Coverage Report

Created: 2024-09-23 06:29

/src/abseil-cpp/absl/time/clock.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2017 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#include "absl/time/clock.h"
16
17
#include "absl/base/attributes.h"
18
#include "absl/base/optimization.h"
19
20
#ifdef _WIN32
21
#include <windows.h>
22
#endif
23
24
#include <algorithm>
25
#include <atomic>
26
#include <cerrno>
27
#include <cstdint>
28
#include <ctime>
29
#include <limits>
30
31
#include "absl/base/internal/spinlock.h"
32
#include "absl/base/internal/unscaledcycleclock.h"
33
#include "absl/base/macros.h"
34
#include "absl/base/port.h"
35
#include "absl/base/thread_annotations.h"
36
37
namespace absl {
38
ABSL_NAMESPACE_BEGIN
39
3.79M
Time Now() {
40
  // TODO(bww): Get a timespec instead so we don't have to divide.
41
3.79M
  int64_t n = absl::GetCurrentTimeNanos();
42
3.79M
  if (n >= 0) {
43
3.79M
    return time_internal::FromUnixDuration(
44
3.79M
        time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4));
45
3.79M
  }
46
0
  return time_internal::FromUnixDuration(absl::Nanoseconds(n));
47
3.79M
}
48
ABSL_NAMESPACE_END
49
}  // namespace absl
50
51
// Decide if we should use the fast GetCurrentTimeNanos() algorithm based on the
52
// cyclecounter, otherwise just get the time directly from the OS on every call.
53
// By default, the fast algorithm based on the cyclecount is disabled because in
54
// certain situations, for example, if the OS enters a "sleep" mode, it may
55
// produce incorrect values immediately upon waking.
56
// This can be chosen at compile-time via
57
// -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1]
58
#ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
59
#define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0
60
#endif
61
62
#if defined(__APPLE__) || defined(_WIN32)
63
#include "absl/time/internal/get_current_time_chrono.inc"
64
#else
65
#include "absl/time/internal/get_current_time_posix.inc"
66
#endif
67
68
// Allows override by test.
69
#ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM
70
#define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \
71
3.79M
  ::absl::time_internal::GetCurrentTimeNanosFromSystem()
72
#endif
73
74
#if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
75
namespace absl {
76
ABSL_NAMESPACE_BEGIN
77
3.79M
int64_t GetCurrentTimeNanos() { return GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); }
78
ABSL_NAMESPACE_END
79
}  // namespace absl
80
#else  // Use the cyclecounter-based implementation below.
81
82
// Allows override by test.
83
#ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW
84
#define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \
85
  ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now()
86
#endif
87
88
namespace absl {
89
ABSL_NAMESPACE_BEGIN
90
namespace time_internal {
91
92
// On some processors, consecutive reads of the cycle counter may yield the
93
// same value (weakly-increasing). In debug mode, clear the least significant
94
// bits to discourage depending on a strictly-increasing Now() value.
95
// In x86-64's debug mode, discourage depending on a strictly-increasing Now()
96
// value.
97
#if !defined(NDEBUG) && defined(__x86_64__)
98
constexpr int64_t kCycleClockNowMask = ~int64_t{0xff};
99
#else
100
constexpr int64_t kCycleClockNowMask = ~int64_t{0};
101
#endif
102
103
// This is a friend wrapper around UnscaledCycleClock::Now()
104
// (needed to access UnscaledCycleClock).
105
class UnscaledCycleClockWrapperForGetCurrentTime {
106
 public:
107
  static int64_t Now() {
108
    return base_internal::UnscaledCycleClock::Now() & kCycleClockNowMask;
109
  }
110
};
111
}  // namespace time_internal
112
113
// uint64_t is used in this module to provide an extra bit in multiplications
114
115
// ---------------------------------------------------------------------
116
// An implementation of reader-write locks that use no atomic ops in the read
117
// case.  This is a generalization of Lamport's method for reading a multiword
118
// clock.  Increment a word on each write acquisition, using the low-order bit
119
// as a spinlock; the word is the high word of the "clock".  Readers read the
120
// high word, then all other data, then the high word again, and repeat the
121
// read if the reads of the high words yields different answers, or an odd
122
// value (either case suggests possible interference from a writer).
123
// Here we use a spinlock to ensure only one writer at a time, rather than
124
// spinning on the bottom bit of the word to benefit from SpinLock
125
// spin-delay tuning.
126
127
// Acquire seqlock (*seq) and return the value to be written to unlock.
128
static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) {
129
  uint64_t x = seq->fetch_add(1, std::memory_order_relaxed);
130
131
  // We put a release fence between update to *seq and writes to shared data.
132
  // Thus all stores to shared data are effectively release operations and
133
  // update to *seq above cannot be re-ordered past any of them.  Note that
134
  // this barrier is not for the fetch_add above.  A release barrier for the
135
  // fetch_add would be before it, not after.
136
  std::atomic_thread_fence(std::memory_order_release);
137
138
  return x + 2;   // original word plus 2
139
}
140
141
// Release seqlock (*seq) by writing x to it---a value previously returned by
142
// SeqAcquire.
143
static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) {
144
  // The unlock store to *seq must have release ordering so that all
145
  // updates to shared data must finish before this store.
146
  seq->store(x, std::memory_order_release);  // release lock for readers
147
}
148
149
// ---------------------------------------------------------------------
150
151
// "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond.
152
enum { kScale = 30 };
153
154
// The minimum interval between samples of the time base.
155
// We pick enough time to amortize the cost of the sample,
156
// to get a reasonably accurate cycle counter rate reading,
157
// and not so much that calculations will overflow 64-bits.
158
static const uint64_t kMinNSBetweenSamples = 2000 << 20;
159
160
// We require that kMinNSBetweenSamples shifted by kScale
161
// have at least a bit left over for 64-bit calculations.
162
static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) ==
163
               kMinNSBetweenSamples,
164
               "cannot represent kMaxBetweenSamplesNSScaled");
165
166
// data from a sample of the kernel's time value
167
struct TimeSampleAtomic {
168
  std::atomic<uint64_t> raw_ns{0};              // raw kernel time
169
  std::atomic<uint64_t> base_ns{0};             // our estimate of time
170
  std::atomic<uint64_t> base_cycles{0};         // cycle counter reading
171
  std::atomic<uint64_t> nsscaled_per_cycle{0};  // cycle period
172
  // cycles before we'll sample again (a scaled reciprocal of the period,
173
  // to avoid a division on the fast path).
174
  std::atomic<uint64_t> min_cycles_per_sample{0};
175
};
176
// Same again, but with non-atomic types
177
struct TimeSample {
178
  uint64_t raw_ns = 0;                 // raw kernel time
179
  uint64_t base_ns = 0;                // our estimate of time
180
  uint64_t base_cycles = 0;            // cycle counter reading
181
  uint64_t nsscaled_per_cycle = 0;     // cycle period
182
  uint64_t min_cycles_per_sample = 0;  // approx cycles before next sample
183
};
184
185
struct ABSL_CACHELINE_ALIGNED TimeState {
186
  std::atomic<uint64_t> seq{0};
187
  TimeSampleAtomic last_sample;  // the last sample; under seq
188
189
  // The following counters are used only by the test code.
190
  int64_t stats_initializations{0};
191
  int64_t stats_reinitializations{0};
192
  int64_t stats_calibrations{0};
193
  int64_t stats_slow_paths{0};
194
  int64_t stats_fast_slow_paths{0};
195
196
  uint64_t last_now_cycles ABSL_GUARDED_BY(lock){0};
197
198
  // Used by GetCurrentTimeNanosFromKernel().
199
  // We try to read clock values at about the same time as the kernel clock.
200
  // This value gets adjusted up or down as estimate of how long that should
201
  // take, so we can reject attempts that take unusually long.
202
  std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000};
203
  // Number of times in a row we've seen a kernel time call take substantially
204
  // less than approx_syscall_time_in_cycles.
205
  std::atomic<uint32_t> kernel_time_seen_smaller{0};
206
207
  // A reader-writer lock protecting the static locations below.
208
  // See SeqAcquire() and SeqRelease() above.
209
  absl::base_internal::SpinLock lock{absl::kConstInit,
210
                                     base_internal::SCHEDULE_KERNEL_ONLY};
211
};
212
ABSL_CONST_INIT static TimeState time_state;
213
214
// Return the time in ns as told by the kernel interface.  Place in *cycleclock
215
// the value of the cycleclock at about the time of the syscall.
216
// This call represents the time base that this module synchronizes to.
217
// Ensures that *cycleclock does not step back by up to (1 << 16) from
218
// last_cycleclock, to discard small backward counter steps.  (Larger steps are
219
// assumed to be complete resyncs, which shouldn't happen.  If they do, a full
220
// reinitialization of the outer algorithm should occur.)
221
static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,
222
                                             uint64_t *cycleclock)
223
    ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
224
  uint64_t local_approx_syscall_time_in_cycles =  // local copy
225
      time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed);
226
227
  int64_t current_time_nanos_from_system;
228
  uint64_t before_cycles;
229
  uint64_t after_cycles;
230
  uint64_t elapsed_cycles;
231
  int loops = 0;
232
  do {
233
    before_cycles =
234
        static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
235
    current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM();
236
    after_cycles =
237
        static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
238
    // elapsed_cycles is unsigned, so is large on overflow
239
    elapsed_cycles = after_cycles - before_cycles;
240
    if (elapsed_cycles >= local_approx_syscall_time_in_cycles &&
241
        ++loops == 20) {  // clock changed frequencies?  Back off.
242
      loops = 0;
243
      if (local_approx_syscall_time_in_cycles < 1000 * 1000) {
244
        local_approx_syscall_time_in_cycles =
245
            (local_approx_syscall_time_in_cycles + 1) << 1;
246
      }
247
      time_state.approx_syscall_time_in_cycles.store(
248
          local_approx_syscall_time_in_cycles, std::memory_order_relaxed);
249
    }
250
  } while (elapsed_cycles >= local_approx_syscall_time_in_cycles ||
251
           last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16));
252
253
  // Adjust approx_syscall_time_in_cycles to be within a factor of 2
254
  // of the typical time to execute one iteration of the loop above.
255
  if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) {
256
    // measured time is no smaller than half current approximation
257
    time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
258
  } else if (time_state.kernel_time_seen_smaller.fetch_add(
259
                 1, std::memory_order_relaxed) >= 3) {
260
    // smaller delays several times in a row; reduce approximation by 12.5%
261
    const uint64_t new_approximation =
262
        local_approx_syscall_time_in_cycles -
263
        (local_approx_syscall_time_in_cycles >> 3);
264
    time_state.approx_syscall_time_in_cycles.store(new_approximation,
265
                                                   std::memory_order_relaxed);
266
    time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
267
  }
268
269
  *cycleclock = after_cycles;
270
  return current_time_nanos_from_system;
271
}
272
273
static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD;
274
275
// Read the contents of *atomic into *sample.
276
// Each field is read atomically, but to maintain atomicity between fields,
277
// the access must be done under a lock.
278
static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic,
279
                                 struct TimeSample *sample) {
280
  sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed);
281
  sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed);
282
  sample->nsscaled_per_cycle =
283
      atomic->nsscaled_per_cycle.load(std::memory_order_relaxed);
284
  sample->min_cycles_per_sample =
285
      atomic->min_cycles_per_sample.load(std::memory_order_relaxed);
286
  sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed);
287
}
288
289
// Public routine.
290
// Algorithm:  We wish to compute real time from a cycle counter.  In normal
291
// operation, we construct a piecewise linear approximation to the kernel time
292
// source, using the cycle counter value.  The start of each line segment is at
293
// the same point as the end of the last, but may have a different slope (that
294
// is, a different idea of the cycle counter frequency).  Every couple of
295
// seconds, the kernel time source is sampled and compared with the current
296
// approximation.  A new slope is chosen that, if followed for another couple
297
// of seconds, will correct the error at the current position.  The information
298
// for a sample is in the "last_sample" struct.  The linear approximation is
299
//   estimated_time = last_sample.base_ns +
300
//     last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles)
301
// (ns_per_cycle is actually stored in different units and scaled, to avoid
302
// overflow).  The base_ns of the next linear approximation is the
303
// estimated_time using the last approximation; the base_cycles is the cycle
304
// counter value at that time; the ns_per_cycle is the number of ns per cycle
305
// measured since the last sample, but adjusted so that most of the difference
306
// between the estimated_time and the kernel time will be corrected by the
307
// estimated time to the next sample.  In normal operation, this algorithm
308
// relies on:
309
// - the cycle counter and kernel time rates not changing a lot in a few
310
//   seconds.
311
// - the client calling into the code often compared to a couple of seconds, so
312
//   the time to the next correction can be estimated.
313
// Any time ns_per_cycle is not known, a major error is detected, or the
314
// assumption about frequent calls is violated, the implementation returns the
315
// kernel time.  It records sufficient data that a linear approximation can
316
// resume a little later.
317
318
int64_t GetCurrentTimeNanos() {
319
  // read the data from the "last_sample" struct (but don't need raw_ns yet)
320
  // The reads of "seq" and test of the values emulate a reader lock.
321
  uint64_t base_ns;
322
  uint64_t base_cycles;
323
  uint64_t nsscaled_per_cycle;
324
  uint64_t min_cycles_per_sample;
325
  uint64_t seq_read0;
326
  uint64_t seq_read1;
327
328
  // If we have enough information to interpolate, the value returned will be
329
  // derived from this cycleclock-derived time estimate.  On some platforms
330
  // (POWER) the function to retrieve this value has enough complexity to
331
  // contribute to register pressure - reading it early before initializing
332
  // the other pieces of the calculation minimizes spill/restore instructions,
333
  // minimizing icache cost.
334
  uint64_t now_cycles =
335
      static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
336
337
  // Acquire pairs with the barrier in SeqRelease - if this load sees that
338
  // store, the shared-data reads necessarily see that SeqRelease's updates
339
  // to the same shared data.
340
  seq_read0 = time_state.seq.load(std::memory_order_acquire);
341
342
  base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed);
343
  base_cycles =
344
      time_state.last_sample.base_cycles.load(std::memory_order_relaxed);
345
  nsscaled_per_cycle =
346
      time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed);
347
  min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load(
348
      std::memory_order_relaxed);
349
350
  // This acquire fence pairs with the release fence in SeqAcquire.  Since it
351
  // is sequenced between reads of shared data and seq_read1, the reads of
352
  // shared data are effectively acquiring.
353
  std::atomic_thread_fence(std::memory_order_acquire);
354
355
  // The shared-data reads are effectively acquire ordered, and the
356
  // shared-data writes are effectively release ordered. Therefore if our
357
  // shared-data reads see any of a particular update's shared-data writes,
358
  // seq_read1 is guaranteed to see that update's SeqAcquire.
359
  seq_read1 = time_state.seq.load(std::memory_order_relaxed);
360
361
  // Fast path.  Return if min_cycles_per_sample has not yet elapsed since the
362
  // last sample, and we read a consistent sample.  The fast path activates
363
  // only when min_cycles_per_sample is non-zero, which happens when we get an
364
  // estimate for the cycle time.  The predicate will fail if now_cycles <
365
  // base_cycles, or if some other thread is in the slow path.
366
  //
367
  // Since we now read now_cycles before base_ns, it is possible for now_cycles
368
  // to be less than base_cycles (if we were interrupted between those loads and
369
  // last_sample was updated). This is harmless, because delta_cycles will wrap
370
  // and report a time much much bigger than min_cycles_per_sample. In that case
371
  // we will take the slow path.
372
  uint64_t delta_cycles;
373
  if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 &&
374
      (delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) {
375
    return static_cast<int64_t>(
376
        base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale));
377
  }
378
  return GetCurrentTimeNanosSlowPath();
379
}
380
381
// Return (a << kScale)/b.
382
// Zero is returned if b==0.   Scaling is performed internally to
383
// preserve precision without overflow.
384
static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) {
385
  // Find maximum safe_shift so that
386
  //  0 <= safe_shift <= kScale  and  (a << safe_shift) does not overflow.
387
  int safe_shift = kScale;
388
  while (((a << safe_shift) >> safe_shift) != a) {
389
    safe_shift--;
390
  }
391
  uint64_t scaled_b = b >> (kScale - safe_shift);
392
  uint64_t quotient = 0;
393
  if (scaled_b != 0) {
394
    quotient = (a << safe_shift) / scaled_b;
395
  }
396
  return quotient;
397
}
398
399
static uint64_t UpdateLastSample(
400
    uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles,
401
    const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD;
402
403
// The slow path of GetCurrentTimeNanos().  This is taken while gathering
404
// initial samples, when enough time has elapsed since the last sample, and if
405
// any other thread is writing to last_sample.
406
//
407
// Manually mark this 'noinline' to minimize stack frame size of the fast
408
// path.  Without this, sometimes a compiler may inline this big block of code
409
// into the fast path.  That causes lots of register spills and reloads that
410
// are unnecessary unless the slow path is taken.
411
//
412
// TODO(absl-team): Remove this attribute when our compiler is smart enough
413
// to do the right thing.
414
ABSL_ATTRIBUTE_NOINLINE
415
static int64_t GetCurrentTimeNanosSlowPath()
416
    ABSL_LOCKS_EXCLUDED(time_state.lock) {
417
  // Serialize access to slow-path.  Fast-path readers are not blocked yet, and
418
  // code below must not modify last_sample until the seqlock is acquired.
419
  time_state.lock.Lock();
420
421
  // Sample the kernel time base.  This is the definition of
422
  // "now" if we take the slow path.
423
  uint64_t now_cycles;
424
  uint64_t now_ns = static_cast<uint64_t>(
425
      GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles));
426
  time_state.last_now_cycles = now_cycles;
427
428
  uint64_t estimated_base_ns;
429
430
  // ----------
431
  // Read the "last_sample" values again; this time holding the write lock.
432
  struct TimeSample sample;
433
  ReadTimeSampleAtomic(&time_state.last_sample, &sample);
434
435
  // ----------
436
  // Try running the fast path again; another thread may have updated the
437
  // sample between our run of the fast path and the sample we just read.
438
  uint64_t delta_cycles = now_cycles - sample.base_cycles;
439
  if (delta_cycles < sample.min_cycles_per_sample) {
440
    // Another thread updated the sample.  This path does not take the seqlock
441
    // so that blocked readers can make progress without blocking new readers.
442
    estimated_base_ns = sample.base_ns +
443
        ((delta_cycles * sample.nsscaled_per_cycle) >> kScale);
444
    time_state.stats_fast_slow_paths++;
445
  } else {
446
    estimated_base_ns =
447
        UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample);
448
  }
449
450
  time_state.lock.Unlock();
451
452
  return static_cast<int64_t>(estimated_base_ns);
453
}
454
455
// Main part of the algorithm.  Locks out readers, updates the approximation
456
// using the new sample from the kernel, and stores the result in last_sample
457
// for readers.  Returns the new estimated time.
458
static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns,
459
                                 uint64_t delta_cycles,
460
                                 const struct TimeSample *sample)
461
    ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
462
  uint64_t estimated_base_ns = now_ns;
463
  uint64_t lock_value =
464
      SeqAcquire(&time_state.seq);  // acquire seqlock to block readers
465
466
  // The 5s in the next if-statement limits the time for which we will trust
467
  // the cycle counter and our last sample to give a reasonable result.
468
  // Errors in the rate of the source clock can be multiplied by the ratio
469
  // between this limit and kMinNSBetweenSamples.
470
  if (sample->raw_ns == 0 ||  // no recent sample, or clock went backwards
471
      sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns ||
472
      now_ns < sample->raw_ns || now_cycles < sample->base_cycles) {
473
    // record this sample, and forget any previously known slope.
474
    time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
475
    time_state.last_sample.base_ns.store(estimated_base_ns,
476
                                         std::memory_order_relaxed);
477
    time_state.last_sample.base_cycles.store(now_cycles,
478
                                             std::memory_order_relaxed);
479
    time_state.last_sample.nsscaled_per_cycle.store(0,
480
                                                    std::memory_order_relaxed);
481
    time_state.last_sample.min_cycles_per_sample.store(
482
        0, std::memory_order_relaxed);
483
    time_state.stats_initializations++;
484
  } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns &&
485
             sample->base_cycles + 50 < now_cycles) {
486
    // Enough time has passed to compute the cycle time.
487
    if (sample->nsscaled_per_cycle != 0) {  // Have a cycle time estimate.
488
      // Compute time from counter reading, but avoiding overflow
489
      // delta_cycles may be larger than on the fast path.
490
      uint64_t estimated_scaled_ns;
491
      int s = -1;
492
      do {
493
        s++;
494
        estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle;
495
      } while (estimated_scaled_ns / sample->nsscaled_per_cycle !=
496
               (delta_cycles >> s));
497
      estimated_base_ns = sample->base_ns +
498
                          (estimated_scaled_ns >> (kScale - s));
499
    }
500
501
    // Compute the assumed cycle time kMinNSBetweenSamples ns into the future
502
    // assuming the cycle counter rate stays the same as the last interval.
503
    uint64_t ns = now_ns - sample->raw_ns;
504
    uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles);
505
506
    uint64_t assumed_next_sample_delta_cycles =
507
        SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle);
508
509
    // Estimate low by this much.
510
    int64_t diff_ns = static_cast<int64_t>(now_ns - estimated_base_ns);
511
512
    // We want to set nsscaled_per_cycle so that our estimate of the ns time
513
    // at the assumed cycle time is the assumed ns time.
514
    // That is, we want to set nsscaled_per_cycle so:
515
    //  kMinNSBetweenSamples + diff_ns  ==
516
    //  (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
517
    // But we wish to damp oscillations, so instead correct only most
518
    // of our current error, by solving:
519
    //  kMinNSBetweenSamples + diff_ns - (diff_ns / 16) ==
520
    //  (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
521
    ns = static_cast<uint64_t>(static_cast<int64_t>(kMinNSBetweenSamples) +
522
                               diff_ns - (diff_ns / 16));
523
    uint64_t new_nsscaled_per_cycle =
524
        SafeDivideAndScale(ns, assumed_next_sample_delta_cycles);
525
    if (new_nsscaled_per_cycle != 0 &&
526
        diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) {
527
      // record the cycle time measurement
528
      time_state.last_sample.nsscaled_per_cycle.store(
529
          new_nsscaled_per_cycle, std::memory_order_relaxed);
530
      uint64_t new_min_cycles_per_sample =
531
          SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle);
532
      time_state.last_sample.min_cycles_per_sample.store(
533
          new_min_cycles_per_sample, std::memory_order_relaxed);
534
      time_state.stats_calibrations++;
535
    } else {  // something went wrong; forget the slope
536
      time_state.last_sample.nsscaled_per_cycle.store(
537
          0, std::memory_order_relaxed);
538
      time_state.last_sample.min_cycles_per_sample.store(
539
          0, std::memory_order_relaxed);
540
      estimated_base_ns = now_ns;
541
      time_state.stats_reinitializations++;
542
    }
543
    time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
544
    time_state.last_sample.base_ns.store(estimated_base_ns,
545
                                         std::memory_order_relaxed);
546
    time_state.last_sample.base_cycles.store(now_cycles,
547
                                             std::memory_order_relaxed);
548
  } else {
549
    // have a sample, but no slope; waiting for enough time for a calibration
550
    time_state.stats_slow_paths++;
551
  }
552
553
  SeqRelease(&time_state.seq, lock_value);  // release the readers
554
555
  return estimated_base_ns;
556
}
557
ABSL_NAMESPACE_END
558
}  // namespace absl
559
#endif  // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
560
561
namespace absl {
562
ABSL_NAMESPACE_BEGIN
563
namespace {
564
565
// Returns the maximum duration that SleepOnce() can sleep for.
566
0
constexpr absl::Duration MaxSleep() {
567
#ifdef _WIN32
568
  // Windows Sleep() takes unsigned long argument in milliseconds.
569
  return absl::Milliseconds(
570
      std::numeric_limits<unsigned long>::max());  // NOLINT(runtime/int)
571
#else
572
0
  return absl::Seconds(std::numeric_limits<time_t>::max());
573
0
#endif
574
0
}
575
576
// Sleeps for the given duration.
577
// REQUIRES: to_sleep <= MaxSleep().
578
0
void SleepOnce(absl::Duration to_sleep) {
579
#ifdef _WIN32
580
  Sleep(static_cast<DWORD>(to_sleep / absl::Milliseconds(1)));
581
#else
582
0
  struct timespec sleep_time = absl::ToTimespec(to_sleep);
583
0
  while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {
584
    // Ignore signals and wait for the full interval to elapse.
585
0
  }
586
0
#endif
587
0
}
588
589
}  // namespace
590
ABSL_NAMESPACE_END
591
}  // namespace absl
592
593
extern "C" {
594
595
ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)(
596
0
    absl::Duration duration) {
597
0
  while (duration > absl::ZeroDuration()) {
598
0
    absl::Duration to_sleep = std::min(duration, absl::MaxSleep());
599
0
    absl::SleepOnce(to_sleep);
600
0
    duration -= to_sleep;
601
0
  }
602
0
}
603
604
}  // extern "C"