Coverage Report

Created: 2023-09-25 06:27

/src/abseil-cpp/absl/flags/internal/flag.h
Line
Count
Source (jump to first uncovered line)
1
//
2
// Copyright 2019 The Abseil Authors.
3
//
4
// Licensed under the Apache License, Version 2.0 (the "License");
5
// you may not use this file except in compliance with the License.
6
// You may obtain a copy of the License at
7
//
8
//      https://www.apache.org/licenses/LICENSE-2.0
9
//
10
// Unless required by applicable law or agreed to in writing, software
11
// distributed under the License is distributed on an "AS IS" BASIS,
12
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
// See the License for the specific language governing permissions and
14
// limitations under the License.
15
16
#ifndef ABSL_FLAGS_INTERNAL_FLAG_H_
17
#define ABSL_FLAGS_INTERNAL_FLAG_H_
18
19
#include <stddef.h>
20
#include <stdint.h>
21
22
#include <atomic>
23
#include <cstring>
24
#include <memory>
25
#include <new>
26
#include <string>
27
#include <type_traits>
28
#include <typeinfo>
29
30
#include "absl/base/attributes.h"
31
#include "absl/base/call_once.h"
32
#include "absl/base/casts.h"
33
#include "absl/base/config.h"
34
#include "absl/base/optimization.h"
35
#include "absl/base/thread_annotations.h"
36
#include "absl/flags/commandlineflag.h"
37
#include "absl/flags/config.h"
38
#include "absl/flags/internal/commandlineflag.h"
39
#include "absl/flags/internal/registry.h"
40
#include "absl/flags/internal/sequence_lock.h"
41
#include "absl/flags/marshalling.h"
42
#include "absl/meta/type_traits.h"
43
#include "absl/strings/string_view.h"
44
#include "absl/synchronization/mutex.h"
45
#include "absl/utility/utility.h"
46
47
namespace absl {
48
ABSL_NAMESPACE_BEGIN
49
50
///////////////////////////////////////////////////////////////////////////////
51
// Forward declaration of absl::Flag<T> public API.
52
namespace flags_internal {
53
template <typename T>
54
class Flag;
55
}  // namespace flags_internal
56
57
#if defined(_MSC_VER) && !defined(__clang__)
58
template <typename T>
59
class Flag;
60
#else
61
template <typename T>
62
using Flag = flags_internal::Flag<T>;
63
#endif
64
65
template <typename T>
66
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag);
67
68
template <typename T>
69
void SetFlag(absl::Flag<T>* flag, const T& v);
70
71
template <typename T, typename V>
72
void SetFlag(absl::Flag<T>* flag, const V& v);
73
74
template <typename U>
75
const CommandLineFlag& GetFlagReflectionHandle(const absl::Flag<U>& f);
76
77
///////////////////////////////////////////////////////////////////////////////
78
// Flag value type operations, eg., parsing, copying, etc. are provided
79
// by function specific to that type with a signature matching FlagOpFn.
80
81
namespace flags_internal {
82
83
enum class FlagOp {
84
  kAlloc,
85
  kDelete,
86
  kCopy,
87
  kCopyConstruct,
88
  kSizeof,
89
  kFastTypeId,
90
  kRuntimeTypeId,
91
  kParse,
92
  kUnparse,
93
  kValueOffset,
94
};
95
using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*);
96
97
// Forward declaration for Flag value specific operations.
98
template <typename T>
99
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3);
100
101
// Allocate aligned memory for a flag value.
102
0
inline void* Alloc(FlagOpFn op) {
103
0
  return op(FlagOp::kAlloc, nullptr, nullptr, nullptr);
104
0
}
105
// Deletes memory interpreting obj as flag value type pointer.
106
0
inline void Delete(FlagOpFn op, void* obj) {
107
0
  op(FlagOp::kDelete, nullptr, obj, nullptr);
108
0
}
109
// Copies src to dst interpreting as flag value type pointers.
110
0
inline void Copy(FlagOpFn op, const void* src, void* dst) {
111
0
  op(FlagOp::kCopy, src, dst, nullptr);
112
0
}
113
// Construct a copy of flag value in a location pointed by dst
114
// based on src - pointer to the flag's value.
115
0
inline void CopyConstruct(FlagOpFn op, const void* src, void* dst) {
116
0
  op(FlagOp::kCopyConstruct, src, dst, nullptr);
117
0
}
118
// Makes a copy of flag value pointed by obj.
119
0
inline void* Clone(FlagOpFn op, const void* obj) {
120
0
  void* res = flags_internal::Alloc(op);
121
0
  flags_internal::CopyConstruct(op, obj, res);
122
0
  return res;
123
0
}
124
// Returns true if parsing of input text is successful.
125
inline bool Parse(FlagOpFn op, absl::string_view text, void* dst,
126
0
                  std::string* error) {
127
0
  return op(FlagOp::kParse, &text, dst, error) != nullptr;
128
0
}
129
// Returns string representing supplied value.
130
0
inline std::string Unparse(FlagOpFn op, const void* val) {
131
0
  std::string result;
132
0
  op(FlagOp::kUnparse, val, &result, nullptr);
133
0
  return result;
134
0
}
135
// Returns size of flag value type.
136
2
inline size_t Sizeof(FlagOpFn op) {
137
  // This sequence of casts reverses the sequence from
138
  // `flags_internal::FlagOps()`
139
2
  return static_cast<size_t>(reinterpret_cast<intptr_t>(
140
2
      op(FlagOp::kSizeof, nullptr, nullptr, nullptr)));
141
2
}
142
// Returns fast type id corresponding to the value type.
143
6.47k
inline FlagFastTypeId FastTypeId(FlagOpFn op) {
144
6.47k
  return reinterpret_cast<FlagFastTypeId>(
145
6.47k
      op(FlagOp::kFastTypeId, nullptr, nullptr, nullptr));
146
6.47k
}
147
// Returns fast type id corresponding to the value type.
148
0
inline const std::type_info* RuntimeTypeId(FlagOpFn op) {
149
0
  return reinterpret_cast<const std::type_info*>(
150
0
      op(FlagOp::kRuntimeTypeId, nullptr, nullptr, nullptr));
151
0
}
152
// Returns offset of the field value_ from the field impl_ inside of
153
// absl::Flag<T> data. Given FlagImpl pointer p you can get the
154
// location of the corresponding value as:
155
//      reinterpret_cast<char*>(p) + ValueOffset().
156
2
inline ptrdiff_t ValueOffset(FlagOpFn op) {
157
  // This sequence of casts reverses the sequence from
158
  // `flags_internal::FlagOps()`
159
2
  return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>(
160
2
      op(FlagOp::kValueOffset, nullptr, nullptr, nullptr)));
161
2
}
162
163
// Returns an address of RTTI's typeid(T).
164
template <typename T>
165
inline const std::type_info* GenRuntimeTypeId() {
166
#ifdef ABSL_INTERNAL_HAS_RTTI
167
  return &typeid(T);
168
#else
169
  return nullptr;
170
#endif
171
}
172
173
///////////////////////////////////////////////////////////////////////////////
174
// Flag help auxiliary structs.
175
176
// This is help argument for absl::Flag encapsulating the string literal pointer
177
// or pointer to function generating it as well as enum descriminating two
178
// cases.
179
using HelpGenFunc = std::string (*)();
180
181
template <size_t N>
182
struct FixedCharArray {
183
  char value[N];
184
185
  template <size_t... I>
186
  static constexpr FixedCharArray<N> FromLiteralString(
187
      absl::string_view str, absl::index_sequence<I...>) {
188
    return (void)str, FixedCharArray<N>({{str[I]..., '\0'}});
189
  }
190
};
191
192
template <typename Gen, size_t N = Gen::Value().size()>
193
constexpr FixedCharArray<N + 1> HelpStringAsArray(int) {
194
  return FixedCharArray<N + 1>::FromLiteralString(
195
      Gen::Value(), absl::make_index_sequence<N>{});
196
}
197
198
template <typename Gen>
199
constexpr std::false_type HelpStringAsArray(char) {
200
  return std::false_type{};
201
}
202
203
union FlagHelpMsg {
204
0
  constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {}
205
0
  constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {}
206
207
  const char* literal;
208
  HelpGenFunc gen_func;
209
};
210
211
enum class FlagHelpKind : uint8_t { kLiteral = 0, kGenFunc = 1 };
212
213
struct FlagHelpArg {
214
  FlagHelpMsg source;
215
  FlagHelpKind kind;
216
};
217
218
extern const char kStrippedFlagHelp[];
219
220
// These two HelpArg overloads allows us to select at compile time one of two
221
// way to pass Help argument to absl::Flag. We'll be passing
222
// AbslFlagHelpGenFor##name as Gen and integer 0 as a single argument to prefer
223
// first overload if possible. If help message is evaluatable on constexpr
224
// context We'll be able to make FixedCharArray out of it and we'll choose first
225
// overload. In this case the help message expression is immediately evaluated
226
// and is used to construct the absl::Flag. No additional code is generated by
227
// ABSL_FLAG Otherwise SFINAE kicks in and first overload is dropped from the
228
// consideration, in which case the second overload will be used. The second
229
// overload does not attempt to evaluate the help message expression
230
// immediately and instead delays the evaluation by returning the function
231
// pointer (&T::NonConst) generating the help message when necessary. This is
232
// evaluatable in constexpr context, but the cost is an extra function being
233
// generated in the ABSL_FLAG code.
234
template <typename Gen, size_t N>
235
constexpr FlagHelpArg HelpArg(const FixedCharArray<N>& value) {
236
  return {FlagHelpMsg(value.value), FlagHelpKind::kLiteral};
237
}
238
239
template <typename Gen>
240
constexpr FlagHelpArg HelpArg(std::false_type) {
241
  return {FlagHelpMsg(&Gen::NonConst), FlagHelpKind::kGenFunc};
242
}
243
244
///////////////////////////////////////////////////////////////////////////////
245
// Flag default value auxiliary structs.
246
247
// Signature for the function generating the initial flag value (usually
248
// based on default value supplied in flag's definition)
249
using FlagDfltGenFunc = void (*)(void*);
250
251
union FlagDefaultSrc {
252
  constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)
253
0
      : gen_func(gen_func_arg) {}
254
255
#define ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE(T, name) \
256
  T name##_value;                                  \
257
0
  constexpr explicit FlagDefaultSrc(T value) : name##_value(value) {}  // NOLINT
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(bool)
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(short)
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(unsigned short)
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(int)
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(unsigned int)
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(long)
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(unsigned long)
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(long long)
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(unsigned long long)
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(double)
Unexecuted instantiation: absl::flags_internal::FlagDefaultSrc::FlagDefaultSrc(float)
258
  ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE)
259
#undef ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE
260
261
  void* dynamic_value;
262
  FlagDfltGenFunc gen_func;
263
};
264
265
enum class FlagDefaultKind : uint8_t {
266
  kDynamicValue = 0,
267
  kGenFunc = 1,
268
  kOneWord = 2  // for default values UP to one word in size
269
};
270
271
struct FlagDefaultArg {
272
  FlagDefaultSrc source;
273
  FlagDefaultKind kind;
274
};
275
276
// This struct and corresponding overload to InitDefaultValue are used to
277
// facilitate usage of {} as default value in ABSL_FLAG macro.
278
// TODO(rogeeff): Fix handling types with explicit constructors.
279
struct EmptyBraces {};
280
281
template <typename T>
282
constexpr T InitDefaultValue(T t) {
283
  return t;
284
}
285
286
template <typename T>
287
constexpr T InitDefaultValue(EmptyBraces) {
288
  return T{};
289
}
290
291
template <typename ValueT, typename GenT,
292
          typename std::enable_if<std::is_integral<ValueT>::value, int>::type =
293
              ((void)GenT{}, 0)>
294
constexpr FlagDefaultArg DefaultArg(int) {
295
  return {FlagDefaultSrc(GenT{}.value), FlagDefaultKind::kOneWord};
296
}
297
298
template <typename ValueT, typename GenT>
299
constexpr FlagDefaultArg DefaultArg(char) {
300
  return {FlagDefaultSrc(&GenT::Gen), FlagDefaultKind::kGenFunc};
301
}
302
303
///////////////////////////////////////////////////////////////////////////////
304
// Flag current value auxiliary structs.
305
306
0
constexpr int64_t UninitializedFlagValue() {
307
0
  return static_cast<int64_t>(0xababababababababll);
308
0
}
309
310
template <typename T>
311
using FlagUseValueAndInitBitStorage =
312
    std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
313
                                     std::is_default_constructible<T>::value &&
314
                                     (sizeof(T) < 8)>;
315
316
template <typename T>
317
using FlagUseOneWordStorage =
318
    std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
319
                                     (sizeof(T) <= 8)>;
320
321
template <class T>
322
using FlagUseSequenceLockStorage =
323
    std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
324
                                     (sizeof(T) > 8)>;
325
326
enum class FlagValueStorageKind : uint8_t {
327
  kValueAndInitBit = 0,
328
  kOneWordAtomic = 1,
329
  kSequenceLocked = 2,
330
  kAlignedBuffer = 3,
331
};
332
333
template <typename T>
334
static constexpr FlagValueStorageKind StorageKind() {
335
  return FlagUseValueAndInitBitStorage<T>::value
336
             ? FlagValueStorageKind::kValueAndInitBit
337
         : FlagUseOneWordStorage<T>::value
338
             ? FlagValueStorageKind::kOneWordAtomic
339
         : FlagUseSequenceLockStorage<T>::value
340
             ? FlagValueStorageKind::kSequenceLocked
341
             : FlagValueStorageKind::kAlignedBuffer;
342
}
343
344
struct FlagOneWordValue {
345
0
  constexpr explicit FlagOneWordValue(int64_t v) : value(v) {}
346
  std::atomic<int64_t> value;
347
};
348
349
template <typename T>
350
struct alignas(8) FlagValueAndInitBit {
351
  T value;
352
  // Use an int instead of a bool to guarantee that a non-zero value has
353
  // a bit set.
354
  uint8_t init;
355
};
356
357
template <typename T,
358
          FlagValueStorageKind Kind = flags_internal::StorageKind<T>()>
359
struct FlagValue;
360
361
template <typename T>
362
struct FlagValue<T, FlagValueStorageKind::kValueAndInitBit> : FlagOneWordValue {
363
  constexpr FlagValue() : FlagOneWordValue(0) {}
364
  bool Get(const SequenceLock&, T& dst) const {
365
    int64_t storage = value.load(std::memory_order_acquire);
366
    if (ABSL_PREDICT_FALSE(storage == 0)) {
367
      return false;
368
    }
369
    dst = absl::bit_cast<FlagValueAndInitBit<T>>(storage).value;
370
    return true;
371
  }
372
};
373
374
template <typename T>
375
struct FlagValue<T, FlagValueStorageKind::kOneWordAtomic> : FlagOneWordValue {
376
  constexpr FlagValue() : FlagOneWordValue(UninitializedFlagValue()) {}
377
  bool Get(const SequenceLock&, T& dst) const {
378
    int64_t one_word_val = value.load(std::memory_order_acquire);
379
    if (ABSL_PREDICT_FALSE(one_word_val == UninitializedFlagValue())) {
380
      return false;
381
    }
382
    std::memcpy(&dst, static_cast<const void*>(&one_word_val), sizeof(T));
383
    return true;
384
  }
385
};
386
387
template <typename T>
388
struct FlagValue<T, FlagValueStorageKind::kSequenceLocked> {
389
  bool Get(const SequenceLock& lock, T& dst) const {
390
    return lock.TryRead(&dst, value_words, sizeof(T));
391
  }
392
393
  static constexpr int kNumWords =
394
      flags_internal::AlignUp(sizeof(T), sizeof(uint64_t)) / sizeof(uint64_t);
395
396
  alignas(T) alignas(
397
      std::atomic<uint64_t>) std::atomic<uint64_t> value_words[kNumWords];
398
};
399
400
template <typename T>
401
struct FlagValue<T, FlagValueStorageKind::kAlignedBuffer> {
402
  bool Get(const SequenceLock&, T&) const { return false; }
403
404
  alignas(T) char value[sizeof(T)];
405
};
406
407
///////////////////////////////////////////////////////////////////////////////
408
// Flag callback auxiliary structs.
409
410
// Signature for the mutation callback used by watched Flags
411
// The callback is noexcept.
412
// TODO(rogeeff): add noexcept after C++17 support is added.
413
using FlagCallbackFunc = void (*)();
414
415
struct FlagCallback {
416
  FlagCallbackFunc func;
417
  absl::Mutex guard;  // Guard for concurrent callback invocations.
418
};
419
420
///////////////////////////////////////////////////////////////////////////////
421
// Flag implementation, which does not depend on flag value type.
422
// The class encapsulates the Flag's data and access to it.
423
424
struct DynValueDeleter {
425
  explicit DynValueDeleter(FlagOpFn op_arg = nullptr);
426
  void operator()(void* ptr) const;
427
428
  FlagOpFn op;
429
};
430
431
class FlagState;
432
433
class FlagImpl final : public CommandLineFlag {
434
 public:
435
  constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op,
436
                     FlagHelpArg help, FlagValueStorageKind value_kind,
437
                     FlagDefaultArg default_arg)
438
      : name_(name),
439
        filename_(filename),
440
        op_(op),
441
        help_(help.source),
442
        help_source_kind_(static_cast<uint8_t>(help.kind)),
443
        value_storage_kind_(static_cast<uint8_t>(value_kind)),
444
        def_kind_(static_cast<uint8_t>(default_arg.kind)),
445
        modified_(false),
446
        on_command_line_(false),
447
        callback_(nullptr),
448
        default_value_(default_arg.source),
449
0
        data_guard_{} {}
450
451
  // Constant access methods
452
  int64_t ReadOneWord() const ABSL_LOCKS_EXCLUDED(*DataGuard());
453
  bool ReadOneBool() const ABSL_LOCKS_EXCLUDED(*DataGuard());
454
  void Read(void* dst) const override ABSL_LOCKS_EXCLUDED(*DataGuard());
455
0
  void Read(bool* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
456
0
    *value = ReadOneBool();
457
0
  }
458
  template <typename T,
459
            absl::enable_if_t<flags_internal::StorageKind<T>() ==
460
                                  FlagValueStorageKind::kOneWordAtomic,
461
                              int> = 0>
462
  void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
463
    int64_t v = ReadOneWord();
464
    std::memcpy(value, static_cast<const void*>(&v), sizeof(T));
465
  }
466
  template <typename T,
467
            typename std::enable_if<flags_internal::StorageKind<T>() ==
468
                                        FlagValueStorageKind::kValueAndInitBit,
469
                                    int>::type = 0>
470
  void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
471
    *value = absl::bit_cast<FlagValueAndInitBit<T>>(ReadOneWord()).value;
472
  }
473
474
  // Mutating access methods
475
  void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard());
476
477
  // Interfaces to operate on callbacks.
478
  void SetCallback(const FlagCallbackFunc mutation_callback)
479
      ABSL_LOCKS_EXCLUDED(*DataGuard());
480
  void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
481
482
  // Used in read/write operations to validate source/target has correct type.
483
  // For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
484
  // absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
485
  // int. To do that we pass the "assumed" type id (which is deduced from type
486
  // int) as an argument `type_id`, which is in turn is validated against the
487
  // type id stored in flag object by flag definition statement.
488
  void AssertValidType(FlagFastTypeId type_id,
489
                       const std::type_info* (*gen_rtti)()) const;
490
491
 private:
492
  template <typename T>
493
  friend class Flag;
494
  friend class FlagState;
495
496
  // Ensures that `data_guard_` is initialized and returns it.
497
  absl::Mutex* DataGuard() const
498
      ABSL_LOCK_RETURNED(reinterpret_cast<absl::Mutex*>(data_guard_));
499
  // Returns heap allocated value of type T initialized with default value.
500
  std::unique_ptr<void, DynValueDeleter> MakeInitValue() const
501
      ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
502
  // Flag initialization called via absl::call_once.
503
  void Init();
504
505
  // Offset value access methods. One per storage kind. These methods to not
506
  // respect const correctness, so be very carefull using them.
507
508
  // This is a shared helper routine which encapsulates most of the magic. Since
509
  // it is only used inside the three routines below, which are defined in
510
  // flag.cc, we can define it in that file as well.
511
  template <typename StorageT>
512
  StorageT* OffsetValue() const;
513
  // This is an accessor for a value stored in an aligned buffer storage
514
  // used for non-trivially-copyable data types.
515
  // Returns a mutable pointer to the start of a buffer.
516
  void* AlignedBufferValue() const;
517
518
  // The same as above, but used for sequencelock-protected storage.
519
  std::atomic<uint64_t>* AtomicBufferValue() const;
520
521
  // This is an accessor for a value stored as one word atomic. Returns a
522
  // mutable reference to an atomic value.
523
  std::atomic<int64_t>& OneWordValue() const;
524
525
  // Attempts to parse supplied `value` string. If parsing is successful,
526
  // returns new value. Otherwise returns nullptr.
527
  std::unique_ptr<void, DynValueDeleter> TryParse(absl::string_view value,
528
                                                  std::string& err) const
529
      ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
530
  // Stores the flag value based on the pointer to the source.
531
  void StoreValue(const void* src) ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
532
533
  // Copy the flag data, protected by `seq_lock_` into `dst`.
534
  //
535
  // REQUIRES: ValueStorageKind() == kSequenceLocked.
536
  void ReadSequenceLockedData(void* dst) const
537
      ABSL_LOCKS_EXCLUDED(*DataGuard());
538
539
0
  FlagHelpKind HelpSourceKind() const {
540
0
    return static_cast<FlagHelpKind>(help_source_kind_);
541
0
  }
542
8
  FlagValueStorageKind ValueStorageKind() const {
543
8
    return static_cast<FlagValueStorageKind>(value_storage_kind_);
544
8
  }
545
  FlagDefaultKind DefaultKind() const
546
0
      ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) {
547
0
    return static_cast<FlagDefaultKind>(def_kind_);
548
0
  }
549
550
  // CommandLineFlag interface implementation
551
  absl::string_view Name() const override;
552
  std::string Filename() const override;
553
  std::string Help() const override;
554
  FlagFastTypeId TypeId() const override;
555
  bool IsSpecifiedOnCommandLine() const override
556
      ABSL_LOCKS_EXCLUDED(*DataGuard());
557
  std::string DefaultValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
558
  std::string CurrentValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
559
  bool ValidateInputValue(absl::string_view value) const override
560
      ABSL_LOCKS_EXCLUDED(*DataGuard());
561
  void CheckDefaultValueParsingRoundtrip() const override
562
      ABSL_LOCKS_EXCLUDED(*DataGuard());
563
564
  int64_t ModificationCount() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
565
566
  // Interfaces to save and restore flags to/from persistent state.
567
  // Returns current flag state or nullptr if flag does not support
568
  // saving and restoring a state.
569
  std::unique_ptr<FlagStateInterface> SaveState() override
570
      ABSL_LOCKS_EXCLUDED(*DataGuard());
571
572
  // Restores the flag state to the supplied state object. If there is
573
  // nothing to restore returns false. Otherwise returns true.
574
  bool RestoreState(const FlagState& flag_state)
575
      ABSL_LOCKS_EXCLUDED(*DataGuard());
576
577
  bool ParseFrom(absl::string_view value, FlagSettingMode set_mode,
578
                 ValueSource source, std::string& error) override
579
      ABSL_LOCKS_EXCLUDED(*DataGuard());
580
581
  // Immutable flag's state.
582
583
  // Flags name passed to ABSL_FLAG as second arg.
584
  const char* const name_;
585
  // The file name where ABSL_FLAG resides.
586
  const char* const filename_;
587
  // Type-specific operations "vtable".
588
  const FlagOpFn op_;
589
  // Help message literal or function to generate it.
590
  const FlagHelpMsg help_;
591
  // Indicates if help message was supplied as literal or generator func.
592
  const uint8_t help_source_kind_ : 1;
593
  // Kind of storage this flag is using for the flag's value.
594
  const uint8_t value_storage_kind_ : 2;
595
596
  uint8_t : 0;  // The bytes containing the const bitfields must not be
597
                // shared with bytes containing the mutable bitfields.
598
599
  // Mutable flag's state (guarded by `data_guard_`).
600
601
  // def_kind_ is not guard by DataGuard() since it is accessed in Init without
602
  // locks.
603
  uint8_t def_kind_ : 2;
604
  // Has this flag's value been modified?
605
  bool modified_ : 1 ABSL_GUARDED_BY(*DataGuard());
606
  // Has this flag been specified on command line.
607
  bool on_command_line_ : 1 ABSL_GUARDED_BY(*DataGuard());
608
609
  // Unique tag for absl::call_once call to initialize this flag.
610
  absl::once_flag init_control_;
611
612
  // Sequence lock / mutation counter.
613
  flags_internal::SequenceLock seq_lock_;
614
615
  // Optional flag's callback and absl::Mutex to guard the invocations.
616
  FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard());
617
  // Either a pointer to the function generating the default value based on the
618
  // value specified in ABSL_FLAG or pointer to the dynamically set default
619
  // value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish
620
  // these two cases.
621
  FlagDefaultSrc default_value_;
622
623
  // This is reserved space for an absl::Mutex to guard flag data. It will be
624
  // initialized in FlagImpl::Init via placement new.
625
  // We can't use "absl::Mutex data_guard_", since this class is not literal.
626
  // We do not want to use "absl::Mutex* data_guard_", since this would require
627
  // heap allocation during initialization, which is both slows program startup
628
  // and can fail. Using reserved space + placement new allows us to avoid both
629
  // problems.
630
  alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)];
631
};
632
633
///////////////////////////////////////////////////////////////////////////////
634
// The Flag object parameterized by the flag's value type. This class implements
635
// flag reflection handle interface.
636
637
template <typename T>
638
class Flag {
639
 public:
640
  constexpr Flag(const char* name, const char* filename, FlagHelpArg help,
641
                 const FlagDefaultArg default_arg)
642
      : impl_(name, filename, &FlagOps<T>, help,
643
              flags_internal::StorageKind<T>(), default_arg),
644
        value_() {}
645
646
  // CommandLineFlag interface
647
  absl::string_view Name() const { return impl_.Name(); }
648
  std::string Filename() const { return impl_.Filename(); }
649
  std::string Help() const { return impl_.Help(); }
650
  // Do not use. To be removed.
651
  bool IsSpecifiedOnCommandLine() const {
652
    return impl_.IsSpecifiedOnCommandLine();
653
  }
654
  std::string DefaultValue() const { return impl_.DefaultValue(); }
655
  std::string CurrentValue() const { return impl_.CurrentValue(); }
656
657
 private:
658
  template <typename, bool>
659
  friend class FlagRegistrar;
660
  friend class FlagImplPeer;
661
662
  T Get() const {
663
    // See implementation notes in CommandLineFlag::Get().
664
    union U {
665
      T value;
666
      U() {}
667
      ~U() { value.~T(); }
668
    };
669
    U u;
670
671
#if !defined(NDEBUG)
672
    impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
673
#endif
674
675
    if (ABSL_PREDICT_FALSE(!value_.Get(impl_.seq_lock_, u.value))) {
676
      impl_.Read(&u.value);
677
    }
678
    return std::move(u.value);
679
  }
680
  void Set(const T& v) {
681
    impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
682
    impl_.Write(&v);
683
  }
684
685
  // Access to the reflection.
686
  const CommandLineFlag& Reflect() const { return impl_; }
687
688
  // Flag's data
689
  // The implementation depends on value_ field to be placed exactly after the
690
  // impl_ field, so that impl_ can figure out the offset to the value and
691
  // access it.
692
  FlagImpl impl_;
693
  FlagValue<T> value_;
694
};
695
696
///////////////////////////////////////////////////////////////////////////////
697
// Trampoline for friend access
698
699
class FlagImplPeer {
700
 public:
701
  template <typename T, typename FlagType>
702
  static T InvokeGet(const FlagType& flag) {
703
    return flag.Get();
704
  }
705
  template <typename FlagType, typename T>
706
  static void InvokeSet(FlagType& flag, const T& v) {
707
    flag.Set(v);
708
  }
709
  template <typename FlagType>
710
  static const CommandLineFlag& InvokeReflect(const FlagType& f) {
711
    return f.Reflect();
712
  }
713
};
714
715
///////////////////////////////////////////////////////////////////////////////
716
// Implementation of Flag value specific operations routine.
717
template <typename T>
718
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
719
  switch (op) {
720
    case FlagOp::kAlloc: {
721
      std::allocator<T> alloc;
722
      return std::allocator_traits<std::allocator<T>>::allocate(alloc, 1);
723
    }
724
    case FlagOp::kDelete: {
725
      T* p = static_cast<T*>(v2);
726
      p->~T();
727
      std::allocator<T> alloc;
728
      std::allocator_traits<std::allocator<T>>::deallocate(alloc, p, 1);
729
      return nullptr;
730
    }
731
    case FlagOp::kCopy:
732
      *static_cast<T*>(v2) = *static_cast<const T*>(v1);
733
      return nullptr;
734
    case FlagOp::kCopyConstruct:
735
      new (v2) T(*static_cast<const T*>(v1));
736
      return nullptr;
737
    case FlagOp::kSizeof:
738
      return reinterpret_cast<void*>(static_cast<uintptr_t>(sizeof(T)));
739
    case FlagOp::kFastTypeId:
740
      return const_cast<void*>(base_internal::FastTypeId<T>());
741
    case FlagOp::kRuntimeTypeId:
742
      return const_cast<std::type_info*>(GenRuntimeTypeId<T>());
743
    case FlagOp::kParse: {
744
      // Initialize the temporary instance of type T based on current value in
745
      // destination (which is going to be flag's default value).
746
      T temp(*static_cast<T*>(v2));
747
      if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp,
748
                              static_cast<std::string*>(v3))) {
749
        return nullptr;
750
      }
751
      *static_cast<T*>(v2) = std::move(temp);
752
      return v2;
753
    }
754
    case FlagOp::kUnparse:
755
      *static_cast<std::string*>(v2) =
756
          absl::UnparseFlag<T>(*static_cast<const T*>(v1));
757
      return nullptr;
758
    case FlagOp::kValueOffset: {
759
      // Round sizeof(FlagImp) to a multiple of alignof(FlagValue<T>) to get the
760
      // offset of the data.
761
      size_t round_to = alignof(FlagValue<T>);
762
      size_t offset =
763
          (sizeof(FlagImpl) + round_to - 1) / round_to * round_to;
764
      return reinterpret_cast<void*>(offset);
765
    }
766
  }
767
  return nullptr;
768
}
769
770
///////////////////////////////////////////////////////////////////////////////
771
// This class facilitates Flag object registration and tail expression-based
772
// flag definition, for example:
773
// ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher);
774
struct FlagRegistrarEmpty {};
775
template <typename T, bool do_register>
776
class FlagRegistrar {
777
 public:
778
  explicit FlagRegistrar(Flag<T>& flag, const char* filename) : flag_(flag) {
779
    if (do_register)
780
      flags_internal::RegisterCommandLineFlag(flag_.impl_, filename);
781
  }
782
783
  FlagRegistrar OnUpdate(FlagCallbackFunc cb) && {
784
    flag_.impl_.SetCallback(cb);
785
    return *this;
786
  }
787
788
  // Make the registrar "die" gracefully as an empty struct on a line where
789
  // registration happens. Registrar objects are intended to live only as
790
  // temporary.
791
  operator FlagRegistrarEmpty() const { return {}; }  // NOLINT
792
793
 private:
794
  Flag<T>& flag_;  // Flag being registered (not owned).
795
};
796
797
}  // namespace flags_internal
798
ABSL_NAMESPACE_END
799
}  // namespace absl
800
801
#endif  // ABSL_FLAGS_INTERNAL_FLAG_H_