/src/abseil-cpp/absl/strings/numbers.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2017 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | // This file contains string processing functions related to |
16 | | // numeric values. |
17 | | |
18 | | #include "absl/strings/numbers.h" |
19 | | |
20 | | #include <algorithm> |
21 | | #include <cassert> |
22 | | #include <cfloat> // for DBL_DIG and FLT_DIG |
23 | | #include <cmath> // for HUGE_VAL |
24 | | #include <cstdint> |
25 | | #include <cstdio> |
26 | | #include <cstdlib> |
27 | | #include <cstring> |
28 | | #include <iterator> |
29 | | #include <limits> |
30 | | #include <system_error> // NOLINT(build/c++11) |
31 | | #include <utility> |
32 | | |
33 | | #include "absl/base/attributes.h" |
34 | | #include "absl/base/config.h" |
35 | | #include "absl/base/internal/endian.h" |
36 | | #include "absl/base/internal/raw_logging.h" |
37 | | #include "absl/base/nullability.h" |
38 | | #include "absl/base/optimization.h" |
39 | | #include "absl/numeric/bits.h" |
40 | | #include "absl/numeric/int128.h" |
41 | | #include "absl/strings/ascii.h" |
42 | | #include "absl/strings/charconv.h" |
43 | | #include "absl/strings/match.h" |
44 | | #include "absl/strings/string_view.h" |
45 | | |
46 | | namespace absl { |
47 | | ABSL_NAMESPACE_BEGIN |
48 | | |
49 | 0 | bool SimpleAtof(absl::string_view str, absl::Nonnull<float*> out) { |
50 | 0 | *out = 0.0; |
51 | 0 | str = StripAsciiWhitespace(str); |
52 | | // std::from_chars doesn't accept an initial +, but SimpleAtof does, so if one |
53 | | // is present, skip it, while avoiding accepting "+-0" as valid. |
54 | 0 | if (!str.empty() && str[0] == '+') { |
55 | 0 | str.remove_prefix(1); |
56 | 0 | if (!str.empty() && str[0] == '-') { |
57 | 0 | return false; |
58 | 0 | } |
59 | 0 | } |
60 | 0 | auto result = absl::from_chars(str.data(), str.data() + str.size(), *out); |
61 | 0 | if (result.ec == std::errc::invalid_argument) { |
62 | 0 | return false; |
63 | 0 | } |
64 | 0 | if (result.ptr != str.data() + str.size()) { |
65 | | // not all non-whitespace characters consumed |
66 | 0 | return false; |
67 | 0 | } |
68 | | // from_chars() with DR 3081's current wording will return max() on |
69 | | // overflow. SimpleAtof returns infinity instead. |
70 | 0 | if (result.ec == std::errc::result_out_of_range) { |
71 | 0 | if (*out > 1.0) { |
72 | 0 | *out = std::numeric_limits<float>::infinity(); |
73 | 0 | } else if (*out < -1.0) { |
74 | 0 | *out = -std::numeric_limits<float>::infinity(); |
75 | 0 | } |
76 | 0 | } |
77 | 0 | return true; |
78 | 0 | } |
79 | | |
80 | 12.4M | bool SimpleAtod(absl::string_view str, absl::Nonnull<double*> out) { |
81 | 12.4M | *out = 0.0; |
82 | 12.4M | str = StripAsciiWhitespace(str); |
83 | | // std::from_chars doesn't accept an initial +, but SimpleAtod does, so if one |
84 | | // is present, skip it, while avoiding accepting "+-0" as valid. |
85 | 12.4M | if (!str.empty() && str[0] == '+') { |
86 | 322 | str.remove_prefix(1); |
87 | 322 | if (!str.empty() && str[0] == '-') { |
88 | 1 | return false; |
89 | 1 | } |
90 | 322 | } |
91 | 12.4M | auto result = absl::from_chars(str.data(), str.data() + str.size(), *out); |
92 | 12.4M | if (result.ec == std::errc::invalid_argument) { |
93 | 2.21k | return false; |
94 | 2.21k | } |
95 | 12.4M | if (result.ptr != str.data() + str.size()) { |
96 | | // not all non-whitespace characters consumed |
97 | 463 | return false; |
98 | 463 | } |
99 | | // from_chars() with DR 3081's current wording will return max() on |
100 | | // overflow. SimpleAtod returns infinity instead. |
101 | 12.4M | if (result.ec == std::errc::result_out_of_range) { |
102 | 7.01k | if (*out > 1.0) { |
103 | 4.69k | *out = std::numeric_limits<double>::infinity(); |
104 | 4.69k | } else if (*out < -1.0) { |
105 | 303 | *out = -std::numeric_limits<double>::infinity(); |
106 | 303 | } |
107 | 7.01k | } |
108 | 12.4M | return true; |
109 | 12.4M | } |
110 | | |
111 | 0 | bool SimpleAtob(absl::string_view str, absl::Nonnull<bool*> out) { |
112 | 0 | ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr."); |
113 | 0 | if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") || |
114 | 0 | EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") || |
115 | 0 | EqualsIgnoreCase(str, "1")) { |
116 | 0 | *out = true; |
117 | 0 | return true; |
118 | 0 | } |
119 | 0 | if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") || |
120 | 0 | EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") || |
121 | 0 | EqualsIgnoreCase(str, "0")) { |
122 | 0 | *out = false; |
123 | 0 | return true; |
124 | 0 | } |
125 | 0 | return false; |
126 | 0 | } |
127 | | |
128 | | // ---------------------------------------------------------------------- |
129 | | // FastIntToBuffer() overloads |
130 | | // |
131 | | // Like the Fast*ToBuffer() functions above, these are intended for speed. |
132 | | // Unlike the Fast*ToBuffer() functions, however, these functions write |
133 | | // their output to the beginning of the buffer. The caller is responsible |
134 | | // for ensuring that the buffer has enough space to hold the output. |
135 | | // |
136 | | // Returns a pointer to the end of the string (i.e. the null character |
137 | | // terminating the string). |
138 | | // ---------------------------------------------------------------------- |
139 | | |
140 | | namespace { |
141 | | |
142 | | // Various routines to encode integers to strings. |
143 | | |
144 | | // We split data encodings into a group of 2 digits, 4 digits, 8 digits as |
145 | | // it's easier to combine powers of two into scalar arithmetic. |
146 | | |
147 | | // Previous implementation used a lookup table of 200 bytes for every 2 bytes |
148 | | // and it was memory bound, any L1 cache miss would result in a much slower |
149 | | // result. When benchmarking with a cache eviction rate of several percent, |
150 | | // this implementation proved to be better. |
151 | | |
152 | | // These constants represent '00', '0000' and '00000000' as ascii strings in |
153 | | // integers. We can add these numbers if we encode to bytes from 0 to 9. as |
154 | | // 'i' = '0' + i for 0 <= i <= 9. |
155 | | constexpr uint32_t kTwoZeroBytes = 0x0101 * '0'; |
156 | | constexpr uint64_t kFourZeroBytes = 0x01010101 * '0'; |
157 | | constexpr uint64_t kEightZeroBytes = 0x0101010101010101ull * '0'; |
158 | | |
159 | | // * 103 / 1024 is a division by 10 for values from 0 to 99. It's also a |
160 | | // division of a structure [k takes 2 bytes][m takes 2 bytes], then * 103 / 1024 |
161 | | // will be [k / 10][m / 10]. It allows parallel division. |
162 | | constexpr uint64_t kDivisionBy10Mul = 103u; |
163 | | constexpr uint64_t kDivisionBy10Div = 1 << 10; |
164 | | |
165 | | // * 10486 / 1048576 is a division by 100 for values from 0 to 9999. |
166 | | constexpr uint64_t kDivisionBy100Mul = 10486u; |
167 | | constexpr uint64_t kDivisionBy100Div = 1 << 20; |
168 | | |
169 | | // Encode functions write the ASCII output of input `n` to `out_str`. |
170 | 3.79M | inline char* EncodeHundred(uint32_t n, absl::Nonnull<char*> out_str) { |
171 | 3.79M | int num_digits = static_cast<int>(n - 10) >> 8; |
172 | 3.79M | uint32_t div10 = (n * kDivisionBy10Mul) / kDivisionBy10Div; |
173 | 3.79M | uint32_t mod10 = n - 10u * div10; |
174 | 3.79M | uint32_t base = kTwoZeroBytes + div10 + (mod10 << 8); |
175 | 3.79M | base >>= num_digits & 8; |
176 | 3.79M | little_endian::Store16(out_str, static_cast<uint16_t>(base)); |
177 | 3.79M | return out_str + 2 + num_digits; |
178 | 3.79M | } |
179 | | |
180 | 0 | inline char* EncodeTenThousand(uint32_t n, absl::Nonnull<char*> out_str) { |
181 | | // We split lower 2 digits and upper 2 digits of n into 2 byte consecutive |
182 | | // blocks. 123 -> [\0\1][\0\23]. We divide by 10 both blocks |
183 | | // (it's 1 division + zeroing upper bits), and compute modulo 10 as well "in |
184 | | // parallel". Then we combine both results to have both ASCII digits, |
185 | | // strip trailing zeros, add ASCII '0000' and return. |
186 | 0 | uint32_t div100 = (n * kDivisionBy100Mul) / kDivisionBy100Div; |
187 | 0 | uint32_t mod100 = n - 100ull * div100; |
188 | 0 | uint32_t hundreds = (mod100 << 16) + div100; |
189 | 0 | uint32_t tens = (hundreds * kDivisionBy10Mul) / kDivisionBy10Div; |
190 | 0 | tens &= (0xFull << 16) | 0xFull; |
191 | 0 | tens += (hundreds - 10ull * tens) << 8; |
192 | 0 | ABSL_ASSUME(tens != 0); |
193 | | // The result can contain trailing zero bits, we need to strip them to a first |
194 | | // significant byte in a final representation. For example, for n = 123, we |
195 | | // have tens to have representation \0\1\2\3. We do `& -8` to round |
196 | | // to a multiple to 8 to strip zero bytes, not all zero bits. |
197 | | // countr_zero to help. |
198 | | // 0 minus 8 to make MSVC happy. |
199 | 0 | uint32_t zeroes = static_cast<uint32_t>(absl::countr_zero(tens)) & (0 - 8u); |
200 | 0 | tens += kFourZeroBytes; |
201 | 0 | tens >>= zeroes; |
202 | 0 | little_endian::Store32(out_str, tens); |
203 | 0 | return out_str + sizeof(tens) - zeroes / 8; |
204 | 0 | } |
205 | | |
206 | | // Helper function to produce an ASCII representation of `i`. |
207 | | // |
208 | | // Function returns an 8-byte integer which when summed with `kEightZeroBytes`, |
209 | | // can be treated as a printable buffer with ascii representation of `i`, |
210 | | // possibly with leading zeros. |
211 | | // |
212 | | // Example: |
213 | | // |
214 | | // uint64_t buffer = PrepareEightDigits(102030) + kEightZeroBytes; |
215 | | // char* ascii = reinterpret_cast<char*>(&buffer); |
216 | | // // Note two leading zeros: |
217 | | // EXPECT_EQ(absl::string_view(ascii, 8), "00102030"); |
218 | | // |
219 | | // Pre-condition: `i` must be less than 100000000. |
220 | 15.1M | inline uint64_t PrepareEightDigits(uint32_t i) { |
221 | 15.1M | ABSL_ASSUME(i < 10000'0000); |
222 | | // Prepare 2 blocks of 4 digits "in parallel". |
223 | 15.1M | uint32_t hi = i / 10000; |
224 | 15.1M | uint32_t lo = i % 10000; |
225 | 15.1M | uint64_t merged = hi | (uint64_t{lo} << 32); |
226 | 15.1M | uint64_t div100 = ((merged * kDivisionBy100Mul) / kDivisionBy100Div) & |
227 | 15.1M | ((0x7Full << 32) | 0x7Full); |
228 | 15.1M | uint64_t mod100 = merged - 100ull * div100; |
229 | 15.1M | uint64_t hundreds = (mod100 << 16) + div100; |
230 | 15.1M | uint64_t tens = (hundreds * kDivisionBy10Mul) / kDivisionBy10Div; |
231 | 15.1M | tens &= (0xFull << 48) | (0xFull << 32) | (0xFull << 16) | 0xFull; |
232 | 15.1M | tens += (hundreds - 10ull * tens) << 8; |
233 | 15.1M | return tens; |
234 | 15.1M | } |
235 | | |
236 | | inline ABSL_ATTRIBUTE_ALWAYS_INLINE absl::Nonnull<char*> EncodeFullU32( |
237 | 15.1M | uint32_t n, absl::Nonnull<char*> out_str) { |
238 | 15.1M | if (n < 10) { |
239 | 40 | *out_str = static_cast<char>('0' + n); |
240 | 40 | return out_str + 1; |
241 | 40 | } |
242 | 15.1M | if (n < 100'000'000) { |
243 | 11.3M | uint64_t bottom = PrepareEightDigits(n); |
244 | 11.3M | ABSL_ASSUME(bottom != 0); |
245 | | // 0 minus 8 to make MSVC happy. |
246 | 11.3M | uint32_t zeroes = |
247 | 11.3M | static_cast<uint32_t>(absl::countr_zero(bottom)) & (0 - 8u); |
248 | 11.3M | little_endian::Store64(out_str, (bottom + kEightZeroBytes) >> zeroes); |
249 | 11.3M | return out_str + sizeof(bottom) - zeroes / 8; |
250 | 11.3M | } |
251 | 3.79M | uint32_t div08 = n / 100'000'000; |
252 | 3.79M | uint32_t mod08 = n % 100'000'000; |
253 | 3.79M | uint64_t bottom = PrepareEightDigits(mod08) + kEightZeroBytes; |
254 | 3.79M | out_str = EncodeHundred(div08, out_str); |
255 | 3.79M | little_endian::Store64(out_str, bottom); |
256 | 3.79M | return out_str + sizeof(bottom); |
257 | 15.1M | } |
258 | | |
259 | | inline ABSL_ATTRIBUTE_ALWAYS_INLINE char* EncodeFullU64(uint64_t i, |
260 | 0 | char* buffer) { |
261 | 0 | if (i <= std::numeric_limits<uint32_t>::max()) { |
262 | 0 | return EncodeFullU32(static_cast<uint32_t>(i), buffer); |
263 | 0 | } |
264 | 0 | uint32_t mod08; |
265 | 0 | if (i < 1'0000'0000'0000'0000ull) { |
266 | 0 | uint32_t div08 = static_cast<uint32_t>(i / 100'000'000ull); |
267 | 0 | mod08 = static_cast<uint32_t>(i % 100'000'000ull); |
268 | 0 | buffer = EncodeFullU32(div08, buffer); |
269 | 0 | } else { |
270 | 0 | uint64_t div08 = i / 100'000'000ull; |
271 | 0 | mod08 = static_cast<uint32_t>(i % 100'000'000ull); |
272 | 0 | uint32_t div016 = static_cast<uint32_t>(div08 / 100'000'000ull); |
273 | 0 | uint32_t div08mod08 = static_cast<uint32_t>(div08 % 100'000'000ull); |
274 | 0 | uint64_t mid_result = PrepareEightDigits(div08mod08) + kEightZeroBytes; |
275 | 0 | buffer = EncodeTenThousand(div016, buffer); |
276 | 0 | little_endian::Store64(buffer, mid_result); |
277 | 0 | buffer += sizeof(mid_result); |
278 | 0 | } |
279 | 0 | uint64_t mod_result = PrepareEightDigits(mod08) + kEightZeroBytes; |
280 | 0 | little_endian::Store64(buffer, mod_result); |
281 | 0 | return buffer + sizeof(mod_result); |
282 | 0 | } |
283 | | |
284 | | } // namespace |
285 | | |
286 | 0 | void numbers_internal::PutTwoDigits(uint32_t i, absl::Nonnull<char*> buf) { |
287 | 0 | assert(i < 100); |
288 | 0 | uint32_t base = kTwoZeroBytes; |
289 | 0 | uint32_t div10 = (i * kDivisionBy10Mul) / kDivisionBy10Div; |
290 | 0 | uint32_t mod10 = i - 10u * div10; |
291 | 0 | base += div10 + (mod10 << 8); |
292 | 0 | little_endian::Store16(buf, static_cast<uint16_t>(base)); |
293 | 0 | } |
294 | | |
295 | | absl::Nonnull<char*> numbers_internal::FastIntToBuffer( |
296 | 0 | uint32_t n, absl::Nonnull<char*> out_str) { |
297 | 0 | out_str = EncodeFullU32(n, out_str); |
298 | 0 | *out_str = '\0'; |
299 | 0 | return out_str; |
300 | 0 | } |
301 | | |
302 | | absl::Nonnull<char*> numbers_internal::FastIntToBuffer( |
303 | 15.1M | int32_t i, absl::Nonnull<char*> buffer) { |
304 | 15.1M | uint32_t u = static_cast<uint32_t>(i); |
305 | 15.1M | if (i < 0) { |
306 | 0 | *buffer++ = '-'; |
307 | | // We need to do the negation in modular (i.e., "unsigned") |
308 | | // arithmetic; MSVC++ apparently warns for plain "-u", so |
309 | | // we write the equivalent expression "0 - u" instead. |
310 | 0 | u = 0 - u; |
311 | 0 | } |
312 | 15.1M | buffer = EncodeFullU32(u, buffer); |
313 | 15.1M | *buffer = '\0'; |
314 | 15.1M | return buffer; |
315 | 15.1M | } |
316 | | |
317 | | absl::Nonnull<char*> numbers_internal::FastIntToBuffer( |
318 | 0 | uint64_t i, absl::Nonnull<char*> buffer) { |
319 | 0 | buffer = EncodeFullU64(i, buffer); |
320 | 0 | *buffer = '\0'; |
321 | 0 | return buffer; |
322 | 0 | } |
323 | | |
324 | | absl::Nonnull<char*> numbers_internal::FastIntToBuffer( |
325 | 0 | int64_t i, absl::Nonnull<char*> buffer) { |
326 | 0 | uint64_t u = static_cast<uint64_t>(i); |
327 | 0 | if (i < 0) { |
328 | 0 | *buffer++ = '-'; |
329 | | // We need to do the negation in modular (i.e., "unsigned") |
330 | | // arithmetic; MSVC++ apparently warns for plain "-u", so |
331 | | // we write the equivalent expression "0 - u" instead. |
332 | 0 | u = 0 - u; |
333 | 0 | } |
334 | 0 | buffer = EncodeFullU64(u, buffer); |
335 | 0 | *buffer = '\0'; |
336 | 0 | return buffer; |
337 | 0 | } |
338 | | |
339 | | // Given a 128-bit number expressed as a pair of uint64_t, high half first, |
340 | | // return that number multiplied by the given 32-bit value. If the result is |
341 | | // too large to fit in a 128-bit number, divide it by 2 until it fits. |
342 | | static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num, |
343 | 0 | uint32_t mul) { |
344 | 0 | uint64_t bits0_31 = num.second & 0xFFFFFFFF; |
345 | 0 | uint64_t bits32_63 = num.second >> 32; |
346 | 0 | uint64_t bits64_95 = num.first & 0xFFFFFFFF; |
347 | 0 | uint64_t bits96_127 = num.first >> 32; |
348 | | |
349 | | // The picture so far: each of these 64-bit values has only the lower 32 bits |
350 | | // filled in. |
351 | | // bits96_127: [ 00000000 xxxxxxxx ] |
352 | | // bits64_95: [ 00000000 xxxxxxxx ] |
353 | | // bits32_63: [ 00000000 xxxxxxxx ] |
354 | | // bits0_31: [ 00000000 xxxxxxxx ] |
355 | |
|
356 | 0 | bits0_31 *= mul; |
357 | 0 | bits32_63 *= mul; |
358 | 0 | bits64_95 *= mul; |
359 | 0 | bits96_127 *= mul; |
360 | | |
361 | | // Now the top halves may also have value, though all 64 of their bits will |
362 | | // never be set at the same time, since they are a result of a 32x32 bit |
363 | | // multiply. This makes the carry calculation slightly easier. |
364 | | // bits96_127: [ mmmmmmmm | mmmmmmmm ] |
365 | | // bits64_95: [ | mmmmmmmm mmmmmmmm | ] |
366 | | // bits32_63: | [ mmmmmmmm | mmmmmmmm ] |
367 | | // bits0_31: | [ | mmmmmmmm mmmmmmmm ] |
368 | | // eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ] |
369 | |
|
370 | 0 | uint64_t bits0_63 = bits0_31 + (bits32_63 << 32); |
371 | 0 | uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) + |
372 | 0 | (bits0_63 < bits0_31); |
373 | 0 | uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95); |
374 | 0 | if (bits128_up == 0) return {bits64_127, bits0_63}; |
375 | | |
376 | 0 | auto shift = static_cast<unsigned>(bit_width(bits128_up)); |
377 | 0 | uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift)); |
378 | 0 | uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift)); |
379 | 0 | return {hi, lo}; |
380 | 0 | } |
381 | | |
382 | | // Compute num * 5 ^ expfive, and return the first 128 bits of the result, |
383 | | // where the first bit is always a one. So PowFive(1, 0) starts 0b100000, |
384 | | // PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc. |
385 | 0 | static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) { |
386 | 0 | std::pair<uint64_t, uint64_t> result = {num, 0}; |
387 | 0 | while (expfive >= 13) { |
388 | | // 5^13 is the highest power of five that will fit in a 32-bit integer. |
389 | 0 | result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5); |
390 | 0 | expfive -= 13; |
391 | 0 | } |
392 | 0 | constexpr uint32_t powers_of_five[13] = { |
393 | 0 | 1, |
394 | 0 | 5, |
395 | 0 | 5 * 5, |
396 | 0 | 5 * 5 * 5, |
397 | 0 | 5 * 5 * 5 * 5, |
398 | 0 | 5 * 5 * 5 * 5 * 5, |
399 | 0 | 5 * 5 * 5 * 5 * 5 * 5, |
400 | 0 | 5 * 5 * 5 * 5 * 5 * 5 * 5, |
401 | 0 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
402 | 0 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
403 | 0 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
404 | 0 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
405 | 0 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5}; |
406 | 0 | result = Mul32(result, powers_of_five[expfive & 15]); |
407 | 0 | int shift = countl_zero(result.first); |
408 | 0 | if (shift != 0) { |
409 | 0 | result.first = (result.first << shift) + (result.second >> (64 - shift)); |
410 | 0 | result.second = (result.second << shift); |
411 | 0 | } |
412 | 0 | return result; |
413 | 0 | } |
414 | | |
415 | | struct ExpDigits { |
416 | | int32_t exponent; |
417 | | char digits[6]; |
418 | | }; |
419 | | |
420 | | // SplitToSix converts value, a positive double-precision floating-point number, |
421 | | // into a base-10 exponent and 6 ASCII digits, where the first digit is never |
422 | | // zero. For example, SplitToSix(1) returns an exponent of zero and a digits |
423 | | // array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between |
424 | | // two possible representations, e.g. value = 100000.5, then "round to even" is |
425 | | // performed. |
426 | 0 | static ExpDigits SplitToSix(const double value) { |
427 | 0 | ExpDigits exp_dig; |
428 | 0 | int exp = 5; |
429 | 0 | double d = value; |
430 | | // First step: calculate a close approximation of the output, where the |
431 | | // value d will be between 100,000 and 999,999, representing the digits |
432 | | // in the output ASCII array, and exp is the base-10 exponent. It would be |
433 | | // faster to use a table here, and to look up the base-2 exponent of value, |
434 | | // however value is an IEEE-754 64-bit number, so the table would have 2,000 |
435 | | // entries, which is not cache-friendly. |
436 | 0 | if (d >= 999999.5) { |
437 | 0 | if (d >= 1e+261) exp += 256, d *= 1e-256; |
438 | 0 | if (d >= 1e+133) exp += 128, d *= 1e-128; |
439 | 0 | if (d >= 1e+69) exp += 64, d *= 1e-64; |
440 | 0 | if (d >= 1e+37) exp += 32, d *= 1e-32; |
441 | 0 | if (d >= 1e+21) exp += 16, d *= 1e-16; |
442 | 0 | if (d >= 1e+13) exp += 8, d *= 1e-8; |
443 | 0 | if (d >= 1e+9) exp += 4, d *= 1e-4; |
444 | 0 | if (d >= 1e+7) exp += 2, d *= 1e-2; |
445 | 0 | if (d >= 1e+6) exp += 1, d *= 1e-1; |
446 | 0 | } else { |
447 | 0 | if (d < 1e-250) exp -= 256, d *= 1e256; |
448 | 0 | if (d < 1e-122) exp -= 128, d *= 1e128; |
449 | 0 | if (d < 1e-58) exp -= 64, d *= 1e64; |
450 | 0 | if (d < 1e-26) exp -= 32, d *= 1e32; |
451 | 0 | if (d < 1e-10) exp -= 16, d *= 1e16; |
452 | 0 | if (d < 1e-2) exp -= 8, d *= 1e8; |
453 | 0 | if (d < 1e+2) exp -= 4, d *= 1e4; |
454 | 0 | if (d < 1e+4) exp -= 2, d *= 1e2; |
455 | 0 | if (d < 1e+5) exp -= 1, d *= 1e1; |
456 | 0 | } |
457 | | // At this point, d is in the range [99999.5..999999.5) and exp is in the |
458 | | // range [-324..308]. Since we need to round d up, we want to add a half |
459 | | // and truncate. |
460 | | // However, the technique above may have lost some precision, due to its |
461 | | // repeated multiplication by constants that each may be off by half a bit |
462 | | // of precision. This only matters if we're close to the edge though. |
463 | | // Since we'd like to know if the fractional part of d is close to a half, |
464 | | // we multiply it by 65536 and see if the fractional part is close to 32768. |
465 | | // (The number doesn't have to be a power of two,but powers of two are faster) |
466 | 0 | uint64_t d64k = d * 65536; |
467 | 0 | uint32_t dddddd; // A 6-digit decimal integer. |
468 | 0 | if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) { |
469 | | // OK, it's fairly likely that precision was lost above, which is |
470 | | // not a surprise given only 52 mantissa bits are available. Therefore |
471 | | // redo the calculation using 128-bit numbers. (64 bits are not enough). |
472 | | |
473 | | // Start out with digits rounded down; maybe add one below. |
474 | 0 | dddddd = static_cast<uint32_t>(d64k / 65536); |
475 | | |
476 | | // mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual |
477 | | // value we're representing, of course, is M.mmm... * 2^exp2. |
478 | 0 | int exp2; |
479 | 0 | double m = std::frexp(value, &exp2); |
480 | 0 | uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0); |
481 | | // std::frexp returns an m value in the range [0.5, 1.0), however we |
482 | | // can't multiply it by 2^64 and convert to an integer because some FPUs |
483 | | // throw an exception when converting an number higher than 2^63 into an |
484 | | // integer - even an unsigned 64-bit integer! Fortunately it doesn't matter |
485 | | // since m only has 52 significant bits anyway. |
486 | 0 | mantissa <<= 1; |
487 | 0 | exp2 -= 64; // not needed, but nice for debugging |
488 | | |
489 | | // OK, we are here to compare: |
490 | | // (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2 |
491 | | // so we can round up dddddd if appropriate. Those values span the full |
492 | | // range of 600 orders of magnitude of IEE 64-bit floating-point. |
493 | | // Fortunately, we already know they are very close, so we don't need to |
494 | | // track the base-2 exponent of both sides. This greatly simplifies the |
495 | | // the math since the 2^exp2 calculation is unnecessary and the power-of-10 |
496 | | // calculation can become a power-of-5 instead. |
497 | |
|
498 | 0 | std::pair<uint64_t, uint64_t> edge, val; |
499 | 0 | if (exp >= 6) { |
500 | | // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa |
501 | | // Since we're tossing powers of two, 2 * dddddd + 1 is the |
502 | | // same as dddddd + 0.5 |
503 | 0 | edge = PowFive(2 * dddddd + 1, exp - 5); |
504 | |
|
505 | 0 | val.first = mantissa; |
506 | 0 | val.second = 0; |
507 | 0 | } else { |
508 | | // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did |
509 | | // above because (exp - 5) is negative. So we compare (dddddd + 0.5) to |
510 | | // mantissa * 5 ^ (5 - exp) |
511 | 0 | edge = PowFive(2 * dddddd + 1, 0); |
512 | |
|
513 | 0 | val = PowFive(mantissa, 5 - exp); |
514 | 0 | } |
515 | | // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first, |
516 | | // val.second, edge.first, edge.second); |
517 | 0 | if (val > edge) { |
518 | 0 | dddddd++; |
519 | 0 | } else if (val == edge) { |
520 | 0 | dddddd += (dddddd & 1); |
521 | 0 | } |
522 | 0 | } else { |
523 | | // Here, we are not close to the edge. |
524 | 0 | dddddd = static_cast<uint32_t>((d64k + 32768) / 65536); |
525 | 0 | } |
526 | 0 | if (dddddd == 1000000) { |
527 | 0 | dddddd = 100000; |
528 | 0 | exp += 1; |
529 | 0 | } |
530 | 0 | exp_dig.exponent = exp; |
531 | |
|
532 | 0 | uint32_t two_digits = dddddd / 10000; |
533 | 0 | dddddd -= two_digits * 10000; |
534 | 0 | numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[0]); |
535 | |
|
536 | 0 | two_digits = dddddd / 100; |
537 | 0 | dddddd -= two_digits * 100; |
538 | 0 | numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[2]); |
539 | |
|
540 | 0 | numbers_internal::PutTwoDigits(dddddd, &exp_dig.digits[4]); |
541 | 0 | return exp_dig; |
542 | 0 | } |
543 | | |
544 | | // Helper function for fast formatting of floating-point. |
545 | | // The result is the same as "%g", a.k.a. "%.6g". |
546 | | size_t numbers_internal::SixDigitsToBuffer(double d, |
547 | 0 | absl::Nonnull<char*> const buffer) { |
548 | 0 | static_assert(std::numeric_limits<float>::is_iec559, |
549 | 0 | "IEEE-754/IEC-559 support only"); |
550 | |
|
551 | 0 | char* out = buffer; // we write data to out, incrementing as we go, but |
552 | | // FloatToBuffer always returns the address of the buffer |
553 | | // passed in. |
554 | |
|
555 | 0 | if (std::isnan(d)) { |
556 | 0 | strcpy(out, "nan"); // NOLINT(runtime/printf) |
557 | 0 | return 3; |
558 | 0 | } |
559 | 0 | if (d == 0) { // +0 and -0 are handled here |
560 | 0 | if (std::signbit(d)) *out++ = '-'; |
561 | 0 | *out++ = '0'; |
562 | 0 | *out = 0; |
563 | 0 | return static_cast<size_t>(out - buffer); |
564 | 0 | } |
565 | 0 | if (d < 0) { |
566 | 0 | *out++ = '-'; |
567 | 0 | d = -d; |
568 | 0 | } |
569 | 0 | if (d > std::numeric_limits<double>::max()) { |
570 | 0 | strcpy(out, "inf"); // NOLINT(runtime/printf) |
571 | 0 | return static_cast<size_t>(out + 3 - buffer); |
572 | 0 | } |
573 | | |
574 | 0 | auto exp_dig = SplitToSix(d); |
575 | 0 | int exp = exp_dig.exponent; |
576 | 0 | const char* digits = exp_dig.digits; |
577 | 0 | out[0] = '0'; |
578 | 0 | out[1] = '.'; |
579 | 0 | switch (exp) { |
580 | 0 | case 5: |
581 | 0 | memcpy(out, &digits[0], 6), out += 6; |
582 | 0 | *out = 0; |
583 | 0 | return static_cast<size_t>(out - buffer); |
584 | 0 | case 4: |
585 | 0 | memcpy(out, &digits[0], 5), out += 5; |
586 | 0 | if (digits[5] != '0') { |
587 | 0 | *out++ = '.'; |
588 | 0 | *out++ = digits[5]; |
589 | 0 | } |
590 | 0 | *out = 0; |
591 | 0 | return static_cast<size_t>(out - buffer); |
592 | 0 | case 3: |
593 | 0 | memcpy(out, &digits[0], 4), out += 4; |
594 | 0 | if ((digits[5] | digits[4]) != '0') { |
595 | 0 | *out++ = '.'; |
596 | 0 | *out++ = digits[4]; |
597 | 0 | if (digits[5] != '0') *out++ = digits[5]; |
598 | 0 | } |
599 | 0 | *out = 0; |
600 | 0 | return static_cast<size_t>(out - buffer); |
601 | 0 | case 2: |
602 | 0 | memcpy(out, &digits[0], 3), out += 3; |
603 | 0 | *out++ = '.'; |
604 | 0 | memcpy(out, &digits[3], 3); |
605 | 0 | out += 3; |
606 | 0 | while (out[-1] == '0') --out; |
607 | 0 | if (out[-1] == '.') --out; |
608 | 0 | *out = 0; |
609 | 0 | return static_cast<size_t>(out - buffer); |
610 | 0 | case 1: |
611 | 0 | memcpy(out, &digits[0], 2), out += 2; |
612 | 0 | *out++ = '.'; |
613 | 0 | memcpy(out, &digits[2], 4); |
614 | 0 | out += 4; |
615 | 0 | while (out[-1] == '0') --out; |
616 | 0 | if (out[-1] == '.') --out; |
617 | 0 | *out = 0; |
618 | 0 | return static_cast<size_t>(out - buffer); |
619 | 0 | case 0: |
620 | 0 | memcpy(out, &digits[0], 1), out += 1; |
621 | 0 | *out++ = '.'; |
622 | 0 | memcpy(out, &digits[1], 5); |
623 | 0 | out += 5; |
624 | 0 | while (out[-1] == '0') --out; |
625 | 0 | if (out[-1] == '.') --out; |
626 | 0 | *out = 0; |
627 | 0 | return static_cast<size_t>(out - buffer); |
628 | 0 | case -4: |
629 | 0 | out[2] = '0'; |
630 | 0 | ++out; |
631 | 0 | ABSL_FALLTHROUGH_INTENDED; |
632 | 0 | case -3: |
633 | 0 | out[2] = '0'; |
634 | 0 | ++out; |
635 | 0 | ABSL_FALLTHROUGH_INTENDED; |
636 | 0 | case -2: |
637 | 0 | out[2] = '0'; |
638 | 0 | ++out; |
639 | 0 | ABSL_FALLTHROUGH_INTENDED; |
640 | 0 | case -1: |
641 | 0 | out += 2; |
642 | 0 | memcpy(out, &digits[0], 6); |
643 | 0 | out += 6; |
644 | 0 | while (out[-1] == '0') --out; |
645 | 0 | *out = 0; |
646 | 0 | return static_cast<size_t>(out - buffer); |
647 | 0 | } |
648 | 0 | assert(exp < -4 || exp >= 6); |
649 | 0 | out[0] = digits[0]; |
650 | 0 | assert(out[1] == '.'); |
651 | 0 | out += 2; |
652 | 0 | memcpy(out, &digits[1], 5), out += 5; |
653 | 0 | while (out[-1] == '0') --out; |
654 | 0 | if (out[-1] == '.') --out; |
655 | 0 | *out++ = 'e'; |
656 | 0 | if (exp > 0) { |
657 | 0 | *out++ = '+'; |
658 | 0 | } else { |
659 | 0 | *out++ = '-'; |
660 | 0 | exp = -exp; |
661 | 0 | } |
662 | 0 | if (exp > 99) { |
663 | 0 | int dig1 = exp / 100; |
664 | 0 | exp -= dig1 * 100; |
665 | 0 | *out++ = '0' + static_cast<char>(dig1); |
666 | 0 | } |
667 | 0 | PutTwoDigits(static_cast<uint32_t>(exp), out); |
668 | 0 | out += 2; |
669 | 0 | *out = 0; |
670 | 0 | return static_cast<size_t>(out - buffer); |
671 | 0 | } |
672 | | |
673 | | namespace { |
674 | | // Represents integer values of digits. |
675 | | // Uses 36 to indicate an invalid character since we support |
676 | | // bases up to 36. |
677 | | static const int8_t kAsciiToInt[256] = { |
678 | | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s. |
679 | | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
680 | | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5, |
681 | | 6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, |
682 | | 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, |
683 | | 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, |
684 | | 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, |
685 | | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
686 | | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
687 | | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
688 | | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
689 | | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
690 | | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
691 | | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36}; |
692 | | |
693 | | // Parse the sign and optional hex or oct prefix in text. |
694 | | inline bool safe_parse_sign_and_base( |
695 | | absl::Nonnull<absl::string_view*> text /*inout*/, |
696 | | absl::Nonnull<int*> base_ptr /*inout*/, |
697 | 0 | absl::Nonnull<bool*> negative_ptr /*output*/) { |
698 | 0 | if (text->data() == nullptr) { |
699 | 0 | return false; |
700 | 0 | } |
701 | | |
702 | 0 | const char* start = text->data(); |
703 | 0 | const char* end = start + text->size(); |
704 | 0 | int base = *base_ptr; |
705 | | |
706 | | // Consume whitespace. |
707 | 0 | while (start < end && |
708 | 0 | absl::ascii_isspace(static_cast<unsigned char>(start[0]))) { |
709 | 0 | ++start; |
710 | 0 | } |
711 | 0 | while (start < end && |
712 | 0 | absl::ascii_isspace(static_cast<unsigned char>(end[-1]))) { |
713 | 0 | --end; |
714 | 0 | } |
715 | 0 | if (start >= end) { |
716 | 0 | return false; |
717 | 0 | } |
718 | | |
719 | | // Consume sign. |
720 | 0 | *negative_ptr = (start[0] == '-'); |
721 | 0 | if (*negative_ptr || start[0] == '+') { |
722 | 0 | ++start; |
723 | 0 | if (start >= end) { |
724 | 0 | return false; |
725 | 0 | } |
726 | 0 | } |
727 | | |
728 | | // Consume base-dependent prefix. |
729 | | // base 0: "0x" -> base 16, "0" -> base 8, default -> base 10 |
730 | | // base 16: "0x" -> base 16 |
731 | | // Also validate the base. |
732 | 0 | if (base == 0) { |
733 | 0 | if (end - start >= 2 && start[0] == '0' && |
734 | 0 | (start[1] == 'x' || start[1] == 'X')) { |
735 | 0 | base = 16; |
736 | 0 | start += 2; |
737 | 0 | if (start >= end) { |
738 | | // "0x" with no digits after is invalid. |
739 | 0 | return false; |
740 | 0 | } |
741 | 0 | } else if (end - start >= 1 && start[0] == '0') { |
742 | 0 | base = 8; |
743 | 0 | start += 1; |
744 | 0 | } else { |
745 | 0 | base = 10; |
746 | 0 | } |
747 | 0 | } else if (base == 16) { |
748 | 0 | if (end - start >= 2 && start[0] == '0' && |
749 | 0 | (start[1] == 'x' || start[1] == 'X')) { |
750 | 0 | start += 2; |
751 | 0 | if (start >= end) { |
752 | | // "0x" with no digits after is invalid. |
753 | 0 | return false; |
754 | 0 | } |
755 | 0 | } |
756 | 0 | } else if (base >= 2 && base <= 36) { |
757 | | // okay |
758 | 0 | } else { |
759 | 0 | return false; |
760 | 0 | } |
761 | 0 | *text = absl::string_view(start, static_cast<size_t>(end - start)); |
762 | 0 | *base_ptr = base; |
763 | 0 | return true; |
764 | 0 | } |
765 | | |
766 | | // Consume digits. |
767 | | // |
768 | | // The classic loop: |
769 | | // |
770 | | // for each digit |
771 | | // value = value * base + digit |
772 | | // value *= sign |
773 | | // |
774 | | // The classic loop needs overflow checking. It also fails on the most |
775 | | // negative integer, -2147483648 in 32-bit two's complement representation. |
776 | | // |
777 | | // My improved loop: |
778 | | // |
779 | | // if (!negative) |
780 | | // for each digit |
781 | | // value = value * base |
782 | | // value = value + digit |
783 | | // else |
784 | | // for each digit |
785 | | // value = value * base |
786 | | // value = value - digit |
787 | | // |
788 | | // Overflow checking becomes simple. |
789 | | |
790 | | // Lookup tables per IntType: |
791 | | // vmax/base and vmin/base are precomputed because division costs at least 8ns. |
792 | | // TODO(junyer): Doing this per base instead (i.e. an array of structs, not a |
793 | | // struct of arrays) would probably be better in terms of d-cache for the most |
794 | | // commonly used bases. |
795 | | template <typename IntType> |
796 | | struct LookupTables { |
797 | | ABSL_CONST_INIT static const IntType kVmaxOverBase[]; |
798 | | ABSL_CONST_INIT static const IntType kVminOverBase[]; |
799 | | }; |
800 | | |
801 | | // An array initializer macro for X/base where base in [0, 36]. |
802 | | // However, note that lookups for base in [0, 1] should never happen because |
803 | | // base has been validated to be in [2, 36] by safe_parse_sign_and_base(). |
804 | | #define X_OVER_BASE_INITIALIZER(X) \ |
805 | | { \ |
806 | | 0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \ |
807 | | X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \ |
808 | | X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \ |
809 | | X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \ |
810 | | X / 35, X / 36, \ |
811 | | } |
812 | | |
813 | | // This kVmaxOverBase is generated with |
814 | | // for (int base = 2; base < 37; ++base) { |
815 | | // absl::uint128 max = std::numeric_limits<absl::uint128>::max(); |
816 | | // auto result = max / base; |
817 | | // std::cout << " MakeUint128(" << absl::Uint128High64(result) << "u, " |
818 | | // << absl::Uint128Low64(result) << "u),\n"; |
819 | | // } |
820 | | // See https://godbolt.org/z/aneYsb |
821 | | // |
822 | | // uint128& operator/=(uint128) is not constexpr, so hardcode the resulting |
823 | | // array to avoid a static initializer. |
824 | | template <> |
825 | | ABSL_CONST_INIT const uint128 LookupTables<uint128>::kVmaxOverBase[] = { |
826 | | 0, |
827 | | 0, |
828 | | MakeUint128(9223372036854775807u, 18446744073709551615u), |
829 | | MakeUint128(6148914691236517205u, 6148914691236517205u), |
830 | | MakeUint128(4611686018427387903u, 18446744073709551615u), |
831 | | MakeUint128(3689348814741910323u, 3689348814741910323u), |
832 | | MakeUint128(3074457345618258602u, 12297829382473034410u), |
833 | | MakeUint128(2635249153387078802u, 5270498306774157604u), |
834 | | MakeUint128(2305843009213693951u, 18446744073709551615u), |
835 | | MakeUint128(2049638230412172401u, 14347467612885206812u), |
836 | | MakeUint128(1844674407370955161u, 11068046444225730969u), |
837 | | MakeUint128(1676976733973595601u, 8384883669867978007u), |
838 | | MakeUint128(1537228672809129301u, 6148914691236517205u), |
839 | | MakeUint128(1418980313362273201u, 4256940940086819603u), |
840 | | MakeUint128(1317624576693539401u, 2635249153387078802u), |
841 | | MakeUint128(1229782938247303441u, 1229782938247303441u), |
842 | | MakeUint128(1152921504606846975u, 18446744073709551615u), |
843 | | MakeUint128(1085102592571150095u, 1085102592571150095u), |
844 | | MakeUint128(1024819115206086200u, 16397105843297379214u), |
845 | | MakeUint128(970881267037344821u, 16504981539634861972u), |
846 | | MakeUint128(922337203685477580u, 14757395258967641292u), |
847 | | MakeUint128(878416384462359600u, 14054662151397753612u), |
848 | | MakeUint128(838488366986797800u, 13415813871788764811u), |
849 | | MakeUint128(802032351030850070u, 4812194106185100421u), |
850 | | MakeUint128(768614336404564650u, 12297829382473034410u), |
851 | | MakeUint128(737869762948382064u, 11805916207174113034u), |
852 | | MakeUint128(709490156681136600u, 11351842506898185609u), |
853 | | MakeUint128(683212743470724133u, 17080318586768103348u), |
854 | | MakeUint128(658812288346769700u, 10540996613548315209u), |
855 | | MakeUint128(636094623231363848u, 15266270957552732371u), |
856 | | MakeUint128(614891469123651720u, 9838263505978427528u), |
857 | | MakeUint128(595056260442243600u, 9520900167075897608u), |
858 | | MakeUint128(576460752303423487u, 18446744073709551615u), |
859 | | MakeUint128(558992244657865200u, 8943875914525843207u), |
860 | | MakeUint128(542551296285575047u, 9765923333140350855u), |
861 | | MakeUint128(527049830677415760u, 8432797290838652167u), |
862 | | MakeUint128(512409557603043100u, 8198552921648689607u), |
863 | | }; |
864 | | |
865 | | // This kVmaxOverBase generated with |
866 | | // for (int base = 2; base < 37; ++base) { |
867 | | // absl::int128 max = std::numeric_limits<absl::int128>::max(); |
868 | | // auto result = max / base; |
869 | | // std::cout << "\tMakeInt128(" << absl::Int128High64(result) << ", " |
870 | | // << absl::Int128Low64(result) << "u),\n"; |
871 | | // } |
872 | | // See https://godbolt.org/z/7djYWz |
873 | | // |
874 | | // int128& operator/=(int128) is not constexpr, so hardcode the resulting array |
875 | | // to avoid a static initializer. |
876 | | template <> |
877 | | ABSL_CONST_INIT const int128 LookupTables<int128>::kVmaxOverBase[] = { |
878 | | 0, |
879 | | 0, |
880 | | MakeInt128(4611686018427387903, 18446744073709551615u), |
881 | | MakeInt128(3074457345618258602, 12297829382473034410u), |
882 | | MakeInt128(2305843009213693951, 18446744073709551615u), |
883 | | MakeInt128(1844674407370955161, 11068046444225730969u), |
884 | | MakeInt128(1537228672809129301, 6148914691236517205u), |
885 | | MakeInt128(1317624576693539401, 2635249153387078802u), |
886 | | MakeInt128(1152921504606846975, 18446744073709551615u), |
887 | | MakeInt128(1024819115206086200, 16397105843297379214u), |
888 | | MakeInt128(922337203685477580, 14757395258967641292u), |
889 | | MakeInt128(838488366986797800, 13415813871788764811u), |
890 | | MakeInt128(768614336404564650, 12297829382473034410u), |
891 | | MakeInt128(709490156681136600, 11351842506898185609u), |
892 | | MakeInt128(658812288346769700, 10540996613548315209u), |
893 | | MakeInt128(614891469123651720, 9838263505978427528u), |
894 | | MakeInt128(576460752303423487, 18446744073709551615u), |
895 | | MakeInt128(542551296285575047, 9765923333140350855u), |
896 | | MakeInt128(512409557603043100, 8198552921648689607u), |
897 | | MakeInt128(485440633518672410, 17475862806672206794u), |
898 | | MakeInt128(461168601842738790, 7378697629483820646u), |
899 | | MakeInt128(439208192231179800, 7027331075698876806u), |
900 | | MakeInt128(419244183493398900, 6707906935894382405u), |
901 | | MakeInt128(401016175515425035, 2406097053092550210u), |
902 | | MakeInt128(384307168202282325, 6148914691236517205u), |
903 | | MakeInt128(368934881474191032, 5902958103587056517u), |
904 | | MakeInt128(354745078340568300, 5675921253449092804u), |
905 | | MakeInt128(341606371735362066, 17763531330238827482u), |
906 | | MakeInt128(329406144173384850, 5270498306774157604u), |
907 | | MakeInt128(318047311615681924, 7633135478776366185u), |
908 | | MakeInt128(307445734561825860, 4919131752989213764u), |
909 | | MakeInt128(297528130221121800, 4760450083537948804u), |
910 | | MakeInt128(288230376151711743, 18446744073709551615u), |
911 | | MakeInt128(279496122328932600, 4471937957262921603u), |
912 | | MakeInt128(271275648142787523, 14106333703424951235u), |
913 | | MakeInt128(263524915338707880, 4216398645419326083u), |
914 | | MakeInt128(256204778801521550, 4099276460824344803u), |
915 | | }; |
916 | | |
917 | | // This kVminOverBase generated with |
918 | | // for (int base = 2; base < 37; ++base) { |
919 | | // absl::int128 min = std::numeric_limits<absl::int128>::min(); |
920 | | // auto result = min / base; |
921 | | // std::cout << "\tMakeInt128(" << absl::Int128High64(result) << ", " |
922 | | // << absl::Int128Low64(result) << "u),\n"; |
923 | | // } |
924 | | // |
925 | | // See https://godbolt.org/z/7djYWz |
926 | | // |
927 | | // int128& operator/=(int128) is not constexpr, so hardcode the resulting array |
928 | | // to avoid a static initializer. |
929 | | template <> |
930 | | ABSL_CONST_INIT const int128 LookupTables<int128>::kVminOverBase[] = { |
931 | | 0, |
932 | | 0, |
933 | | MakeInt128(-4611686018427387904, 0u), |
934 | | MakeInt128(-3074457345618258603, 6148914691236517206u), |
935 | | MakeInt128(-2305843009213693952, 0u), |
936 | | MakeInt128(-1844674407370955162, 7378697629483820647u), |
937 | | MakeInt128(-1537228672809129302, 12297829382473034411u), |
938 | | MakeInt128(-1317624576693539402, 15811494920322472814u), |
939 | | MakeInt128(-1152921504606846976, 0u), |
940 | | MakeInt128(-1024819115206086201, 2049638230412172402u), |
941 | | MakeInt128(-922337203685477581, 3689348814741910324u), |
942 | | MakeInt128(-838488366986797801, 5030930201920786805u), |
943 | | MakeInt128(-768614336404564651, 6148914691236517206u), |
944 | | MakeInt128(-709490156681136601, 7094901566811366007u), |
945 | | MakeInt128(-658812288346769701, 7905747460161236407u), |
946 | | MakeInt128(-614891469123651721, 8608480567731124088u), |
947 | | MakeInt128(-576460752303423488, 0u), |
948 | | MakeInt128(-542551296285575048, 8680820740569200761u), |
949 | | MakeInt128(-512409557603043101, 10248191152060862009u), |
950 | | MakeInt128(-485440633518672411, 970881267037344822u), |
951 | | MakeInt128(-461168601842738791, 11068046444225730970u), |
952 | | MakeInt128(-439208192231179801, 11419412998010674810u), |
953 | | MakeInt128(-419244183493398901, 11738837137815169211u), |
954 | | MakeInt128(-401016175515425036, 16040647020617001406u), |
955 | | MakeInt128(-384307168202282326, 12297829382473034411u), |
956 | | MakeInt128(-368934881474191033, 12543785970122495099u), |
957 | | MakeInt128(-354745078340568301, 12770822820260458812u), |
958 | | MakeInt128(-341606371735362067, 683212743470724134u), |
959 | | MakeInt128(-329406144173384851, 13176245766935394012u), |
960 | | MakeInt128(-318047311615681925, 10813608594933185431u), |
961 | | MakeInt128(-307445734561825861, 13527612320720337852u), |
962 | | MakeInt128(-297528130221121801, 13686293990171602812u), |
963 | | MakeInt128(-288230376151711744, 0u), |
964 | | MakeInt128(-279496122328932601, 13974806116446630013u), |
965 | | MakeInt128(-271275648142787524, 4340410370284600381u), |
966 | | MakeInt128(-263524915338707881, 14230345428290225533u), |
967 | | MakeInt128(-256204778801521551, 14347467612885206813u), |
968 | | }; |
969 | | |
970 | | template <typename IntType> |
971 | | ABSL_CONST_INIT const IntType LookupTables<IntType>::kVmaxOverBase[] = |
972 | | X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max()); |
973 | | |
974 | | template <typename IntType> |
975 | | ABSL_CONST_INIT const IntType LookupTables<IntType>::kVminOverBase[] = |
976 | | X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min()); |
977 | | |
978 | | #undef X_OVER_BASE_INITIALIZER |
979 | | |
980 | | template <typename IntType> |
981 | | inline bool safe_parse_positive_int(absl::string_view text, int base, |
982 | 0 | absl::Nonnull<IntType*> value_p) { |
983 | 0 | IntType value = 0; |
984 | 0 | const IntType vmax = std::numeric_limits<IntType>::max(); |
985 | 0 | assert(vmax > 0); |
986 | 0 | assert(base >= 0); |
987 | 0 | const IntType base_inttype = static_cast<IntType>(base); |
988 | 0 | assert(vmax >= base_inttype); |
989 | 0 | const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base]; |
990 | 0 | assert(base < 2 || |
991 | 0 | std::numeric_limits<IntType>::max() / base_inttype == vmax_over_base); |
992 | 0 | const char* start = text.data(); |
993 | 0 | const char* end = start + text.size(); |
994 | | // loop over digits |
995 | 0 | for (; start < end; ++start) { |
996 | 0 | unsigned char c = static_cast<unsigned char>(start[0]); |
997 | 0 | IntType digit = static_cast<IntType>(kAsciiToInt[c]); |
998 | 0 | if (digit >= base_inttype) { |
999 | 0 | *value_p = value; |
1000 | 0 | return false; |
1001 | 0 | } |
1002 | 0 | if (value > vmax_over_base) { |
1003 | 0 | *value_p = vmax; |
1004 | 0 | return false; |
1005 | 0 | } |
1006 | 0 | value *= base_inttype; |
1007 | 0 | if (value > vmax - digit) { |
1008 | 0 | *value_p = vmax; |
1009 | 0 | return false; |
1010 | 0 | } |
1011 | 0 | value += digit; |
1012 | 0 | } |
1013 | 0 | *value_p = value; |
1014 | 0 | return true; |
1015 | 0 | } Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_parse_positive_int<int>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, int, int*) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_parse_positive_int<long>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, int, long*) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_parse_positive_int<absl::int128>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, int, absl::int128*) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_parse_positive_int<unsigned int>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, int, unsigned int*) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_parse_positive_int<unsigned long>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, int, unsigned long*) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_parse_positive_int<absl::uint128>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, int, absl::uint128*) |
1016 | | |
1017 | | template <typename IntType> |
1018 | | inline bool safe_parse_negative_int(absl::string_view text, int base, |
1019 | 0 | absl::Nonnull<IntType*> value_p) { |
1020 | 0 | IntType value = 0; |
1021 | 0 | const IntType vmin = std::numeric_limits<IntType>::min(); |
1022 | 0 | assert(vmin < 0); |
1023 | 0 | assert(vmin <= 0 - base); |
1024 | 0 | IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base]; |
1025 | 0 | assert(base < 2 || |
1026 | 0 | std::numeric_limits<IntType>::min() / base == vmin_over_base); |
1027 | | // 2003 c++ standard [expr.mul] |
1028 | | // "... the sign of the remainder is implementation-defined." |
1029 | | // Although (vmin/base)*base + vmin%base is always vmin. |
1030 | | // 2011 c++ standard tightens the spec but we cannot rely on it. |
1031 | | // TODO(junyer): Handle this in the lookup table generation. |
1032 | 0 | if (vmin % base > 0) { |
1033 | 0 | vmin_over_base += 1; |
1034 | 0 | } |
1035 | 0 | const char* start = text.data(); |
1036 | 0 | const char* end = start + text.size(); |
1037 | | // loop over digits |
1038 | 0 | for (; start < end; ++start) { |
1039 | 0 | unsigned char c = static_cast<unsigned char>(start[0]); |
1040 | 0 | int digit = kAsciiToInt[c]; |
1041 | 0 | if (digit >= base) { |
1042 | 0 | *value_p = value; |
1043 | 0 | return false; |
1044 | 0 | } |
1045 | 0 | if (value < vmin_over_base) { |
1046 | 0 | *value_p = vmin; |
1047 | 0 | return false; |
1048 | 0 | } |
1049 | 0 | value *= base; |
1050 | 0 | if (value < vmin + digit) { |
1051 | 0 | *value_p = vmin; |
1052 | 0 | return false; |
1053 | 0 | } |
1054 | 0 | value -= digit; |
1055 | 0 | } |
1056 | 0 | *value_p = value; |
1057 | 0 | return true; |
1058 | 0 | } Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_parse_negative_int<int>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, int, int*) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_parse_negative_int<long>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, int, long*) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_parse_negative_int<absl::int128>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, int, absl::int128*) |
1059 | | |
1060 | | // Input format based on POSIX.1-2008 strtol |
1061 | | // http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html |
1062 | | template <typename IntType> |
1063 | | inline bool safe_int_internal(absl::string_view text, |
1064 | 0 | absl::Nonnull<IntType*> value_p, int base) { |
1065 | 0 | *value_p = 0; |
1066 | 0 | bool negative; |
1067 | 0 | if (!safe_parse_sign_and_base(&text, &base, &negative)) { |
1068 | 0 | return false; |
1069 | 0 | } |
1070 | 0 | if (!negative) { |
1071 | 0 | return safe_parse_positive_int(text, base, value_p); |
1072 | 0 | } else { |
1073 | 0 | return safe_parse_negative_int(text, base, value_p); |
1074 | 0 | } |
1075 | 0 | } Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_int_internal<int>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, int*, int) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_int_internal<long>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, long*, int) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_int_internal<absl::int128>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, absl::int128*, int) |
1076 | | |
1077 | | template <typename IntType> |
1078 | | inline bool safe_uint_internal(absl::string_view text, |
1079 | 0 | absl::Nonnull<IntType*> value_p, int base) { |
1080 | 0 | *value_p = 0; |
1081 | 0 | bool negative; |
1082 | 0 | if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) { |
1083 | 0 | return false; |
1084 | 0 | } |
1085 | 0 | return safe_parse_positive_int(text, base, value_p); |
1086 | 0 | } Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_uint_internal<unsigned int>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, unsigned int*, int) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_uint_internal<unsigned long>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, unsigned long*, int) Unexecuted instantiation: numbers.cc:bool absl::(anonymous namespace)::safe_uint_internal<absl::uint128>(std::__1::basic_string_view<char, std::__1::char_traits<char> >, absl::uint128*, int) |
1087 | | } // anonymous namespace |
1088 | | |
1089 | | namespace numbers_internal { |
1090 | | |
1091 | | // Digit conversion. |
1092 | | ABSL_CONST_INIT ABSL_DLL const char kHexChar[] = |
1093 | | "0123456789abcdef"; |
1094 | | |
1095 | | ABSL_CONST_INIT ABSL_DLL const char kHexTable[513] = |
1096 | | "000102030405060708090a0b0c0d0e0f" |
1097 | | "101112131415161718191a1b1c1d1e1f" |
1098 | | "202122232425262728292a2b2c2d2e2f" |
1099 | | "303132333435363738393a3b3c3d3e3f" |
1100 | | "404142434445464748494a4b4c4d4e4f" |
1101 | | "505152535455565758595a5b5c5d5e5f" |
1102 | | "606162636465666768696a6b6c6d6e6f" |
1103 | | "707172737475767778797a7b7c7d7e7f" |
1104 | | "808182838485868788898a8b8c8d8e8f" |
1105 | | "909192939495969798999a9b9c9d9e9f" |
1106 | | "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf" |
1107 | | "b0b1b2b3b4b5b6b7b8b9babbbcbdbebf" |
1108 | | "c0c1c2c3c4c5c6c7c8c9cacbcccdcecf" |
1109 | | "d0d1d2d3d4d5d6d7d8d9dadbdcdddedf" |
1110 | | "e0e1e2e3e4e5e6e7e8e9eaebecedeeef" |
1111 | | "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff"; |
1112 | | |
1113 | | bool safe_strto32_base(absl::string_view text, absl::Nonnull<int32_t*> value, |
1114 | 0 | int base) { |
1115 | 0 | return safe_int_internal<int32_t>(text, value, base); |
1116 | 0 | } |
1117 | | |
1118 | | bool safe_strto64_base(absl::string_view text, absl::Nonnull<int64_t*> value, |
1119 | 0 | int base) { |
1120 | 0 | return safe_int_internal<int64_t>(text, value, base); |
1121 | 0 | } |
1122 | | |
1123 | | bool safe_strto128_base(absl::string_view text, absl::Nonnull<int128*> value, |
1124 | 0 | int base) { |
1125 | 0 | return safe_int_internal<absl::int128>(text, value, base); |
1126 | 0 | } |
1127 | | |
1128 | | bool safe_strtou32_base(absl::string_view text, absl::Nonnull<uint32_t*> value, |
1129 | 0 | int base) { |
1130 | 0 | return safe_uint_internal<uint32_t>(text, value, base); |
1131 | 0 | } |
1132 | | |
1133 | | bool safe_strtou64_base(absl::string_view text, absl::Nonnull<uint64_t*> value, |
1134 | 0 | int base) { |
1135 | 0 | return safe_uint_internal<uint64_t>(text, value, base); |
1136 | 0 | } |
1137 | | |
1138 | | bool safe_strtou128_base(absl::string_view text, absl::Nonnull<uint128*> value, |
1139 | 0 | int base) { |
1140 | 0 | return safe_uint_internal<absl::uint128>(text, value, base); |
1141 | 0 | } |
1142 | | |
1143 | | } // namespace numbers_internal |
1144 | | ABSL_NAMESPACE_END |
1145 | | } // namespace absl |