/src/abseil-cpp/absl/time/duration.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2017 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | // The implementation of the absl::Duration class, which is declared in |
16 | | // //absl/time.h. This class behaves like a numeric type; it has no public |
17 | | // methods and is used only through the operators defined here. |
18 | | // |
19 | | // Implementation notes: |
20 | | // |
21 | | // An absl::Duration is represented as |
22 | | // |
23 | | // rep_hi_ : (int64_t) Whole seconds |
24 | | // rep_lo_ : (uint32_t) Fractions of a second |
25 | | // |
26 | | // The seconds value (rep_hi_) may be positive or negative as appropriate. |
27 | | // The fractional seconds (rep_lo_) is always a positive offset from rep_hi_. |
28 | | // The API for Duration guarantees at least nanosecond resolution, which |
29 | | // means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds. |
30 | | // However, to utilize more of the available 32 bits of space in rep_lo_, |
31 | | // we instead store quarters of a nanosecond in rep_lo_ resulting in a max |
32 | | // value of 4B - 1. This allows us to correctly handle calculations like |
33 | | // 0.5 nanos + 0.5 nanos = 1 nano. The following example shows the actual |
34 | | // Duration rep using quarters of a nanosecond. |
35 | | // |
36 | | // 2.5 sec = {rep_hi_=2, rep_lo_=2000000000} // lo = 4 * 500000000 |
37 | | // -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000} |
38 | | // |
39 | | // Infinite durations are represented as Durations with the rep_lo_ field set |
40 | | // to all 1s. |
41 | | // |
42 | | // +InfiniteDuration: |
43 | | // rep_hi_ : kint64max |
44 | | // rep_lo_ : ~0U |
45 | | // |
46 | | // -InfiniteDuration: |
47 | | // rep_hi_ : kint64min |
48 | | // rep_lo_ : ~0U |
49 | | // |
50 | | // Arithmetic overflows/underflows to +/- infinity and saturates. |
51 | | |
52 | | #if defined(_MSC_VER) |
53 | | #include <winsock2.h> // for timeval |
54 | | #endif |
55 | | |
56 | | #include <algorithm> |
57 | | #include <cassert> |
58 | | #include <chrono> // NOLINT(build/c++11) |
59 | | #include <cmath> |
60 | | #include <cstdint> |
61 | | #include <cstdlib> |
62 | | #include <cstring> |
63 | | #include <ctime> |
64 | | #include <functional> |
65 | | #include <limits> |
66 | | #include <string> |
67 | | |
68 | | #include "absl/base/attributes.h" |
69 | | #include "absl/base/casts.h" |
70 | | #include "absl/base/config.h" |
71 | | #include "absl/numeric/int128.h" |
72 | | #include "absl/strings/string_view.h" |
73 | | #include "absl/strings/strip.h" |
74 | | #include "absl/time/time.h" |
75 | | |
76 | | namespace absl { |
77 | | ABSL_NAMESPACE_BEGIN |
78 | | |
79 | | namespace { |
80 | | |
81 | | using time_internal::kTicksPerNanosecond; |
82 | | using time_internal::kTicksPerSecond; |
83 | | |
84 | | constexpr int64_t kint64max = std::numeric_limits<int64_t>::max(); |
85 | | constexpr int64_t kint64min = std::numeric_limits<int64_t>::min(); |
86 | | |
87 | | // Can't use std::isinfinite() because it doesn't exist on windows. |
88 | 0 | inline bool IsFinite(double d) { |
89 | 0 | if (std::isnan(d)) return false; |
90 | 0 | return d != std::numeric_limits<double>::infinity() && |
91 | 0 | d != -std::numeric_limits<double>::infinity(); |
92 | 0 | } |
93 | | |
94 | 0 | inline bool IsValidDivisor(double d) { |
95 | 0 | if (std::isnan(d)) return false; |
96 | 0 | return d != 0.0; |
97 | 0 | } |
98 | | |
99 | | // *sec may be positive or negative. *ticks must be in the range |
100 | | // -kTicksPerSecond < *ticks < kTicksPerSecond. If *ticks is negative it |
101 | | // will be normalized to a positive value by adjusting *sec accordingly. |
102 | 0 | inline void NormalizeTicks(int64_t* sec, int64_t* ticks) { |
103 | 0 | if (*ticks < 0) { |
104 | 0 | --*sec; |
105 | 0 | *ticks += kTicksPerSecond; |
106 | 0 | } |
107 | 0 | } |
108 | | |
109 | | // Makes a uint128 from the absolute value of the given scalar. |
110 | 0 | inline uint128 MakeU128(int64_t a) { |
111 | 0 | uint128 u128 = 0; |
112 | 0 | if (a < 0) { |
113 | 0 | ++u128; |
114 | 0 | ++a; // Makes it safe to negate 'a' |
115 | 0 | a = -a; |
116 | 0 | } |
117 | 0 | u128 += static_cast<uint64_t>(a); |
118 | 0 | return u128; |
119 | 0 | } |
120 | | |
121 | | // Makes a uint128 count of ticks out of the absolute value of the Duration. |
122 | 0 | inline uint128 MakeU128Ticks(Duration d) { |
123 | 0 | int64_t rep_hi = time_internal::GetRepHi(d); |
124 | 0 | uint32_t rep_lo = time_internal::GetRepLo(d); |
125 | 0 | if (rep_hi < 0) { |
126 | 0 | ++rep_hi; |
127 | 0 | rep_hi = -rep_hi; |
128 | 0 | rep_lo = kTicksPerSecond - rep_lo; |
129 | 0 | } |
130 | 0 | uint128 u128 = static_cast<uint64_t>(rep_hi); |
131 | 0 | u128 *= static_cast<uint64_t>(kTicksPerSecond); |
132 | 0 | u128 += rep_lo; |
133 | 0 | return u128; |
134 | 0 | } |
135 | | |
136 | | // Breaks a uint128 of ticks into a Duration. |
137 | 0 | inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) { |
138 | 0 | int64_t rep_hi; |
139 | 0 | uint32_t rep_lo; |
140 | 0 | const uint64_t h64 = Uint128High64(u128); |
141 | 0 | const uint64_t l64 = Uint128Low64(u128); |
142 | 0 | if (h64 == 0) { // fastpath |
143 | 0 | const uint64_t hi = l64 / kTicksPerSecond; |
144 | 0 | rep_hi = static_cast<int64_t>(hi); |
145 | 0 | rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond); |
146 | 0 | } else { |
147 | | // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond). |
148 | | // Any positive tick count whose high 64 bits are >= kMaxRepHi64 |
149 | | // is not representable as a Duration. A negative tick count can |
150 | | // have its high 64 bits == kMaxRepHi64 but only when the low 64 |
151 | | // bits are all zero, otherwise it is not representable either. |
152 | 0 | const uint64_t kMaxRepHi64 = 0x77359400UL; |
153 | 0 | if (h64 >= kMaxRepHi64) { |
154 | 0 | if (is_neg && h64 == kMaxRepHi64 && l64 == 0) { |
155 | | // Avoid trying to represent -kint64min below. |
156 | 0 | return time_internal::MakeDuration(kint64min); |
157 | 0 | } |
158 | 0 | return is_neg ? -InfiniteDuration() : InfiniteDuration(); |
159 | 0 | } |
160 | 0 | const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond); |
161 | 0 | const uint128 hi = u128 / kTicksPerSecond128; |
162 | 0 | rep_hi = static_cast<int64_t>(Uint128Low64(hi)); |
163 | 0 | rep_lo = |
164 | 0 | static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128)); |
165 | 0 | } |
166 | 0 | if (is_neg) { |
167 | 0 | rep_hi = -rep_hi; |
168 | 0 | if (rep_lo != 0) { |
169 | 0 | --rep_hi; |
170 | 0 | rep_lo = kTicksPerSecond - rep_lo; |
171 | 0 | } |
172 | 0 | } |
173 | 0 | return time_internal::MakeDuration(rep_hi, rep_lo); |
174 | 0 | } |
175 | | |
176 | | // Convert between int64_t and uint64_t, preserving representation. This |
177 | | // allows us to do arithmetic in the unsigned domain, where overflow has |
178 | | // well-defined behavior. See operator+=() and operator-=(). |
179 | | // |
180 | | // C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef |
181 | | // name intN_t designates a signed integer type with width N, no padding |
182 | | // bits, and a two's complement representation." So, we can convert to |
183 | | // and from the corresponding uint64_t value using a bit cast. |
184 | 0 | inline uint64_t EncodeTwosComp(int64_t v) { |
185 | 0 | return absl::bit_cast<uint64_t>(v); |
186 | 0 | } |
187 | 0 | inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); } |
188 | | |
189 | | // Note: The overflow detection in this function is done using greater/less *or |
190 | | // equal* because kint64max/min is too large to be represented exactly in a |
191 | | // double (which only has 53 bits of precision). In order to avoid assigning to |
192 | | // rep->hi a double value that is too large for an int64_t (and therefore is |
193 | | // undefined), we must consider computations that equal kint64max/min as a |
194 | | // double as overflow cases. |
195 | 0 | inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) { |
196 | 0 | double c = a_hi + b_hi; |
197 | 0 | if (c >= static_cast<double>(kint64max)) { |
198 | 0 | *d = InfiniteDuration(); |
199 | 0 | return false; |
200 | 0 | } |
201 | 0 | if (c <= static_cast<double>(kint64min)) { |
202 | 0 | *d = -InfiniteDuration(); |
203 | 0 | return false; |
204 | 0 | } |
205 | 0 | *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d)); |
206 | 0 | return true; |
207 | 0 | } |
208 | | |
209 | | // A functor that's similar to std::multiplies<T>, except this returns the max |
210 | | // T value instead of overflowing. This is only defined for uint128. |
211 | | template <typename Ignored> |
212 | | struct SafeMultiply { |
213 | 0 | uint128 operator()(uint128 a, uint128 b) const { |
214 | | // b hi is always zero because it originated as an int64_t. |
215 | 0 | assert(Uint128High64(b) == 0); |
216 | | // Fastpath to avoid the expensive overflow check with division. |
217 | 0 | if (Uint128High64(a) == 0) { |
218 | 0 | return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0) |
219 | 0 | ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b)) |
220 | 0 | : a * b; |
221 | 0 | } |
222 | 0 | return b == 0 ? b : (a > Uint128Max() / b) ? Uint128Max() : a * b; |
223 | 0 | } |
224 | | }; |
225 | | |
226 | | // Scales (i.e., multiplies or divides, depending on the Operation template) |
227 | | // the Duration d by the int64_t r. |
228 | | template <template <typename> class Operation> |
229 | 0 | inline Duration ScaleFixed(Duration d, int64_t r) { |
230 | 0 | const uint128 a = MakeU128Ticks(d); |
231 | 0 | const uint128 b = MakeU128(r); |
232 | 0 | const uint128 q = Operation<uint128>()(a, b); |
233 | 0 | const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0); |
234 | 0 | return MakeDurationFromU128(q, is_neg); |
235 | 0 | } Unexecuted instantiation: duration.cc:absl::Duration absl::(anonymous namespace)::ScaleFixed<absl::(anonymous namespace)::SafeMultiply>(absl::Duration, long) Unexecuted instantiation: duration.cc:absl::Duration absl::(anonymous namespace)::ScaleFixed<std::__1::divides>(absl::Duration, long) |
236 | | |
237 | | // Scales (i.e., multiplies or divides, depending on the Operation template) |
238 | | // the Duration d by the double r. |
239 | | template <template <typename> class Operation> |
240 | 0 | inline Duration ScaleDouble(Duration d, double r) { |
241 | 0 | Operation<double> op; |
242 | 0 | double hi_doub = op(time_internal::GetRepHi(d), r); |
243 | 0 | double lo_doub = op(time_internal::GetRepLo(d), r); |
244 | |
|
245 | 0 | double hi_int = 0; |
246 | 0 | double hi_frac = std::modf(hi_doub, &hi_int); |
247 | | |
248 | | // Moves hi's fractional bits to lo. |
249 | 0 | lo_doub /= kTicksPerSecond; |
250 | 0 | lo_doub += hi_frac; |
251 | |
|
252 | 0 | double lo_int = 0; |
253 | 0 | double lo_frac = std::modf(lo_doub, &lo_int); |
254 | | |
255 | | // Rolls lo into hi if necessary. |
256 | 0 | int64_t lo64 = std::round(lo_frac * kTicksPerSecond); |
257 | |
|
258 | 0 | Duration ans; |
259 | 0 | if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans; |
260 | 0 | int64_t hi64 = time_internal::GetRepHi(ans); |
261 | 0 | if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans; |
262 | 0 | hi64 = time_internal::GetRepHi(ans); |
263 | 0 | lo64 %= kTicksPerSecond; |
264 | 0 | NormalizeTicks(&hi64, &lo64); |
265 | 0 | return time_internal::MakeDuration(hi64, lo64); |
266 | 0 | } Unexecuted instantiation: duration.cc:absl::Duration absl::(anonymous namespace)::ScaleDouble<std::__1::multiplies>(absl::Duration, double) Unexecuted instantiation: duration.cc:absl::Duration absl::(anonymous namespace)::ScaleDouble<std::__1::divides>(absl::Duration, double) |
267 | | |
268 | | // Tries to divide num by den as fast as possible by looking for common, easy |
269 | | // cases. If the division was done, the quotient is in *q and the remainder is |
270 | | // in *rem and true will be returned. |
271 | | inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q, |
272 | 0 | Duration* rem) { |
273 | | // Bail if num or den is an infinity. |
274 | 0 | if (time_internal::IsInfiniteDuration(num) || |
275 | 0 | time_internal::IsInfiniteDuration(den)) |
276 | 0 | return false; |
277 | | |
278 | 0 | int64_t num_hi = time_internal::GetRepHi(num); |
279 | 0 | uint32_t num_lo = time_internal::GetRepLo(num); |
280 | 0 | int64_t den_hi = time_internal::GetRepHi(den); |
281 | 0 | uint32_t den_lo = time_internal::GetRepLo(den); |
282 | |
|
283 | 0 | if (den_hi == 0) { |
284 | 0 | if (den_lo == kTicksPerNanosecond) { |
285 | | // Dividing by 1ns |
286 | 0 | if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) { |
287 | 0 | *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond; |
288 | 0 | *rem = time_internal::MakeDuration(0, num_lo % den_lo); |
289 | 0 | return true; |
290 | 0 | } |
291 | 0 | } else if (den_lo == 100 * kTicksPerNanosecond) { |
292 | | // Dividing by 100ns (common when converting to Universal time) |
293 | 0 | if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) { |
294 | 0 | *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond); |
295 | 0 | *rem = time_internal::MakeDuration(0, num_lo % den_lo); |
296 | 0 | return true; |
297 | 0 | } |
298 | 0 | } else if (den_lo == 1000 * kTicksPerNanosecond) { |
299 | | // Dividing by 1us |
300 | 0 | if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) { |
301 | 0 | *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond); |
302 | 0 | *rem = time_internal::MakeDuration(0, num_lo % den_lo); |
303 | 0 | return true; |
304 | 0 | } |
305 | 0 | } else if (den_lo == 1000000 * kTicksPerNanosecond) { |
306 | | // Dividing by 1ms |
307 | 0 | if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) { |
308 | 0 | *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond); |
309 | 0 | *rem = time_internal::MakeDuration(0, num_lo % den_lo); |
310 | 0 | return true; |
311 | 0 | } |
312 | 0 | } |
313 | 0 | } else if (den_hi > 0 && den_lo == 0) { |
314 | | // Dividing by positive multiple of 1s |
315 | 0 | if (num_hi >= 0) { |
316 | 0 | if (den_hi == 1) { |
317 | 0 | *q = num_hi; |
318 | 0 | *rem = time_internal::MakeDuration(0, num_lo); |
319 | 0 | return true; |
320 | 0 | } |
321 | 0 | *q = num_hi / den_hi; |
322 | 0 | *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo); |
323 | 0 | return true; |
324 | 0 | } |
325 | 0 | if (num_lo != 0) { |
326 | 0 | num_hi += 1; |
327 | 0 | } |
328 | 0 | int64_t quotient = num_hi / den_hi; |
329 | 0 | int64_t rem_sec = num_hi % den_hi; |
330 | 0 | if (rem_sec > 0) { |
331 | 0 | rem_sec -= den_hi; |
332 | 0 | quotient += 1; |
333 | 0 | } |
334 | 0 | if (num_lo != 0) { |
335 | 0 | rem_sec -= 1; |
336 | 0 | } |
337 | 0 | *q = quotient; |
338 | 0 | *rem = time_internal::MakeDuration(rem_sec, num_lo); |
339 | 0 | return true; |
340 | 0 | } |
341 | | |
342 | 0 | return false; |
343 | 0 | } |
344 | | |
345 | | } // namespace |
346 | | |
347 | | namespace { |
348 | | |
349 | | int64_t IDivSlowPath(bool satq, const Duration num, const Duration den, |
350 | 0 | Duration* rem) { |
351 | 0 | const bool num_neg = num < ZeroDuration(); |
352 | 0 | const bool den_neg = den < ZeroDuration(); |
353 | 0 | const bool quotient_neg = num_neg != den_neg; |
354 | |
|
355 | 0 | if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { |
356 | 0 | *rem = num_neg ? -InfiniteDuration() : InfiniteDuration(); |
357 | 0 | return quotient_neg ? kint64min : kint64max; |
358 | 0 | } |
359 | 0 | if (time_internal::IsInfiniteDuration(den)) { |
360 | 0 | *rem = num; |
361 | 0 | return 0; |
362 | 0 | } |
363 | | |
364 | 0 | const uint128 a = MakeU128Ticks(num); |
365 | 0 | const uint128 b = MakeU128Ticks(den); |
366 | 0 | uint128 quotient128 = a / b; |
367 | |
|
368 | 0 | if (satq) { |
369 | | // Limits the quotient to the range of int64_t. |
370 | 0 | if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) { |
371 | 0 | quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min)) |
372 | 0 | : uint128(static_cast<uint64_t>(kint64max)); |
373 | 0 | } |
374 | 0 | } |
375 | |
|
376 | 0 | const uint128 remainder128 = a - quotient128 * b; |
377 | 0 | *rem = MakeDurationFromU128(remainder128, num_neg); |
378 | |
|
379 | 0 | if (!quotient_neg || quotient128 == 0) { |
380 | 0 | return Uint128Low64(quotient128) & kint64max; |
381 | 0 | } |
382 | | // The quotient needs to be negated, but we need to carefully handle |
383 | | // quotient128s with the top bit on. |
384 | 0 | return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1; |
385 | 0 | } |
386 | | |
387 | | // The 'satq' argument indicates whether the quotient should saturate at the |
388 | | // bounds of int64_t. If it does saturate, the difference will spill over to |
389 | | // the remainder. If it does not saturate, the remainder remain accurate, |
390 | | // but the returned quotient will over/underflow int64_t and should not be used. |
391 | | ABSL_ATTRIBUTE_ALWAYS_INLINE inline int64_t IDivDurationImpl(bool satq, |
392 | | const Duration num, |
393 | | const Duration den, |
394 | 0 | Duration* rem) { |
395 | 0 | int64_t q = 0; |
396 | 0 | if (IDivFastPath(num, den, &q, rem)) { |
397 | 0 | return q; |
398 | 0 | } |
399 | 0 | return IDivSlowPath(satq, num, den, rem); |
400 | 0 | } |
401 | | |
402 | | } // namespace |
403 | | |
404 | 0 | int64_t IDivDuration(Duration num, Duration den, Duration* rem) { |
405 | 0 | return IDivDurationImpl(true, num, den, |
406 | 0 | rem); // trunc towards zero |
407 | 0 | } |
408 | | |
409 | | // |
410 | | // Additive operators. |
411 | | // |
412 | | |
413 | 0 | Duration& Duration::operator+=(Duration rhs) { |
414 | 0 | if (time_internal::IsInfiniteDuration(*this)) return *this; |
415 | 0 | if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs; |
416 | 0 | const int64_t orig_rep_hi = rep_hi_.Get(); |
417 | 0 | rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) + |
418 | 0 | EncodeTwosComp(rhs.rep_hi_.Get())); |
419 | 0 | if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) { |
420 | 0 | rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) + 1); |
421 | 0 | rep_lo_ -= kTicksPerSecond; |
422 | 0 | } |
423 | 0 | rep_lo_ += rhs.rep_lo_; |
424 | 0 | if (rhs.rep_hi_.Get() < 0 ? rep_hi_.Get() > orig_rep_hi |
425 | 0 | : rep_hi_.Get() < orig_rep_hi) { |
426 | 0 | return *this = |
427 | 0 | rhs.rep_hi_.Get() < 0 ? -InfiniteDuration() : InfiniteDuration(); |
428 | 0 | } |
429 | 0 | return *this; |
430 | 0 | } |
431 | | |
432 | 0 | Duration& Duration::operator-=(Duration rhs) { |
433 | 0 | if (time_internal::IsInfiniteDuration(*this)) return *this; |
434 | 0 | if (time_internal::IsInfiniteDuration(rhs)) { |
435 | 0 | return *this = rhs.rep_hi_.Get() >= 0 ? -InfiniteDuration() |
436 | 0 | : InfiniteDuration(); |
437 | 0 | } |
438 | 0 | const int64_t orig_rep_hi = rep_hi_.Get(); |
439 | 0 | rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) - |
440 | 0 | EncodeTwosComp(rhs.rep_hi_.Get())); |
441 | 0 | if (rep_lo_ < rhs.rep_lo_) { |
442 | 0 | rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) - 1); |
443 | 0 | rep_lo_ += kTicksPerSecond; |
444 | 0 | } |
445 | 0 | rep_lo_ -= rhs.rep_lo_; |
446 | 0 | if (rhs.rep_hi_.Get() < 0 ? rep_hi_.Get() < orig_rep_hi |
447 | 0 | : rep_hi_.Get() > orig_rep_hi) { |
448 | 0 | return *this = rhs.rep_hi_.Get() >= 0 ? -InfiniteDuration() |
449 | 0 | : InfiniteDuration(); |
450 | 0 | } |
451 | 0 | return *this; |
452 | 0 | } |
453 | | |
454 | | // |
455 | | // Multiplicative operators. |
456 | | // |
457 | | |
458 | 0 | Duration& Duration::operator*=(int64_t r) { |
459 | 0 | if (time_internal::IsInfiniteDuration(*this)) { |
460 | 0 | const bool is_neg = (r < 0) != (rep_hi_.Get() < 0); |
461 | 0 | return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
462 | 0 | } |
463 | 0 | return *this = ScaleFixed<SafeMultiply>(*this, r); |
464 | 0 | } |
465 | | |
466 | 0 | Duration& Duration::operator*=(double r) { |
467 | 0 | if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) { |
468 | 0 | const bool is_neg = std::signbit(r) != (rep_hi_.Get() < 0); |
469 | 0 | return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
470 | 0 | } |
471 | 0 | return *this = ScaleDouble<std::multiplies>(*this, r); |
472 | 0 | } |
473 | | |
474 | 0 | Duration& Duration::operator/=(int64_t r) { |
475 | 0 | if (time_internal::IsInfiniteDuration(*this) || r == 0) { |
476 | 0 | const bool is_neg = (r < 0) != (rep_hi_.Get() < 0); |
477 | 0 | return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
478 | 0 | } |
479 | 0 | return *this = ScaleFixed<std::divides>(*this, r); |
480 | 0 | } |
481 | | |
482 | 0 | Duration& Duration::operator/=(double r) { |
483 | 0 | if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) { |
484 | 0 | const bool is_neg = std::signbit(r) != (rep_hi_.Get() < 0); |
485 | 0 | return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); |
486 | 0 | } |
487 | 0 | return *this = ScaleDouble<std::divides>(*this, r); |
488 | 0 | } |
489 | | |
490 | 0 | Duration& Duration::operator%=(Duration rhs) { |
491 | 0 | IDivDurationImpl(false, *this, rhs, this); |
492 | 0 | return *this; |
493 | 0 | } |
494 | | |
495 | 0 | double FDivDuration(Duration num, Duration den) { |
496 | | // Arithmetic with infinity is sticky. |
497 | 0 | if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { |
498 | 0 | return (num < ZeroDuration()) == (den < ZeroDuration()) |
499 | 0 | ? std::numeric_limits<double>::infinity() |
500 | 0 | : -std::numeric_limits<double>::infinity(); |
501 | 0 | } |
502 | 0 | if (time_internal::IsInfiniteDuration(den)) return 0.0; |
503 | | |
504 | 0 | double a = |
505 | 0 | static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond + |
506 | 0 | time_internal::GetRepLo(num); |
507 | 0 | double b = |
508 | 0 | static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond + |
509 | 0 | time_internal::GetRepLo(den); |
510 | 0 | return a / b; |
511 | 0 | } |
512 | | |
513 | | // |
514 | | // Trunc/Floor/Ceil. |
515 | | // |
516 | | |
517 | 0 | Duration Trunc(Duration d, Duration unit) { return d - (d % unit); } |
518 | | |
519 | 0 | Duration Floor(const Duration d, const Duration unit) { |
520 | 0 | const absl::Duration td = Trunc(d, unit); |
521 | 0 | return td <= d ? td : td - AbsDuration(unit); |
522 | 0 | } |
523 | | |
524 | 0 | Duration Ceil(const Duration d, const Duration unit) { |
525 | 0 | const absl::Duration td = Trunc(d, unit); |
526 | 0 | return td >= d ? td : td + AbsDuration(unit); |
527 | 0 | } |
528 | | |
529 | | // |
530 | | // Factory functions. |
531 | | // |
532 | | |
533 | 0 | Duration DurationFromTimespec(timespec ts) { |
534 | 0 | if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) { |
535 | 0 | int64_t ticks = ts.tv_nsec * kTicksPerNanosecond; |
536 | 0 | return time_internal::MakeDuration(ts.tv_sec, ticks); |
537 | 0 | } |
538 | 0 | return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec); |
539 | 0 | } |
540 | | |
541 | 0 | Duration DurationFromTimeval(timeval tv) { |
542 | 0 | if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) { |
543 | 0 | int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond; |
544 | 0 | return time_internal::MakeDuration(tv.tv_sec, ticks); |
545 | 0 | } |
546 | 0 | return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec); |
547 | 0 | } |
548 | | |
549 | | // |
550 | | // Conversion to other duration types. |
551 | | // |
552 | | |
553 | 0 | int64_t ToInt64Nanoseconds(Duration d) { |
554 | 0 | if (time_internal::GetRepHi(d) >= 0 && |
555 | 0 | time_internal::GetRepHi(d) >> 33 == 0) { |
556 | 0 | return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) + |
557 | 0 | (time_internal::GetRepLo(d) / kTicksPerNanosecond); |
558 | 0 | } |
559 | 0 | return d / Nanoseconds(1); |
560 | 0 | } |
561 | 0 | int64_t ToInt64Microseconds(Duration d) { |
562 | 0 | if (time_internal::GetRepHi(d) >= 0 && |
563 | 0 | time_internal::GetRepHi(d) >> 43 == 0) { |
564 | 0 | return (time_internal::GetRepHi(d) * 1000 * 1000) + |
565 | 0 | (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000)); |
566 | 0 | } |
567 | 0 | return d / Microseconds(1); |
568 | 0 | } |
569 | 0 | int64_t ToInt64Milliseconds(Duration d) { |
570 | 0 | if (time_internal::GetRepHi(d) >= 0 && |
571 | 0 | time_internal::GetRepHi(d) >> 53 == 0) { |
572 | 0 | return (time_internal::GetRepHi(d) * 1000) + |
573 | 0 | (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000)); |
574 | 0 | } |
575 | 0 | return d / Milliseconds(1); |
576 | 0 | } |
577 | 0 | int64_t ToInt64Seconds(Duration d) { |
578 | 0 | int64_t hi = time_internal::GetRepHi(d); |
579 | 0 | if (time_internal::IsInfiniteDuration(d)) return hi; |
580 | 0 | if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; |
581 | 0 | return hi; |
582 | 0 | } |
583 | 0 | int64_t ToInt64Minutes(Duration d) { |
584 | 0 | int64_t hi = time_internal::GetRepHi(d); |
585 | 0 | if (time_internal::IsInfiniteDuration(d)) return hi; |
586 | 0 | if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; |
587 | 0 | return hi / 60; |
588 | 0 | } |
589 | 0 | int64_t ToInt64Hours(Duration d) { |
590 | 0 | int64_t hi = time_internal::GetRepHi(d); |
591 | 0 | if (time_internal::IsInfiniteDuration(d)) return hi; |
592 | 0 | if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; |
593 | 0 | return hi / (60 * 60); |
594 | 0 | } |
595 | | |
596 | 0 | double ToDoubleNanoseconds(Duration d) { |
597 | 0 | return FDivDuration(d, Nanoseconds(1)); |
598 | 0 | } |
599 | 0 | double ToDoubleMicroseconds(Duration d) { |
600 | 0 | return FDivDuration(d, Microseconds(1)); |
601 | 0 | } |
602 | 0 | double ToDoubleMilliseconds(Duration d) { |
603 | 0 | return FDivDuration(d, Milliseconds(1)); |
604 | 0 | } |
605 | 0 | double ToDoubleSeconds(Duration d) { return FDivDuration(d, Seconds(1)); } |
606 | 0 | double ToDoubleMinutes(Duration d) { return FDivDuration(d, Minutes(1)); } |
607 | 0 | double ToDoubleHours(Duration d) { return FDivDuration(d, Hours(1)); } |
608 | | |
609 | 0 | timespec ToTimespec(Duration d) { |
610 | 0 | timespec ts; |
611 | 0 | if (!time_internal::IsInfiniteDuration(d)) { |
612 | 0 | int64_t rep_hi = time_internal::GetRepHi(d); |
613 | 0 | uint32_t rep_lo = time_internal::GetRepLo(d); |
614 | 0 | if (rep_hi < 0) { |
615 | | // Tweak the fields so that unsigned division of rep_lo |
616 | | // maps to truncation (towards zero) for the timespec. |
617 | 0 | rep_lo += kTicksPerNanosecond - 1; |
618 | 0 | if (rep_lo >= kTicksPerSecond) { |
619 | 0 | rep_hi += 1; |
620 | 0 | rep_lo -= kTicksPerSecond; |
621 | 0 | } |
622 | 0 | } |
623 | 0 | ts.tv_sec = static_cast<decltype(ts.tv_sec)>(rep_hi); |
624 | 0 | if (ts.tv_sec == rep_hi) { // no time_t narrowing |
625 | 0 | ts.tv_nsec = rep_lo / kTicksPerNanosecond; |
626 | 0 | return ts; |
627 | 0 | } |
628 | 0 | } |
629 | 0 | if (d >= ZeroDuration()) { |
630 | 0 | ts.tv_sec = std::numeric_limits<time_t>::max(); |
631 | 0 | ts.tv_nsec = 1000 * 1000 * 1000 - 1; |
632 | 0 | } else { |
633 | 0 | ts.tv_sec = std::numeric_limits<time_t>::min(); |
634 | 0 | ts.tv_nsec = 0; |
635 | 0 | } |
636 | 0 | return ts; |
637 | 0 | } |
638 | | |
639 | 0 | timeval ToTimeval(Duration d) { |
640 | 0 | timeval tv; |
641 | 0 | timespec ts = ToTimespec(d); |
642 | 0 | if (ts.tv_sec < 0) { |
643 | | // Tweak the fields so that positive division of tv_nsec |
644 | | // maps to truncation (towards zero) for the timeval. |
645 | 0 | ts.tv_nsec += 1000 - 1; |
646 | 0 | if (ts.tv_nsec >= 1000 * 1000 * 1000) { |
647 | 0 | ts.tv_sec += 1; |
648 | 0 | ts.tv_nsec -= 1000 * 1000 * 1000; |
649 | 0 | } |
650 | 0 | } |
651 | 0 | tv.tv_sec = static_cast<decltype(tv.tv_sec)>(ts.tv_sec); |
652 | 0 | if (tv.tv_sec != ts.tv_sec) { // narrowing |
653 | 0 | if (ts.tv_sec < 0) { |
654 | 0 | tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min(); |
655 | 0 | tv.tv_usec = 0; |
656 | 0 | } else { |
657 | 0 | tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max(); |
658 | 0 | tv.tv_usec = 1000 * 1000 - 1; |
659 | 0 | } |
660 | 0 | return tv; |
661 | 0 | } |
662 | 0 | tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t |
663 | 0 | return tv; |
664 | 0 | } |
665 | | |
666 | 0 | std::chrono::nanoseconds ToChronoNanoseconds(Duration d) { |
667 | 0 | return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d); |
668 | 0 | } |
669 | 0 | std::chrono::microseconds ToChronoMicroseconds(Duration d) { |
670 | 0 | return time_internal::ToChronoDuration<std::chrono::microseconds>(d); |
671 | 0 | } |
672 | 0 | std::chrono::milliseconds ToChronoMilliseconds(Duration d) { |
673 | 0 | return time_internal::ToChronoDuration<std::chrono::milliseconds>(d); |
674 | 0 | } |
675 | 0 | std::chrono::seconds ToChronoSeconds(Duration d) { |
676 | 0 | return time_internal::ToChronoDuration<std::chrono::seconds>(d); |
677 | 0 | } |
678 | 0 | std::chrono::minutes ToChronoMinutes(Duration d) { |
679 | 0 | return time_internal::ToChronoDuration<std::chrono::minutes>(d); |
680 | 0 | } |
681 | 0 | std::chrono::hours ToChronoHours(Duration d) { |
682 | 0 | return time_internal::ToChronoDuration<std::chrono::hours>(d); |
683 | 0 | } |
684 | | |
685 | | // |
686 | | // To/From string formatting. |
687 | | // |
688 | | |
689 | | namespace { |
690 | | |
691 | | // Formats a positive 64-bit integer in the given field width. Note that |
692 | | // it is up to the caller of Format64() to ensure that there is sufficient |
693 | | // space before ep to hold the conversion. |
694 | 0 | char* Format64(char* ep, int width, int64_t v) { |
695 | 0 | do { |
696 | 0 | --width; |
697 | 0 | *--ep = static_cast<char>('0' + (v % 10)); // contiguous digits |
698 | 0 | } while (v /= 10); |
699 | 0 | while (--width >= 0) *--ep = '0'; // zero pad |
700 | 0 | return ep; |
701 | 0 | } |
702 | | |
703 | | // Helpers for FormatDuration() that format 'n' and append it to 'out' |
704 | | // followed by the given 'unit'. If 'n' formats to "0", nothing is |
705 | | // appended (not even the unit). |
706 | | |
707 | | // A type that encapsulates how to display a value of a particular unit. For |
708 | | // values that are displayed with fractional parts, the precision indicates |
709 | | // where to round the value. The precision varies with the display unit because |
710 | | // a Duration can hold only quarters of a nanosecond, so displaying information |
711 | | // beyond that is just noise. |
712 | | // |
713 | | // For example, a microsecond value of 42.00025xxxxx should not display beyond 5 |
714 | | // fractional digits, because it is in the noise of what a Duration can |
715 | | // represent. |
716 | | struct DisplayUnit { |
717 | | absl::string_view abbr; |
718 | | int prec; |
719 | | double pow10; |
720 | | }; |
721 | | constexpr DisplayUnit kDisplayNano = {"ns", 2, 1e2}; |
722 | | constexpr DisplayUnit kDisplayMicro = {"us", 5, 1e5}; |
723 | | constexpr DisplayUnit kDisplayMilli = {"ms", 8, 1e8}; |
724 | | constexpr DisplayUnit kDisplaySec = {"s", 11, 1e11}; |
725 | | constexpr DisplayUnit kDisplayMin = {"m", -1, 0.0}; // prec ignored |
726 | | constexpr DisplayUnit kDisplayHour = {"h", -1, 0.0}; // prec ignored |
727 | | |
728 | 0 | void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) { |
729 | 0 | char buf[sizeof("2562047788015216")]; // hours in max duration |
730 | 0 | char* const ep = buf + sizeof(buf); |
731 | 0 | char* bp = Format64(ep, 0, n); |
732 | 0 | if (*bp != '0' || bp + 1 != ep) { |
733 | 0 | out->append(bp, static_cast<size_t>(ep - bp)); |
734 | 0 | out->append(unit.abbr.data(), unit.abbr.size()); |
735 | 0 | } |
736 | 0 | } |
737 | | |
738 | | // Note: unit.prec is limited to double's digits10 value (typically 15) so it |
739 | | // always fits in buf[]. |
740 | 0 | void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) { |
741 | 0 | constexpr int kBufferSize = std::numeric_limits<double>::digits10; |
742 | 0 | const int prec = std::min(kBufferSize, unit.prec); |
743 | 0 | char buf[kBufferSize]; // also large enough to hold integer part |
744 | 0 | char* ep = buf + sizeof(buf); |
745 | 0 | double d = 0; |
746 | 0 | int64_t frac_part = std::round(std::modf(n, &d) * unit.pow10); |
747 | 0 | int64_t int_part = d; |
748 | 0 | if (int_part != 0 || frac_part != 0) { |
749 | 0 | char* bp = Format64(ep, 0, int_part); // always < 1000 |
750 | 0 | out->append(bp, static_cast<size_t>(ep - bp)); |
751 | 0 | if (frac_part != 0) { |
752 | 0 | out->push_back('.'); |
753 | 0 | bp = Format64(ep, prec, frac_part); |
754 | 0 | while (ep[-1] == '0') --ep; |
755 | 0 | out->append(bp, static_cast<size_t>(ep - bp)); |
756 | 0 | } |
757 | 0 | out->append(unit.abbr.data(), unit.abbr.size()); |
758 | 0 | } |
759 | 0 | } |
760 | | |
761 | | } // namespace |
762 | | |
763 | | // From Go's doc at https://golang.org/pkg/time/#Duration.String |
764 | | // [FormatDuration] returns a string representing the duration in the |
765 | | // form "72h3m0.5s". Leading zero units are omitted. As a special |
766 | | // case, durations less than one second format use a smaller unit |
767 | | // (milli-, micro-, or nanoseconds) to ensure that the leading digit |
768 | | // is non-zero. |
769 | | // Unlike Go, we format the zero duration as 0, with no unit. |
770 | 0 | std::string FormatDuration(Duration d) { |
771 | 0 | constexpr Duration kMinDuration = Seconds(kint64min); |
772 | 0 | std::string s; |
773 | 0 | if (d == kMinDuration) { |
774 | | // Avoid needing to negate kint64min by directly returning what the |
775 | | // following code should produce in that case. |
776 | 0 | s = "-2562047788015215h30m8s"; |
777 | 0 | return s; |
778 | 0 | } |
779 | 0 | if (d < ZeroDuration()) { |
780 | 0 | s.append("-"); |
781 | 0 | d = -d; |
782 | 0 | } |
783 | 0 | if (d == InfiniteDuration()) { |
784 | 0 | s.append("inf"); |
785 | 0 | } else if (d < Seconds(1)) { |
786 | | // Special case for durations with a magnitude < 1 second. The duration |
787 | | // is printed as a fraction of a single unit, e.g., "1.2ms". |
788 | 0 | if (d < Microseconds(1)) { |
789 | 0 | AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano); |
790 | 0 | } else if (d < Milliseconds(1)) { |
791 | 0 | AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro); |
792 | 0 | } else { |
793 | 0 | AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli); |
794 | 0 | } |
795 | 0 | } else { |
796 | 0 | AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour); |
797 | 0 | AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin); |
798 | 0 | AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec); |
799 | 0 | } |
800 | 0 | if (s.empty() || s == "-") { |
801 | 0 | s = "0"; |
802 | 0 | } |
803 | 0 | return s; |
804 | 0 | } |
805 | | |
806 | | namespace { |
807 | | |
808 | | // A helper for ParseDuration() that parses a leading number from the given |
809 | | // string and stores the result in *int_part/*frac_part/*frac_scale. The |
810 | | // given string pointer is modified to point to the first unconsumed char. |
811 | | bool ConsumeDurationNumber(const char** dpp, const char* ep, int64_t* int_part, |
812 | 0 | int64_t* frac_part, int64_t* frac_scale) { |
813 | 0 | *int_part = 0; |
814 | 0 | *frac_part = 0; |
815 | 0 | *frac_scale = 1; // invariant: *frac_part < *frac_scale |
816 | 0 | const char* start = *dpp; |
817 | 0 | for (; *dpp != ep; *dpp += 1) { |
818 | 0 | const int d = **dpp - '0'; // contiguous digits |
819 | 0 | if (d < 0 || 10 <= d) break; |
820 | | |
821 | 0 | if (*int_part > kint64max / 10) return false; |
822 | 0 | *int_part *= 10; |
823 | 0 | if (*int_part > kint64max - d) return false; |
824 | 0 | *int_part += d; |
825 | 0 | } |
826 | 0 | const bool int_part_empty = (*dpp == start); |
827 | 0 | if (*dpp == ep || **dpp != '.') return !int_part_empty; |
828 | | |
829 | 0 | for (*dpp += 1; *dpp != ep; *dpp += 1) { |
830 | 0 | const int d = **dpp - '0'; // contiguous digits |
831 | 0 | if (d < 0 || 10 <= d) break; |
832 | 0 | if (*frac_scale <= kint64max / 10) { |
833 | 0 | *frac_part *= 10; |
834 | 0 | *frac_part += d; |
835 | 0 | *frac_scale *= 10; |
836 | 0 | } |
837 | 0 | } |
838 | 0 | return !int_part_empty || *frac_scale != 1; |
839 | 0 | } |
840 | | |
841 | | // A helper for ParseDuration() that parses a leading unit designator (e.g., |
842 | | // ns, us, ms, s, m, h) from the given string and stores the resulting unit |
843 | | // in "*unit". The given string pointer is modified to point to the first |
844 | | // unconsumed char. |
845 | 0 | bool ConsumeDurationUnit(const char** start, const char* end, Duration* unit) { |
846 | 0 | size_t size = static_cast<size_t>(end - *start); |
847 | 0 | switch (size) { |
848 | 0 | case 0: |
849 | 0 | return false; |
850 | 0 | default: |
851 | 0 | switch (**start) { |
852 | 0 | case 'n': |
853 | 0 | if (*(*start + 1) == 's') { |
854 | 0 | *start += 2; |
855 | 0 | *unit = Nanoseconds(1); |
856 | 0 | return true; |
857 | 0 | } |
858 | 0 | break; |
859 | 0 | case 'u': |
860 | 0 | if (*(*start + 1) == 's') { |
861 | 0 | *start += 2; |
862 | 0 | *unit = Microseconds(1); |
863 | 0 | return true; |
864 | 0 | } |
865 | 0 | break; |
866 | 0 | case 'm': |
867 | 0 | if (*(*start + 1) == 's') { |
868 | 0 | *start += 2; |
869 | 0 | *unit = Milliseconds(1); |
870 | 0 | return true; |
871 | 0 | } |
872 | 0 | break; |
873 | 0 | default: |
874 | 0 | break; |
875 | 0 | } |
876 | 0 | ABSL_FALLTHROUGH_INTENDED; |
877 | 0 | case 1: |
878 | 0 | switch (**start) { |
879 | 0 | case 's': |
880 | 0 | *unit = Seconds(1); |
881 | 0 | *start += 1; |
882 | 0 | return true; |
883 | 0 | case 'm': |
884 | 0 | *unit = Minutes(1); |
885 | 0 | *start += 1; |
886 | 0 | return true; |
887 | 0 | case 'h': |
888 | 0 | *unit = Hours(1); |
889 | 0 | *start += 1; |
890 | 0 | return true; |
891 | 0 | default: |
892 | 0 | return false; |
893 | 0 | } |
894 | 0 | } |
895 | 0 | } |
896 | | |
897 | | } // namespace |
898 | | |
899 | | // From Go's doc at https://golang.org/pkg/time/#ParseDuration |
900 | | // [ParseDuration] parses a duration string. A duration string is |
901 | | // a possibly signed sequence of decimal numbers, each with optional |
902 | | // fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". |
903 | | // Valid time units are "ns", "us" "ms", "s", "m", "h". |
904 | 0 | bool ParseDuration(absl::string_view dur_sv, Duration* d) { |
905 | 0 | int sign = 1; |
906 | 0 | if (absl::ConsumePrefix(&dur_sv, "-")) { |
907 | 0 | sign = -1; |
908 | 0 | } else { |
909 | 0 | absl::ConsumePrefix(&dur_sv, "+"); |
910 | 0 | } |
911 | 0 | if (dur_sv.empty()) return false; |
912 | | |
913 | | // Special case for a string of "0". |
914 | 0 | if (dur_sv == "0") { |
915 | 0 | *d = ZeroDuration(); |
916 | 0 | return true; |
917 | 0 | } |
918 | | |
919 | 0 | if (dur_sv == "inf") { |
920 | 0 | *d = sign * InfiniteDuration(); |
921 | 0 | return true; |
922 | 0 | } |
923 | | |
924 | 0 | const char* start = dur_sv.data(); |
925 | 0 | const char* end = start + dur_sv.size(); |
926 | |
|
927 | 0 | Duration dur; |
928 | 0 | while (start != end) { |
929 | 0 | int64_t int_part; |
930 | 0 | int64_t frac_part; |
931 | 0 | int64_t frac_scale; |
932 | 0 | Duration unit; |
933 | 0 | if (!ConsumeDurationNumber(&start, end, &int_part, &frac_part, |
934 | 0 | &frac_scale) || |
935 | 0 | !ConsumeDurationUnit(&start, end, &unit)) { |
936 | 0 | return false; |
937 | 0 | } |
938 | 0 | if (int_part != 0) dur += sign * int_part * unit; |
939 | 0 | if (frac_part != 0) dur += sign * frac_part * unit / frac_scale; |
940 | 0 | } |
941 | 0 | *d = dur; |
942 | 0 | return true; |
943 | 0 | } |
944 | | |
945 | 0 | bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) { |
946 | 0 | return ParseDuration(text, dst); |
947 | 0 | } |
948 | | |
949 | 0 | std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); } |
950 | 0 | bool ParseFlag(const std::string& text, Duration* dst, std::string* ) { |
951 | 0 | return ParseDuration(text, dst); |
952 | 0 | } |
953 | | |
954 | 0 | std::string UnparseFlag(Duration d) { return FormatDuration(d); } |
955 | | |
956 | | ABSL_NAMESPACE_END |
957 | | } // namespace absl |