/src/abseil-cpp/absl/time/time.h
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // Copyright 2017 The Abseil Authors.  | 
2  |  | //  | 
3  |  | // Licensed under the Apache License, Version 2.0 (the "License");  | 
4  |  | // you may not use this file except in compliance with the License.  | 
5  |  | // You may obtain a copy of the License at  | 
6  |  | //  | 
7  |  | //      https://www.apache.org/licenses/LICENSE-2.0  | 
8  |  | //  | 
9  |  | // Unless required by applicable law or agreed to in writing, software  | 
10  |  | // distributed under the License is distributed on an "AS IS" BASIS,  | 
11  |  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
12  |  | // See the License for the specific language governing permissions and  | 
13  |  | // limitations under the License.  | 
14  |  | //  | 
15  |  | // -----------------------------------------------------------------------------  | 
16  |  | // File: time.h  | 
17  |  | // -----------------------------------------------------------------------------  | 
18  |  | //  | 
19  |  | // This header file defines abstractions for computing with absolute points  | 
20  |  | // in time, durations of time, and formatting and parsing time within a given  | 
21  |  | // time zone. The following abstractions are defined:  | 
22  |  | //  | 
23  |  | //  * `absl::Time` defines an absolute, specific instance in time  | 
24  |  | //  * `absl::Duration` defines a signed, fixed-length span of time  | 
25  |  | //  * `absl::TimeZone` defines geopolitical time zone regions (as collected  | 
26  |  | //     within the IANA Time Zone database (https://www.iana.org/time-zones)).  | 
27  |  | //  | 
28  |  | // Note: Absolute times are distinct from civil times, which refer to the  | 
29  |  | // human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping  | 
30  |  | // between absolute and civil times can be specified by use of time zones  | 
31  |  | // (`absl::TimeZone` within this API). That is:  | 
32  |  | //  | 
33  |  | //   Civil Time = F(Absolute Time, Time Zone)  | 
34  |  | //   Absolute Time = G(Civil Time, Time Zone)  | 
35  |  | //  | 
36  |  | // See civil_time.h for abstractions related to constructing and manipulating  | 
37  |  | // civil time.  | 
38  |  | //  | 
39  |  | // Example:  | 
40  |  | //  | 
41  |  | //   absl::TimeZone nyc;  | 
42  |  | //   // LoadTimeZone() may fail so it's always better to check for success.  | 
43  |  | //   if (!absl::LoadTimeZone("America/New_York", &nyc)) { | 
44  |  | //      // handle error case  | 
45  |  | //   }  | 
46  |  | //  | 
47  |  | //   // My flight leaves NYC on Jan 2, 2017 at 03:04:05  | 
48  |  | //   absl::CivilSecond cs(2017, 1, 2, 3, 4, 5);  | 
49  |  | //   absl::Time takeoff = absl::FromCivil(cs, nyc);  | 
50  |  | //  | 
51  |  | //   absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35);  | 
52  |  | //   absl::Time landing = takeoff + flight_duration;  | 
53  |  | //  | 
54  |  | //   absl::TimeZone syd;  | 
55  |  | //   if (!absl::LoadTimeZone("Australia/Sydney", &syd)) { | 
56  |  | //      // handle error case  | 
57  |  | //   }  | 
58  |  | //   std::string s = absl::FormatTime(  | 
59  |  | //       "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S",  | 
60  |  | //       landing, syd);  | 
61  |  |  | 
62  |  | #ifndef ABSL_TIME_TIME_H_  | 
63  |  | #define ABSL_TIME_TIME_H_  | 
64  |  |  | 
65  |  | #if !defined(_MSC_VER)  | 
66  |  | #include <sys/time.h>  | 
67  |  | #else  | 
68  |  | // We don't include `winsock2.h` because it drags in `windows.h` and friends,  | 
69  |  | // and they define conflicting macros like OPAQUE, ERROR, and more. This has the  | 
70  |  | // potential to break Abseil users.  | 
71  |  | //  | 
72  |  | // Instead we only forward declare `timeval` and require Windows users include  | 
73  |  | // `winsock2.h` themselves. This is both inconsistent and troublesome, but so is  | 
74  |  | // including 'windows.h' so we are picking the lesser of two evils here.  | 
75  |  | struct timeval;  | 
76  |  | #endif  | 
77  |  | #include <chrono>  // NOLINT(build/c++11)  | 
78  |  | #include <cmath>  | 
79  |  | #include <cstdint>  | 
80  |  | #include <ctime>  | 
81  |  | #include <limits>  | 
82  |  | #include <ostream>  | 
83  |  | #include <string>  | 
84  |  | #include <type_traits>  | 
85  |  | #include <utility>  | 
86  |  |  | 
87  |  | #include "absl/base/config.h"  | 
88  |  | #include "absl/base/macros.h"  | 
89  |  | #include "absl/strings/string_view.h"  | 
90  |  | #include "absl/time/civil_time.h"  | 
91  |  | #include "absl/time/internal/cctz/include/cctz/time_zone.h"  | 
92  |  |  | 
93  |  | namespace absl { | 
94  |  | ABSL_NAMESPACE_BEGIN  | 
95  |  |  | 
96  |  | class Duration;  // Defined below  | 
97  |  | class Time;      // Defined below  | 
98  |  | class TimeZone;  // Defined below  | 
99  |  |  | 
100  |  | namespace time_internal { | 
101  |  | int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem);  | 
102  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixDuration(Duration d);  | 
103  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration ToUnixDuration(Time t);  | 
104  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr int64_t GetRepHi(Duration d);  | 
105  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr uint32_t GetRepLo(Duration d);  | 
106  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi,  | 
107  |  |                                                               uint32_t lo);  | 
108  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi,  | 
109  |  |                                                               int64_t lo);  | 
110  |  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration MakePosDoubleDuration(double n);  | 
111  |  | constexpr int64_t kTicksPerNanosecond = 4;  | 
112  |  | constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond;  | 
113  |  | template <std::intmax_t N>  | 
114  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,  | 
115  |  |                                                            std::ratio<1, N>);  | 
116  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,  | 
117  |  |                                                            std::ratio<60>);  | 
118  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,  | 
119  |  |                                                            std::ratio<3600>);  | 
120  |  | template <typename T>  | 
121  |  | using EnableIfIntegral = typename std::enable_if<  | 
122  |  |     std::is_integral<T>::value || std::is_enum<T>::value, int>::type;  | 
123  |  | template <typename T>  | 
124  |  | using EnableIfFloat =  | 
125  |  |     typename std::enable_if<std::is_floating_point<T>::value, int>::type;  | 
126  |  | }  // namespace time_internal  | 
127  |  |  | 
128  |  | // Duration  | 
129  |  | //  | 
130  |  | // The `absl::Duration` class represents a signed, fixed-length amount of time.  | 
131  |  | // A `Duration` is generated using a unit-specific factory function, or is  | 
132  |  | // the result of subtracting one `absl::Time` from another. Durations behave  | 
133  |  | // like unit-safe integers and they support all the natural integer-like  | 
134  |  | // arithmetic operations. Arithmetic overflows and saturates at +/- infinity.  | 
135  |  | // `Duration` should be passed by value rather than const reference.  | 
136  |  | //  | 
137  |  | // Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`,  | 
138  |  | // `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for  | 
139  |  | // creation of constexpr `Duration` values  | 
140  |  | //  | 
141  |  | // Examples:  | 
142  |  | //  | 
143  |  | //   constexpr absl::Duration ten_ns = absl::Nanoseconds(10);  | 
144  |  | //   constexpr absl::Duration min = absl::Minutes(1);  | 
145  |  | //   constexpr absl::Duration hour = absl::Hours(1);  | 
146  |  | //   absl::Duration dur = 60 * min;  // dur == hour  | 
147  |  | //   absl::Duration half_sec = absl::Milliseconds(500);  | 
148  |  | //   absl::Duration quarter_sec = 0.25 * absl::Seconds(1);  | 
149  |  | //  | 
150  |  | // `Duration` values can be easily converted to an integral number of units  | 
151  |  | // using the division operator.  | 
152  |  | //  | 
153  |  | // Example:  | 
154  |  | //  | 
155  |  | //   constexpr absl::Duration dur = absl::Milliseconds(1500);  | 
156  |  | //   int64_t ns = dur / absl::Nanoseconds(1);   // ns == 1500000000  | 
157  |  | //   int64_t ms = dur / absl::Milliseconds(1);  // ms == 1500  | 
158  |  | //   int64_t sec = dur / absl::Seconds(1);    // sec == 1 (subseconds truncated)  | 
159  |  | //   int64_t min = dur / absl::Minutes(1);    // min == 0  | 
160  |  | //  | 
161  |  | // See the `IDivDuration()` and `FDivDuration()` functions below for details on  | 
162  |  | // how to access the fractional parts of the quotient.  | 
163  |  | //  | 
164  |  | // Alternatively, conversions can be performed using helpers such as  | 
165  |  | // `ToInt64Microseconds()` and `ToDoubleSeconds()`.  | 
166  |  | class Duration { | 
167  |  |  public:  | 
168  |  |   // Value semantics.  | 
169  | 3.24M  |   constexpr Duration() : rep_hi_(0), rep_lo_(0) {}  // zero-length duration | 
170  |  |  | 
171  |  |   // Copyable.  | 
172  |  | #if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1930  | 
173  |  |   // Explicitly defining the constexpr copy constructor avoids an MSVC bug.  | 
174  |  |   constexpr Duration(const Duration& d)  | 
175  |  |       : rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {} | 
176  |  | #else  | 
177  |  |   constexpr Duration(const Duration& d) = default;  | 
178  |  | #endif  | 
179  |  |   Duration& operator=(const Duration& d) = default;  | 
180  |  |  | 
181  |  |   // Compound assignment operators.  | 
182  |  |   Duration& operator+=(Duration d);  | 
183  |  |   Duration& operator-=(Duration d);  | 
184  |  |   Duration& operator*=(int64_t r);  | 
185  |  |   Duration& operator*=(double r);  | 
186  |  |   Duration& operator/=(int64_t r);  | 
187  |  |   Duration& operator/=(double r);  | 
188  |  |   Duration& operator%=(Duration rhs);  | 
189  |  |  | 
190  |  |   // Overloads that forward to either the int64_t or double overloads above.  | 
191  |  |   // Integer operands must be representable as int64_t. Integer division is  | 
192  |  |   // truncating, so values less than the resolution will be returned as zero.  | 
193  |  |   // Floating-point multiplication and division is rounding (halfway cases  | 
194  |  |   // rounding away from zero), so values less than the resolution may be  | 
195  |  |   // returned as either the resolution or zero.  In particular, `d / 2.0`  | 
196  |  |   // can produce `d` when it is the resolution and "even".  | 
197  |  |   template <typename T, time_internal::EnableIfIntegral<T> = 0>  | 
198  | 0  |   Duration& operator*=(T r) { | 
199  | 0  |     int64_t x = r;  | 
200  | 0  |     return *this *= x;  | 
201  | 0  |   }  | 
202  |  |  | 
203  |  |   template <typename T, time_internal::EnableIfIntegral<T> = 0>  | 
204  |  |   Duration& operator/=(T r) { | 
205  |  |     int64_t x = r;  | 
206  |  |     return *this /= x;  | 
207  |  |   }  | 
208  |  |  | 
209  |  |   template <typename T, time_internal::EnableIfFloat<T> = 0>  | 
210  |  |   Duration& operator*=(T r) { | 
211  |  |     double x = r;  | 
212  |  |     return *this *= x;  | 
213  |  |   }  | 
214  |  |  | 
215  |  |   template <typename T, time_internal::EnableIfFloat<T> = 0>  | 
216  |  |   Duration& operator/=(T r) { | 
217  |  |     double x = r;  | 
218  |  |     return *this /= x;  | 
219  |  |   }  | 
220  |  |  | 
221  |  |   template <typename H>  | 
222  |  |   friend H AbslHashValue(H h, Duration d) { | 
223  |  |     return H::combine(std::move(h), d.rep_hi_.Get(), d.rep_lo_);  | 
224  |  |   }  | 
225  |  |  | 
226  |  |  private:  | 
227  |  |   friend constexpr int64_t time_internal::GetRepHi(Duration d);  | 
228  |  |   friend constexpr uint32_t time_internal::GetRepLo(Duration d);  | 
229  |  |   friend constexpr Duration time_internal::MakeDuration(int64_t hi,  | 
230  |  |                                                         uint32_t lo);  | 
231  | 3.24M  |   constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {} | 
232  |  |  | 
233  |  |   // We store `rep_hi_` 4-byte rather than 8-byte aligned to avoid 4 bytes of  | 
234  |  |   // tail padding.  | 
235  |  |   class HiRep { | 
236  |  |    public:  | 
237  |  |     // Default constructor default-initializes `hi_`, which has the same  | 
238  |  |     // semantics as default-initializing an `int64_t` (undetermined value).  | 
239  |  |     HiRep() = default;  | 
240  |  |  | 
241  |  |     HiRep(const HiRep&) = default;  | 
242  |  |     HiRep& operator=(const HiRep&) = default;  | 
243  |  |  | 
244  |  |     explicit constexpr HiRep(const int64_t value)  | 
245  |  |         :  // C++17 forbids default-initialization in constexpr contexts. We can  | 
246  |  |            // remove this in C++20.  | 
247  |  | #if defined(ABSL_IS_BIG_ENDIAN) && ABSL_IS_BIG_ENDIAN  | 
248  |  |           hi_(0),  | 
249  |  |           lo_(0)  | 
250  |  | #else  | 
251  |  |           lo_(0),  | 
252  |  |           hi_(0)  | 
253  |  | #endif  | 
254  | 6.48M  |     { | 
255  | 6.48M  |       *this = value;  | 
256  | 6.48M  |     }  | 
257  |  |  | 
258  | 3.24M  |     constexpr int64_t Get() const { | 
259  | 3.24M  |       const uint64_t unsigned_value =  | 
260  | 3.24M  |           (static_cast<uint64_t>(hi_) << 32) | static_cast<uint64_t>(lo_);  | 
261  |  |       // `static_cast<int64_t>(unsigned_value)` is implementation-defined  | 
262  |  |       // before c++20. On all supported platforms the behaviour is that mandated  | 
263  |  |       // by c++20, i.e. "If the destination type is signed, [...] the result is  | 
264  |  |       // the unique value of the destination type equal to the source value  | 
265  |  |       // modulo 2^n, where n is the number of bits used to represent the  | 
266  |  |       // destination type."  | 
267  | 3.24M  |       static_assert(  | 
268  | 3.24M  |           (static_cast<int64_t>((std::numeric_limits<uint64_t>::max)()) ==  | 
269  | 3.24M  |            int64_t{-1}) && | 
270  | 3.24M  |               (static_cast<int64_t>(static_cast<uint64_t>(  | 
271  | 3.24M  |                                         (std::numeric_limits<int64_t>::max)()) +  | 
272  | 3.24M  |                                     1) ==  | 
273  | 3.24M  |                (std::numeric_limits<int64_t>::min)()),  | 
274  | 3.24M  |           "static_cast<int64_t>(uint64_t) does not have c++20 semantics");  | 
275  | 3.24M  |       return static_cast<int64_t>(unsigned_value);  | 
276  | 3.24M  |     }  | 
277  |  |  | 
278  | 6.48M  |     constexpr HiRep& operator=(const int64_t value) { | 
279  |  |       // "If the destination type is unsigned, the resulting value is the  | 
280  |  |       // smallest unsigned value equal to the source value modulo 2^n  | 
281  |  |       // where `n` is the number of bits used to represent the destination  | 
282  |  |       // type".  | 
283  | 6.48M  |       const auto unsigned_value = static_cast<uint64_t>(value);  | 
284  | 6.48M  |       hi_ = static_cast<uint32_t>(unsigned_value >> 32);  | 
285  | 6.48M  |       lo_ = static_cast<uint32_t>(unsigned_value);  | 
286  | 6.48M  |       return *this;  | 
287  | 6.48M  |     }  | 
288  |  |  | 
289  |  |    private:  | 
290  |  |     // Notes:  | 
291  |  |     //  - Ideally we would use a `char[]` and `std::bitcast`, but the latter  | 
292  |  |     //    does not exist (and is not constexpr in `absl`) before c++20.  | 
293  |  |     //  - Order is optimized depending on endianness so that the compiler can  | 
294  |  |     //    turn `Get()` (resp. `operator=()`) into a single 8-byte load (resp.  | 
295  |  |     //    store).  | 
296  |  | #if defined(ABSL_IS_BIG_ENDIAN) && ABSL_IS_BIG_ENDIAN  | 
297  |  |     uint32_t hi_;  | 
298  |  |     uint32_t lo_;  | 
299  |  | #else  | 
300  |  |     uint32_t lo_;  | 
301  |  |     uint32_t hi_;  | 
302  |  | #endif  | 
303  |  |   };  | 
304  |  |   HiRep rep_hi_;  | 
305  |  |   uint32_t rep_lo_;  | 
306  |  | };  | 
307  |  |  | 
308  |  | // Relational Operators  | 
309  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<(Duration lhs,  | 
310  |  |                                                        Duration rhs);  | 
311  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>(Duration lhs,  | 
312  | 0  |                                                        Duration rhs) { | 
313  | 0  |   return rhs < lhs;  | 
314  | 0  | }  | 
315  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>=(Duration lhs,  | 
316  | 0  |                                                         Duration rhs) { | 
317  | 0  |   return !(lhs < rhs);  | 
318  | 0  | }  | 
319  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<=(Duration lhs,  | 
320  | 0  |                                                         Duration rhs) { | 
321  | 0  |   return !(rhs < lhs);  | 
322  | 0  | }  | 
323  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator==(Duration lhs,  | 
324  |  |                                                         Duration rhs);  | 
325  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator!=(Duration lhs,  | 
326  | 0  |                                                         Duration rhs) { | 
327  | 0  |   return !(lhs == rhs);  | 
328  | 0  | }  | 
329  |  |  | 
330  |  | // Additive Operators  | 
331  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration operator-(Duration d);  | 
332  |  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator+(Duration lhs,  | 
333  | 0  |                                                         Duration rhs) { | 
334  | 0  |   return lhs += rhs;  | 
335  | 0  | }  | 
336  |  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator-(Duration lhs,  | 
337  | 0  |                                                         Duration rhs) { | 
338  | 0  |   return lhs -= rhs;  | 
339  | 0  | }  | 
340  |  |  | 
341  |  | // Multiplicative Operators  | 
342  |  | // Integer operands must be representable as int64_t.  | 
343  |  | template <typename T>  | 
344  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration operator*(Duration lhs, T rhs) { | 
345  | 0  |   return lhs *= rhs;  | 
346  | 0  | }  | 
347  |  | template <typename T>  | 
348  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration operator*(T lhs, Duration rhs) { | 
349  | 0  |   return rhs *= lhs;  | 
350  | 0  | } Unexecuted instantiation: absl::Duration absl::operator*<int>(int, absl::Duration) Unexecuted instantiation: absl::Duration absl::operator*<long>(long, absl::Duration) Unexecuted instantiation: absl::Duration absl::operator*<double>(double, absl::Duration)  | 
351  |  | template <typename T>  | 
352  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration operator/(Duration lhs, T rhs) { | 
353  | 0  |   return lhs /= rhs;  | 
354  | 0  | }  | 
355  |  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t operator/(Duration lhs,  | 
356  | 0  |                                                        Duration rhs) { | 
357  | 0  |   return time_internal::IDivDuration(true, lhs, rhs,  | 
358  | 0  |                                      &lhs);  // trunc towards zero  | 
359  | 0  | }  | 
360  |  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator%(Duration lhs,  | 
361  | 0  |                                                         Duration rhs) { | 
362  | 0  |   return lhs %= rhs;  | 
363  | 0  | }  | 
364  |  |  | 
365  |  | // IDivDuration()  | 
366  |  | //  | 
367  |  | // Divides a numerator `Duration` by a denominator `Duration`, returning the  | 
368  |  | // quotient and remainder. The remainder always has the same sign as the  | 
369  |  | // numerator. The returned quotient and remainder respect the identity:  | 
370  |  | //  | 
371  |  | //   numerator = denominator * quotient + remainder  | 
372  |  | //  | 
373  |  | // Returned quotients are capped to the range of `int64_t`, with the difference  | 
374  |  | // spilling into the remainder to uphold the above identity. This means that the  | 
375  |  | // remainder returned could differ from the remainder returned by  | 
376  |  | // `Duration::operator%` for huge quotients.  | 
377  |  | //  | 
378  |  | // See also the notes on `InfiniteDuration()` below regarding the behavior of  | 
379  |  | // division involving zero and infinite durations.  | 
380  |  | //  | 
381  |  | // Example:  | 
382  |  | //  | 
383  |  | //   constexpr absl::Duration a =  | 
384  |  | //       absl::Seconds(std::numeric_limits<int64_t>::max());  // big  | 
385  |  | //   constexpr absl::Duration b = absl::Nanoseconds(1);       // small  | 
386  |  | //  | 
387  |  | //   absl::Duration rem = a % b;  | 
388  |  | //   // rem == absl::ZeroDuration()  | 
389  |  | //  | 
390  |  | //   // Here, q would overflow int64_t, so rem accounts for the difference.  | 
391  |  | //   int64_t q = absl::IDivDuration(a, b, &rem);  | 
392  |  | //   // q == std::numeric_limits<int64_t>::max(), rem == a - b * q  | 
393  | 0  | inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) { | 
394  | 0  |   return time_internal::IDivDuration(true, num, den,  | 
395  | 0  |                                      rem);  // trunc towards zero  | 
396  | 0  | }  | 
397  |  |  | 
398  |  | // FDivDuration()  | 
399  |  | //  | 
400  |  | // Divides a `Duration` numerator into a fractional number of units of a  | 
401  |  | // `Duration` denominator.  | 
402  |  | //  | 
403  |  | // See also the notes on `InfiniteDuration()` below regarding the behavior of  | 
404  |  | // division involving zero and infinite durations.  | 
405  |  | //  | 
406  |  | // Example:  | 
407  |  | //  | 
408  |  | //   double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1));  | 
409  |  | //   // d == 1.5  | 
410  |  | ABSL_ATTRIBUTE_CONST_FUNCTION double FDivDuration(Duration num, Duration den);  | 
411  |  |  | 
412  |  | // ZeroDuration()  | 
413  |  | //  | 
414  |  | // Returns a zero-length duration. This function behaves just like the default  | 
415  |  | // constructor, but the name helps make the semantics clear at call sites.  | 
416  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration ZeroDuration() { | 
417  | 0  |   return Duration();  | 
418  | 0  | }  | 
419  |  |  | 
420  |  | // AbsDuration()  | 
421  |  | //  | 
422  |  | // Returns the absolute value of a duration.  | 
423  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration AbsDuration(Duration d) { | 
424  | 0  |   return (d < ZeroDuration()) ? -d : d;  | 
425  | 0  | }  | 
426  |  |  | 
427  |  | // Trunc()  | 
428  |  | //  | 
429  |  | // Truncates a duration (toward zero) to a multiple of a non-zero unit.  | 
430  |  | //  | 
431  |  | // Example:  | 
432  |  | //  | 
433  |  | //   absl::Duration d = absl::Nanoseconds(123456789);  | 
434  |  | //   absl::Duration a = absl::Trunc(d, absl::Microseconds(1));  // 123456us  | 
435  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Trunc(Duration d, Duration unit);  | 
436  |  |  | 
437  |  | // Floor()  | 
438  |  | //  | 
439  |  | // Floors a duration using the passed duration unit to its largest value not  | 
440  |  | // greater than the duration.  | 
441  |  | //  | 
442  |  | // Example:  | 
443  |  | //  | 
444  |  | //   absl::Duration d = absl::Nanoseconds(123456789);  | 
445  |  | //   absl::Duration b = absl::Floor(d, absl::Microseconds(1));  // 123456us  | 
446  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Floor(Duration d, Duration unit);  | 
447  |  |  | 
448  |  | // Ceil()  | 
449  |  | //  | 
450  |  | // Returns the ceiling of a duration using the passed duration unit to its  | 
451  |  | // smallest value not less than the duration.  | 
452  |  | //  | 
453  |  | // Example:  | 
454  |  | //  | 
455  |  | //   absl::Duration d = absl::Nanoseconds(123456789);  | 
456  |  | //   absl::Duration c = absl::Ceil(d, absl::Microseconds(1));   // 123457us  | 
457  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Ceil(Duration d, Duration unit);  | 
458  |  |  | 
459  |  | // InfiniteDuration()  | 
460  |  | //  | 
461  |  | // Returns an infinite `Duration`.  To get a `Duration` representing negative  | 
462  |  | // infinity, use `-InfiniteDuration()`.  | 
463  |  | //  | 
464  |  | // Duration arithmetic overflows to +/- infinity and saturates. In general,  | 
465  |  | // arithmetic with `Duration` infinities is similar to IEEE 754 infinities  | 
466  |  | // except where IEEE 754 NaN would be involved, in which case +/-  | 
467  |  | // `InfiniteDuration()` is used in place of a "nan" Duration.  | 
468  |  | //  | 
469  |  | // Examples:  | 
470  |  | //  | 
471  |  | //   constexpr absl::Duration inf = absl::InfiniteDuration();  | 
472  |  | //   const absl::Duration d = ... any finite duration ...  | 
473  |  | //  | 
474  |  | //   inf == inf + inf  | 
475  |  | //   inf == inf + d  | 
476  |  | //   inf == inf - inf  | 
477  |  | //   -inf == d - inf  | 
478  |  | //  | 
479  |  | //   inf == d * 1e100  | 
480  |  | //   inf == inf / 2  | 
481  |  | //   0 == d / inf  | 
482  |  | //   INT64_MAX == inf / d  | 
483  |  | //  | 
484  |  | //   d < inf  | 
485  |  | //   -inf < d  | 
486  |  | //  | 
487  |  | //   // Division by zero returns infinity, or INT64_MIN/MAX where appropriate.  | 
488  |  | //   inf == d / 0  | 
489  |  | //   INT64_MAX == d / absl::ZeroDuration()  | 
490  |  | //  | 
491  |  | // The examples involving the `/` operator above also apply to `IDivDuration()`  | 
492  |  | // and `FDivDuration()`.  | 
493  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration InfiniteDuration();  | 
494  |  |  | 
495  |  | // Nanoseconds()  | 
496  |  | // Microseconds()  | 
497  |  | // Milliseconds()  | 
498  |  | // Seconds()  | 
499  |  | // Minutes()  | 
500  |  | // Hours()  | 
501  |  | //  | 
502  |  | // Factory functions for constructing `Duration` values from an integral number  | 
503  |  | // of the unit indicated by the factory function's name. The number must be  | 
504  |  | // representable as int64_t.  | 
505  |  | //  | 
506  |  | // NOTE: no "Days()" factory function exists because "a day" is ambiguous.  | 
507  |  | // Civil days are not always 24 hours long, and a 24-hour duration often does  | 
508  |  | // not correspond with a civil day. If a 24-hour duration is needed, use  | 
509  |  | // `absl::Hours(24)`. If you actually want a civil day, use absl::CivilDay  | 
510  |  | // from civil_time.h.  | 
511  |  | //  | 
512  |  | // Example:  | 
513  |  | //  | 
514  |  | //   absl::Duration a = absl::Seconds(60);  | 
515  |  | //   absl::Duration b = absl::Minutes(1);  // b == a  | 
516  |  | template <typename T, time_internal::EnableIfIntegral<T> = 0>  | 
517  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Nanoseconds(T n) { | 
518  | 0  |   return time_internal::FromInt64(n, std::nano{}); | 
519  | 0  | } Unexecuted instantiation: absl::Duration absl::Nanoseconds<int, 0>(int) Unexecuted instantiation: absl::Duration absl::Nanoseconds<long, 0>(long)  | 
520  |  | template <typename T, time_internal::EnableIfIntegral<T> = 0>  | 
521  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Microseconds(T n) { | 
522  | 0  |   return time_internal::FromInt64(n, std::micro{}); | 
523  | 0  | } Unexecuted instantiation: absl::Duration absl::Microseconds<int, 0>(int) Unexecuted instantiation: absl::Duration absl::Microseconds<long, 0>(long)  | 
524  |  | template <typename T, time_internal::EnableIfIntegral<T> = 0>  | 
525  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Milliseconds(T n) { | 
526  | 0  |   return time_internal::FromInt64(n, std::milli{}); | 
527  | 0  | } Unexecuted instantiation: absl::Duration absl::Milliseconds<int, 0>(int) Unexecuted instantiation: absl::Duration absl::Milliseconds<long, 0>(long)  | 
528  |  | template <typename T, time_internal::EnableIfIntegral<T> = 0>  | 
529  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Seconds(T n) { | 
530  | 0  |   return time_internal::FromInt64(n, std::ratio<1>{}); | 
531  | 0  | } Unexecuted instantiation: absl::Duration absl::Seconds<long, 0>(long) Unexecuted instantiation: absl::Duration absl::Seconds<int, 0>(int)  | 
532  |  | template <typename T, time_internal::EnableIfIntegral<T> = 0>  | 
533  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Minutes(T n) { | 
534  | 0  |   return time_internal::FromInt64(n, std::ratio<60>{}); | 
535  | 0  | }  | 
536  |  | template <typename T, time_internal::EnableIfIntegral<T> = 0>  | 
537  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Hours(T n) { | 
538  | 0  |   return time_internal::FromInt64(n, std::ratio<3600>{}); | 
539  | 0  | }  | 
540  |  |  | 
541  |  | // Factory overloads for constructing `Duration` values from a floating-point  | 
542  |  | // number of the unit indicated by the factory function's name. These functions  | 
543  |  | // exist for convenience, but they are not as efficient as the integral  | 
544  |  | // factories, which should be preferred.  | 
545  |  | //  | 
546  |  | // Example:  | 
547  |  | //  | 
548  |  | //   auto a = absl::Seconds(1.5);        // OK  | 
549  |  | //   auto b = absl::Milliseconds(1500);  // BETTER  | 
550  |  | template <typename T, time_internal::EnableIfFloat<T> = 0>  | 
551  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Nanoseconds(T n) { | 
552  |  |   return n * Nanoseconds(1);  | 
553  |  | }  | 
554  |  | template <typename T, time_internal::EnableIfFloat<T> = 0>  | 
555  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Microseconds(T n) { | 
556  |  |   return n * Microseconds(1);  | 
557  |  | }  | 
558  |  | template <typename T, time_internal::EnableIfFloat<T> = 0>  | 
559  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Milliseconds(T n) { | 
560  | 0  |   return n * Milliseconds(1);  | 
561  | 0  | }  | 
562  |  | template <typename T, time_internal::EnableIfFloat<T> = 0>  | 
563  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Seconds(T n) { | 
564  |  |   if (n >= 0) {  // Note: `NaN >= 0` is false. | 
565  |  |     if (n >= static_cast<T>((std::numeric_limits<int64_t>::max)())) { | 
566  |  |       return InfiniteDuration();  | 
567  |  |     }  | 
568  |  |     return time_internal::MakePosDoubleDuration(n);  | 
569  |  |   } else { | 
570  |  |     if (std::isnan(n))  | 
571  |  |       return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration();  | 
572  |  |     if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration();  | 
573  |  |     return -time_internal::MakePosDoubleDuration(-n);  | 
574  |  |   }  | 
575  |  | }  | 
576  |  | template <typename T, time_internal::EnableIfFloat<T> = 0>  | 
577  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Minutes(T n) { | 
578  |  |   return n * Minutes(1);  | 
579  |  | }  | 
580  |  | template <typename T, time_internal::EnableIfFloat<T> = 0>  | 
581  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration Hours(T n) { | 
582  |  |   return n * Hours(1);  | 
583  |  | }  | 
584  |  |  | 
585  |  | // ToInt64Nanoseconds()  | 
586  |  | // ToInt64Microseconds()  | 
587  |  | // ToInt64Milliseconds()  | 
588  |  | // ToInt64Seconds()  | 
589  |  | // ToInt64Minutes()  | 
590  |  | // ToInt64Hours()  | 
591  |  | //  | 
592  |  | // Helper functions that convert a Duration to an integral count of the  | 
593  |  | // indicated unit. These return the same results as the `IDivDuration()`  | 
594  |  | // function, though they usually do so more efficiently; see the  | 
595  |  | // documentation of `IDivDuration()` for details about overflow, etc.  | 
596  |  | //  | 
597  |  | // Example:  | 
598  |  | //  | 
599  |  | //   absl::Duration d = absl::Milliseconds(1500);  | 
600  |  | //   int64_t isec = absl::ToInt64Seconds(d);  // isec == 1  | 
601  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Nanoseconds(Duration d);  | 
602  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Microseconds(Duration d);  | 
603  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Milliseconds(Duration d);  | 
604  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Seconds(Duration d);  | 
605  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Minutes(Duration d);  | 
606  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Hours(Duration d);  | 
607  |  |  | 
608  |  | // ToDoubleNanoseconds()  | 
609  |  | // ToDoubleMicroseconds()  | 
610  |  | // ToDoubleMilliseconds()  | 
611  |  | // ToDoubleSeconds()  | 
612  |  | // ToDoubleMinutes()  | 
613  |  | // ToDoubleHours()  | 
614  |  | //  | 
615  |  | // Helper functions that convert a Duration to a floating point count of the  | 
616  |  | // indicated unit. These functions are shorthand for the `FDivDuration()`  | 
617  |  | // function above; see its documentation for details about overflow, etc.  | 
618  |  | //  | 
619  |  | // Example:  | 
620  |  | //  | 
621  |  | //   absl::Duration d = absl::Milliseconds(1500);  | 
622  |  | //   double dsec = absl::ToDoubleSeconds(d);  // dsec == 1.5  | 
623  |  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleNanoseconds(Duration d);  | 
624  |  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleMicroseconds(Duration d);  | 
625  |  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleMilliseconds(Duration d);  | 
626  |  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleSeconds(Duration d);  | 
627  |  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleMinutes(Duration d);  | 
628  |  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleHours(Duration d);  | 
629  |  |  | 
630  |  | // FromChrono()  | 
631  |  | //  | 
632  |  | // Converts any of the pre-defined std::chrono durations to an absl::Duration.  | 
633  |  | //  | 
634  |  | // Example:  | 
635  |  | //  | 
636  |  | //   std::chrono::milliseconds ms(123);  | 
637  |  | //   absl::Duration d = absl::FromChrono(ms);  | 
638  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
639  |  |     const std::chrono::nanoseconds& d);  | 
640  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
641  |  |     const std::chrono::microseconds& d);  | 
642  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
643  |  |     const std::chrono::milliseconds& d);  | 
644  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
645  |  |     const std::chrono::seconds& d);  | 
646  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
647  |  |     const std::chrono::minutes& d);  | 
648  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
649  |  |     const std::chrono::hours& d);  | 
650  |  |  | 
651  |  | // ToChronoNanoseconds()  | 
652  |  | // ToChronoMicroseconds()  | 
653  |  | // ToChronoMilliseconds()  | 
654  |  | // ToChronoSeconds()  | 
655  |  | // ToChronoMinutes()  | 
656  |  | // ToChronoHours()  | 
657  |  | //  | 
658  |  | // Converts an absl::Duration to any of the pre-defined std::chrono durations.  | 
659  |  | // If overflow would occur, the returned value will saturate at the min/max  | 
660  |  | // chrono duration value instead.  | 
661  |  | //  | 
662  |  | // Example:  | 
663  |  | //  | 
664  |  | //   absl::Duration d = absl::Microseconds(123);  | 
665  |  | //   auto x = absl::ToChronoMicroseconds(d);  | 
666  |  | //   auto y = absl::ToChronoNanoseconds(d);  // x == y  | 
667  |  | //   auto z = absl::ToChronoSeconds(absl::InfiniteDuration());  | 
668  |  | //   // z == std::chrono::seconds::max()  | 
669  |  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::nanoseconds ToChronoNanoseconds(  | 
670  |  |     Duration d);  | 
671  |  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::microseconds ToChronoMicroseconds(  | 
672  |  |     Duration d);  | 
673  |  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::milliseconds ToChronoMilliseconds(  | 
674  |  |     Duration d);  | 
675  |  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::seconds ToChronoSeconds(Duration d);  | 
676  |  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::minutes ToChronoMinutes(Duration d);  | 
677  |  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::hours ToChronoHours(Duration d);  | 
678  |  |  | 
679  |  | // FormatDuration()  | 
680  |  | //  | 
681  |  | // Returns a string representing the duration in the form "72h3m0.5s".  | 
682  |  | // Returns "inf" or "-inf" for +/- `InfiniteDuration()`.  | 
683  |  | ABSL_ATTRIBUTE_CONST_FUNCTION std::string FormatDuration(Duration d);  | 
684  |  |  | 
685  |  | // Output stream operator.  | 
686  | 0  | inline std::ostream& operator<<(std::ostream& os, Duration d) { | 
687  | 0  |   return os << FormatDuration(d);  | 
688  | 0  | }  | 
689  |  |  | 
690  |  | // Support for StrFormat(), StrCat() etc.  | 
691  |  | template <typename Sink>  | 
692  |  | void AbslStringify(Sink& sink, Duration d) { | 
693  |  |   sink.Append(FormatDuration(d));  | 
694  |  | }  | 
695  |  |  | 
696  |  | // ParseDuration()  | 
697  |  | //  | 
698  |  | // Parses a duration string consisting of a possibly signed sequence of  | 
699  |  | // decimal numbers, each with an optional fractional part and a unit  | 
700  |  | // suffix.  The valid suffixes are "ns", "us" "ms", "s", "m", and "h".  | 
701  |  | // Simple examples include "300ms", "-1.5h", and "2h45m".  Parses "0" as  | 
702  |  | // `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`.  | 
703  |  | bool ParseDuration(absl::string_view dur_string, Duration* d);  | 
704  |  |  | 
705  |  | // AbslParseFlag()  | 
706  |  | //  | 
707  |  | // Parses a command-line flag string representation `text` into a Duration  | 
708  |  | // value. Duration flags must be specified in a format that is valid input for  | 
709  |  | // `absl::ParseDuration()`.  | 
710  |  | bool AbslParseFlag(absl::string_view text, Duration* dst, std::string* error);  | 
711  |  |  | 
712  |  |  | 
713  |  | // AbslUnparseFlag()  | 
714  |  | //  | 
715  |  | // Unparses a Duration value into a command-line string representation using  | 
716  |  | // the format specified by `absl::ParseDuration()`.  | 
717  |  | std::string AbslUnparseFlag(Duration d);  | 
718  |  |  | 
719  |  | ABSL_DEPRECATED("Use AbslParseFlag() instead.") | 
720  |  | bool ParseFlag(const std::string& text, Duration* dst, std::string* error);  | 
721  |  | ABSL_DEPRECATED("Use AbslUnparseFlag() instead.") | 
722  |  | std::string UnparseFlag(Duration d);  | 
723  |  |  | 
724  |  | // Time  | 
725  |  | //  | 
726  |  | // An `absl::Time` represents a specific instant in time. Arithmetic operators  | 
727  |  | // are provided for naturally expressing time calculations. Instances are  | 
728  |  | // created using `absl::Now()` and the `absl::From*()` factory functions that  | 
729  |  | // accept the gamut of other time representations. Formatting and parsing  | 
730  |  | // functions are provided for conversion to and from strings.  `absl::Time`  | 
731  |  | // should be passed by value rather than const reference.  | 
732  |  | //  | 
733  |  | // `absl::Time` assumes there are 60 seconds in a minute, which means the  | 
734  |  | // underlying time scales must be "smeared" to eliminate leap seconds.  | 
735  |  | // See https://developers.google.com/time/smear.  | 
736  |  | //  | 
737  |  | // Even though `absl::Time` supports a wide range of timestamps, exercise  | 
738  |  | // caution when using values in the distant past. `absl::Time` uses the  | 
739  |  | // Proleptic Gregorian calendar, which extends the Gregorian calendar backward  | 
740  |  | // to dates before its introduction in 1582.  | 
741  |  | // See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar  | 
742  |  | // for more information. Use the ICU calendar classes to convert a date in  | 
743  |  | // some other calendar (http://userguide.icu-project.org/datetime/calendar).  | 
744  |  | //  | 
745  |  | // Similarly, standardized time zones are a reasonably recent innovation, with  | 
746  |  | // the Greenwich prime meridian being established in 1884. The TZ database  | 
747  |  | // itself does not profess accurate offsets for timestamps prior to 1970. The  | 
748  |  | // breakdown of future timestamps is subject to the whim of regional  | 
749  |  | // governments.  | 
750  |  | //  | 
751  |  | // The `absl::Time` class represents an instant in time as a count of clock  | 
752  |  | // ticks of some granularity (resolution) from some starting point (epoch).  | 
753  |  | //  | 
754  |  | // `absl::Time` uses a resolution that is high enough to avoid loss in  | 
755  |  | // precision, and a range that is wide enough to avoid overflow, when  | 
756  |  | // converting between tick counts in most Google time scales (i.e., resolution  | 
757  |  | // of at least one nanosecond, and range +/-100 billion years).  Conversions  | 
758  |  | // between the time scales are performed by truncating (towards negative  | 
759  |  | // infinity) to the nearest representable point.  | 
760  |  | //  | 
761  |  | // Examples:  | 
762  |  | //  | 
763  |  | //   absl::Time t1 = ...;  | 
764  |  | //   absl::Time t2 = t1 + absl::Minutes(2);  | 
765  |  | //   absl::Duration d = t2 - t1;  // == absl::Minutes(2)  | 
766  |  | //  | 
767  |  | class Time { | 
768  |  |  public:  | 
769  |  |   // Value semantics.  | 
770  |  |  | 
771  |  |   // Returns the Unix epoch.  However, those reading your code may not know  | 
772  |  |   // or expect the Unix epoch as the default value, so make your code more  | 
773  |  |   // readable by explicitly initializing all instances before use.  | 
774  |  |   //  | 
775  |  |   // Example:  | 
776  |  |   //   absl::Time t = absl::UnixEpoch();  | 
777  |  |   //   absl::Time t = absl::Now();  | 
778  |  |   //   absl::Time t = absl::TimeFromTimeval(tv);  | 
779  |  |   //   absl::Time t = absl::InfinitePast();  | 
780  | 3.24M  |   constexpr Time() = default;  | 
781  |  |  | 
782  |  |   // Copyable.  | 
783  |  |   constexpr Time(const Time& t) = default;  | 
784  |  |   Time& operator=(const Time& t) = default;  | 
785  |  |  | 
786  |  |   // Assignment operators.  | 
787  | 0  |   Time& operator+=(Duration d) { | 
788  | 0  |     rep_ += d;  | 
789  | 0  |     return *this;  | 
790  | 0  |   }  | 
791  | 0  |   Time& operator-=(Duration d) { | 
792  | 0  |     rep_ -= d;  | 
793  | 0  |     return *this;  | 
794  | 0  |   }  | 
795  |  |  | 
796  |  |   // Time::Breakdown  | 
797  |  |   //  | 
798  |  |   // The calendar and wall-clock (aka "civil time") components of an  | 
799  |  |   // `absl::Time` in a certain `absl::TimeZone`. This struct is not  | 
800  |  |   // intended to represent an instant in time. So, rather than passing  | 
801  |  |   // a `Time::Breakdown` to a function, pass an `absl::Time` and an  | 
802  |  |   // `absl::TimeZone`.  | 
803  |  |   //  | 
804  |  |   // Deprecated. Use `absl::TimeZone::CivilInfo`.  | 
805  |  |   struct ABSL_DEPRECATED("Use `absl::TimeZone::CivilInfo`.") Breakdown { | 
806  |  |     int64_t year;        // year (e.g., 2013)  | 
807  |  |     int month;           // month of year [1:12]  | 
808  |  |     int day;             // day of month [1:31]  | 
809  |  |     int hour;            // hour of day [0:23]  | 
810  |  |     int minute;          // minute of hour [0:59]  | 
811  |  |     int second;          // second of minute [0:59]  | 
812  |  |     Duration subsecond;  // [Seconds(0):Seconds(1)) if finite  | 
813  |  |     int weekday;         // 1==Mon, ..., 7=Sun  | 
814  |  |     int yearday;         // day of year [1:366]  | 
815  |  |  | 
816  |  |     // Note: The following fields exist for backward compatibility  | 
817  |  |     // with older APIs.  Accessing these fields directly is a sign of  | 
818  |  |     // imprudent logic in the calling code.  Modern time-related code  | 
819  |  |     // should only access this data indirectly by way of FormatTime().  | 
820  |  |     // These fields are undefined for InfiniteFuture() and InfinitePast().  | 
821  |  |     int offset;             // seconds east of UTC  | 
822  |  |     bool is_dst;            // is offset non-standard?  | 
823  |  |     const char* zone_abbr;  // time-zone abbreviation (e.g., "PST")  | 
824  |  |   };  | 
825  |  |  | 
826  |  |   // Time::In()  | 
827  |  |   //  | 
828  |  |   // Returns the breakdown of this instant in the given TimeZone.  | 
829  |  |   //  | 
830  |  |   // Deprecated. Use `absl::TimeZone::At(Time)`.  | 
831  |  |   ABSL_INTERNAL_DISABLE_DEPRECATED_DECLARATION_WARNING  | 
832  |  |   ABSL_DEPRECATED("Use `absl::TimeZone::At(Time)`.") | 
833  |  |   Breakdown In(TimeZone tz) const;  | 
834  |  |   ABSL_INTERNAL_RESTORE_DEPRECATED_DECLARATION_WARNING  | 
835  |  |  | 
836  |  |   template <typename H>  | 
837  |  |   friend H AbslHashValue(H h, Time t) { | 
838  |  |     return H::combine(std::move(h), t.rep_);  | 
839  |  |   }  | 
840  |  |  | 
841  |  |  private:  | 
842  |  |   friend constexpr Time time_internal::FromUnixDuration(Duration d);  | 
843  |  |   friend constexpr Duration time_internal::ToUnixDuration(Time t);  | 
844  |  |   friend constexpr bool operator<(Time lhs, Time rhs);  | 
845  |  |   friend constexpr bool operator==(Time lhs, Time rhs);  | 
846  |  |   friend Duration operator-(Time lhs, Time rhs);  | 
847  |  |   friend constexpr Time UniversalEpoch();  | 
848  |  |   friend constexpr Time InfiniteFuture();  | 
849  |  |   friend constexpr Time InfinitePast();  | 
850  | 3.24M  |   constexpr explicit Time(Duration rep) : rep_(rep) {} | 
851  |  |   Duration rep_;  | 
852  |  | };  | 
853  |  |  | 
854  |  | // Relational Operators  | 
855  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<(Time lhs, Time rhs) { | 
856  | 0  |   return lhs.rep_ < rhs.rep_;  | 
857  | 0  | }  | 
858  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>(Time lhs, Time rhs) { | 
859  | 0  |   return rhs < lhs;  | 
860  | 0  | }  | 
861  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>=(Time lhs, Time rhs) { | 
862  | 0  |   return !(lhs < rhs);  | 
863  | 0  | }  | 
864  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<=(Time lhs, Time rhs) { | 
865  | 0  |   return !(rhs < lhs);  | 
866  | 0  | }  | 
867  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator==(Time lhs, Time rhs) { | 
868  | 0  |   return lhs.rep_ == rhs.rep_;  | 
869  | 0  | }  | 
870  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator!=(Time lhs, Time rhs) { | 
871  | 0  |   return !(lhs == rhs);  | 
872  | 0  | }  | 
873  |  |  | 
874  |  | // Additive Operators  | 
875  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Time operator+(Time lhs, Duration rhs) { | 
876  | 0  |   return lhs += rhs;  | 
877  | 0  | }  | 
878  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Time operator+(Duration lhs, Time rhs) { | 
879  | 0  |   return rhs += lhs;  | 
880  | 0  | }  | 
881  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Time operator-(Time lhs, Duration rhs) { | 
882  | 0  |   return lhs -= rhs;  | 
883  | 0  | }  | 
884  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator-(Time lhs, Time rhs) { | 
885  | 0  |   return lhs.rep_ - rhs.rep_;  | 
886  | 0  | }  | 
887  |  |  | 
888  |  | // UnixEpoch()  | 
889  |  | //  | 
890  |  | // Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000".  | 
891  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time UnixEpoch() { return Time(); } | 
892  |  |  | 
893  |  | // UniversalEpoch()  | 
894  |  | //  | 
895  |  | // Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the  | 
896  |  | // epoch of the ICU Universal Time Scale.  | 
897  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time UniversalEpoch() { | 
898  |  |   // 719162 is the number of days from 0001-01-01 to 1970-01-01,  | 
899  |  |   // assuming the Gregorian calendar.  | 
900  | 0  |   return Time(  | 
901  | 0  |       time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, uint32_t{0})); | 
902  | 0  | }  | 
903  |  |  | 
904  |  | // InfiniteFuture()  | 
905  |  | //  | 
906  |  | // Returns an `absl::Time` that is infinitely far in the future.  | 
907  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time InfiniteFuture() { | 
908  | 0  |   return Time(time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(),  | 
909  | 0  |                                           ~uint32_t{0})); | 
910  | 0  | }  | 
911  |  |  | 
912  |  | // InfinitePast()  | 
913  |  | //  | 
914  |  | // Returns an `absl::Time` that is infinitely far in the past.  | 
915  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time InfinitePast() { | 
916  | 0  |   return Time(time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(),  | 
917  | 0  |                                           ~uint32_t{0})); | 
918  | 0  | }  | 
919  |  |  | 
920  |  | // FromUnixNanos()  | 
921  |  | // FromUnixMicros()  | 
922  |  | // FromUnixMillis()  | 
923  |  | // FromUnixSeconds()  | 
924  |  | // FromTimeT()  | 
925  |  | // FromUDate()  | 
926  |  | // FromUniversal()  | 
927  |  | //  | 
928  |  | // Creates an `absl::Time` from a variety of other representations.  See  | 
929  |  | // https://unicode-org.github.io/icu/userguide/datetime/universaltimescale.html  | 
930  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixNanos(int64_t ns);  | 
931  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMicros(int64_t us);  | 
932  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMillis(int64_t ms);  | 
933  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixSeconds(int64_t s);  | 
934  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromTimeT(time_t t);  | 
935  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Time FromUDate(double udate);  | 
936  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Time FromUniversal(int64_t universal);  | 
937  |  |  | 
938  |  | // ToUnixNanos()  | 
939  |  | // ToUnixMicros()  | 
940  |  | // ToUnixMillis()  | 
941  |  | // ToUnixSeconds()  | 
942  |  | // ToTimeT()  | 
943  |  | // ToUDate()  | 
944  |  | // ToUniversal()  | 
945  |  | //  | 
946  |  | // Converts an `absl::Time` to a variety of other representations.  See  | 
947  |  | // https://unicode-org.github.io/icu/userguide/datetime/universaltimescale.html  | 
948  |  | //  | 
949  |  | // Note that these operations round down toward negative infinity where  | 
950  |  | // necessary to adjust to the resolution of the result type.  Beware of  | 
951  |  | // possible time_t over/underflow in ToTime{T,val,spec}() on 32-bit platforms. | 
952  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixNanos(Time t);  | 
953  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixMicros(Time t);  | 
954  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixMillis(Time t);  | 
955  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixSeconds(Time t);  | 
956  |  | ABSL_ATTRIBUTE_CONST_FUNCTION time_t ToTimeT(Time t);  | 
957  |  | ABSL_ATTRIBUTE_CONST_FUNCTION double ToUDate(Time t);  | 
958  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUniversal(Time t);  | 
959  |  |  | 
960  |  | // DurationFromTimespec()  | 
961  |  | // DurationFromTimeval()  | 
962  |  | // ToTimespec()  | 
963  |  | // ToTimeval()  | 
964  |  | // TimeFromTimespec()  | 
965  |  | // TimeFromTimeval()  | 
966  |  | // ToTimespec()  | 
967  |  | // ToTimeval()  | 
968  |  | //  | 
969  |  | // Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2)  | 
970  |  | // and select(2)), while others use them as a Time (e.g. clock_gettime(2)  | 
971  |  | // and gettimeofday(2)), so conversion functions are provided for both cases.  | 
972  |  | // The "to timespec/val" direction is easily handled via overloading, but  | 
973  |  | // for "from timespec/val" the desired type is part of the function name.  | 
974  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration DurationFromTimespec(timespec ts);  | 
975  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Duration DurationFromTimeval(timeval tv);  | 
976  |  | ABSL_ATTRIBUTE_CONST_FUNCTION timespec ToTimespec(Duration d);  | 
977  |  | ABSL_ATTRIBUTE_CONST_FUNCTION timeval ToTimeval(Duration d);  | 
978  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Time TimeFromTimespec(timespec ts);  | 
979  |  | ABSL_ATTRIBUTE_CONST_FUNCTION Time TimeFromTimeval(timeval tv);  | 
980  |  | ABSL_ATTRIBUTE_CONST_FUNCTION timespec ToTimespec(Time t);  | 
981  |  | ABSL_ATTRIBUTE_CONST_FUNCTION timeval ToTimeval(Time t);  | 
982  |  |  | 
983  |  | // FromChrono()  | 
984  |  | //  | 
985  |  | // Converts a std::chrono::system_clock::time_point to an absl::Time.  | 
986  |  | //  | 
987  |  | // Example:  | 
988  |  | //  | 
989  |  | //   auto tp = std::chrono::system_clock::from_time_t(123);  | 
990  |  | //   absl::Time t = absl::FromChrono(tp);  | 
991  |  | //   // t == absl::FromTimeT(123)  | 
992  |  | ABSL_ATTRIBUTE_PURE_FUNCTION Time  | 
993  |  | FromChrono(const std::chrono::system_clock::time_point& tp);  | 
994  |  |  | 
995  |  | // ToChronoTime()  | 
996  |  | //  | 
997  |  | // Converts an absl::Time to a std::chrono::system_clock::time_point. If  | 
998  |  | // overflow would occur, the returned value will saturate at the min/max time  | 
999  |  | // point value instead.  | 
1000  |  | //  | 
1001  |  | // Example:  | 
1002  |  | //  | 
1003  |  | //   absl::Time t = absl::FromTimeT(123);  | 
1004  |  | //   auto tp = absl::ToChronoTime(t);  | 
1005  |  | //   // tp == std::chrono::system_clock::from_time_t(123);  | 
1006  |  | ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::system_clock::time_point  | 
1007  |  |     ToChronoTime(Time);  | 
1008  |  |  | 
1009  |  | // AbslParseFlag()  | 
1010  |  | //  | 
1011  |  | // Parses the command-line flag string representation `text` into a Time value.  | 
1012  |  | // Time flags must be specified in a format that matches absl::RFC3339_full.  | 
1013  |  | //  | 
1014  |  | // For example:  | 
1015  |  | //  | 
1016  |  | //   --start_time=2016-01-02T03:04:05.678+08:00  | 
1017  |  | //  | 
1018  |  | // Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required.  | 
1019  |  | //  | 
1020  |  | // Additionally, if you'd like to specify a time as a count of  | 
1021  |  | // seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag  | 
1022  |  | // and add that duration to absl::UnixEpoch() to get an absl::Time.  | 
1023  |  | bool AbslParseFlag(absl::string_view text, Time* t, std::string* error);  | 
1024  |  |  | 
1025  |  | // AbslUnparseFlag()  | 
1026  |  | //  | 
1027  |  | // Unparses a Time value into a command-line string representation using  | 
1028  |  | // the format specified by `absl::ParseTime()`.  | 
1029  |  | std::string AbslUnparseFlag(Time t);  | 
1030  |  |  | 
1031  |  | ABSL_DEPRECATED("Use AbslParseFlag() instead.") | 
1032  |  | bool ParseFlag(const std::string& text, Time* t, std::string* error);  | 
1033  |  | ABSL_DEPRECATED("Use AbslUnparseFlag() instead.") | 
1034  |  | std::string UnparseFlag(Time t);  | 
1035  |  |  | 
1036  |  | // TimeZone  | 
1037  |  | //  | 
1038  |  | // The `absl::TimeZone` is an opaque, small, value-type class representing a  | 
1039  |  | // geo-political region within which particular rules are used for converting  | 
1040  |  | // between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone`  | 
1041  |  | // values are named using the TZ identifiers from the IANA Time Zone Database,  | 
1042  |  | // such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values  | 
1043  |  | // are created from factory functions such as `absl::LoadTimeZone()`. Note:  | 
1044  |  | // strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by  | 
1045  |  | // value rather than const reference.  | 
1046  |  | //  | 
1047  |  | // For more on the fundamental concepts of time zones, absolute times, and civil  | 
1048  |  | // times, see https://github.com/google/cctz#fundamental-concepts  | 
1049  |  | //  | 
1050  |  | // Examples:  | 
1051  |  | //  | 
1052  |  | //   absl::TimeZone utc = absl::UTCTimeZone();  | 
1053  |  | //   absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60);  | 
1054  |  | //   absl::TimeZone loc = absl::LocalTimeZone();  | 
1055  |  | //   absl::TimeZone lax;  | 
1056  |  | //   if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) { | 
1057  |  | //     // handle error case  | 
1058  |  | //   }  | 
1059  |  | //  | 
1060  |  | // See also:  | 
1061  |  | // - https://github.com/google/cctz  | 
1062  |  | // - https://www.iana.org/time-zones  | 
1063  |  | // - https://en.wikipedia.org/wiki/Zoneinfo  | 
1064  |  | class TimeZone { | 
1065  |  |  public:  | 
1066  | 0  |   explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {} | 
1067  |  |   TimeZone() = default;  // UTC, but prefer UTCTimeZone() to be explicit.  | 
1068  |  |  | 
1069  |  |   // Copyable.  | 
1070  |  |   TimeZone(const TimeZone&) = default;  | 
1071  |  |   TimeZone& operator=(const TimeZone&) = default;  | 
1072  |  |  | 
1073  | 0  |   explicit operator time_internal::cctz::time_zone() const { return cz_; } | 
1074  |  |  | 
1075  | 0  |   std::string name() const { return cz_.name(); } | 
1076  |  |  | 
1077  |  |   // TimeZone::CivilInfo  | 
1078  |  |   //  | 
1079  |  |   // Information about the civil time corresponding to an absolute time.  | 
1080  |  |   // This struct is not intended to represent an instant in time. So, rather  | 
1081  |  |   // than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time`  | 
1082  |  |   // and an `absl::TimeZone`.  | 
1083  |  |   struct CivilInfo { | 
1084  |  |     CivilSecond cs;  | 
1085  |  |     Duration subsecond;  | 
1086  |  |  | 
1087  |  |     // Note: The following fields exist for backward compatibility  | 
1088  |  |     // with older APIs.  Accessing these fields directly is a sign of  | 
1089  |  |     // imprudent logic in the calling code.  Modern time-related code  | 
1090  |  |     // should only access this data indirectly by way of FormatTime().  | 
1091  |  |     // These fields are undefined for InfiniteFuture() and InfinitePast().  | 
1092  |  |     int offset;             // seconds east of UTC  | 
1093  |  |     bool is_dst;            // is offset non-standard?  | 
1094  |  |     const char* zone_abbr;  // time-zone abbreviation (e.g., "PST")  | 
1095  |  |   };  | 
1096  |  |  | 
1097  |  |   // TimeZone::At(Time)  | 
1098  |  |   //  | 
1099  |  |   // Returns the civil time for this TimeZone at a certain `absl::Time`.  | 
1100  |  |   // If the input time is infinite, the output civil second will be set to  | 
1101  |  |   // CivilSecond::max() or min(), and the subsecond will be infinite.  | 
1102  |  |   //  | 
1103  |  |   // Example:  | 
1104  |  |   //  | 
1105  |  |   //   const auto epoch = lax.At(absl::UnixEpoch());  | 
1106  |  |   //   // epoch.cs == 1969-12-31 16:00:00  | 
1107  |  |   //   // epoch.subsecond == absl::ZeroDuration()  | 
1108  |  |   //   // epoch.offset == -28800  | 
1109  |  |   //   // epoch.is_dst == false  | 
1110  |  |   //   // epoch.abbr == "PST"  | 
1111  |  |   CivilInfo At(Time t) const;  | 
1112  |  |  | 
1113  |  |   // TimeZone::TimeInfo  | 
1114  |  |   //  | 
1115  |  |   // Information about the absolute times corresponding to a civil time.  | 
1116  |  |   // (Subseconds must be handled separately.)  | 
1117  |  |   //  | 
1118  |  |   // It is possible for a caller to pass a civil-time value that does  | 
1119  |  |   // not represent an actual or unique instant in time (due to a shift  | 
1120  |  |   // in UTC offset in the TimeZone, which results in a discontinuity in  | 
1121  |  |   // the civil-time components). For example, a daylight-saving-time  | 
1122  |  |   // transition skips or repeats civil times---in the United States,  | 
1123  |  |   // March 13, 2011 02:15 never occurred, while November 6, 2011 01:15  | 
1124  |  |   // occurred twice---so requests for such times are not well-defined.  | 
1125  |  |   // To account for these possibilities, `absl::TimeZone::TimeInfo` is  | 
1126  |  |   // richer than just a single `absl::Time`.  | 
1127  |  |   struct TimeInfo { | 
1128  |  |     enum CivilKind { | 
1129  |  |       UNIQUE,    // the civil time was singular (pre == trans == post)  | 
1130  |  |       SKIPPED,   // the civil time did not exist (pre >= trans > post)  | 
1131  |  |       REPEATED,  // the civil time was ambiguous (pre < trans <= post)  | 
1132  |  |     } kind;  | 
1133  |  |     Time pre;    // time calculated using the pre-transition offset  | 
1134  |  |     Time trans;  // when the civil-time discontinuity occurred  | 
1135  |  |     Time post;   // time calculated using the post-transition offset  | 
1136  |  |   };  | 
1137  |  |  | 
1138  |  |   // TimeZone::At(CivilSecond)  | 
1139  |  |   //  | 
1140  |  |   // Returns an `absl::TimeInfo` containing the absolute time(s) for this  | 
1141  |  |   // TimeZone at an `absl::CivilSecond`. When the civil time is skipped or  | 
1142  |  |   // repeated, returns times calculated using the pre-transition and post-  | 
1143  |  |   // transition UTC offsets, plus the transition time itself.  | 
1144  |  |   //  | 
1145  |  |   // Examples:  | 
1146  |  |   //  | 
1147  |  |   //   // A unique civil time  | 
1148  |  |   //   const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0));  | 
1149  |  |   //   // jan01.kind == TimeZone::TimeInfo::UNIQUE  | 
1150  |  |   //   // jan01.pre    is 2011-01-01 00:00:00 -0800  | 
1151  |  |   //   // jan01.trans  is 2011-01-01 00:00:00 -0800  | 
1152  |  |   //   // jan01.post   is 2011-01-01 00:00:00 -0800  | 
1153  |  |   //  | 
1154  |  |   //   // A Spring DST transition, when there is a gap in civil time  | 
1155  |  |   //   const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0));  | 
1156  |  |   //   // mar13.kind == TimeZone::TimeInfo::SKIPPED  | 
1157  |  |   //   // mar13.pre   is 2011-03-13 03:15:00 -0700  | 
1158  |  |   //   // mar13.trans is 2011-03-13 03:00:00 -0700  | 
1159  |  |   //   // mar13.post  is 2011-03-13 01:15:00 -0800  | 
1160  |  |   //  | 
1161  |  |   //   // A Fall DST transition, when civil times are repeated  | 
1162  |  |   //   const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0));  | 
1163  |  |   //   // nov06.kind == TimeZone::TimeInfo::REPEATED  | 
1164  |  |   //   // nov06.pre   is 2011-11-06 01:15:00 -0700  | 
1165  |  |   //   // nov06.trans is 2011-11-06 01:00:00 -0800  | 
1166  |  |   //   // nov06.post  is 2011-11-06 01:15:00 -0800  | 
1167  |  |   TimeInfo At(CivilSecond ct) const;  | 
1168  |  |  | 
1169  |  |   // TimeZone::NextTransition()  | 
1170  |  |   // TimeZone::PrevTransition()  | 
1171  |  |   //  | 
1172  |  |   // Finds the time of the next/previous offset change in this time zone.  | 
1173  |  |   //  | 
1174  |  |   // By definition, `NextTransition(t, &trans)` returns false when `t` is  | 
1175  |  |   // `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false  | 
1176  |  |   // when `t` is `InfinitePast()`. If the zone has no transitions, the  | 
1177  |  |   // result will also be false no matter what the argument.  | 
1178  |  |   //  | 
1179  |  |   // Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)`  | 
1180  |  |   // returns true and sets `trans` to the first recorded transition. Chains  | 
1181  |  |   // of calls to `NextTransition()/PrevTransition()` will eventually return  | 
1182  |  |   // false, but it is unspecified exactly when `NextTransition(t, &trans)`  | 
1183  |  |   // jumps to false, or what time is set by `PrevTransition(t, &trans)` for  | 
1184  |  |   // a very distant `t`.  | 
1185  |  |   //  | 
1186  |  |   // Note: Enumeration of time-zone transitions is for informational purposes  | 
1187  |  |   // only. Modern time-related code should not care about when offset changes  | 
1188  |  |   // occur.  | 
1189  |  |   //  | 
1190  |  |   // Example:  | 
1191  |  |   //   absl::TimeZone nyc;  | 
1192  |  |   //   if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... } | 
1193  |  |   //   const auto now = absl::Now();  | 
1194  |  |   //   auto t = absl::InfinitePast();  | 
1195  |  |   //   absl::TimeZone::CivilTransition trans;  | 
1196  |  |   //   while (t <= now && nyc.NextTransition(t, &trans)) { | 
1197  |  |   //     // transition: trans.from -> trans.to  | 
1198  |  |   //     t = nyc.At(trans.to).trans;  | 
1199  |  |   //   }  | 
1200  |  |   struct CivilTransition { | 
1201  |  |     CivilSecond from;  // the civil time we jump from  | 
1202  |  |     CivilSecond to;    // the civil time we jump to  | 
1203  |  |   };  | 
1204  |  |   bool NextTransition(Time t, CivilTransition* trans) const;  | 
1205  |  |   bool PrevTransition(Time t, CivilTransition* trans) const;  | 
1206  |  |  | 
1207  |  |   template <typename H>  | 
1208  |  |   friend H AbslHashValue(H h, TimeZone tz) { | 
1209  |  |     return H::combine(std::move(h), tz.cz_);  | 
1210  |  |   }  | 
1211  |  |  | 
1212  |  |  private:  | 
1213  | 0  |   friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; } | 
1214  | 0  |   friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; } | 
1215  | 0  |   friend std::ostream& operator<<(std::ostream& os, TimeZone tz) { | 
1216  | 0  |     return os << tz.name();  | 
1217  | 0  |   }  | 
1218  |  |  | 
1219  |  |   time_internal::cctz::time_zone cz_;  | 
1220  |  | };  | 
1221  |  |  | 
1222  |  | // LoadTimeZone()  | 
1223  |  | //  | 
1224  |  | // Loads the named zone. May perform I/O on the initial load of the named  | 
1225  |  | // zone. If the name is invalid, or some other kind of error occurs, returns  | 
1226  |  | // `false` and `*tz` is set to the UTC time zone.  | 
1227  | 0  | inline bool LoadTimeZone(absl::string_view name, TimeZone* tz) { | 
1228  | 0  |   if (name == "localtime") { | 
1229  | 0  |     *tz = TimeZone(time_internal::cctz::local_time_zone());  | 
1230  | 0  |     return true;  | 
1231  | 0  |   }  | 
1232  | 0  |   time_internal::cctz::time_zone cz;  | 
1233  | 0  |   const bool b = time_internal::cctz::load_time_zone(std::string(name), &cz);  | 
1234  | 0  |   *tz = TimeZone(cz);  | 
1235  | 0  |   return b;  | 
1236  | 0  | }  | 
1237  |  |  | 
1238  |  | // FixedTimeZone()  | 
1239  |  | //  | 
1240  |  | // Returns a TimeZone that is a fixed offset (seconds east) from UTC.  | 
1241  |  | // Note: If the absolute value of the offset is greater than 24 hours  | 
1242  |  | // you'll get UTC (i.e., no offset) instead.  | 
1243  | 0  | inline TimeZone FixedTimeZone(int seconds) { | 
1244  | 0  |   return TimeZone(  | 
1245  | 0  |       time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds)));  | 
1246  | 0  | }  | 
1247  |  |  | 
1248  |  | // UTCTimeZone()  | 
1249  |  | //  | 
1250  |  | // Convenience method returning the UTC time zone.  | 
1251  | 0  | inline TimeZone UTCTimeZone() { | 
1252  | 0  |   return TimeZone(time_internal::cctz::utc_time_zone());  | 
1253  | 0  | }  | 
1254  |  |  | 
1255  |  | // LocalTimeZone()  | 
1256  |  | //  | 
1257  |  | // Convenience method returning the local time zone, or UTC if there is  | 
1258  |  | // no configured local zone.  Warning: Be wary of using LocalTimeZone(),  | 
1259  |  | // and particularly so in a server process, as the zone configured for the  | 
1260  |  | // local machine should be irrelevant.  Prefer an explicit zone name.  | 
1261  | 0  | inline TimeZone LocalTimeZone() { | 
1262  | 0  |   return TimeZone(time_internal::cctz::local_time_zone());  | 
1263  | 0  | }  | 
1264  |  |  | 
1265  |  | // ToCivilSecond()  | 
1266  |  | // ToCivilMinute()  | 
1267  |  | // ToCivilHour()  | 
1268  |  | // ToCivilDay()  | 
1269  |  | // ToCivilMonth()  | 
1270  |  | // ToCivilYear()  | 
1271  |  | //  | 
1272  |  | // Helpers for TimeZone::At(Time) to return particularly aligned civil times.  | 
1273  |  | //  | 
1274  |  | // Example:  | 
1275  |  | //  | 
1276  |  | //   absl::Time t = ...;  | 
1277  |  | //   absl::TimeZone tz = ...;  | 
1278  |  | //   const auto cd = absl::ToCivilDay(t, tz);  | 
1279  |  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilSecond ToCivilSecond(Time t,  | 
1280  | 0  |                                                               TimeZone tz) { | 
1281  | 0  |   return tz.At(t).cs;  // already a CivilSecond  | 
1282  | 0  | }  | 
1283  |  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilMinute ToCivilMinute(Time t,  | 
1284  | 0  |                                                               TimeZone tz) { | 
1285  | 0  |   return CivilMinute(tz.At(t).cs);  | 
1286  | 0  | }  | 
1287  | 0  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilHour ToCivilHour(Time t, TimeZone tz) { | 
1288  | 0  |   return CivilHour(tz.At(t).cs);  | 
1289  | 0  | }  | 
1290  | 0  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilDay ToCivilDay(Time t, TimeZone tz) { | 
1291  | 0  |   return CivilDay(tz.At(t).cs);  | 
1292  | 0  | }  | 
1293  |  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilMonth ToCivilMonth(Time t,  | 
1294  | 0  |                                                             TimeZone tz) { | 
1295  | 0  |   return CivilMonth(tz.At(t).cs);  | 
1296  | 0  | }  | 
1297  | 0  | ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilYear ToCivilYear(Time t, TimeZone tz) { | 
1298  | 0  |   return CivilYear(tz.At(t).cs);  | 
1299  | 0  | }  | 
1300  |  |  | 
1301  |  | // FromCivil()  | 
1302  |  | //  | 
1303  |  | // Helper for TimeZone::At(CivilSecond) that provides "order-preserving  | 
1304  |  | // semantics." If the civil time maps to a unique time, that time is  | 
1305  |  | // returned. If the civil time is repeated in the given time zone, the  | 
1306  |  | // time using the pre-transition offset is returned. Otherwise, the  | 
1307  |  | // civil time is skipped in the given time zone, and the transition time  | 
1308  |  | // is returned. This means that for any two civil times, ct1 and ct2,  | 
1309  |  | // (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case  | 
1310  |  | // being when two non-existent civil times map to the same transition time.  | 
1311  |  | //  | 
1312  |  | // Note: Accepts civil times of any alignment.  | 
1313  |  | ABSL_ATTRIBUTE_PURE_FUNCTION inline Time FromCivil(CivilSecond ct,  | 
1314  | 0  |                                                    TimeZone tz) { | 
1315  | 0  |   const auto ti = tz.At(ct);  | 
1316  | 0  |   if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans;  | 
1317  | 0  |   return ti.pre;  | 
1318  | 0  | }  | 
1319  |  |  | 
1320  |  | // TimeConversion  | 
1321  |  | //  | 
1322  |  | // An `absl::TimeConversion` represents the conversion of year, month, day,  | 
1323  |  | // hour, minute, and second values (i.e., a civil time), in a particular  | 
1324  |  | // `absl::TimeZone`, to a time instant (an absolute time), as returned by  | 
1325  |  | // `absl::ConvertDateTime()`. Legacy version of `absl::TimeZone::TimeInfo`.  | 
1326  |  | //  | 
1327  |  | // Deprecated. Use `absl::TimeZone::TimeInfo`.  | 
1328  |  | struct ABSL_DEPRECATED("Use `absl::TimeZone::TimeInfo`.") TimeConversion { | 
1329  |  |   Time pre;    // time calculated using the pre-transition offset  | 
1330  |  |   Time trans;  // when the civil-time discontinuity occurred  | 
1331  |  |   Time post;   // time calculated using the post-transition offset  | 
1332  |  |  | 
1333  |  |   enum Kind { | 
1334  |  |     UNIQUE,    // the civil time was singular (pre == trans == post)  | 
1335  |  |     SKIPPED,   // the civil time did not exist  | 
1336  |  |     REPEATED,  // the civil time was ambiguous  | 
1337  |  |   };  | 
1338  |  |   Kind kind;  | 
1339  |  |  | 
1340  |  |   bool normalized;  // input values were outside their valid ranges  | 
1341  |  | };  | 
1342  |  |  | 
1343  |  | // ConvertDateTime()  | 
1344  |  | //  | 
1345  |  | // Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes  | 
1346  |  | // the civil time as six, separate values (YMDHMS).  | 
1347  |  | //  | 
1348  |  | // The input month, day, hour, minute, and second values can be outside  | 
1349  |  | // of their valid ranges, in which case they will be "normalized" during  | 
1350  |  | // the conversion.  | 
1351  |  | //  | 
1352  |  | // Example:  | 
1353  |  | //  | 
1354  |  | //   // "October 32" normalizes to "November 1".  | 
1355  |  | //   absl::TimeConversion tc =  | 
1356  |  | //       absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax);  | 
1357  |  | //   // tc.kind == TimeConversion::UNIQUE && tc.normalized == true  | 
1358  |  | //   // absl::ToCivilDay(tc.pre, tz).month() == 11  | 
1359  |  | //   // absl::ToCivilDay(tc.pre, tz).day() == 1  | 
1360  |  | //  | 
1361  |  | // Deprecated. Use `absl::TimeZone::At(CivilSecond)`.  | 
1362  |  | ABSL_INTERNAL_DISABLE_DEPRECATED_DECLARATION_WARNING  | 
1363  |  | ABSL_DEPRECATED("Use `absl::TimeZone::At(CivilSecond)`.") | 
1364  |  | TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour,  | 
1365  |  |                                int min, int sec, TimeZone tz);  | 
1366  |  | ABSL_INTERNAL_RESTORE_DEPRECATED_DECLARATION_WARNING  | 
1367  |  |  | 
1368  |  | // FromDateTime()  | 
1369  |  | //  | 
1370  |  | // A convenience wrapper for `absl::ConvertDateTime()` that simply returns  | 
1371  |  | // the "pre" `absl::Time`.  That is, the unique result, or the instant that  | 
1372  |  | // is correct using the pre-transition offset (as if the transition never  | 
1373  |  | // happened).  | 
1374  |  | //  | 
1375  |  | // Example:  | 
1376  |  | //  | 
1377  |  | //   absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax);  | 
1378  |  | //   // t = 2017-09-26 09:30:00 -0700  | 
1379  |  | //  | 
1380  |  | // Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the  | 
1381  |  | // behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil  | 
1382  |  | // times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`.  | 
1383  |  | ABSL_DEPRECATED("Use `absl::FromCivil(CivilSecond, TimeZone)`.") | 
1384  |  | inline Time FromDateTime(int64_t year, int mon, int day, int hour, int min,  | 
1385  | 0  |                          int sec, TimeZone tz) { | 
1386  | 0  |   ABSL_INTERNAL_DISABLE_DEPRECATED_DECLARATION_WARNING  | 
1387  | 0  |   return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre;  | 
1388  | 0  |   ABSL_INTERNAL_RESTORE_DEPRECATED_DECLARATION_WARNING  | 
1389  | 0  | }  | 
1390  |  |  | 
1391  |  | // FromTM()  | 
1392  |  | //  | 
1393  |  | // Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and  | 
1394  |  | // `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3)  | 
1395  |  | // for a description of the expected values of the tm fields. If the civil time  | 
1396  |  | // is unique (see `absl::TimeZone::At(absl::CivilSecond)` above), the matching  | 
1397  |  | // time instant is returned.  Otherwise, the `tm_isdst` field is consulted to  | 
1398  |  | // choose between the possible results.  For a repeated civil time, `tm_isdst !=  | 
1399  |  | // 0` returns the matching DST instant, while `tm_isdst == 0` returns the  | 
1400  |  | // matching non-DST instant.  For a skipped civil time there is no matching  | 
1401  |  | // instant, so `tm_isdst != 0` returns the DST instant, and `tm_isdst == 0`  | 
1402  |  | // returns the non-DST instant, that would have matched if the transition never  | 
1403  |  | // happened.  | 
1404  |  | ABSL_ATTRIBUTE_PURE_FUNCTION Time FromTM(const struct tm& tm, TimeZone tz);  | 
1405  |  |  | 
1406  |  | // ToTM()  | 
1407  |  | //  | 
1408  |  | // Converts the given `absl::Time` to a struct tm using the given time zone.  | 
1409  |  | // See ctime(3) for a description of the values of the tm fields.  | 
1410  |  | ABSL_ATTRIBUTE_PURE_FUNCTION struct tm ToTM(Time t, TimeZone tz);  | 
1411  |  |  | 
1412  |  | // RFC3339_full  | 
1413  |  | // RFC3339_sec  | 
1414  |  | //  | 
1415  |  | // FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings,  | 
1416  |  | // with trailing zeros trimmed or with fractional seconds omitted altogether.  | 
1417  |  | //  | 
1418  |  | // Note that RFC3339_sec[] matches an ISO 8601 extended format for date and  | 
1419  |  | // time with UTC offset.  Also note the use of "%Y": RFC3339 mandates that  | 
1420  |  | // years have exactly four digits, but we allow them to take their natural  | 
1421  |  | // width.  | 
1422  |  | ABSL_DLL extern const char RFC3339_full[];  // %Y-%m-%d%ET%H:%M:%E*S%Ez  | 
1423  |  | ABSL_DLL extern const char RFC3339_sec[];   // %Y-%m-%d%ET%H:%M:%S%Ez  | 
1424  |  |  | 
1425  |  | // RFC1123_full  | 
1426  |  | // RFC1123_no_wday  | 
1427  |  | //  | 
1428  |  | // FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings.  | 
1429  |  | ABSL_DLL extern const char RFC1123_full[];     // %a, %d %b %E4Y %H:%M:%S %z  | 
1430  |  | ABSL_DLL extern const char RFC1123_no_wday[];  // %d %b %E4Y %H:%M:%S %z  | 
1431  |  |  | 
1432  |  | // FormatTime()  | 
1433  |  | //  | 
1434  |  | // Formats the given `absl::Time` in the `absl::TimeZone` according to the  | 
1435  |  | // provided format string. Uses strftime()-like formatting options, with  | 
1436  |  | // the following extensions:  | 
1437  |  | //  | 
1438  |  | //   - %Ez  - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm)  | 
1439  |  | //   - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss)  | 
1440  |  | //   - %E#S - Seconds with # digits of fractional precision  | 
1441  |  | //   - %E*S - Seconds with full fractional precision (a literal '*')  | 
1442  |  | //   - %E#f - Fractional seconds with # digits of precision  | 
1443  |  | //   - %E*f - Fractional seconds with full precision (a literal '*')  | 
1444  |  | //   - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999)  | 
1445  |  | //   - %ET  - The RFC3339 "date-time" separator "T"  | 
1446  |  | //  | 
1447  |  | // Note that %E0S behaves like %S, and %E0f produces no characters.  In  | 
1448  |  | // contrast %E*f always produces at least one digit, which may be '0'.  | 
1449  |  | //  | 
1450  |  | // Note that %Y produces as many characters as it takes to fully render the  | 
1451  |  | // year.  A year outside of [-999:9999] when formatted with %E4Y will produce  | 
1452  |  | // more than four characters, just like %Y.  | 
1453  |  | //  | 
1454  |  | // We recommend that format strings include the UTC offset (%z, %Ez, or %E*z)  | 
1455  |  | // so that the result uniquely identifies a time instant.  | 
1456  |  | //  | 
1457  |  | // Example:  | 
1458  |  | //  | 
1459  |  | //   absl::CivilSecond cs(2013, 1, 2, 3, 4, 5);  | 
1460  |  | //   absl::Time t = absl::FromCivil(cs, lax);  | 
1461  |  | //   std::string f = absl::FormatTime("%H:%M:%S", t, lax);  // "03:04:05" | 
1462  |  | //   f = absl::FormatTime("%H:%M:%E3S", t, lax);  // "03:04:05.000" | 
1463  |  | //  | 
1464  |  | // Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned  | 
1465  |  | // string will be exactly "infinite-future". If the given `absl::Time` is  | 
1466  |  | // `absl::InfinitePast()`, the returned string will be exactly "infinite-past".  | 
1467  |  | // In both cases the given format string and `absl::TimeZone` are ignored.  | 
1468  |  | //  | 
1469  |  | ABSL_ATTRIBUTE_PURE_FUNCTION std::string FormatTime(absl::string_view format,  | 
1470  |  |                                                     Time t, TimeZone tz);  | 
1471  |  |  | 
1472  |  | // Convenience functions that format the given time using the RFC3339_full  | 
1473  |  | // format.  The first overload uses the provided TimeZone, while the second  | 
1474  |  | // uses LocalTimeZone().  | 
1475  |  | ABSL_ATTRIBUTE_PURE_FUNCTION std::string FormatTime(Time t, TimeZone tz);  | 
1476  |  | ABSL_ATTRIBUTE_PURE_FUNCTION std::string FormatTime(Time t);  | 
1477  |  |  | 
1478  |  | // Output stream operator.  | 
1479  | 0  | inline std::ostream& operator<<(std::ostream& os, Time t) { | 
1480  | 0  |   return os << FormatTime(t);  | 
1481  | 0  | }  | 
1482  |  |  | 
1483  |  | // Support for StrFormat(), StrCat() etc.  | 
1484  |  | template <typename Sink>  | 
1485  |  | void AbslStringify(Sink& sink, Time t) { | 
1486  |  |   sink.Append(FormatTime(t));  | 
1487  |  | }  | 
1488  |  |  | 
1489  |  | // ParseTime()  | 
1490  |  | //  | 
1491  |  | // Parses an input string according to the provided format string and  | 
1492  |  | // returns the corresponding `absl::Time`. Uses strftime()-like formatting  | 
1493  |  | // options, with the same extensions as FormatTime(), but with the  | 
1494  |  | // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f.  %Ez  | 
1495  |  | // and %E*z also accept the same inputs, which (along with %z) includes  | 
1496  |  | // 'z' and 'Z' as synonyms for +00:00.  %ET accepts either 'T' or 't'.  | 
1497  |  | //  | 
1498  |  | // %Y consumes as many numeric characters as it can, so the matching data  | 
1499  |  | // should always be terminated with a non-numeric.  %E4Y always consumes  | 
1500  |  | // exactly four characters, including any sign.  | 
1501  |  | //  | 
1502  |  | // Unspecified fields are taken from the default date and time of ...  | 
1503  |  | //  | 
1504  |  | //   "1970-01-01 00:00:00.0 +0000"  | 
1505  |  | //  | 
1506  |  | // For example, parsing a string of "15:45" (%H:%M) will return an absl::Time  | 
1507  |  | // that represents "1970-01-01 15:45:00.0 +0000".  | 
1508  |  | //  | 
1509  |  | // Note that since ParseTime() returns time instants, it makes the most sense  | 
1510  |  | // to parse fully-specified date/time strings that include a UTC offset (%z,  | 
1511  |  | // %Ez, or %E*z).  | 
1512  |  | //  | 
1513  |  | // Note also that `absl::ParseTime()` only heeds the fields year, month, day,  | 
1514  |  | // hour, minute, (fractional) second, and UTC offset.  Other fields, like  | 
1515  |  | // weekday (%a or %A), while parsed for syntactic validity, are ignored  | 
1516  |  | // in the conversion.  | 
1517  |  | //  | 
1518  |  | // Date and time fields that are out-of-range will be treated as errors  | 
1519  |  | // rather than normalizing them like `absl::CivilSecond` does.  For example,  | 
1520  |  | // it is an error to parse the date "Oct 32, 2013" because 32 is out of range.  | 
1521  |  | //  | 
1522  |  | // A leap second of ":60" is normalized to ":00" of the following minute  | 
1523  |  | // with fractional seconds discarded.  The following table shows how the  | 
1524  |  | // given seconds and subseconds will be parsed:  | 
1525  |  | //  | 
1526  |  | //   "59.x" -> 59.x  // exact  | 
1527  |  | //   "60.x" -> 00.0  // normalized  | 
1528  |  | //   "00.x" -> 00.x  // exact  | 
1529  |  | //  | 
1530  |  | // Errors are indicated by returning false and assigning an error message  | 
1531  |  | // to the "err" out param if it is non-null.  | 
1532  |  | //  | 
1533  |  | // Note: If the input string is exactly "infinite-future", the returned  | 
1534  |  | // `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned.  | 
1535  |  | // If the input string is "infinite-past", the returned `absl::Time` will be  | 
1536  |  | // `absl::InfinitePast()` and `true` will be returned.  | 
1537  |  | //  | 
1538  |  | bool ParseTime(absl::string_view format, absl::string_view input, Time* time,  | 
1539  |  |                std::string* err);  | 
1540  |  |  | 
1541  |  | // Like ParseTime() above, but if the format string does not contain a UTC  | 
1542  |  | // offset specification (%z/%Ez/%E*z) then the input is interpreted in the  | 
1543  |  | // given TimeZone.  This means that the input, by itself, does not identify a  | 
1544  |  | // unique instant.  Being time-zone dependent, it also admits the possibility  | 
1545  |  | // of ambiguity or non-existence, in which case the "pre" time (as defined  | 
1546  |  | // by TimeZone::TimeInfo) is returned.  For these reasons we recommend that  | 
1547  |  | // all date/time strings include a UTC offset so they're context independent.  | 
1548  |  | bool ParseTime(absl::string_view format, absl::string_view input, TimeZone tz,  | 
1549  |  |                Time* time, std::string* err);  | 
1550  |  |  | 
1551  |  | // ============================================================================  | 
1552  |  | // Implementation Details Follow  | 
1553  |  | // ============================================================================  | 
1554  |  |  | 
1555  |  | namespace time_internal { | 
1556  |  |  | 
1557  |  | // Creates a Duration with a given representation.  | 
1558  |  | // REQUIRES: hi,lo is a valid representation of a Duration as specified  | 
1559  |  | // in time/duration.cc.  | 
1560  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi,  | 
1561  | 3.24M  |                                                               uint32_t lo = 0) { | 
1562  | 3.24M  |   return Duration(hi, lo);  | 
1563  | 3.24M  | }  | 
1564  |  |  | 
1565  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi,  | 
1566  | 3.24M  |                                                               int64_t lo) { | 
1567  | 3.24M  |   return MakeDuration(hi, static_cast<uint32_t>(lo));  | 
1568  | 3.24M  | }  | 
1569  |  |  | 
1570  |  | // Make a Duration value from a floating-point number, as long as that number  | 
1571  |  | // is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as  | 
1572  |  | // it's positive and can be converted to int64_t without risk of UB.  | 
1573  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration MakePosDoubleDuration(double n) { | 
1574  | 0  |   const int64_t int_secs = static_cast<int64_t>(n);  | 
1575  | 0  |   const uint32_t ticks = static_cast<uint32_t>(  | 
1576  | 0  |       std::round((n - static_cast<double>(int_secs)) * kTicksPerSecond));  | 
1577  | 0  |   return ticks < kTicksPerSecond  | 
1578  | 0  |              ? MakeDuration(int_secs, ticks)  | 
1579  | 0  |              : MakeDuration(int_secs + 1, ticks - kTicksPerSecond);  | 
1580  | 0  | }  | 
1581  |  |  | 
1582  |  | // Creates a normalized Duration from an almost-normalized (sec,ticks)  | 
1583  |  | // pair. sec may be positive or negative.  ticks must be in the range  | 
1584  |  | // -kTicksPerSecond < *ticks < kTicksPerSecond.  If ticks is negative it  | 
1585  |  | // will be normalized to a positive value in the resulting Duration.  | 
1586  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeNormalizedDuration(  | 
1587  | 0  |     int64_t sec, int64_t ticks) { | 
1588  | 0  |   return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond)  | 
1589  | 0  |                      : MakeDuration(sec, ticks);  | 
1590  | 0  | }  | 
1591  |  |  | 
1592  |  | // Provide access to the Duration representation.  | 
1593  | 3.24M  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr int64_t GetRepHi(Duration d) { | 
1594  | 3.24M  |   return d.rep_hi_.Get();  | 
1595  | 3.24M  | }  | 
1596  | 6.48M  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr uint32_t GetRepLo(Duration d) { | 
1597  | 6.48M  |   return d.rep_lo_;  | 
1598  | 6.48M  | }  | 
1599  |  |  | 
1600  |  | // Returns true iff d is positive or negative infinity.  | 
1601  | 3.24M  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool IsInfiniteDuration(Duration d) { | 
1602  | 3.24M  |   return GetRepLo(d) == ~uint32_t{0}; | 
1603  | 3.24M  | }  | 
1604  |  |  | 
1605  |  | // Returns an infinite Duration with the opposite sign.  | 
1606  |  | // REQUIRES: IsInfiniteDuration(d)  | 
1607  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration OppositeInfinity(Duration d) { | 
1608  | 0  |   return GetRepHi(d) < 0  | 
1609  | 0  |              ? MakeDuration((std::numeric_limits<int64_t>::max)(), ~uint32_t{0}) | 
1610  | 0  |              : MakeDuration((std::numeric_limits<int64_t>::min)(),  | 
1611  | 0  |                             ~uint32_t{0}); | 
1612  | 0  | }  | 
1613  |  |  | 
1614  |  | // Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow.  | 
1615  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr int64_t NegateAndSubtractOne(  | 
1616  | 0  |     int64_t n) { | 
1617  |  |   // Note: Good compilers will optimize this expression to ~n when using  | 
1618  |  |   // a two's-complement representation (which is required for int64_t).  | 
1619  | 0  |   return (n < 0) ? -(n + 1) : (-n) - 1;  | 
1620  | 0  | }  | 
1621  |  |  | 
1622  |  | // Map between a Time and a Duration since the Unix epoch.  Note that these  | 
1623  |  | // functions depend on the above mentioned choice of the Unix epoch for the  | 
1624  |  | // Time representation (and both need to be Time friends).  Without this  | 
1625  |  | // knowledge, we would need to add-in/subtract-out UnixEpoch() respectively.  | 
1626  | 3.24M  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixDuration(Duration d) { | 
1627  | 3.24M  |   return Time(d);  | 
1628  | 3.24M  | }  | 
1629  | 3.24M  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration ToUnixDuration(Time t) { | 
1630  | 3.24M  |   return t.rep_;  | 
1631  | 3.24M  | }  | 
1632  |  |  | 
1633  |  | template <std::intmax_t N>  | 
1634  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,  | 
1635  | 0  |                                                            std::ratio<1, N>) { | 
1636  | 0  |   static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio");  | 
1637  |  |   // Subsecond ratios cannot overflow.  | 
1638  | 0  |   return MakeNormalizedDuration(  | 
1639  | 0  |       v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N);  | 
1640  | 0  | } Unexecuted instantiation: absl::Duration absl::time_internal::FromInt64<1000000000l>(long, std::__1::ratio<1l, 1000000000l>) Unexecuted instantiation: absl::Duration absl::time_internal::FromInt64<1000000l>(long, std::__1::ratio<1l, 1000000l>) Unexecuted instantiation: absl::Duration absl::time_internal::FromInt64<1000l>(long, std::__1::ratio<1l, 1000l>) Unexecuted instantiation: absl::Duration absl::time_internal::FromInt64<1l>(long, std::__1::ratio<1l, 1l>)  | 
1641  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,  | 
1642  | 0  |                                                            std::ratio<60>) { | 
1643  | 0  |   return (v <= (std::numeric_limits<int64_t>::max)() / 60 &&  | 
1644  | 0  |           v >= (std::numeric_limits<int64_t>::min)() / 60)  | 
1645  | 0  |              ? MakeDuration(v * 60)  | 
1646  | 0  |              : v > 0 ? InfiniteDuration() : -InfiniteDuration();  | 
1647  | 0  | }  | 
1648  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,  | 
1649  | 0  |                                                            std::ratio<3600>) { | 
1650  | 0  |   return (v <= (std::numeric_limits<int64_t>::max)() / 3600 &&  | 
1651  | 0  |           v >= (std::numeric_limits<int64_t>::min)() / 3600)  | 
1652  | 0  |              ? MakeDuration(v * 3600)  | 
1653  | 0  |              : v > 0 ? InfiniteDuration() : -InfiniteDuration();  | 
1654  | 0  | }  | 
1655  |  |  | 
1656  |  | // IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is | 
1657  |  | // valid. That is, if a T can be assigned to an int64_t without narrowing.  | 
1658  |  | template <typename T>  | 
1659  | 0  | constexpr auto IsValidRep64(int) -> decltype(int64_t{std::declval<T>()} == 0) { | 
1660  | 0  |   return true;  | 
1661  | 0  | } Unexecuted instantiation: _ZN4absl13time_internal12IsValidRep64IxEEDTeqtllclsr3stdE7declvalIT_EEELi0EEi Unexecuted instantiation: _ZN4absl13time_internal12IsValidRep64IlEEDTeqtllclsr3stdE7declvalIT_EEELi0EEi  | 
1662  |  | template <typename T>  | 
1663  |  | constexpr auto IsValidRep64(char) -> bool { | 
1664  |  |   return false;  | 
1665  |  | }  | 
1666  |  |  | 
1667  |  | // Converts a std::chrono::duration to an absl::Duration.  | 
1668  |  | template <typename Rep, typename Period>  | 
1669  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
1670  | 0  |     const std::chrono::duration<Rep, Period>& d) { | 
1671  | 0  |   static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");  | 
1672  | 0  |   return FromInt64(int64_t{d.count()}, Period{}); | 
1673  | 0  | } Unexecuted instantiation: absl::Duration absl::time_internal::FromChrono<long long, std::__1::ratio<1l, 1000000000l> >(std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000000l> > const&) Unexecuted instantiation: absl::Duration absl::time_internal::FromChrono<long long, std::__1::ratio<1l, 1000000l> >(std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000l> > const&) Unexecuted instantiation: absl::Duration absl::time_internal::FromChrono<long long, std::__1::ratio<1l, 1000l> >(std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000l> > const&) Unexecuted instantiation: absl::Duration absl::time_internal::FromChrono<long long, std::__1::ratio<1l, 1l> >(std::__1::chrono::duration<long long, std::__1::ratio<1l, 1l> > const&) Unexecuted instantiation: absl::Duration absl::time_internal::FromChrono<long, std::__1::ratio<60l, 1l> >(std::__1::chrono::duration<long, std::__1::ratio<60l, 1l> > const&) Unexecuted instantiation: absl::Duration absl::time_internal::FromChrono<long, std::__1::ratio<3600l, 1l> >(std::__1::chrono::duration<long, std::__1::ratio<3600l, 1l> > const&)  | 
1674  |  |  | 
1675  |  | template <typename Ratio>  | 
1676  |  | ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64(Duration d, Ratio) { | 
1677  |  |   // Note: This may be used on MSVC, which may have a system_clock period of  | 
1678  |  |   // std::ratio<1, 10 * 1000 * 1000>  | 
1679  |  |   return ToInt64Seconds(d * Ratio::den / Ratio::num);  | 
1680  |  | }  | 
1681  |  | // Fastpath implementations for the 6 common duration units.  | 
1682  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, std::nano) { | 
1683  | 0  |   return ToInt64Nanoseconds(d);  | 
1684  | 0  | }  | 
1685  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, std::micro) { | 
1686  | 0  |   return ToInt64Microseconds(d);  | 
1687  | 0  | }  | 
1688  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, std::milli) { | 
1689  | 0  |   return ToInt64Milliseconds(d);  | 
1690  | 0  | }  | 
1691  |  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d,  | 
1692  | 0  |                                                      std::ratio<1>) { | 
1693  | 0  |   return ToInt64Seconds(d);  | 
1694  | 0  | }  | 
1695  |  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d,  | 
1696  | 0  |                                                      std::ratio<60>) { | 
1697  | 0  |   return ToInt64Minutes(d);  | 
1698  | 0  | }  | 
1699  |  | ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d,  | 
1700  | 0  |                                                      std::ratio<3600>) { | 
1701  | 0  |   return ToInt64Hours(d);  | 
1702  | 0  | }  | 
1703  |  |  | 
1704  |  | // Converts an absl::Duration to a chrono duration of type T.  | 
1705  |  | template <typename T>  | 
1706  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION T ToChronoDuration(Duration d) { | 
1707  | 0  |   using Rep = typename T::rep;  | 
1708  | 0  |   using Period = typename T::period;  | 
1709  | 0  |   static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");  | 
1710  | 0  |   if (time_internal::IsInfiniteDuration(d))  | 
1711  | 0  |     return d < ZeroDuration() ? (T::min)() : (T::max)();  | 
1712  | 0  |   const auto v = ToInt64(d, Period{}); | 
1713  | 0  |   if (v > (std::numeric_limits<Rep>::max)()) return (T::max)();  | 
1714  | 0  |   if (v < (std::numeric_limits<Rep>::min)()) return (T::min)();  | 
1715  | 0  |   return T{v}; | 
1716  | 0  | } Unexecuted instantiation: std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000000l> > absl::time_internal::ToChronoDuration<std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000000l> > >(absl::Duration) Unexecuted instantiation: std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000l> > absl::time_internal::ToChronoDuration<std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000l> > >(absl::Duration) Unexecuted instantiation: std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000l> > absl::time_internal::ToChronoDuration<std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000l> > >(absl::Duration) Unexecuted instantiation: std::__1::chrono::duration<long long, std::__1::ratio<1l, 1l> > absl::time_internal::ToChronoDuration<std::__1::chrono::duration<long long, std::__1::ratio<1l, 1l> > >(absl::Duration) Unexecuted instantiation: std::__1::chrono::duration<long, std::__1::ratio<60l, 1l> > absl::time_internal::ToChronoDuration<std::__1::chrono::duration<long, std::__1::ratio<60l, 1l> > >(absl::Duration) Unexecuted instantiation: std::__1::chrono::duration<long, std::__1::ratio<3600l, 1l> > absl::time_internal::ToChronoDuration<std::__1::chrono::duration<long, std::__1::ratio<3600l, 1l> > >(absl::Duration)  | 
1717  |  |  | 
1718  |  | }  // namespace time_internal  | 
1719  |  |  | 
1720  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<(Duration lhs,  | 
1721  | 0  |                                                        Duration rhs) { | 
1722  | 0  |   return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs)  | 
1723  | 0  |              ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs)  | 
1724  | 0  |          : time_internal::GetRepHi(lhs) == (std::numeric_limits<int64_t>::min)()  | 
1725  | 0  |              ? time_internal::GetRepLo(lhs) + 1 <  | 
1726  | 0  |                    time_internal::GetRepLo(rhs) + 1  | 
1727  | 0  |              : time_internal::GetRepLo(lhs) < time_internal::GetRepLo(rhs);  | 
1728  | 0  | }  | 
1729  |  |  | 
1730  |  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator==(Duration lhs,  | 
1731  | 0  |                                                         Duration rhs) { | 
1732  | 0  |   return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) &&  | 
1733  | 0  |          time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs);  | 
1734  | 0  | }  | 
1735  |  |  | 
1736  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration operator-(Duration d) { | 
1737  |  |   // This is a little interesting because of the special cases.  | 
1738  |  |   //  | 
1739  |  |   // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're  | 
1740  |  |   // dealing with an integral number of seconds, and the only special case is  | 
1741  |  |   // the maximum negative finite duration, which can't be negated.  | 
1742  |  |   //  | 
1743  |  |   // Infinities stay infinite, and just change direction.  | 
1744  |  |   //  | 
1745  |  |   // Finally we're in the case where rep_lo_ is non-zero, and we can borrow  | 
1746  |  |   // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1  | 
1747  |  |   // is safe).  | 
1748  | 0  |   return time_internal::GetRepLo(d) == 0  | 
1749  | 0  |              ? time_internal::GetRepHi(d) ==  | 
1750  | 0  |                        (std::numeric_limits<int64_t>::min)()  | 
1751  | 0  |                    ? InfiniteDuration()  | 
1752  | 0  |                    : time_internal::MakeDuration(-time_internal::GetRepHi(d))  | 
1753  | 0  |              : time_internal::IsInfiniteDuration(d)  | 
1754  | 0  |                    ? time_internal::OppositeInfinity(d)  | 
1755  | 0  |                    : time_internal::MakeDuration(  | 
1756  | 0  |                          time_internal::NegateAndSubtractOne(  | 
1757  | 0  |                              time_internal::GetRepHi(d)),  | 
1758  | 0  |                          time_internal::kTicksPerSecond -  | 
1759  | 0  |                              time_internal::GetRepLo(d));  | 
1760  | 0  | }  | 
1761  |  |  | 
1762  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration InfiniteDuration() { | 
1763  | 0  |   return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(),  | 
1764  | 0  |                                      ~uint32_t{0}); | 
1765  | 0  | }  | 
1766  |  |  | 
1767  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
1768  | 0  |     const std::chrono::nanoseconds& d) { | 
1769  | 0  |   return time_internal::FromChrono(d);  | 
1770  | 0  | }  | 
1771  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
1772  | 0  |     const std::chrono::microseconds& d) { | 
1773  | 0  |   return time_internal::FromChrono(d);  | 
1774  | 0  | }  | 
1775  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
1776  | 0  |     const std::chrono::milliseconds& d) { | 
1777  | 0  |   return time_internal::FromChrono(d);  | 
1778  | 0  | }  | 
1779  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
1780  | 0  |     const std::chrono::seconds& d) { | 
1781  | 0  |   return time_internal::FromChrono(d);  | 
1782  | 0  | }  | 
1783  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
1784  | 0  |     const std::chrono::minutes& d) { | 
1785  | 0  |   return time_internal::FromChrono(d);  | 
1786  | 0  | }  | 
1787  |  | ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(  | 
1788  | 0  |     const std::chrono::hours& d) { | 
1789  | 0  |   return time_internal::FromChrono(d);  | 
1790  | 0  | }  | 
1791  |  |  | 
1792  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixNanos(int64_t ns) { | 
1793  | 0  |   return time_internal::FromUnixDuration(Nanoseconds(ns));  | 
1794  | 0  | }  | 
1795  |  |  | 
1796  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMicros(int64_t us) { | 
1797  | 0  |   return time_internal::FromUnixDuration(Microseconds(us));  | 
1798  | 0  | }  | 
1799  |  |  | 
1800  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMillis(int64_t ms) { | 
1801  | 0  |   return time_internal::FromUnixDuration(Milliseconds(ms));  | 
1802  | 0  | }  | 
1803  |  |  | 
1804  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixSeconds(int64_t s) { | 
1805  | 0  |   return time_internal::FromUnixDuration(Seconds(s));  | 
1806  | 0  | }  | 
1807  |  |  | 
1808  | 0  | ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromTimeT(time_t t) { | 
1809  | 0  |   return time_internal::FromUnixDuration(Seconds(t));  | 
1810  | 0  | }  | 
1811  |  |  | 
1812  |  | ABSL_NAMESPACE_END  | 
1813  |  | }  // namespace absl  | 
1814  |  |  | 
1815  |  | #endif  // ABSL_TIME_TIME_H_  |