
1541 | | |
1542 | | /// Returns true if the given byte is "whitespace" as defined by RFC 2822. |
1543 | | /// |
1544 | | /// From S2.2.2: |
1545 | | /// |
1546 | | /// > Many of these tokens are allowed (according to their syntax) to be |
1547 | | /// > introduced or end with comments (as described in section 3.2.3) as well |
1548 | | /// > as the space (SP, ASCII value 32) and horizontal tab (HTAB, ASCII value |
1549 | | /// > 9) characters (together known as the white space characters, WSP), and |
1550 | | /// > those WSP characters are subject to header "folding" and "unfolding" as |
1551 | | /// > described in section 2.2.3. |
1552 | | /// |
1553 | | /// In other words, ASCII space or tab. |
1554 | | /// |
1555 | | /// With all that said, it seems odd to limit this to just spaces or tabs, so |
1556 | | /// we relax this and let it absorb any kind of ASCII whitespace. This also |
1557 | | /// handles, I believe, most cases of "folding" whitespace. (By treating `\r` |
1558 | | /// and `\n` as whitespace.) |
1559 | 0 | fn is_whitespace(byte: u8) -> bool { |
1560 | 0 | byte.is_ascii_whitespace() |
1561 | 0 | } |
1562 | | |
1563 | | #[cfg(feature = "alloc")] |
1564 | | #[cfg(test)] |
1565 | | mod tests { |
1566 | | use alloc::string::{String, ToString}; |
1567 | | |
1568 | | use crate::civil::date; |
1569 | | |
1570 | | use super::*; |
1571 | | |
1572 | | #[test] |
1573 | | fn ok_parse_basic() { |
1574 | | let p = |input| DateTimeParser::new().parse_zoned(input).unwrap(); |
1575 | | |
1576 | | insta::assert_debug_snapshot!( |
1577 | | p("Wed, 10 Jan 2024 05:34:45 -0500"), |
1578 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1579 | | ); |
1580 | | insta::assert_debug_snapshot!( |
1581 | | p("Tue, 9 Jan 2024 05:34:45 -0500"), |
1582 | | @"2024-01-09T05:34:45-05:00[-05:00]", |
1583 | | ); |
1584 | | insta::assert_debug_snapshot!( |
1585 | | p("Tue, 09 Jan 2024 05:34:45 -0500"), |
1586 | | @"2024-01-09T05:34:45-05:00[-05:00]", |
1587 | | ); |
1588 | | insta::assert_debug_snapshot!( |
1589 | | p("10 Jan 2024 05:34:45 -0500"), |
1590 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1591 | | ); |
1592 | | insta::assert_debug_snapshot!( |
1593 | | p("10 Jan 2024 05:34 -0500"), |
1594 | | @"2024-01-10T05:34:00-05:00[-05:00]", |
1595 | | ); |
1596 | | insta::assert_debug_snapshot!( |
1597 | | p("10 Jan 2024 05:34:45 +0500"), |
1598 | | @"2024-01-10T05:34:45+05:00[+05:00]", |
1599 | | ); |
1600 | | insta::assert_debug_snapshot!( |
1601 | | p("Thu, 29 Feb 2024 05:34 -0500"), |
1602 | | @"2024-02-29T05:34:00-05:00[-05:00]", |
1603 | | ); |
1604 | | |
1605 | | // leap second constraining |
1606 | | insta::assert_debug_snapshot!( |
1607 | | p("10 Jan 2024 05:34:60 -0500"), |
1608 | | @"2024-01-10T05:34:59-05:00[-05:00]", |
1609 | | ); |
1610 | | } |
1611 | | |
1612 | | #[test] |
1613 | | fn ok_parse_obsolete_zone() { |
1614 | | let p = |input| DateTimeParser::new().parse_zoned(input).unwrap(); |
1615 | | |
1616 | | insta::assert_debug_snapshot!( |
1617 | | p("Wed, 10 Jan 2024 05:34:45 EST"), |
1618 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1619 | | ); |
1620 | | insta::assert_debug_snapshot!( |
1621 | | p("Wed, 10 Jan 2024 05:34:45 EDT"), |
1622 | | @"2024-01-10T05:34:45-04:00[-04:00]", |
1623 | | ); |
1624 | | insta::assert_debug_snapshot!( |
1625 | | p("Wed, 10 Jan 2024 05:34:45 CST"), |
1626 | | @"2024-01-10T05:34:45-06:00[-06:00]", |
1627 | | ); |
1628 | | insta::assert_debug_snapshot!( |
1629 | | p("Wed, 10 Jan 2024 05:34:45 CDT"), |
1630 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1631 | | ); |
1632 | | insta::assert_debug_snapshot!( |
1633 | | p("Wed, 10 Jan 2024 05:34:45 mst"), |
1634 | | @"2024-01-10T05:34:45-07:00[-07:00]", |
1635 | | ); |
1636 | | insta::assert_debug_snapshot!( |
1637 | | p("Wed, 10 Jan 2024 05:34:45 mdt"), |
1638 | | @"2024-01-10T05:34:45-06:00[-06:00]", |
1639 | | ); |
1640 | | insta::assert_debug_snapshot!( |
1641 | | p("Wed, 10 Jan 2024 05:34:45 pst"), |
1642 | | @"2024-01-10T05:34:45-08:00[-08:00]", |
1643 | | ); |
1644 | | insta::assert_debug_snapshot!( |
1645 | | p("Wed, 10 Jan 2024 05:34:45 pdt"), |
1646 | | @"2024-01-10T05:34:45-07:00[-07:00]", |
1647 | | ); |
1648 | | |
1649 | | // Various things that mean UTC. |
1650 | | insta::assert_debug_snapshot!( |
1651 | | p("Wed, 10 Jan 2024 05:34:45 UT"), |
1652 | | @"2024-01-10T05:34:45+00:00[UTC]", |
1653 | | ); |
1654 | | insta::assert_debug_snapshot!( |
1655 | | p("Wed, 10 Jan 2024 05:34:45 Z"), |
1656 | | @"2024-01-10T05:34:45+00:00[UTC]", |
1657 | | ); |
1658 | | insta::assert_debug_snapshot!( |
1659 | | p("Wed, 10 Jan 2024 05:34:45 gmt"), |
1660 | | @"2024-01-10T05:34:45+00:00[UTC]", |
1661 | | ); |
1662 | | |
1663 | | // Even things that are unrecognized just get treated as having |
1664 | | // an offset of 0. |
1665 | | insta::assert_debug_snapshot!( |
1666 | | p("Wed, 10 Jan 2024 05:34:45 XXX"), |
1667 | | @"2024-01-10T05:34:45+00:00[UTC]", |
1668 | | ); |
1669 | | insta::assert_debug_snapshot!( |
1670 | | p("Wed, 10 Jan 2024 05:34:45 ABCDE"), |
1671 | | @"2024-01-10T05:34:45+00:00[UTC]", |
1672 | | ); |
1673 | | insta::assert_debug_snapshot!( |
1674 | | p("Wed, 10 Jan 2024 05:34:45 FUCK"), |
1675 | | @"2024-01-10T05:34:45+00:00[UTC]", |
1676 | | ); |
1677 | | } |
1678 | | |
1679 | | // whyyyyyyyyyyyyy |
1680 | | #[test] |
1681 | | fn ok_parse_comment() { |
1682 | | let p = |input| DateTimeParser::new().parse_zoned(input).unwrap(); |
1683 | | |
1684 | | insta::assert_debug_snapshot!( |
1685 | | p("Wed, 10 Jan 2024 05:34:45 -0500 (wat)"), |
1686 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1687 | | ); |
1688 | | insta::assert_debug_snapshot!( |
1689 | | p("Wed, 10 Jan 2024 05:34:45 -0500 (w(a)t)"), |
1690 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1691 | | ); |
1692 | | insta::assert_debug_snapshot!( |
1693 | | p(r"Wed, 10 Jan 2024 05:34:45 -0500 (w\(a\)t)"), |
1694 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1695 | | ); |
1696 | | } |
1697 | | |
1698 | | #[test] |
1699 | | fn ok_parse_whitespace() { |
1700 | | let p = |input| DateTimeParser::new().parse_zoned(input).unwrap(); |
1701 | | |
1702 | | insta::assert_debug_snapshot!( |
1703 | | p("Wed, 10 \t Jan \n\r\n\n 2024 05:34:45 -0500"), |
1704 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1705 | | ); |
1706 | | insta::assert_debug_snapshot!( |
1707 | | p("Wed, 10 Jan 2024 05:34:45 -0500 "), |
1708 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1709 | | ); |
1710 | | // Whitespace around the comma is optional |
1711 | | insta::assert_debug_snapshot!( |
1712 | | p("Wed,10 Jan 2024 05:34:45 -0500"), |
1713 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1714 | | ); |
1715 | | insta::assert_debug_snapshot!( |
1716 | | p("Wed , 10 Jan 2024 05:34:45 -0500"), |
1717 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1718 | | ); |
1719 | | insta::assert_debug_snapshot!( |
1720 | | p("Wed ,10 Jan 2024 05:34:45 -0500"), |
1721 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1722 | | ); |
1723 | | // Whitespace is allowed around the time components |
1724 | | insta::assert_debug_snapshot!( |
1725 | | p("Wed, 10 Jan 2024 05 :34: 45 -0500"), |
1726 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1727 | | ); |
1728 | | insta::assert_debug_snapshot!( |
1729 | | p("Wed, 10 Jan 2024 05: 34 :45 -0500"), |
1730 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1731 | | ); |
1732 | | insta::assert_debug_snapshot!( |
1733 | | p("Wed, 10 Jan 2024 05 : 34 : 45 -0500"), |
1734 | | @"2024-01-10T05:34:45-05:00[-05:00]", |
1735 | | ); |
1736 | | } |
1737 | | |
1738 | | #[test] |
1739 | | fn err_parse_invalid() { |
1740 | | let p = |input| { |
1741 | | DateTimeParser::new().parse_zoned(input).unwrap_err().to_string() |
1742 | | }; |
1743 | | |
1744 | | insta::assert_snapshot!( |
1745 | | p("Thu, 10 Jan 2024 05:34:45 -0500"), |
1746 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: found parsed weekday of Thu, but parsed datetime of 2024-01-10T05:34:45 has weekday Wed", |
1747 | | ); |
1748 | | insta::assert_snapshot!( |
1749 | | p("Wed, 29 Feb 2023 05:34:45 -0500"), |
1750 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: invalid date: parameter 'day' with value 29 is not in the required range of 1..=28", |
1751 | | ); |
1752 | | insta::assert_snapshot!( |
1753 | | p("Mon, 31 Jun 2024 05:34:45 -0500"), |
1754 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: invalid date: parameter 'day' with value 31 is not in the required range of 1..=30", |
1755 | | ); |
1756 | | insta::assert_snapshot!( |
1757 | | p("Tue, 32 Jun 2024 05:34:45 -0500"), |
1758 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: day is not valid: parameter 'day' with value 32 is not in the required range of 1..=31", |
1759 | | ); |
1760 | | insta::assert_snapshot!( |
1761 | | p("Sun, 30 Jun 2024 24:00:00 -0500"), |
1762 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: hour is not valid: parameter 'hour' with value 24 is not in the required range of 0..=23", |
1763 | | ); |
1764 | | // No whitespace after time |
1765 | | insta::assert_snapshot!( |
1766 | | p("Wed, 10 Jan 2024 05:34MST"), |
1767 | | @r###"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected whitespace after parsing time: expected at least one whitespace character (space or tab), but found none"###, |
1768 | | ); |
1769 | | } |
1770 | | |
1771 | | #[test] |
1772 | | fn err_parse_incomplete() { |
1773 | | let p = |input| { |
1774 | | DateTimeParser::new().parse_zoned(input).unwrap_err().to_string() |
1775 | | }; |
1776 | | |
1777 | | insta::assert_snapshot!( |
1778 | | p(""), |
1779 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected RFC 2822 datetime, but got empty string", |
1780 | | ); |
1781 | | insta::assert_snapshot!( |
1782 | | p(" "), |
1783 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected RFC 2822 datetime, but got empty string after trimming whitespace", |
1784 | | ); |
1785 | | insta::assert_snapshot!( |
1786 | | p("Wat"), |
1787 | | @r###"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected day at beginning of RFC 2822 datetime since first non-whitespace byte, "W", is not a digit, but given string is too short (length is 3)"###, |
1788 | | ); |
1789 | | insta::assert_snapshot!( |
1790 | | p("Wed"), |
1791 | | @r###"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected day at beginning of RFC 2822 datetime since first non-whitespace byte, "W", is not a digit, but given string is too short (length is 3)"###, |
1792 | | ); |
1793 | | insta::assert_snapshot!( |
1794 | | p("Wed "), |
1795 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected comma after parsed weekday `Wed` in RFC 2822 datetime, but found end of string instead", |
1796 | | ); |
1797 | | insta::assert_snapshot!( |
1798 | | p("Wed ,"), |
1799 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected day, but found end of input", |
1800 | | ); |
1801 | | insta::assert_snapshot!( |
1802 | | p("Wed , "), |
1803 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected day, but found end of input", |
1804 | | ); |
1805 | | insta::assert_snapshot!( |
1806 | | p("Wat, "), |
1807 | | @r###"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected day at beginning of RFC 2822 datetime since first non-whitespace byte, "W", is not a digit, but did not recognize "Wat" as a valid weekday abbreviation"###, |
1808 | | ); |
1809 | | insta::assert_snapshot!( |
1810 | | p("Wed, "), |
1811 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected day, but found end of input", |
1812 | | ); |
1813 | | insta::assert_snapshot!( |
1814 | | p("Wed, 1"), |
1815 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected whitespace after parsing day 1: expected at least one whitespace character (space or tab), but found none", |
1816 | | ); |
1817 | | insta::assert_snapshot!( |
1818 | | p("Wed, 10"), |
1819 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected whitespace after parsing day 10: expected at least one whitespace character (space or tab), but found none", |
1820 | | ); |
1821 | | insta::assert_snapshot!( |
1822 | | p("Wed, 10 J"), |
1823 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected abbreviated month name, but remaining input is too short (remaining bytes is 1)", |
1824 | | ); |
1825 | | insta::assert_snapshot!( |
1826 | | p("Wed, 10 Wat"), |
1827 | | @r###"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected abbreviated month name, but did not recognize "Wat" as a valid month"###, |
1828 | | ); |
1829 | | insta::assert_snapshot!( |
1830 | | p("Wed, 10 Jan"), |
1831 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected whitespace after parsing month name: expected at least one whitespace character (space or tab), but found none", |
1832 | | ); |
1833 | | insta::assert_snapshot!( |
1834 | | p("Wed, 10 Jan 2"), |
1835 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected at least two ASCII digits for parsing a year, but only found 1", |
1836 | | ); |
1837 | | insta::assert_snapshot!( |
1838 | | p("Wed, 10 Jan 2024"), |
1839 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected whitespace after parsing year: expected at least one whitespace character (space or tab), but found none", |
1840 | | ); |
1841 | | insta::assert_snapshot!( |
1842 | | p("Wed, 10 Jan 2024 05"), |
1843 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected time separator of ':', but found end of input", |
1844 | | ); |
1845 | | insta::assert_snapshot!( |
1846 | | p("Wed, 10 Jan 2024 053"), |
1847 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected time separator of ':', but found 3", |
1848 | | ); |
1849 | | insta::assert_snapshot!( |
1850 | | p("Wed, 10 Jan 2024 05:34"), |
1851 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected whitespace after parsing time: expected at least one whitespace character (space or tab), but found none", |
1852 | | ); |
1853 | | insta::assert_snapshot!( |
1854 | | p("Wed, 10 Jan 2024 05:34:"), |
1855 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected two digit second, but found end of input", |
1856 | | ); |
1857 | | insta::assert_snapshot!( |
1858 | | p("Wed, 10 Jan 2024 05:34:45"), |
1859 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected whitespace after parsing time: expected at least one whitespace character (space or tab), but found none", |
1860 | | ); |
1861 | | insta::assert_snapshot!( |
1862 | | p("Wed, 10 Jan 2024 05:34:45 J"), |
1863 | | @r###"failed to parse RFC 2822 datetime into Jiff zoned datetime: expected obsolete RFC 2822 time zone abbreviation, but found "J""###, |
1864 | | ); |
1865 | | } |
1866 | | |
1867 | | #[test] |
1868 | | fn err_parse_comment() { |
1869 | | let p = |input| { |
1870 | | DateTimeParser::new().parse_zoned(input).unwrap_err().to_string() |
1871 | | }; |
1872 | | |
1873 | | insta::assert_snapshot!( |
1874 | | p(r"Wed, 10 Jan 2024 05:34:45 -0500 (wa)t)"), |
1875 | | @r###"parsed value '2024-01-10T05:34:45-05:00[-05:00]', but unparsed input "t)" remains (expected no unparsed input)"###, |
1876 | | ); |
1877 | | insta::assert_snapshot!( |
1878 | | p(r"Wed, 10 Jan 2024 05:34:45 -0500 (wa(t)"), |
1879 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: found opening parenthesis in comment with no matching closing parenthesis", |
1880 | | ); |
1881 | | insta::assert_snapshot!( |
1882 | | p(r"Wed, 10 Jan 2024 05:34:45 -0500 (w"), |
1883 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: found opening parenthesis in comment with no matching closing parenthesis", |
1884 | | ); |
1885 | | insta::assert_snapshot!( |
1886 | | p(r"Wed, 10 Jan 2024 05:34:45 -0500 ("), |
1887 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: found opening parenthesis in comment with no matching closing parenthesis", |
1888 | | ); |
1889 | | insta::assert_snapshot!( |
1890 | | p(r"Wed, 10 Jan 2024 05:34:45 -0500 ( "), |
1891 | | @"failed to parse RFC 2822 datetime into Jiff zoned datetime: found opening parenthesis in comment with no matching closing parenthesis", |
1892 | | ); |
1893 | | } |
1894 | | |
1895 | | #[test] |
1896 | | fn ok_print_zoned() { |
1897 | | if crate::tz::db().is_definitively_empty() { |
1898 | | return; |
1899 | | } |
1900 | | |
1901 | | let p = |zdt: &Zoned| -> String { |
1902 | | let mut buf = String::new(); |
1903 | | DateTimePrinter::new().print_zoned(&zdt, &mut buf).unwrap(); |
1904 | | buf |
1905 | | }; |
1906 | | |
1907 | | let zdt = date(2024, 1, 10) |
1908 | | .at(5, 34, 45, 0) |
1909 | | .in_tz("America/New_York") |
1910 | | .unwrap(); |
1911 | | insta::assert_snapshot!(p(&zdt), @"Wed, 10 Jan 2024 05:34:45 -0500"); |
1912 | | |
1913 | | let zdt = date(2024, 2, 5) |
1914 | | .at(5, 34, 45, 0) |
1915 | | .in_tz("America/New_York") |
1916 | | .unwrap(); |
1917 | | insta::assert_snapshot!(p(&zdt), @"Mon, 5 Feb 2024 05:34:45 -0500"); |
1918 | | |
1919 | | let zdt = date(2024, 7, 31) |
1920 | | .at(5, 34, 45, 0) |
1921 | | .in_tz("America/New_York") |
1922 | | .unwrap(); |
1923 | | insta::assert_snapshot!(p(&zdt), @"Wed, 31 Jul 2024 05:34:45 -0400"); |
1924 | | |
1925 | | let zdt = date(2024, 3, 5).at(5, 34, 45, 0).in_tz("UTC").unwrap(); |
1926 | | // Notice that this prints a +0000 offset. |
1927 | | // But when printing a Timestamp, a -0000 offset is used. |
1928 | | // This is because in the case of Timestamp, the "true" |
1929 | | // offset is not known. |
1930 | | insta::assert_snapshot!(p(&zdt), @"Tue, 5 Mar 2024 05:34:45 +0000"); |
1931 | | } |
1932 | | |
1933 | | #[test] |
1934 | | fn ok_print_timestamp() { |
1935 | | if crate::tz::db().is_definitively_empty() { |
1936 | | return; |
1937 | | } |
1938 | | |
1939 | | let p = |ts: Timestamp| -> String { |
1940 | | let mut buf = String::new(); |
1941 | | DateTimePrinter::new().print_timestamp(&ts, &mut buf).unwrap(); |
1942 | | buf |
1943 | | }; |
1944 | | |
1945 | | let ts = date(2024, 1, 10) |
1946 | | .at(5, 34, 45, 0) |
1947 | | .in_tz("America/New_York") |
1948 | | .unwrap() |
1949 | | .timestamp(); |
1950 | | insta::assert_snapshot!(p(ts), @"Wed, 10 Jan 2024 10:34:45 -0000"); |
1951 | | |
1952 | | let ts = date(2024, 2, 5) |
1953 | | .at(5, 34, 45, 0) |
1954 | | .in_tz("America/New_York") |
1955 | | .unwrap() |
1956 | | .timestamp(); |
1957 | | insta::assert_snapshot!(p(ts), @"Mon, 5 Feb 2024 10:34:45 -0000"); |
1958 | | |
1959 | | let ts = date(2024, 7, 31) |
1960 | | .at(5, 34, 45, 0) |
1961 | | .in_tz("America/New_York") |
1962 | | .unwrap() |
1963 | | .timestamp(); |
1964 | | insta::assert_snapshot!(p(ts), @"Wed, 31 Jul 2024 09:34:45 -0000"); |
1965 | | |
1966 | | let ts = date(2024, 3, 5) |
1967 | | .at(5, 34, 45, 0) |
1968 | | .in_tz("UTC") |
1969 | | .unwrap() |
1970 | | .timestamp(); |
1971 | | // Notice that this prints a +0000 offset. |
1972 | | // But when printing a Timestamp, a -0000 offset is used. |
1973 | | // This is because in the case of Timestamp, the "true" |
1974 | | // offset is not known. |
1975 | | insta::assert_snapshot!(p(ts), @"Tue, 5 Mar 2024 05:34:45 -0000"); |
1976 | | } |
1977 | | |
1978 | | #[test] |
1979 | | fn ok_print_rfc9110_timestamp() { |
1980 | | if crate::tz::db().is_definitively_empty() { |
1981 | | return; |
1982 | | } |
1983 | | |
1984 | | let p = |ts: Timestamp| -> String { |
1985 | | let mut buf = String::new(); |
1986 | | DateTimePrinter::new() |
1987 | | .print_timestamp_rfc9110(&ts, &mut buf) |
1988 | | .unwrap(); |
1989 | | buf |
1990 | | }; |
1991 | | |
1992 | | let ts = date(2024, 1, 10) |
1993 | | .at(5, 34, 45, 0) |
1994 | | .in_tz("America/New_York") |
1995 | | .unwrap() |
1996 | | .timestamp(); |
1997 | | insta::assert_snapshot!(p(ts), @"Wed, 10 Jan 2024 10:34:45 GMT"); |
1998 | | |
1999 | | let ts = date(2024, 2, 5) |
2000 | | .at(5, 34, 45, 0) |
2001 | | .in_tz("America/New_York") |
2002 | | .unwrap() |
2003 | | .timestamp(); |
2004 | | insta::assert_snapshot!(p(ts), @"Mon, 05 Feb 2024 10:34:45 GMT"); |
2005 | | |
2006 | | let ts = date(2024, 7, 31) |
2007 | | .at(5, 34, 45, 0) |
2008 | | .in_tz("America/New_York") |
2009 | | .unwrap() |
2010 | | .timestamp(); |
2011 | | insta::assert_snapshot!(p(ts), @"Wed, 31 Jul 2024 09:34:45 GMT"); |
2012 | | |
2013 | | let ts = date(2024, 3, 5) |
2014 | | .at(5, 34, 45, 0) |
2015 | | .in_tz("UTC") |
2016 | | .unwrap() |
2017 | | .timestamp(); |
2018 | | // Notice that this prints a +0000 offset. |
2019 | | // But when printing a Timestamp, a -0000 offset is used. |
2020 | | // This is because in the case of Timestamp, the "true" |
2021 | | // offset is not known. |
2022 | | insta::assert_snapshot!(p(ts), @"Tue, 05 Mar 2024 05:34:45 GMT"); |
2023 | | } |
2024 | | |
2025 | | #[test] |
2026 | | fn err_print_zoned() { |
2027 | | if crate::tz::db().is_definitively_empty() { |
2028 | | return; |
2029 | | } |
2030 | | |
2031 | | let p = |zdt: &Zoned| -> String { |
2032 | | let mut buf = String::new(); |
2033 | | DateTimePrinter::new() |
2034 | | .print_zoned(&zdt, &mut buf) |
2035 | | .unwrap_err() |
2036 | | .to_string() |
2037 | | }; |
2038 | | |
2039 | | let zdt = date(-1, 1, 10) |
2040 | | .at(5, 34, 45, 0) |
2041 | | .in_tz("America/New_York") |
2042 | | .unwrap(); |
2043 | | insta::assert_snapshot!(p(&zdt), @"datetime -000001-01-10T05:34:45 has negative year, which cannot be formatted with RFC 2822"); |
2044 | | } |
2045 | | |
2046 | | #[test] |
2047 | | fn err_print_timestamp() { |
2048 | | if crate::tz::db().is_definitively_empty() { |
2049 | | return; |
2050 | | } |
2051 | | |
2052 | | let p = |ts: Timestamp| -> String { |
2053 | | let mut buf = String::new(); |
2054 | | DateTimePrinter::new() |
2055 | | .print_timestamp(&ts, &mut buf) |
2056 | | .unwrap_err() |
2057 | | .to_string() |
2058 | | }; |
2059 | | |
2060 | | let ts = date(-1, 1, 10) |
2061 | | .at(5, 34, 45, 0) |
2062 | | .in_tz("America/New_York") |
2063 | | .unwrap() |
2064 | | .timestamp(); |
2065 | | insta::assert_snapshot!(p(ts), @"datetime -000001-01-10T10:30:47 has negative year, which cannot be formatted with RFC 2822"); |
2066 | | } |
2067 | | } |