Coverage Report

Created: 2024-09-23 06:29

/src/abseil-cpp/absl/time/duration.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2017 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
// The implementation of the absl::Duration class, which is declared in
16
// //absl/time.h.  This class behaves like a numeric type; it has no public
17
// methods and is used only through the operators defined here.
18
//
19
// Implementation notes:
20
//
21
// An absl::Duration is represented as
22
//
23
//   rep_hi_ : (int64_t)  Whole seconds
24
//   rep_lo_ : (uint32_t) Fractions of a second
25
//
26
// The seconds value (rep_hi_) may be positive or negative as appropriate.
27
// The fractional seconds (rep_lo_) is always a positive offset from rep_hi_.
28
// The API for Duration guarantees at least nanosecond resolution, which
29
// means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds.
30
// However, to utilize more of the available 32 bits of space in rep_lo_,
31
// we instead store quarters of a nanosecond in rep_lo_ resulting in a max
32
// value of 4B - 1.  This allows us to correctly handle calculations like
33
// 0.5 nanos + 0.5 nanos = 1 nano.  The following example shows the actual
34
// Duration rep using quarters of a nanosecond.
35
//
36
//    2.5 sec = {rep_hi_=2,  rep_lo_=2000000000}  // lo = 4 * 500000000
37
//   -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000}
38
//
39
// Infinite durations are represented as Durations with the rep_lo_ field set
40
// to all 1s.
41
//
42
//   +InfiniteDuration:
43
//     rep_hi_ : kint64max
44
//     rep_lo_ : ~0U
45
//
46
//   -InfiniteDuration:
47
//     rep_hi_ : kint64min
48
//     rep_lo_ : ~0U
49
//
50
// Arithmetic overflows/underflows to +/- infinity and saturates.
51
52
#if defined(_MSC_VER)
53
#include <winsock2.h>  // for timeval
54
#endif
55
56
#include <algorithm>
57
#include <cassert>
58
#include <chrono>  // NOLINT(build/c++11)
59
#include <cmath>
60
#include <cstdint>
61
#include <cstdlib>
62
#include <cstring>
63
#include <ctime>
64
#include <functional>
65
#include <limits>
66
#include <string>
67
68
#include "absl/base/attributes.h"
69
#include "absl/base/casts.h"
70
#include "absl/base/config.h"
71
#include "absl/numeric/int128.h"
72
#include "absl/strings/string_view.h"
73
#include "absl/strings/strip.h"
74
#include "absl/time/time.h"
75
76
namespace absl {
77
ABSL_NAMESPACE_BEGIN
78
79
namespace {
80
81
using time_internal::kTicksPerNanosecond;
82
using time_internal::kTicksPerSecond;
83
84
constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
85
constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
86
87
// Can't use std::isinfinite() because it doesn't exist on windows.
88
0
inline bool IsFinite(double d) {
89
0
  if (std::isnan(d)) return false;
90
0
  return d != std::numeric_limits<double>::infinity() &&
91
0
         d != -std::numeric_limits<double>::infinity();
92
0
}
93
94
0
inline bool IsValidDivisor(double d) {
95
0
  if (std::isnan(d)) return false;
96
0
  return d != 0.0;
97
0
}
98
99
// *sec may be positive or negative.  *ticks must be in the range
100
// -kTicksPerSecond < *ticks < kTicksPerSecond.  If *ticks is negative it
101
// will be normalized to a positive value by adjusting *sec accordingly.
102
0
inline void NormalizeTicks(int64_t* sec, int64_t* ticks) {
103
0
  if (*ticks < 0) {
104
0
    --*sec;
105
0
    *ticks += kTicksPerSecond;
106
0
  }
107
0
}
108
109
// Makes a uint128 from the absolute value of the given scalar.
110
0
inline uint128 MakeU128(int64_t a) {
111
0
  uint128 u128 = 0;
112
0
  if (a < 0) {
113
0
    ++u128;
114
0
    ++a;  // Makes it safe to negate 'a'
115
0
    a = -a;
116
0
  }
117
0
  u128 += static_cast<uint64_t>(a);
118
0
  return u128;
119
0
}
120
121
// Makes a uint128 count of ticks out of the absolute value of the Duration.
122
0
inline uint128 MakeU128Ticks(Duration d) {
123
0
  int64_t rep_hi = time_internal::GetRepHi(d);
124
0
  uint32_t rep_lo = time_internal::GetRepLo(d);
125
0
  if (rep_hi < 0) {
126
0
    ++rep_hi;
127
0
    rep_hi = -rep_hi;
128
0
    rep_lo = kTicksPerSecond - rep_lo;
129
0
  }
130
0
  uint128 u128 = static_cast<uint64_t>(rep_hi);
131
0
  u128 *= static_cast<uint64_t>(kTicksPerSecond);
132
0
  u128 += rep_lo;
133
0
  return u128;
134
0
}
135
136
// Breaks a uint128 of ticks into a Duration.
137
0
inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {
138
0
  int64_t rep_hi;
139
0
  uint32_t rep_lo;
140
0
  const uint64_t h64 = Uint128High64(u128);
141
0
  const uint64_t l64 = Uint128Low64(u128);
142
0
  if (h64 == 0) {  // fastpath
143
0
    const uint64_t hi = l64 / kTicksPerSecond;
144
0
    rep_hi = static_cast<int64_t>(hi);
145
0
    rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond);
146
0
  } else {
147
    // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond).
148
    // Any positive tick count whose high 64 bits are >= kMaxRepHi64
149
    // is not representable as a Duration.  A negative tick count can
150
    // have its high 64 bits == kMaxRepHi64 but only when the low 64
151
    // bits are all zero, otherwise it is not representable either.
152
0
    const uint64_t kMaxRepHi64 = 0x77359400UL;
153
0
    if (h64 >= kMaxRepHi64) {
154
0
      if (is_neg && h64 == kMaxRepHi64 && l64 == 0) {
155
        // Avoid trying to represent -kint64min below.
156
0
        return time_internal::MakeDuration(kint64min);
157
0
      }
158
0
      return is_neg ? -InfiniteDuration() : InfiniteDuration();
159
0
    }
160
0
    const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond);
161
0
    const uint128 hi = u128 / kTicksPerSecond128;
162
0
    rep_hi = static_cast<int64_t>(Uint128Low64(hi));
163
0
    rep_lo =
164
0
        static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128));
165
0
  }
166
0
  if (is_neg) {
167
0
    rep_hi = -rep_hi;
168
0
    if (rep_lo != 0) {
169
0
      --rep_hi;
170
0
      rep_lo = kTicksPerSecond - rep_lo;
171
0
    }
172
0
  }
173
0
  return time_internal::MakeDuration(rep_hi, rep_lo);
174
0
}
175
176
// Convert between int64_t and uint64_t, preserving representation. This
177
// allows us to do arithmetic in the unsigned domain, where overflow has
178
// well-defined behavior. See operator+=() and operator-=().
179
//
180
// C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef
181
// name intN_t designates a signed integer type with width N, no padding
182
// bits, and a two's complement representation." So, we can convert to
183
// and from the corresponding uint64_t value using a bit cast.
184
0
inline uint64_t EncodeTwosComp(int64_t v) {
185
0
  return absl::bit_cast<uint64_t>(v);
186
0
}
187
0
inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); }
188
189
// Note: The overflow detection in this function is done using greater/less *or
190
// equal* because kint64max/min is too large to be represented exactly in a
191
// double (which only has 53 bits of precision). In order to avoid assigning to
192
// rep->hi a double value that is too large for an int64_t (and therefore is
193
// undefined), we must consider computations that equal kint64max/min as a
194
// double as overflow cases.
195
0
inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) {
196
0
  double c = a_hi + b_hi;
197
0
  if (c >= static_cast<double>(kint64max)) {
198
0
    *d = InfiniteDuration();
199
0
    return false;
200
0
  }
201
0
  if (c <= static_cast<double>(kint64min)) {
202
0
    *d = -InfiniteDuration();
203
0
    return false;
204
0
  }
205
0
  *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d));
206
0
  return true;
207
0
}
208
209
// A functor that's similar to std::multiplies<T>, except this returns the max
210
// T value instead of overflowing. This is only defined for uint128.
211
template <typename Ignored>
212
struct SafeMultiply {
213
0
  uint128 operator()(uint128 a, uint128 b) const {
214
    // b hi is always zero because it originated as an int64_t.
215
0
    assert(Uint128High64(b) == 0);
216
    // Fastpath to avoid the expensive overflow check with division.
217
0
    if (Uint128High64(a) == 0) {
218
0
      return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0)
219
0
                 ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b))
220
0
                 : a * b;
221
0
    }
222
0
    return b == 0 ? b : (a > Uint128Max() / b) ? Uint128Max() : a * b;
223
0
  }
224
};
225
226
// Scales (i.e., multiplies or divides, depending on the Operation template)
227
// the Duration d by the int64_t r.
228
template <template <typename> class Operation>
229
0
inline Duration ScaleFixed(Duration d, int64_t r) {
230
0
  const uint128 a = MakeU128Ticks(d);
231
0
  const uint128 b = MakeU128(r);
232
0
  const uint128 q = Operation<uint128>()(a, b);
233
0
  const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0);
234
0
  return MakeDurationFromU128(q, is_neg);
235
0
}
Unexecuted instantiation: duration.cc:absl::Duration absl::(anonymous namespace)::ScaleFixed<absl::(anonymous namespace)::SafeMultiply>(absl::Duration, long)
Unexecuted instantiation: duration.cc:absl::Duration absl::(anonymous namespace)::ScaleFixed<std::__1::divides>(absl::Duration, long)
236
237
// Scales (i.e., multiplies or divides, depending on the Operation template)
238
// the Duration d by the double r.
239
template <template <typename> class Operation>
240
0
inline Duration ScaleDouble(Duration d, double r) {
241
0
  Operation<double> op;
242
0
  double hi_doub = op(time_internal::GetRepHi(d), r);
243
0
  double lo_doub = op(time_internal::GetRepLo(d), r);
244
245
0
  double hi_int = 0;
246
0
  double hi_frac = std::modf(hi_doub, &hi_int);
247
248
  // Moves hi's fractional bits to lo.
249
0
  lo_doub /= kTicksPerSecond;
250
0
  lo_doub += hi_frac;
251
252
0
  double lo_int = 0;
253
0
  double lo_frac = std::modf(lo_doub, &lo_int);
254
255
  // Rolls lo into hi if necessary.
256
0
  int64_t lo64 = std::round(lo_frac * kTicksPerSecond);
257
258
0
  Duration ans;
259
0
  if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans;
260
0
  int64_t hi64 = time_internal::GetRepHi(ans);
261
0
  if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans;
262
0
  hi64 = time_internal::GetRepHi(ans);
263
0
  lo64 %= kTicksPerSecond;
264
0
  NormalizeTicks(&hi64, &lo64);
265
0
  return time_internal::MakeDuration(hi64, lo64);
266
0
}
Unexecuted instantiation: duration.cc:absl::Duration absl::(anonymous namespace)::ScaleDouble<std::__1::multiplies>(absl::Duration, double)
Unexecuted instantiation: duration.cc:absl::Duration absl::(anonymous namespace)::ScaleDouble<std::__1::divides>(absl::Duration, double)
267
268
// Tries to divide num by den as fast as possible by looking for common, easy
269
// cases. If the division was done, the quotient is in *q and the remainder is
270
// in *rem and true will be returned.
271
inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q,
272
0
                         Duration* rem) {
273
  // Bail if num or den is an infinity.
274
0
  if (time_internal::IsInfiniteDuration(num) ||
275
0
      time_internal::IsInfiniteDuration(den))
276
0
    return false;
277
278
0
  int64_t num_hi = time_internal::GetRepHi(num);
279
0
  uint32_t num_lo = time_internal::GetRepLo(num);
280
0
  int64_t den_hi = time_internal::GetRepHi(den);
281
0
  uint32_t den_lo = time_internal::GetRepLo(den);
282
283
0
  if (den_hi == 0) {
284
0
    if (den_lo == kTicksPerNanosecond) {
285
      // Dividing by 1ns
286
0
      if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) {
287
0
        *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond;
288
0
        *rem = time_internal::MakeDuration(0, num_lo % den_lo);
289
0
        return true;
290
0
      }
291
0
    } else if (den_lo == 100 * kTicksPerNanosecond) {
292
      // Dividing by 100ns (common when converting to Universal time)
293
0
      if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) {
294
0
        *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond);
295
0
        *rem = time_internal::MakeDuration(0, num_lo % den_lo);
296
0
        return true;
297
0
      }
298
0
    } else if (den_lo == 1000 * kTicksPerNanosecond) {
299
      // Dividing by 1us
300
0
      if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) {
301
0
        *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond);
302
0
        *rem = time_internal::MakeDuration(0, num_lo % den_lo);
303
0
        return true;
304
0
      }
305
0
    } else if (den_lo == 1000000 * kTicksPerNanosecond) {
306
      // Dividing by 1ms
307
0
      if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) {
308
0
        *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond);
309
0
        *rem = time_internal::MakeDuration(0, num_lo % den_lo);
310
0
        return true;
311
0
      }
312
0
    }
313
0
  } else if (den_hi > 0 && den_lo == 0) {
314
    // Dividing by positive multiple of 1s
315
0
    if (num_hi >= 0) {
316
0
      if (den_hi == 1) {
317
0
        *q = num_hi;
318
0
        *rem = time_internal::MakeDuration(0, num_lo);
319
0
        return true;
320
0
      }
321
0
      *q = num_hi / den_hi;
322
0
      *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo);
323
0
      return true;
324
0
    }
325
0
    if (num_lo != 0) {
326
0
      num_hi += 1;
327
0
    }
328
0
    int64_t quotient = num_hi / den_hi;
329
0
    int64_t rem_sec = num_hi % den_hi;
330
0
    if (rem_sec > 0) {
331
0
      rem_sec -= den_hi;
332
0
      quotient += 1;
333
0
    }
334
0
    if (num_lo != 0) {
335
0
      rem_sec -= 1;
336
0
    }
337
0
    *q = quotient;
338
0
    *rem = time_internal::MakeDuration(rem_sec, num_lo);
339
0
    return true;
340
0
  }
341
342
0
  return false;
343
0
}
344
345
}  // namespace
346
347
namespace {
348
349
int64_t IDivSlowPath(bool satq, const Duration num, const Duration den,
350
0
                     Duration* rem) {
351
0
  const bool num_neg = num < ZeroDuration();
352
0
  const bool den_neg = den < ZeroDuration();
353
0
  const bool quotient_neg = num_neg != den_neg;
354
355
0
  if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
356
0
    *rem = num_neg ? -InfiniteDuration() : InfiniteDuration();
357
0
    return quotient_neg ? kint64min : kint64max;
358
0
  }
359
0
  if (time_internal::IsInfiniteDuration(den)) {
360
0
    *rem = num;
361
0
    return 0;
362
0
  }
363
364
0
  const uint128 a = MakeU128Ticks(num);
365
0
  const uint128 b = MakeU128Ticks(den);
366
0
  uint128 quotient128 = a / b;
367
368
0
  if (satq) {
369
    // Limits the quotient to the range of int64_t.
370
0
    if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) {
371
0
      quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min))
372
0
                                 : uint128(static_cast<uint64_t>(kint64max));
373
0
    }
374
0
  }
375
376
0
  const uint128 remainder128 = a - quotient128 * b;
377
0
  *rem = MakeDurationFromU128(remainder128, num_neg);
378
379
0
  if (!quotient_neg || quotient128 == 0) {
380
0
    return Uint128Low64(quotient128) & kint64max;
381
0
  }
382
  // The quotient needs to be negated, but we need to carefully handle
383
  // quotient128s with the top bit on.
384
0
  return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1;
385
0
}
386
387
// The 'satq' argument indicates whether the quotient should saturate at the
388
// bounds of int64_t.  If it does saturate, the difference will spill over to
389
// the remainder.  If it does not saturate, the remainder remain accurate,
390
// but the returned quotient will over/underflow int64_t and should not be used.
391
ABSL_ATTRIBUTE_ALWAYS_INLINE inline int64_t IDivDurationImpl(bool satq,
392
                                                             const Duration num,
393
                                                             const Duration den,
394
0
                                                             Duration* rem) {
395
0
  int64_t q = 0;
396
0
  if (IDivFastPath(num, den, &q, rem)) {
397
0
    return q;
398
0
  }
399
0
  return IDivSlowPath(satq, num, den, rem);
400
0
}
401
402
}  // namespace
403
404
0
int64_t IDivDuration(Duration num, Duration den, Duration* rem) {
405
0
  return IDivDurationImpl(true, num, den,
406
0
                          rem);  // trunc towards zero
407
0
}
408
409
//
410
// Additive operators.
411
//
412
413
0
Duration& Duration::operator+=(Duration rhs) {
414
0
  if (time_internal::IsInfiniteDuration(*this)) return *this;
415
0
  if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs;
416
0
  const int64_t orig_rep_hi = rep_hi_.Get();
417
0
  rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) +
418
0
                           EncodeTwosComp(rhs.rep_hi_.Get()));
419
0
  if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) {
420
0
    rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) + 1);
421
0
    rep_lo_ -= kTicksPerSecond;
422
0
  }
423
0
  rep_lo_ += rhs.rep_lo_;
424
0
  if (rhs.rep_hi_.Get() < 0 ? rep_hi_.Get() > orig_rep_hi
425
0
                            : rep_hi_.Get() < orig_rep_hi) {
426
0
    return *this =
427
0
               rhs.rep_hi_.Get() < 0 ? -InfiniteDuration() : InfiniteDuration();
428
0
  }
429
0
  return *this;
430
0
}
431
432
0
Duration& Duration::operator-=(Duration rhs) {
433
0
  if (time_internal::IsInfiniteDuration(*this)) return *this;
434
0
  if (time_internal::IsInfiniteDuration(rhs)) {
435
0
    return *this = rhs.rep_hi_.Get() >= 0 ? -InfiniteDuration()
436
0
                                          : InfiniteDuration();
437
0
  }
438
0
  const int64_t orig_rep_hi = rep_hi_.Get();
439
0
  rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) -
440
0
                           EncodeTwosComp(rhs.rep_hi_.Get()));
441
0
  if (rep_lo_ < rhs.rep_lo_) {
442
0
    rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) - 1);
443
0
    rep_lo_ += kTicksPerSecond;
444
0
  }
445
0
  rep_lo_ -= rhs.rep_lo_;
446
0
  if (rhs.rep_hi_.Get() < 0 ? rep_hi_.Get() < orig_rep_hi
447
0
                            : rep_hi_.Get() > orig_rep_hi) {
448
0
    return *this = rhs.rep_hi_.Get() >= 0 ? -InfiniteDuration()
449
0
                                          : InfiniteDuration();
450
0
  }
451
0
  return *this;
452
0
}
453
454
//
455
// Multiplicative operators.
456
//
457
458
0
Duration& Duration::operator*=(int64_t r) {
459
0
  if (time_internal::IsInfiniteDuration(*this)) {
460
0
    const bool is_neg = (r < 0) != (rep_hi_.Get() < 0);
461
0
    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
462
0
  }
463
0
  return *this = ScaleFixed<SafeMultiply>(*this, r);
464
0
}
465
466
0
Duration& Duration::operator*=(double r) {
467
0
  if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) {
468
0
    const bool is_neg = std::signbit(r) != (rep_hi_.Get() < 0);
469
0
    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
470
0
  }
471
0
  return *this = ScaleDouble<std::multiplies>(*this, r);
472
0
}
473
474
0
Duration& Duration::operator/=(int64_t r) {
475
0
  if (time_internal::IsInfiniteDuration(*this) || r == 0) {
476
0
    const bool is_neg = (r < 0) != (rep_hi_.Get() < 0);
477
0
    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
478
0
  }
479
0
  return *this = ScaleFixed<std::divides>(*this, r);
480
0
}
481
482
0
Duration& Duration::operator/=(double r) {
483
0
  if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) {
484
0
    const bool is_neg = std::signbit(r) != (rep_hi_.Get() < 0);
485
0
    return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
486
0
  }
487
0
  return *this = ScaleDouble<std::divides>(*this, r);
488
0
}
489
490
0
Duration& Duration::operator%=(Duration rhs) {
491
0
  IDivDurationImpl(false, *this, rhs, this);
492
0
  return *this;
493
0
}
494
495
0
double FDivDuration(Duration num, Duration den) {
496
  // Arithmetic with infinity is sticky.
497
0
  if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
498
0
    return (num < ZeroDuration()) == (den < ZeroDuration())
499
0
               ? std::numeric_limits<double>::infinity()
500
0
               : -std::numeric_limits<double>::infinity();
501
0
  }
502
0
  if (time_internal::IsInfiniteDuration(den)) return 0.0;
503
504
0
  double a =
505
0
      static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond +
506
0
      time_internal::GetRepLo(num);
507
0
  double b =
508
0
      static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond +
509
0
      time_internal::GetRepLo(den);
510
0
  return a / b;
511
0
}
512
513
//
514
// Trunc/Floor/Ceil.
515
//
516
517
0
Duration Trunc(Duration d, Duration unit) { return d - (d % unit); }
518
519
0
Duration Floor(const Duration d, const Duration unit) {
520
0
  const absl::Duration td = Trunc(d, unit);
521
0
  return td <= d ? td : td - AbsDuration(unit);
522
0
}
523
524
0
Duration Ceil(const Duration d, const Duration unit) {
525
0
  const absl::Duration td = Trunc(d, unit);
526
0
  return td >= d ? td : td + AbsDuration(unit);
527
0
}
528
529
//
530
// Factory functions.
531
//
532
533
0
Duration DurationFromTimespec(timespec ts) {
534
0
  if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) {
535
0
    int64_t ticks = ts.tv_nsec * kTicksPerNanosecond;
536
0
    return time_internal::MakeDuration(ts.tv_sec, ticks);
537
0
  }
538
0
  return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec);
539
0
}
540
541
0
Duration DurationFromTimeval(timeval tv) {
542
0
  if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) {
543
0
    int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond;
544
0
    return time_internal::MakeDuration(tv.tv_sec, ticks);
545
0
  }
546
0
  return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec);
547
0
}
548
549
//
550
// Conversion to other duration types.
551
//
552
553
0
int64_t ToInt64Nanoseconds(Duration d) {
554
0
  if (time_internal::GetRepHi(d) >= 0 &&
555
0
      time_internal::GetRepHi(d) >> 33 == 0) {
556
0
    return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) +
557
0
           (time_internal::GetRepLo(d) / kTicksPerNanosecond);
558
0
  }
559
0
  return d / Nanoseconds(1);
560
0
}
561
0
int64_t ToInt64Microseconds(Duration d) {
562
0
  if (time_internal::GetRepHi(d) >= 0 &&
563
0
      time_internal::GetRepHi(d) >> 43 == 0) {
564
0
    return (time_internal::GetRepHi(d) * 1000 * 1000) +
565
0
           (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000));
566
0
  }
567
0
  return d / Microseconds(1);
568
0
}
569
0
int64_t ToInt64Milliseconds(Duration d) {
570
0
  if (time_internal::GetRepHi(d) >= 0 &&
571
0
      time_internal::GetRepHi(d) >> 53 == 0) {
572
0
    return (time_internal::GetRepHi(d) * 1000) +
573
0
           (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000));
574
0
  }
575
0
  return d / Milliseconds(1);
576
0
}
577
0
int64_t ToInt64Seconds(Duration d) {
578
0
  int64_t hi = time_internal::GetRepHi(d);
579
0
  if (time_internal::IsInfiniteDuration(d)) return hi;
580
0
  if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
581
0
  return hi;
582
0
}
583
0
int64_t ToInt64Minutes(Duration d) {
584
0
  int64_t hi = time_internal::GetRepHi(d);
585
0
  if (time_internal::IsInfiniteDuration(d)) return hi;
586
0
  if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
587
0
  return hi / 60;
588
0
}
589
0
int64_t ToInt64Hours(Duration d) {
590
0
  int64_t hi = time_internal::GetRepHi(d);
591
0
  if (time_internal::IsInfiniteDuration(d)) return hi;
592
0
  if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
593
0
  return hi / (60 * 60);
594
0
}
595
596
0
double ToDoubleNanoseconds(Duration d) {
597
0
  return FDivDuration(d, Nanoseconds(1));
598
0
}
599
0
double ToDoubleMicroseconds(Duration d) {
600
0
  return FDivDuration(d, Microseconds(1));
601
0
}
602
0
double ToDoubleMilliseconds(Duration d) {
603
0
  return FDivDuration(d, Milliseconds(1));
604
0
}
605
0
double ToDoubleSeconds(Duration d) { return FDivDuration(d, Seconds(1)); }
606
0
double ToDoubleMinutes(Duration d) { return FDivDuration(d, Minutes(1)); }
607
0
double ToDoubleHours(Duration d) { return FDivDuration(d, Hours(1)); }
608
609
0
timespec ToTimespec(Duration d) {
610
0
  timespec ts;
611
0
  if (!time_internal::IsInfiniteDuration(d)) {
612
0
    int64_t rep_hi = time_internal::GetRepHi(d);
613
0
    uint32_t rep_lo = time_internal::GetRepLo(d);
614
0
    if (rep_hi < 0) {
615
      // Tweak the fields so that unsigned division of rep_lo
616
      // maps to truncation (towards zero) for the timespec.
617
0
      rep_lo += kTicksPerNanosecond - 1;
618
0
      if (rep_lo >= kTicksPerSecond) {
619
0
        rep_hi += 1;
620
0
        rep_lo -= kTicksPerSecond;
621
0
      }
622
0
    }
623
0
    ts.tv_sec = static_cast<decltype(ts.tv_sec)>(rep_hi);
624
0
    if (ts.tv_sec == rep_hi) {  // no time_t narrowing
625
0
      ts.tv_nsec = rep_lo / kTicksPerNanosecond;
626
0
      return ts;
627
0
    }
628
0
  }
629
0
  if (d >= ZeroDuration()) {
630
0
    ts.tv_sec = std::numeric_limits<time_t>::max();
631
0
    ts.tv_nsec = 1000 * 1000 * 1000 - 1;
632
0
  } else {
633
0
    ts.tv_sec = std::numeric_limits<time_t>::min();
634
0
    ts.tv_nsec = 0;
635
0
  }
636
0
  return ts;
637
0
}
638
639
0
timeval ToTimeval(Duration d) {
640
0
  timeval tv;
641
0
  timespec ts = ToTimespec(d);
642
0
  if (ts.tv_sec < 0) {
643
    // Tweak the fields so that positive division of tv_nsec
644
    // maps to truncation (towards zero) for the timeval.
645
0
    ts.tv_nsec += 1000 - 1;
646
0
    if (ts.tv_nsec >= 1000 * 1000 * 1000) {
647
0
      ts.tv_sec += 1;
648
0
      ts.tv_nsec -= 1000 * 1000 * 1000;
649
0
    }
650
0
  }
651
0
  tv.tv_sec = static_cast<decltype(tv.tv_sec)>(ts.tv_sec);
652
0
  if (tv.tv_sec != ts.tv_sec) {  // narrowing
653
0
    if (ts.tv_sec < 0) {
654
0
      tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();
655
0
      tv.tv_usec = 0;
656
0
    } else {
657
0
      tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();
658
0
      tv.tv_usec = 1000 * 1000 - 1;
659
0
    }
660
0
    return tv;
661
0
  }
662
0
  tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000);  // suseconds_t
663
0
  return tv;
664
0
}
665
666
0
std::chrono::nanoseconds ToChronoNanoseconds(Duration d) {
667
0
  return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d);
668
0
}
669
0
std::chrono::microseconds ToChronoMicroseconds(Duration d) {
670
0
  return time_internal::ToChronoDuration<std::chrono::microseconds>(d);
671
0
}
672
0
std::chrono::milliseconds ToChronoMilliseconds(Duration d) {
673
0
  return time_internal::ToChronoDuration<std::chrono::milliseconds>(d);
674
0
}
675
0
std::chrono::seconds ToChronoSeconds(Duration d) {
676
0
  return time_internal::ToChronoDuration<std::chrono::seconds>(d);
677
0
}
678
0
std::chrono::minutes ToChronoMinutes(Duration d) {
679
0
  return time_internal::ToChronoDuration<std::chrono::minutes>(d);
680
0
}
681
0
std::chrono::hours ToChronoHours(Duration d) {
682
0
  return time_internal::ToChronoDuration<std::chrono::hours>(d);
683
0
}
684
685
//
686
// To/From string formatting.
687
//
688
689
namespace {
690
691
// Formats a positive 64-bit integer in the given field width.  Note that
692
// it is up to the caller of Format64() to ensure that there is sufficient
693
// space before ep to hold the conversion.
694
0
char* Format64(char* ep, int width, int64_t v) {
695
0
  do {
696
0
    --width;
697
0
    *--ep = static_cast<char>('0' + (v % 10));  // contiguous digits
698
0
  } while (v /= 10);
699
0
  while (--width >= 0) *--ep = '0';  // zero pad
700
0
  return ep;
701
0
}
702
703
// Helpers for FormatDuration() that format 'n' and append it to 'out'
704
// followed by the given 'unit'.  If 'n' formats to "0", nothing is
705
// appended (not even the unit).
706
707
// A type that encapsulates how to display a value of a particular unit. For
708
// values that are displayed with fractional parts, the precision indicates
709
// where to round the value. The precision varies with the display unit because
710
// a Duration can hold only quarters of a nanosecond, so displaying information
711
// beyond that is just noise.
712
//
713
// For example, a microsecond value of 42.00025xxxxx should not display beyond 5
714
// fractional digits, because it is in the noise of what a Duration can
715
// represent.
716
struct DisplayUnit {
717
  absl::string_view abbr;
718
  int prec;
719
  double pow10;
720
};
721
constexpr DisplayUnit kDisplayNano = {"ns", 2, 1e2};
722
constexpr DisplayUnit kDisplayMicro = {"us", 5, 1e5};
723
constexpr DisplayUnit kDisplayMilli = {"ms", 8, 1e8};
724
constexpr DisplayUnit kDisplaySec = {"s", 11, 1e11};
725
constexpr DisplayUnit kDisplayMin = {"m", -1, 0.0};   // prec ignored
726
constexpr DisplayUnit kDisplayHour = {"h", -1, 0.0};  // prec ignored
727
728
0
void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) {
729
0
  char buf[sizeof("2562047788015216")];  // hours in max duration
730
0
  char* const ep = buf + sizeof(buf);
731
0
  char* bp = Format64(ep, 0, n);
732
0
  if (*bp != '0' || bp + 1 != ep) {
733
0
    out->append(bp, static_cast<size_t>(ep - bp));
734
0
    out->append(unit.abbr.data(), unit.abbr.size());
735
0
  }
736
0
}
737
738
// Note: unit.prec is limited to double's digits10 value (typically 15) so it
739
// always fits in buf[].
740
0
void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) {
741
0
  constexpr int kBufferSize = std::numeric_limits<double>::digits10;
742
0
  const int prec = std::min(kBufferSize, unit.prec);
743
0
  char buf[kBufferSize];  // also large enough to hold integer part
744
0
  char* ep = buf + sizeof(buf);
745
0
  double d = 0;
746
0
  int64_t frac_part = std::round(std::modf(n, &d) * unit.pow10);
747
0
  int64_t int_part = d;
748
0
  if (int_part != 0 || frac_part != 0) {
749
0
    char* bp = Format64(ep, 0, int_part);  // always < 1000
750
0
    out->append(bp, static_cast<size_t>(ep - bp));
751
0
    if (frac_part != 0) {
752
0
      out->push_back('.');
753
0
      bp = Format64(ep, prec, frac_part);
754
0
      while (ep[-1] == '0') --ep;
755
0
      out->append(bp, static_cast<size_t>(ep - bp));
756
0
    }
757
0
    out->append(unit.abbr.data(), unit.abbr.size());
758
0
  }
759
0
}
760
761
}  // namespace
762
763
// From Go's doc at https://golang.org/pkg/time/#Duration.String
764
//   [FormatDuration] returns a string representing the duration in the
765
//   form "72h3m0.5s". Leading zero units are omitted.  As a special
766
//   case, durations less than one second format use a smaller unit
767
//   (milli-, micro-, or nanoseconds) to ensure that the leading digit
768
//   is non-zero.
769
// Unlike Go, we format the zero duration as 0, with no unit.
770
0
std::string FormatDuration(Duration d) {
771
0
  constexpr Duration kMinDuration = Seconds(kint64min);
772
0
  std::string s;
773
0
  if (d == kMinDuration) {
774
    // Avoid needing to negate kint64min by directly returning what the
775
    // following code should produce in that case.
776
0
    s = "-2562047788015215h30m8s";
777
0
    return s;
778
0
  }
779
0
  if (d < ZeroDuration()) {
780
0
    s.append("-");
781
0
    d = -d;
782
0
  }
783
0
  if (d == InfiniteDuration()) {
784
0
    s.append("inf");
785
0
  } else if (d < Seconds(1)) {
786
    // Special case for durations with a magnitude < 1 second.  The duration
787
    // is printed as a fraction of a single unit, e.g., "1.2ms".
788
0
    if (d < Microseconds(1)) {
789
0
      AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano);
790
0
    } else if (d < Milliseconds(1)) {
791
0
      AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro);
792
0
    } else {
793
0
      AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli);
794
0
    }
795
0
  } else {
796
0
    AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour);
797
0
    AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin);
798
0
    AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec);
799
0
  }
800
0
  if (s.empty() || s == "-") {
801
0
    s = "0";
802
0
  }
803
0
  return s;
804
0
}
805
806
namespace {
807
808
// A helper for ParseDuration() that parses a leading number from the given
809
// string and stores the result in *int_part/*frac_part/*frac_scale.  The
810
// given string pointer is modified to point to the first unconsumed char.
811
bool ConsumeDurationNumber(const char** dpp, const char* ep, int64_t* int_part,
812
0
                           int64_t* frac_part, int64_t* frac_scale) {
813
0
  *int_part = 0;
814
0
  *frac_part = 0;
815
0
  *frac_scale = 1;  // invariant: *frac_part < *frac_scale
816
0
  const char* start = *dpp;
817
0
  for (; *dpp != ep; *dpp += 1) {
818
0
    const int d = **dpp - '0';  // contiguous digits
819
0
    if (d < 0 || 10 <= d) break;
820
821
0
    if (*int_part > kint64max / 10) return false;
822
0
    *int_part *= 10;
823
0
    if (*int_part > kint64max - d) return false;
824
0
    *int_part += d;
825
0
  }
826
0
  const bool int_part_empty = (*dpp == start);
827
0
  if (*dpp == ep || **dpp != '.') return !int_part_empty;
828
829
0
  for (*dpp += 1; *dpp != ep; *dpp += 1) {
830
0
    const int d = **dpp - '0';  // contiguous digits
831
0
    if (d < 0 || 10 <= d) break;
832
0
    if (*frac_scale <= kint64max / 10) {
833
0
      *frac_part *= 10;
834
0
      *frac_part += d;
835
0
      *frac_scale *= 10;
836
0
    }
837
0
  }
838
0
  return !int_part_empty || *frac_scale != 1;
839
0
}
840
841
// A helper for ParseDuration() that parses a leading unit designator (e.g.,
842
// ns, us, ms, s, m, h) from the given string and stores the resulting unit
843
// in "*unit".  The given string pointer is modified to point to the first
844
// unconsumed char.
845
0
bool ConsumeDurationUnit(const char** start, const char* end, Duration* unit) {
846
0
  size_t size = static_cast<size_t>(end - *start);
847
0
  switch (size) {
848
0
    case 0:
849
0
      return false;
850
0
    default:
851
0
      switch (**start) {
852
0
        case 'n':
853
0
          if (*(*start + 1) == 's') {
854
0
            *start += 2;
855
0
            *unit = Nanoseconds(1);
856
0
            return true;
857
0
          }
858
0
          break;
859
0
        case 'u':
860
0
          if (*(*start + 1) == 's') {
861
0
            *start += 2;
862
0
            *unit = Microseconds(1);
863
0
            return true;
864
0
          }
865
0
          break;
866
0
        case 'm':
867
0
          if (*(*start + 1) == 's') {
868
0
            *start += 2;
869
0
            *unit = Milliseconds(1);
870
0
            return true;
871
0
          }
872
0
          break;
873
0
        default:
874
0
          break;
875
0
      }
876
0
      ABSL_FALLTHROUGH_INTENDED;
877
0
    case 1:
878
0
      switch (**start) {
879
0
        case 's':
880
0
          *unit = Seconds(1);
881
0
          *start += 1;
882
0
          return true;
883
0
        case 'm':
884
0
          *unit = Minutes(1);
885
0
          *start += 1;
886
0
          return true;
887
0
        case 'h':
888
0
          *unit = Hours(1);
889
0
          *start += 1;
890
0
          return true;
891
0
        default:
892
0
          return false;
893
0
      }
894
0
  }
895
0
}
896
897
}  // namespace
898
899
// From Go's doc at https://golang.org/pkg/time/#ParseDuration
900
//   [ParseDuration] parses a duration string. A duration string is
901
//   a possibly signed sequence of decimal numbers, each with optional
902
//   fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m".
903
//   Valid time units are "ns", "us" "ms", "s", "m", "h".
904
0
bool ParseDuration(absl::string_view dur_sv, Duration* d) {
905
0
  int sign = 1;
906
0
  if (absl::ConsumePrefix(&dur_sv, "-")) {
907
0
    sign = -1;
908
0
  } else {
909
0
    absl::ConsumePrefix(&dur_sv, "+");
910
0
  }
911
0
  if (dur_sv.empty()) return false;
912
913
  // Special case for a string of "0".
914
0
  if (dur_sv == "0") {
915
0
    *d = ZeroDuration();
916
0
    return true;
917
0
  }
918
919
0
  if (dur_sv == "inf") {
920
0
    *d = sign * InfiniteDuration();
921
0
    return true;
922
0
  }
923
924
0
  const char* start = dur_sv.data();
925
0
  const char* end = start + dur_sv.size();
926
927
0
  Duration dur;
928
0
  while (start != end) {
929
0
    int64_t int_part;
930
0
    int64_t frac_part;
931
0
    int64_t frac_scale;
932
0
    Duration unit;
933
0
    if (!ConsumeDurationNumber(&start, end, &int_part, &frac_part,
934
0
                               &frac_scale) ||
935
0
        !ConsumeDurationUnit(&start, end, &unit)) {
936
0
      return false;
937
0
    }
938
0
    if (int_part != 0) dur += sign * int_part * unit;
939
0
    if (frac_part != 0) dur += sign * frac_part * unit / frac_scale;
940
0
  }
941
0
  *d = dur;
942
0
  return true;
943
0
}
944
945
0
bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) {
946
0
  return ParseDuration(text, dst);
947
0
}
948
949
0
std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); }
950
0
bool ParseFlag(const std::string& text, Duration* dst, std::string* ) {
951
0
  return ParseDuration(text, dst);
952
0
}
953
954
0
std::string UnparseFlag(Duration d) { return FormatDuration(d); }
955
956
ABSL_NAMESPACE_END
957
}  // namespace absl