Coverage Report

Created: 2024-09-23 06:29

/src/abseil-cpp/absl/synchronization/mutex.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2017 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// mutex.h
17
// -----------------------------------------------------------------------------
18
//
19
// This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20
// most common type of synchronization primitive for facilitating locks on
21
// shared resources. A mutex is used to prevent multiple threads from accessing
22
// and/or writing to a shared resource concurrently.
23
//
24
// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25
// features:
26
//   * Conditional predicates intrinsic to the `Mutex` object
27
//   * Shared/reader locks, in addition to standard exclusive/writer locks
28
//   * Deadlock detection and debug support.
29
//
30
// The following helper classes are also defined within this file:
31
//
32
//  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33
//              write access within the current scope.
34
//
35
//  ReaderMutexLock
36
//            - An RAII wrapper to acquire and release a `Mutex` for shared/read
37
//              access within the current scope.
38
//
39
//  WriterMutexLock
40
//            - Effectively an alias for `MutexLock` above, designed for use in
41
//              distinguishing reader and writer locks within code.
42
//
43
// In addition to simple mutex locks, this file also defines ways to perform
44
// locking under certain conditions.
45
//
46
//  Condition - (Preferred) Used to wait for a particular predicate that
47
//              depends on state protected by the `Mutex` to become true.
48
//  CondVar   - A lower-level variant of `Condition` that relies on
49
//              application code to explicitly signal the `CondVar` when
50
//              a condition has been met.
51
//
52
// See below for more information on using `Condition` or `CondVar`.
53
//
54
// Mutexes and mutex behavior can be quite complicated. The information within
55
// this header file is limited, as a result. Please consult the Mutex guide for
56
// more complete information and examples.
57
58
#ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59
#define ABSL_SYNCHRONIZATION_MUTEX_H_
60
61
#include <atomic>
62
#include <cstdint>
63
#include <cstring>
64
#include <iterator>
65
#include <string>
66
67
#include "absl/base/attributes.h"
68
#include "absl/base/const_init.h"
69
#include "absl/base/internal/identity.h"
70
#include "absl/base/internal/low_level_alloc.h"
71
#include "absl/base/internal/thread_identity.h"
72
#include "absl/base/internal/tsan_mutex_interface.h"
73
#include "absl/base/port.h"
74
#include "absl/base/thread_annotations.h"
75
#include "absl/synchronization/internal/kernel_timeout.h"
76
#include "absl/synchronization/internal/per_thread_sem.h"
77
#include "absl/time/time.h"
78
79
namespace absl {
80
ABSL_NAMESPACE_BEGIN
81
82
class Condition;
83
struct SynchWaitParams;
84
85
// -----------------------------------------------------------------------------
86
// Mutex
87
// -----------------------------------------------------------------------------
88
//
89
// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
90
// on some resource, typically a variable or data structure with associated
91
// invariants. Proper usage of mutexes prevents concurrent access by different
92
// threads to the same resource.
93
//
94
// A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
95
// The `Lock()` operation *acquires* a `Mutex` (in a state known as an
96
// *exclusive* -- or *write* -- lock), and the `Unlock()` operation *releases* a
97
// Mutex. During the span of time between the Lock() and Unlock() operations,
98
// a mutex is said to be *held*. By design, all mutexes support exclusive/write
99
// locks, as this is the most common way to use a mutex.
100
//
101
// Mutex operations are only allowed under certain conditions; otherwise an
102
// operation is "invalid", and disallowed by the API. The conditions concern
103
// both the current state of the mutex and the identity of the threads that
104
// are performing the operations.
105
//
106
// The `Mutex` state machine for basic lock/unlock operations is quite simple:
107
//
108
// |                | Lock()                 | Unlock() |
109
// |----------------+------------------------+----------|
110
// | Free           | Exclusive              | invalid  |
111
// | Exclusive      | blocks, then exclusive | Free     |
112
//
113
// The full conditions are as follows.
114
//
115
// * Calls to `Unlock()` require that the mutex be held, and must be made in the
116
//   same thread that performed the corresponding `Lock()` operation which
117
//   acquired the mutex; otherwise the call is invalid.
118
//
119
// * The mutex being non-reentrant (or non-recursive) means that a call to
120
//   `Lock()` or `TryLock()` must not be made in a thread that already holds the
121
//   mutex; such a call is invalid.
122
//
123
// * In other words, the state of being "held" has both a temporal component
124
//   (from `Lock()` until `Unlock()`) as well as a thread identity component:
125
//   the mutex is held *by a particular thread*.
126
//
127
// An "invalid" operation has undefined behavior. The `Mutex` implementation
128
// is allowed to do anything on an invalid call, including, but not limited to,
129
// crashing with a useful error message, silently succeeding, or corrupting
130
// data structures. In debug mode, the implementation may crash with a useful
131
// error message.
132
//
133
// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
134
// is, however, approximately fair over long periods, and starvation-free for
135
// threads at the same priority.
136
//
137
// The lock/unlock primitives are now annotated with lock annotations
138
// defined in (base/thread_annotations.h). When writing multi-threaded code,
139
// you should use lock annotations whenever possible to document your lock
140
// synchronization policy. Besides acting as documentation, these annotations
141
// also help compilers or static analysis tools to identify and warn about
142
// issues that could potentially result in race conditions and deadlocks.
143
//
144
// For more information about the lock annotations, please see
145
// [Thread Safety
146
// Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) in the Clang
147
// documentation.
148
//
149
// See also `MutexLock`, below, for scoped `Mutex` acquisition.
150
151
class ABSL_LOCKABLE ABSL_ATTRIBUTE_WARN_UNUSED Mutex {
152
 public:
153
  // Creates a `Mutex` that is not held by anyone. This constructor is
154
  // typically used for Mutexes allocated on the heap or the stack.
155
  //
156
  // To create `Mutex` instances with static storage duration
157
  // (e.g. a namespace-scoped or global variable), see
158
  // `Mutex::Mutex(absl::kConstInit)` below instead.
159
  Mutex();
160
161
  // Creates a mutex with static storage duration.  A global variable
162
  // constructed this way avoids the lifetime issues that can occur on program
163
  // startup and shutdown.  (See absl/base/const_init.h.)
164
  //
165
  // For Mutexes allocated on the heap and stack, instead use the default
166
  // constructor, which can interact more fully with the thread sanitizer.
167
  //
168
  // Example usage:
169
  //   namespace foo {
170
  //   ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
171
  //   }
172
  explicit constexpr Mutex(absl::ConstInitType);
173
174
  ~Mutex();
175
176
  // Mutex::Lock()
177
  //
178
  // Blocks the calling thread, if necessary, until this `Mutex` is free, and
179
  // then acquires it exclusively. (This lock is also known as a "write lock.")
180
  void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
181
182
  // Mutex::Unlock()
183
  //
184
  // Releases this `Mutex` and returns it from the exclusive/write state to the
185
  // free state. Calling thread must hold the `Mutex` exclusively.
186
  void Unlock() ABSL_UNLOCK_FUNCTION();
187
188
  // Mutex::TryLock()
189
  //
190
  // If the mutex can be acquired without blocking, does so exclusively and
191
  // returns `true`. Otherwise, returns `false`. Returns `true` with high
192
  // probability if the `Mutex` was free.
193
  ABSL_MUST_USE_RESULT bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
194
195
  // Mutex::AssertHeld()
196
  //
197
  // Require that the mutex be held exclusively (write mode) by this thread.
198
  //
199
  // If the mutex is not currently held by this thread, this function may report
200
  // an error (typically by crashing with a diagnostic) or it may do nothing.
201
  // This function is intended only as a tool to assist debugging; it doesn't
202
  // guarantee correctness.
203
  void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
204
205
  // ---------------------------------------------------------------------------
206
  // Reader-Writer Locking
207
  // ---------------------------------------------------------------------------
208
209
  // A Mutex can also be used as a starvation-free reader-writer lock.
210
  // Neither read-locks nor write-locks are reentrant/recursive to avoid
211
  // potential client programming errors.
212
  //
213
  // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
214
  // `Unlock()` and `TryLock()` methods for use within applications mixing
215
  // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
216
  // manner can make locking behavior clearer when mixing read and write modes.
217
  //
218
  // Introducing reader locks necessarily complicates the `Mutex` state
219
  // machine somewhat. The table below illustrates the allowed state transitions
220
  // of a mutex in such cases. Note that ReaderLock() may block even if the lock
221
  // is held in shared mode; this occurs when another thread is blocked on a
222
  // call to WriterLock().
223
  //
224
  // ---------------------------------------------------------------------------
225
  //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
226
  // ---------------------------------------------------------------------------
227
  // State
228
  // ---------------------------------------------------------------------------
229
  // Free           Exclusive    invalid   Shared(1)              invalid
230
  // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
231
  // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
232
  // Exclusive      blocks       Free      blocks                 invalid
233
  // ---------------------------------------------------------------------------
234
  //
235
  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
236
237
  // Mutex::ReaderLock()
238
  //
239
  // Blocks the calling thread, if necessary, until this `Mutex` is either free,
240
  // or in shared mode, and then acquires a share of it. Note that
241
  // `ReaderLock()` will block if some other thread has an exclusive/writer lock
242
  // on the mutex.
243
244
  void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
245
246
  // Mutex::ReaderUnlock()
247
  //
248
  // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
249
  // the free state if this thread holds the last reader lock on the mutex. Note
250
  // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
251
  void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
252
253
  // Mutex::ReaderTryLock()
254
  //
255
  // If the mutex can be acquired without blocking, acquires this mutex for
256
  // shared access and returns `true`. Otherwise, returns `false`. Returns
257
  // `true` with high probability if the `Mutex` was free or shared.
258
  ABSL_MUST_USE_RESULT bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
259
260
  // Mutex::AssertReaderHeld()
261
  //
262
  // Require that the mutex be held at least in shared mode (read mode) by this
263
  // thread.
264
  //
265
  // If the mutex is not currently held by this thread, this function may report
266
  // an error (typically by crashing with a diagnostic) or it may do nothing.
267
  // This function is intended only as a tool to assist debugging; it doesn't
268
  // guarantee correctness.
269
  void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
270
271
  // Mutex::WriterLock()
272
  // Mutex::WriterUnlock()
273
  // Mutex::WriterTryLock()
274
  //
275
  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
276
  //
277
  // These methods may be used (along with the complementary `Reader*()`
278
  // methods) to distinguish simple exclusive `Mutex` usage (`Lock()`,
279
  // etc.) from reader/writer lock usage.
280
1
  void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
281
282
1
  void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
283
284
  ABSL_MUST_USE_RESULT bool WriterTryLock()
285
0
      ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
286
0
    return this->TryLock();
287
0
  }
288
289
  // ---------------------------------------------------------------------------
290
  // Conditional Critical Regions
291
  // ---------------------------------------------------------------------------
292
293
  // Conditional usage of a `Mutex` can occur using two distinct paradigms:
294
  //
295
  //   * Use of `Mutex` member functions with `Condition` objects.
296
  //   * Use of the separate `CondVar` abstraction.
297
  //
298
  // In general, prefer use of `Condition` and the `Mutex` member functions
299
  // listed below over `CondVar`. When there are multiple threads waiting on
300
  // distinctly different conditions, however, a battery of `CondVar`s may be
301
  // more efficient. This section discusses use of `Condition` objects.
302
  //
303
  // `Mutex` contains member functions for performing lock operations only under
304
  // certain conditions, of class `Condition`. For correctness, the `Condition`
305
  // must return a boolean that is a pure function, only of state protected by
306
  // the `Mutex`. The condition must be invariant w.r.t. environmental state
307
  // such as thread, cpu id, or time, and must be `noexcept`. The condition will
308
  // always be invoked with the mutex held in at least read mode, so you should
309
  // not block it for long periods or sleep it on a timer.
310
  //
311
  // Since a condition must not depend directly on the current time, use
312
  // `*WithTimeout()` member function variants to make your condition
313
  // effectively true after a given duration, or `*WithDeadline()` variants to
314
  // make your condition effectively true after a given time.
315
  //
316
  // The condition function should have no side-effects aside from debug
317
  // logging; as a special exception, the function may acquire other mutexes
318
  // provided it releases all those that it acquires.  (This exception was
319
  // required to allow logging.)
320
321
  // Mutex::Await()
322
  //
323
  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
324
  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
325
  // same mode in which it was previously held. If the condition is initially
326
  // `true`, `Await()` *may* skip the release/re-acquire step.
327
  //
328
  // `Await()` requires that this thread holds this `Mutex` in some mode.
329
0
  void Await(const Condition& cond) {
330
0
    AwaitCommon(cond, synchronization_internal::KernelTimeout::Never());
331
0
  }
332
333
  // Mutex::LockWhen()
334
  // Mutex::ReaderLockWhen()
335
  // Mutex::WriterLockWhen()
336
  //
337
  // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
338
  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
339
  // logically equivalent to `*Lock(); Await();` though they may have different
340
  // performance characteristics.
341
0
  void LockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
342
0
    LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
343
0
                   true);
344
0
  }
345
346
0
  void ReaderLockWhen(const Condition& cond) ABSL_SHARED_LOCK_FUNCTION() {
347
0
    LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
348
0
                   false);
349
0
  }
350
351
0
  void WriterLockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
352
0
    this->LockWhen(cond);
353
0
  }
354
355
  // ---------------------------------------------------------------------------
356
  // Mutex Variants with Timeouts/Deadlines
357
  // ---------------------------------------------------------------------------
358
359
  // Mutex::AwaitWithTimeout()
360
  // Mutex::AwaitWithDeadline()
361
  //
362
  // Unlocks this `Mutex` and blocks until simultaneously:
363
  //   - either `cond` is true or the {timeout has expired, deadline has passed}
364
  //     and
365
  //   - this `Mutex` can be reacquired,
366
  // then reacquire this `Mutex` in the same mode in which it was previously
367
  // held, returning `true` iff `cond` is `true` on return.
368
  //
369
  // If the condition is initially `true`, the implementation *may* skip the
370
  // release/re-acquire step and return immediately.
371
  //
372
  // Deadlines in the past are equivalent to an immediate deadline.
373
  // Negative timeouts are equivalent to a zero timeout.
374
  //
375
  // This method requires that this thread holds this `Mutex` in some mode.
376
0
  bool AwaitWithTimeout(const Condition& cond, absl::Duration timeout) {
377
0
    return AwaitCommon(cond, synchronization_internal::KernelTimeout{timeout});
378
0
  }
379
380
0
  bool AwaitWithDeadline(const Condition& cond, absl::Time deadline) {
381
0
    return AwaitCommon(cond, synchronization_internal::KernelTimeout{deadline});
382
0
  }
383
384
  // Mutex::LockWhenWithTimeout()
385
  // Mutex::ReaderLockWhenWithTimeout()
386
  // Mutex::WriterLockWhenWithTimeout()
387
  //
388
  // Blocks until simultaneously both:
389
  //   - either `cond` is `true` or the timeout has expired, and
390
  //   - this `Mutex` can be acquired,
391
  // then atomically acquires this `Mutex`, returning `true` iff `cond` is
392
  // `true` on return.
393
  //
394
  // Negative timeouts are equivalent to a zero timeout.
395
  bool LockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
396
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
397
0
    return LockWhenCommon(
398
0
        cond, synchronization_internal::KernelTimeout{timeout}, true);
399
0
  }
400
  bool ReaderLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
401
0
      ABSL_SHARED_LOCK_FUNCTION() {
402
0
    return LockWhenCommon(
403
0
        cond, synchronization_internal::KernelTimeout{timeout}, false);
404
0
  }
405
  bool WriterLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
406
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
407
0
    return this->LockWhenWithTimeout(cond, timeout);
408
0
  }
409
410
  // Mutex::LockWhenWithDeadline()
411
  // Mutex::ReaderLockWhenWithDeadline()
412
  // Mutex::WriterLockWhenWithDeadline()
413
  //
414
  // Blocks until simultaneously both:
415
  //   - either `cond` is `true` or the deadline has been passed, and
416
  //   - this `Mutex` can be acquired,
417
  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
418
  // on return.
419
  //
420
  // Deadlines in the past are equivalent to an immediate deadline.
421
  bool LockWhenWithDeadline(const Condition& cond, absl::Time deadline)
422
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
423
0
    return LockWhenCommon(
424
0
        cond, synchronization_internal::KernelTimeout{deadline}, true);
425
0
  }
426
  bool ReaderLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
427
0
      ABSL_SHARED_LOCK_FUNCTION() {
428
0
    return LockWhenCommon(
429
0
        cond, synchronization_internal::KernelTimeout{deadline}, false);
430
0
  }
431
  bool WriterLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
432
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
433
0
    return this->LockWhenWithDeadline(cond, deadline);
434
0
  }
435
436
  // ---------------------------------------------------------------------------
437
  // Debug Support: Invariant Checking, Deadlock Detection, Logging.
438
  // ---------------------------------------------------------------------------
439
440
  // Mutex::EnableInvariantDebugging()
441
  //
442
  // If `invariant`!=null and if invariant debugging has been enabled globally,
443
  // cause `(*invariant)(arg)` to be called at moments when the invariant for
444
  // this `Mutex` should hold (for example: just after acquire, just before
445
  // release).
446
  //
447
  // The routine `invariant` should have no side-effects since it is not
448
  // guaranteed how many times it will be called; it should check the invariant
449
  // and crash if it does not hold. Enabling global invariant debugging may
450
  // substantially reduce `Mutex` performance; it should be set only for
451
  // non-production runs.  Optimization options may also disable invariant
452
  // checks.
453
  void EnableInvariantDebugging(void (*invariant)(void*), void* arg);
454
455
  // Mutex::EnableDebugLog()
456
  //
457
  // Cause all subsequent uses of this `Mutex` to be logged via
458
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
459
  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
460
  //
461
  // Note: This method substantially reduces `Mutex` performance.
462
  void EnableDebugLog(const char* name);
463
464
  // Deadlock detection
465
466
  // Mutex::ForgetDeadlockInfo()
467
  //
468
  // Forget any deadlock-detection information previously gathered
469
  // about this `Mutex`. Call this method in debug mode when the lock ordering
470
  // of a `Mutex` changes.
471
  void ForgetDeadlockInfo();
472
473
  // Mutex::AssertNotHeld()
474
  //
475
  // Return immediately if this thread does not hold this `Mutex` in any
476
  // mode; otherwise, may report an error (typically by crashing with a
477
  // diagnostic), or may return immediately.
478
  //
479
  // Currently this check is performed only if all of:
480
  //    - in debug mode
481
  //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
482
  //    - number of locks concurrently held by this thread is not large.
483
  // are true.
484
  void AssertNotHeld() const;
485
486
  // Special cases.
487
488
  // A `MuHow` is a constant that indicates how a lock should be acquired.
489
  // Internal implementation detail.  Clients should ignore.
490
  typedef const struct MuHowS* MuHow;
491
492
  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
493
  //
494
  // Causes the `Mutex` implementation to prepare itself for re-entry caused by
495
  // future use of `Mutex` within a fatal signal handler. This method is
496
  // intended for use only for last-ditch attempts to log crash information.
497
  // It does not guarantee that attempts to use Mutexes within the handler will
498
  // not deadlock; it merely makes other faults less likely.
499
  //
500
  // WARNING:  This routine must be invoked from a signal handler, and the
501
  // signal handler must either loop forever or terminate the process.
502
  // Attempts to return from (or `longjmp` out of) the signal handler once this
503
  // call has been made may cause arbitrary program behaviour including
504
  // crashes and deadlocks.
505
  static void InternalAttemptToUseMutexInFatalSignalHandler();
506
507
 private:
508
  std::atomic<intptr_t> mu_;  // The Mutex state.
509
510
  // Post()/Wait() versus associated PerThreadSem; in class for required
511
  // friendship with PerThreadSem.
512
  static void IncrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w);
513
  static bool DecrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w,
514
                                synchronization_internal::KernelTimeout t);
515
516
  // slow path acquire
517
  void LockSlowLoop(SynchWaitParams* waitp, int flags);
518
  // wrappers around LockSlowLoop()
519
  bool LockSlowWithDeadline(MuHow how, const Condition* cond,
520
                            synchronization_internal::KernelTimeout t,
521
                            int flags);
522
  void LockSlow(MuHow how, const Condition* cond,
523
                int flags) ABSL_ATTRIBUTE_COLD;
524
  // slow path release
525
  void UnlockSlow(SynchWaitParams* waitp) ABSL_ATTRIBUTE_COLD;
526
  // TryLock slow path.
527
  bool TryLockSlow();
528
  // ReaderTryLock slow path.
529
  bool ReaderTryLockSlow();
530
  // Common code between Await() and AwaitWithTimeout/Deadline()
531
  bool AwaitCommon(const Condition& cond,
532
                   synchronization_internal::KernelTimeout t);
533
  bool LockWhenCommon(const Condition& cond,
534
                      synchronization_internal::KernelTimeout t, bool write);
535
  // Attempt to remove thread s from queue.
536
  void TryRemove(base_internal::PerThreadSynch* s);
537
  // Block a thread on mutex.
538
  void Block(base_internal::PerThreadSynch* s);
539
  // Wake a thread; return successor.
540
  base_internal::PerThreadSynch* Wakeup(base_internal::PerThreadSynch* w);
541
  void Dtor();
542
543
  friend class CondVar;   // for access to Trans()/Fer().
544
  void Trans(MuHow how);  // used for CondVar->Mutex transfer
545
  void Fer(
546
      base_internal::PerThreadSynch* w);  // used for CondVar->Mutex transfer
547
548
  // Catch the error of writing Mutex when intending MutexLock.
549
0
  explicit Mutex(const volatile Mutex* /*ignored*/) {}
550
551
  Mutex(const Mutex&) = delete;
552
  Mutex& operator=(const Mutex&) = delete;
553
};
554
555
// -----------------------------------------------------------------------------
556
// Mutex RAII Wrappers
557
// -----------------------------------------------------------------------------
558
559
// MutexLock
560
//
561
// `MutexLock` is a helper class, which acquires and releases a `Mutex` via
562
// RAII.
563
//
564
// Example:
565
//
566
// Class Foo {
567
//  public:
568
//   Foo::Bar* Baz() {
569
//     MutexLock lock(&mu_);
570
//     ...
571
//     return bar;
572
//   }
573
//
574
// private:
575
//   Mutex mu_;
576
// };
577
class ABSL_SCOPED_LOCKABLE MutexLock {
578
 public:
579
  // Constructors
580
581
  // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
582
  // guaranteed to be locked when this object is constructed. Requires that
583
  // `mu` be dereferenceable.
584
32
  explicit MutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
585
32
    this->mu_->Lock();
586
32
  }
587
588
  // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
589
  // the above, the condition given by `cond` is also guaranteed to hold when
590
  // this object is constructed.
591
  explicit MutexLock(Mutex* mu, const Condition& cond)
592
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
593
0
      : mu_(mu) {
594
0
    this->mu_->LockWhen(cond);
595
0
  }
596
597
  MutexLock(const MutexLock&) = delete;  // NOLINT(runtime/mutex)
598
  MutexLock(MutexLock&&) = delete;       // NOLINT(runtime/mutex)
599
  MutexLock& operator=(const MutexLock&) = delete;
600
  MutexLock& operator=(MutexLock&&) = delete;
601
602
32
  ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
603
604
 private:
605
  Mutex* const mu_;
606
};
607
608
// ReaderMutexLock
609
//
610
// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
611
// releases a shared lock on a `Mutex` via RAII.
612
class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
613
 public:
614
3.79M
  explicit ReaderMutexLock(Mutex* mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
615
3.79M
    mu->ReaderLock();
616
3.79M
  }
617
618
  explicit ReaderMutexLock(Mutex* mu, const Condition& cond)
619
      ABSL_SHARED_LOCK_FUNCTION(mu)
620
0
      : mu_(mu) {
621
0
    mu->ReaderLockWhen(cond);
622
0
  }
623
624
  ReaderMutexLock(const ReaderMutexLock&) = delete;
625
  ReaderMutexLock(ReaderMutexLock&&) = delete;
626
  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
627
  ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
628
629
3.79M
  ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
630
631
 private:
632
  Mutex* const mu_;
633
};
634
635
// WriterMutexLock
636
//
637
// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
638
// releases a write (exclusive) lock on a `Mutex` via RAII.
639
class ABSL_SCOPED_LOCKABLE WriterMutexLock {
640
 public:
641
  explicit WriterMutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
642
1
      : mu_(mu) {
643
1
    mu->WriterLock();
644
1
  }
645
646
  explicit WriterMutexLock(Mutex* mu, const Condition& cond)
647
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
648
0
      : mu_(mu) {
649
0
    mu->WriterLockWhen(cond);
650
0
  }
651
652
  WriterMutexLock(const WriterMutexLock&) = delete;
653
  WriterMutexLock(WriterMutexLock&&) = delete;
654
  WriterMutexLock& operator=(const WriterMutexLock&) = delete;
655
  WriterMutexLock& operator=(WriterMutexLock&&) = delete;
656
657
1
  ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
658
659
 private:
660
  Mutex* const mu_;
661
};
662
663
// -----------------------------------------------------------------------------
664
// Condition
665
// -----------------------------------------------------------------------------
666
//
667
// `Mutex` contains a number of member functions which take a `Condition` as an
668
// argument; clients can wait for conditions to become `true` before attempting
669
// to acquire the mutex. These sections are known as "condition critical"
670
// sections. To use a `Condition`, you simply need to construct it, and use
671
// within an appropriate `Mutex` member function; everything else in the
672
// `Condition` class is an implementation detail.
673
//
674
// A `Condition` is specified as a function pointer which returns a boolean.
675
// `Condition` functions should be pure functions -- their results should depend
676
// only on passed arguments, should not consult any external state (such as
677
// clocks), and should have no side-effects, aside from debug logging. Any
678
// objects that the function may access should be limited to those which are
679
// constant while the mutex is blocked on the condition (e.g. a stack variable),
680
// or objects of state protected explicitly by the mutex.
681
//
682
// No matter which construction is used for `Condition`, the underlying
683
// function pointer / functor / callable must not throw any
684
// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
685
// the face of a throwing `Condition`. (When Abseil is allowed to depend
686
// on C++17, these function pointers will be explicitly marked
687
// `noexcept`; until then this requirement cannot be enforced in the
688
// type system.)
689
//
690
// Note: to use a `Condition`, you need only construct it and pass it to a
691
// suitable `Mutex' member function, such as `Mutex::Await()`, or to the
692
// constructor of one of the scope guard classes.
693
//
694
// Example using LockWhen/Unlock:
695
//
696
//   // assume count_ is not internal reference count
697
//   int count_ ABSL_GUARDED_BY(mu_);
698
//   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
699
//
700
//   mu_.LockWhen(count_is_zero);
701
//   // ...
702
//   mu_.Unlock();
703
//
704
// Example using a scope guard:
705
//
706
//   {
707
//     MutexLock lock(&mu_, count_is_zero);
708
//     // ...
709
//   }
710
//
711
// When multiple threads are waiting on exactly the same condition, make sure
712
// that they are constructed with the same parameters (same pointer to function
713
// + arg, or same pointer to object + method), so that the mutex implementation
714
// can avoid redundantly evaluating the same condition for each thread.
715
class Condition {
716
 public:
717
  // A Condition that returns the result of "(*func)(arg)"
718
  Condition(bool (*func)(void*), void* arg);
719
720
  // Templated version for people who are averse to casts.
721
  //
722
  // To use a lambda, prepend it with unary plus, which converts the lambda
723
  // into a function pointer:
724
  //     Condition(+[](T* t) { return ...; }, arg).
725
  //
726
  // Note: lambdas in this case must contain no bound variables.
727
  //
728
  // See class comment for performance advice.
729
  template <typename T>
730
  Condition(bool (*func)(T*), T* arg);
731
732
  // Same as above, but allows for cases where `arg` comes from a pointer that
733
  // is convertible to the function parameter type `T*` but not an exact match.
734
  //
735
  // For example, the argument might be `X*` but the function takes `const X*`,
736
  // or the argument might be `Derived*` while the function takes `Base*`, and
737
  // so on for cases where the argument pointer can be implicitly converted.
738
  //
739
  // Implementation notes: This constructor overload is required in addition to
740
  // the one above to allow deduction of `T` from `arg` for cases such as where
741
  // a function template is passed as `func`. Also, the dummy `typename = void`
742
  // template parameter exists just to work around a MSVC mangling bug.
743
  template <typename T, typename = void>
744
  Condition(bool (*func)(T*),
745
            typename absl::internal::type_identity<T>::type* arg);
746
747
  // Templated version for invoking a method that returns a `bool`.
748
  //
749
  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
750
  // `object->Method()`.
751
  //
752
  // Implementation Note: `absl::internal::type_identity` is used to allow
753
  // methods to come from base classes. A simpler signature like
754
  // `Condition(T*, bool (T::*)())` does not suffice.
755
  template <typename T>
756
  Condition(T* object,
757
            bool (absl::internal::type_identity<T>::type::*method)());
758
759
  // Same as above, for const members
760
  template <typename T>
761
  Condition(const T* object,
762
            bool (absl::internal::type_identity<T>::type::*method)() const);
763
764
  // A Condition that returns the value of `*cond`
765
  explicit Condition(const bool* cond);
766
767
  // Templated version for invoking a functor that returns a `bool`.
768
  // This approach accepts pointers to non-mutable lambdas, `std::function`,
769
  // the result of` std::bind` and user-defined functors that define
770
  // `bool F::operator()() const`.
771
  //
772
  // Example:
773
  //
774
  //   auto reached = [this, current]() {
775
  //     mu_.AssertReaderHeld();                // For annotalysis.
776
  //     return processed_ >= current;
777
  //   };
778
  //   mu_.Await(Condition(&reached));
779
  //
780
  // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
781
  // the lambda as it may be called when the mutex is being unlocked from a
782
  // scope holding only a reader lock, which will make the assertion not
783
  // fulfilled and crash the binary.
784
785
  // See class comment for performance advice. In particular, if there
786
  // might be more than one waiter for the same condition, make sure
787
  // that all waiters construct the condition with the same pointers.
788
789
  // Implementation note: The second template parameter ensures that this
790
  // constructor doesn't participate in overload resolution if T doesn't have
791
  // `bool operator() const`.
792
  template <typename T, typename E = decltype(static_cast<bool (T::*)() const>(
793
                            &T::operator()))>
794
  explicit Condition(const T* obj)
795
      : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
796
797
  // A Condition that always returns `true`.
798
  // kTrue is only useful in a narrow set of circumstances, mostly when
799
  // it's passed conditionally. For example:
800
  //
801
  //   mu.LockWhen(some_flag ? kTrue : SomeOtherCondition);
802
  //
803
  // Note: {LockWhen,Await}With{Deadline,Timeout} methods with kTrue condition
804
  // don't return immediately when the timeout happens, they still block until
805
  // the Mutex becomes available. The return value of these methods does
806
  // not indicate if the timeout was reached; rather it indicates whether or
807
  // not the condition is true.
808
  ABSL_CONST_INIT static const Condition kTrue;
809
810
  // Evaluates the condition.
811
  bool Eval() const;
812
813
  // Returns `true` if the two conditions are guaranteed to return the same
814
  // value if evaluated at the same time, `false` if the evaluation *may* return
815
  // different results.
816
  //
817
  // Two `Condition` values are guaranteed equal if both their `func` and `arg`
818
  // components are the same. A null pointer is equivalent to a `true`
819
  // condition.
820
  static bool GuaranteedEqual(const Condition* a, const Condition* b);
821
822
 private:
823
  // Sizing an allocation for a method pointer can be subtle. In the Itanium
824
  // specifications, a method pointer has a predictable, uniform size. On the
825
  // other hand, MSVC ABI, method pointer sizes vary based on the
826
  // inheritance of the class. Specifically, method pointers from classes with
827
  // multiple inheritance are bigger than those of classes with single
828
  // inheritance. Other variations also exist.
829
830
#ifndef _MSC_VER
831
  // Allocation for a function pointer or method pointer.
832
  // The {0} initializer ensures that all unused bytes of this buffer are
833
  // always zeroed out.  This is necessary, because GuaranteedEqual() compares
834
  // all of the bytes, unaware of which bytes are relevant to a given `eval_`.
835
  using MethodPtr = bool (Condition::*)();
836
  char callback_[sizeof(MethodPtr)] = {0};
837
#else
838
  // It is well known that the larget MSVC pointer-to-member is 24 bytes. This
839
  // may be the largest known pointer-to-member of any platform. For this
840
  // reason we will allocate 24 bytes for MSVC platform toolchains.
841
  char callback_[24] = {0};
842
#endif
843
844
  // Function with which to evaluate callbacks and/or arguments.
845
  bool (*eval_)(const Condition*) = nullptr;
846
847
  // Either an argument for a function call or an object for a method call.
848
  void* arg_ = nullptr;
849
850
  // Various functions eval_ can point to:
851
  static bool CallVoidPtrFunction(const Condition*);
852
  template <typename T>
853
  static bool CastAndCallFunction(const Condition* c);
854
  template <typename T, typename ConditionMethodPtr>
855
  static bool CastAndCallMethod(const Condition* c);
856
857
  // Helper methods for storing, validating, and reading callback arguments.
858
  template <typename T>
859
0
  inline void StoreCallback(T callback) {
860
0
    static_assert(
861
0
        sizeof(callback) <= sizeof(callback_),
862
0
        "An overlarge pointer was passed as a callback to Condition.");
863
0
    std::memcpy(callback_, &callback, sizeof(callback));
864
0
  }
Unexecuted instantiation: void absl::Condition::StoreCallback<bool (*)(absl::SynchEvent*)>(bool (*)(absl::SynchEvent*))
Unexecuted instantiation: void absl::Condition::StoreCallback<bool (*)(void*)>(bool (*)(void*))
865
866
  template <typename T>
867
0
  inline void ReadCallback(T* callback) const {
868
0
    std::memcpy(callback, callback_, sizeof(*callback));
869
0
  }
870
871
0
  static bool AlwaysTrue(const Condition*) { return true; }
872
873
  // Used only to create kTrue.
874
0
  constexpr Condition() : eval_(AlwaysTrue), arg_(nullptr) {}
875
};
876
877
// -----------------------------------------------------------------------------
878
// CondVar
879
// -----------------------------------------------------------------------------
880
//
881
// A condition variable, reflecting state evaluated separately outside of the
882
// `Mutex` object, which can be signaled to wake callers.
883
// This class is not normally needed; use `Mutex` member functions such as
884
// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
885
// with many threads and many conditions, `CondVar` may be faster.
886
//
887
// The implementation may deliver signals to any condition variable at
888
// any time, even when no call to `Signal()` or `SignalAll()` is made; as a
889
// result, upon being awoken, you must check the logical condition you have
890
// been waiting upon.
891
//
892
// Examples:
893
//
894
// Usage for a thread waiting for some condition C protected by mutex mu:
895
//       mu.Lock();
896
//       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
897
//       //  C holds; process data
898
//       mu.Unlock();
899
//
900
// Usage to wake T is:
901
//       mu.Lock();
902
//       // process data, possibly establishing C
903
//       if (C) { cv->Signal(); }
904
//       mu.Unlock();
905
//
906
// If C may be useful to more than one waiter, use `SignalAll()` instead of
907
// `Signal()`.
908
//
909
// With this implementation it is efficient to use `Signal()/SignalAll()` inside
910
// the locked region; this usage can make reasoning about your program easier.
911
//
912
class CondVar {
913
 public:
914
  // A `CondVar` allocated on the heap or on the stack can use the this
915
  // constructor.
916
  CondVar();
917
918
  // CondVar::Wait()
919
  //
920
  // Atomically releases a `Mutex` and blocks on this condition variable.
921
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
922
  // spurious wakeup), then reacquires the `Mutex` and returns.
923
  //
924
  // Requires and ensures that the current thread holds the `Mutex`.
925
0
  void Wait(Mutex* mu) {
926
0
    WaitCommon(mu, synchronization_internal::KernelTimeout::Never());
927
0
  }
928
929
  // CondVar::WaitWithTimeout()
930
  //
931
  // Atomically releases a `Mutex` and blocks on this condition variable.
932
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
933
  // spurious wakeup), or until the timeout has expired, then reacquires
934
  // the `Mutex` and returns.
935
  //
936
  // Returns true if the timeout has expired without this `CondVar`
937
  // being signalled in any manner. If both the timeout has expired
938
  // and this `CondVar` has been signalled, the implementation is free
939
  // to return `true` or `false`.
940
  //
941
  // Requires and ensures that the current thread holds the `Mutex`.
942
0
  bool WaitWithTimeout(Mutex* mu, absl::Duration timeout) {
943
0
    return WaitCommon(mu, synchronization_internal::KernelTimeout(timeout));
944
0
  }
945
946
  // CondVar::WaitWithDeadline()
947
  //
948
  // Atomically releases a `Mutex` and blocks on this condition variable.
949
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
950
  // spurious wakeup), or until the deadline has passed, then reacquires
951
  // the `Mutex` and returns.
952
  //
953
  // Deadlines in the past are equivalent to an immediate deadline.
954
  //
955
  // Returns true if the deadline has passed without this `CondVar`
956
  // being signalled in any manner. If both the deadline has passed
957
  // and this `CondVar` has been signalled, the implementation is free
958
  // to return `true` or `false`.
959
  //
960
  // Requires and ensures that the current thread holds the `Mutex`.
961
0
  bool WaitWithDeadline(Mutex* mu, absl::Time deadline) {
962
0
    return WaitCommon(mu, synchronization_internal::KernelTimeout(deadline));
963
0
  }
964
965
  // CondVar::Signal()
966
  //
967
  // Signal this `CondVar`; wake at least one waiter if one exists.
968
  void Signal();
969
970
  // CondVar::SignalAll()
971
  //
972
  // Signal this `CondVar`; wake all waiters.
973
  void SignalAll();
974
975
  // CondVar::EnableDebugLog()
976
  //
977
  // Causes all subsequent uses of this `CondVar` to be logged via
978
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
979
  // Note: this method substantially reduces `CondVar` performance.
980
  void EnableDebugLog(const char* name);
981
982
 private:
983
  bool WaitCommon(Mutex* mutex, synchronization_internal::KernelTimeout t);
984
  void Remove(base_internal::PerThreadSynch* s);
985
  std::atomic<intptr_t> cv_;  // Condition variable state.
986
  CondVar(const CondVar&) = delete;
987
  CondVar& operator=(const CondVar&) = delete;
988
};
989
990
// Variants of MutexLock.
991
//
992
// If you find yourself using one of these, consider instead using
993
// Mutex::Unlock() and/or if-statements for clarity.
994
995
// MutexLockMaybe
996
//
997
// MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
998
class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
999
 public:
1000
  explicit MutexLockMaybe(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1001
0
      : mu_(mu) {
1002
0
    if (this->mu_ != nullptr) {
1003
0
      this->mu_->Lock();
1004
0
    }
1005
0
  }
1006
1007
  explicit MutexLockMaybe(Mutex* mu, const Condition& cond)
1008
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1009
0
      : mu_(mu) {
1010
0
    if (this->mu_ != nullptr) {
1011
0
      this->mu_->LockWhen(cond);
1012
0
    }
1013
0
  }
1014
1015
0
  ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
1016
0
    if (this->mu_ != nullptr) {
1017
0
      this->mu_->Unlock();
1018
0
    }
1019
0
  }
1020
1021
 private:
1022
  Mutex* const mu_;
1023
  MutexLockMaybe(const MutexLockMaybe&) = delete;
1024
  MutexLockMaybe(MutexLockMaybe&&) = delete;
1025
  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
1026
  MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
1027
};
1028
1029
// ReleasableMutexLock
1030
//
1031
// ReleasableMutexLock is like MutexLock, but permits `Release()` of its
1032
// mutex before destruction. `Release()` may be called at most once.
1033
class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
1034
 public:
1035
  explicit ReleasableMutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1036
0
      : mu_(mu) {
1037
0
    this->mu_->Lock();
1038
0
  }
1039
1040
  explicit ReleasableMutexLock(Mutex* mu, const Condition& cond)
1041
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1042
0
      : mu_(mu) {
1043
0
    this->mu_->LockWhen(cond);
1044
0
  }
1045
1046
0
  ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
1047
0
    if (this->mu_ != nullptr) {
1048
0
      this->mu_->Unlock();
1049
0
    }
1050
0
  }
1051
1052
  void Release() ABSL_UNLOCK_FUNCTION();
1053
1054
 private:
1055
  Mutex* mu_;
1056
  ReleasableMutexLock(const ReleasableMutexLock&) = delete;
1057
  ReleasableMutexLock(ReleasableMutexLock&&) = delete;
1058
  ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
1059
  ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
1060
};
1061
1062
4
inline Mutex::Mutex() : mu_(0) {
1063
4
  ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
1064
4
}
1065
1066
inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
1067
1068
#if !defined(__APPLE__) && !defined(ABSL_BUILD_DLL)
1069
ABSL_ATTRIBUTE_ALWAYS_INLINE
1070
0
inline Mutex::~Mutex() { Dtor(); }
1071
#endif
1072
1073
#if defined(NDEBUG) && !defined(ABSL_HAVE_THREAD_SANITIZER)
1074
// Use default (empty) destructor in release build for performance reasons.
1075
// We need to mark both Dtor and ~Mutex as always inline for inconsistent
1076
// builds that use both NDEBUG and !NDEBUG with dynamic libraries. In these
1077
// cases we want the empty functions to dissolve entirely rather than being
1078
// exported from dynamic libraries and potentially override the non-empty ones.
1079
ABSL_ATTRIBUTE_ALWAYS_INLINE
1080
inline void Mutex::Dtor() {}
1081
#endif
1082
1083
inline CondVar::CondVar() : cv_(0) {}
1084
1085
// static
1086
template <typename T, typename ConditionMethodPtr>
1087
bool Condition::CastAndCallMethod(const Condition* c) {
1088
  T* object = static_cast<T*>(c->arg_);
1089
  ConditionMethodPtr condition_method_pointer;
1090
  c->ReadCallback(&condition_method_pointer);
1091
  return (object->*condition_method_pointer)();
1092
}
1093
1094
// static
1095
template <typename T>
1096
0
bool Condition::CastAndCallFunction(const Condition* c) {
1097
0
  bool (*function)(T*);
1098
0
  c->ReadCallback(&function);
1099
0
  T* argument = static_cast<T*>(c->arg_);
1100
0
  return (*function)(argument);
1101
0
}
1102
1103
template <typename T>
1104
inline Condition::Condition(bool (*func)(T*), T* arg)
1105
    : eval_(&CastAndCallFunction<T>),
1106
0
      arg_(const_cast<void*>(static_cast<const void*>(arg))) {
1107
0
  static_assert(sizeof(&func) <= sizeof(callback_),
1108
0
                "An overlarge function pointer was passed to Condition.");
1109
0
  StoreCallback(func);
1110
0
}
1111
1112
template <typename T, typename>
1113
inline Condition::Condition(
1114
    bool (*func)(T*), typename absl::internal::type_identity<T>::type* arg)
1115
    // Just delegate to the overload above.
1116
    : Condition(func, arg) {}
1117
1118
template <typename T>
1119
inline Condition::Condition(
1120
    T* object, bool (absl::internal::type_identity<T>::type::*method)())
1121
    : eval_(&CastAndCallMethod<T, decltype(method)>), arg_(object) {
1122
  static_assert(sizeof(&method) <= sizeof(callback_),
1123
                "An overlarge method pointer was passed to Condition.");
1124
  StoreCallback(method);
1125
}
1126
1127
template <typename T>
1128
inline Condition::Condition(
1129
    const T* object,
1130
    bool (absl::internal::type_identity<T>::type::*method)() const)
1131
    : eval_(&CastAndCallMethod<const T, decltype(method)>),
1132
      arg_(reinterpret_cast<void*>(const_cast<T*>(object))) {
1133
  StoreCallback(method);
1134
}
1135
1136
// Register hooks for profiling support.
1137
//
1138
// The function pointer registered here will be called whenever a mutex is
1139
// contended.  The callback is given the cycles for which waiting happened (as
1140
// measured by //absl/base/internal/cycleclock.h, and which may not
1141
// be real "cycle" counts.)
1142
//
1143
// There is no ordering guarantee between when the hook is registered and when
1144
// callbacks will begin.  Only a single profiler can be installed in a running
1145
// binary; if this function is called a second time with a different function
1146
// pointer, the value is ignored (and will cause an assertion failure in debug
1147
// mode.)
1148
void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));
1149
1150
// Register a hook for Mutex tracing.
1151
//
1152
// The function pointer registered here will be called whenever a mutex is
1153
// contended.  The callback is given an opaque handle to the contended mutex,
1154
// an event name, and the number of wait cycles (as measured by
1155
// //absl/base/internal/cycleclock.h, and which may not be real
1156
// "cycle" counts.)
1157
//
1158
// The only event name currently sent is "slow release".
1159
//
1160
// This has the same ordering and single-use limitations as
1161
// RegisterMutexProfiler() above.
1162
void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj,
1163
                                    int64_t wait_cycles));
1164
1165
// Register a hook for CondVar tracing.
1166
//
1167
// The function pointer registered here will be called here on various CondVar
1168
// events.  The callback is given an opaque handle to the CondVar object and
1169
// a string identifying the event.  This is thread-safe, but only a single
1170
// tracer can be registered.
1171
//
1172
// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1173
// "SignalAll wakeup".
1174
//
1175
// This has the same ordering and single-use limitations as
1176
// RegisterMutexProfiler() above.
1177
void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv));
1178
1179
// EnableMutexInvariantDebugging()
1180
//
1181
// Enable or disable global support for Mutex invariant debugging.  If enabled,
1182
// then invariant predicates can be registered per-Mutex for debug checking.
1183
// See Mutex::EnableInvariantDebugging().
1184
void EnableMutexInvariantDebugging(bool enabled);
1185
1186
// When in debug mode, and when the feature has been enabled globally, the
1187
// implementation will keep track of lock ordering and complain (or optionally
1188
// crash) if a cycle is detected in the acquired-before graph.
1189
1190
// Possible modes of operation for the deadlock detector in debug mode.
1191
enum class OnDeadlockCycle {
1192
  kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1193
  kReport,  // Report lock cycles to stderr when detected
1194
  kAbort,   // Report lock cycles to stderr when detected, then abort
1195
};
1196
1197
// SetMutexDeadlockDetectionMode()
1198
//
1199
// Enable or disable global support for detection of potential deadlocks
1200
// due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1201
// lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1202
// will be maintained internally, and detected cycles will be reported in
1203
// the manner chosen here.
1204
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1205
1206
ABSL_NAMESPACE_END
1207
}  // namespace absl
1208
1209
// In some build configurations we pass --detect-odr-violations to the
1210
// gold linker.  This causes it to flag weak symbol overrides as ODR
1211
// violations.  Because ODR only applies to C++ and not C,
1212
// --detect-odr-violations ignores symbols not mangled with C++ names.
1213
// By changing our extension points to be extern "C", we dodge this
1214
// check.
1215
extern "C" {
1216
void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
1217
}  // extern "C"
1218
1219
#endif  // ABSL_SYNCHRONIZATION_MUTEX_H_