Coverage Report

Created: 2025-08-25 06:55

/src/abseil-cpp/absl/hash/internal/hash.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// File: hash.h
17
// -----------------------------------------------------------------------------
18
//
19
#ifndef ABSL_HASH_INTERNAL_HASH_H_
20
#define ABSL_HASH_INTERNAL_HASH_H_
21
22
#ifdef __APPLE__
23
#include <Availability.h>
24
#include <TargetConditionals.h>
25
#endif
26
27
// We include config.h here to make sure that ABSL_INTERNAL_CPLUSPLUS_LANG is
28
// defined.
29
#include "absl/base/config.h"
30
31
// GCC15 warns that <ciso646> is deprecated in C++17 and suggests using
32
// <version> instead, even though <version> is not available in C++17 mode prior
33
// to GCC9.
34
#if defined(__has_include)
35
#if __has_include(<version>)
36
#define ABSL_INTERNAL_VERSION_HEADER_AVAILABLE 1
37
#endif
38
#endif
39
40
// For feature testing and determining which headers can be included.
41
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L || \
42
    defined(ABSL_INTERNAL_VERSION_HEADER_AVAILABLE)
43
#include <version>
44
#else
45
#include <ciso646>
46
#endif
47
48
#undef ABSL_INTERNAL_VERSION_HEADER_AVAILABLE
49
50
#include <algorithm>
51
#include <array>
52
#include <bitset>
53
#include <cassert>
54
#include <cmath>
55
#include <cstddef>
56
#include <cstdint>
57
#include <cstring>
58
#include <deque>
59
#include <forward_list>
60
#include <functional>
61
#include <iterator>
62
#include <limits>
63
#include <list>
64
#include <map>
65
#include <memory>
66
#include <set>
67
#include <string>
68
#include <string_view>
69
#include <tuple>
70
#include <type_traits>
71
#include <unordered_map>
72
#include <unordered_set>
73
#include <utility>
74
#include <vector>
75
76
#include "absl/base/attributes.h"
77
#include "absl/base/internal/unaligned_access.h"
78
#include "absl/base/optimization.h"
79
#include "absl/base/port.h"
80
#include "absl/container/fixed_array.h"
81
#include "absl/hash/internal/city.h"
82
#include "absl/hash/internal/weakly_mixed_integer.h"
83
#include "absl/meta/type_traits.h"
84
#include "absl/numeric/bits.h"
85
#include "absl/numeric/int128.h"
86
#include "absl/strings/string_view.h"
87
#include "absl/types/optional.h"
88
#include "absl/types/variant.h"
89
#include "absl/utility/utility.h"
90
91
#if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \
92
    !defined(__XTENSA__)
93
#include <filesystem>  // NOLINT
94
#endif
95
96
namespace absl {
97
ABSL_NAMESPACE_BEGIN
98
99
class HashState;
100
101
namespace hash_internal {
102
103
// Internal detail: Large buffers are hashed in smaller chunks.  This function
104
// returns the size of these chunks.
105
18
constexpr size_t PiecewiseChunkSize() { return 1024; }
106
107
// PiecewiseCombiner is an internal-only helper class for hashing a piecewise
108
// buffer of `char` or `unsigned char` as though it were contiguous.  This class
109
// provides two methods:
110
//
111
//   H add_buffer(state, data, size)
112
//   H finalize(state)
113
//
114
// `add_buffer` can be called zero or more times, followed by a single call to
115
// `finalize`.  This will produce the same hash expansion as concatenating each
116
// buffer piece into a single contiguous buffer, and passing this to
117
// `H::combine_contiguous`.
118
//
119
//  Example usage:
120
//    PiecewiseCombiner combiner;
121
//    for (const auto& piece : pieces) {
122
//      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
123
//    }
124
//    return combiner.finalize(std::move(state));
125
class PiecewiseCombiner {
126
 public:
127
  PiecewiseCombiner() = default;
128
  PiecewiseCombiner(const PiecewiseCombiner&) = delete;
129
  PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
130
131
  // Appends the given range of bytes to the sequence to be hashed, which may
132
  // modify the provided hash state.
133
  template <typename H>
134
  H add_buffer(H state, const unsigned char* data, size_t size);
135
  template <typename H>
136
0
  H add_buffer(H state, const char* data, size_t size) {
137
0
    return add_buffer(std::move(state),
138
0
                      reinterpret_cast<const unsigned char*>(data), size);
139
0
  }
140
141
  // Finishes combining the hash sequence, which may may modify the provided
142
  // hash state.
143
  //
144
  // Once finalize() is called, add_buffer() may no longer be called. The
145
  // resulting hash state will be the same as if the pieces passed to
146
  // add_buffer() were concatenated into a single flat buffer, and then provided
147
  // to H::combine_contiguous().
148
  template <typename H>
149
  H finalize(H state);
150
151
 private:
152
  unsigned char buf_[PiecewiseChunkSize()];
153
  size_t position_ = 0;
154
  bool added_something_ = false;
155
};
156
157
// Trait class which returns true if T is hashable by the absl::Hash framework.
158
// Used for the AbslHashValue implementations for composite types below.
159
template <typename T>
160
struct is_hashable;
161
162
// HashStateBase is an internal implementation detail that contains common
163
// implementation details for all of the "hash state objects" objects generated
164
// by Abseil.  This is not a public API; users should not create classes that
165
// inherit from this.
166
//
167
// A hash state object is the template argument `H` passed to `AbslHashValue`.
168
// It represents an intermediate state in the computation of an unspecified hash
169
// algorithm. `HashStateBase` provides a CRTP style base class for hash state
170
// implementations. Developers adding type support for `absl::Hash` should not
171
// rely on any parts of the state object other than the following member
172
// functions:
173
//
174
//   * HashStateBase::combine()
175
//   * HashStateBase::combine_contiguous()
176
//   * HashStateBase::combine_unordered()
177
//
178
// A derived hash state class of type `H` must provide a public member function
179
// with a signature similar to the following:
180
//
181
//    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
182
//
183
// It must also provide a private template method named RunCombineUnordered.
184
//
185
// A "consumer" is a 1-arg functor returning void.  Its argument is a reference
186
// to an inner hash state object, and it may be called multiple times.  When
187
// called, the functor consumes the entropy from the provided state object,
188
// and resets that object to its empty state.
189
//
190
// A "combiner" is a stateless 2-arg functor returning void.  Its arguments are
191
// an inner hash state object and an ElementStateConsumer functor.  A combiner
192
// uses the provided inner hash state object to hash each element of the
193
// container, passing the inner hash state object to the consumer after hashing
194
// each element.
195
//
196
// Given these definitions, a derived hash state class of type H
197
// must provide a private template method with a signature similar to the
198
// following:
199
//
200
//    `template <typename CombinerT>`
201
//    `static H RunCombineUnordered(H outer_state, CombinerT combiner)`
202
//
203
// This function is responsible for constructing the inner state object and
204
// providing a consumer to the combiner.  It uses side effects of the consumer
205
// and combiner to mix the state of each element in an order-independent manner,
206
// and uses this to return an updated value of `outer_state`.
207
//
208
// This inside-out approach generates efficient object code in the normal case,
209
// but allows us to use stack storage to implement the absl::HashState type
210
// erasure mechanism (avoiding heap allocations while hashing).
211
//
212
// `HashStateBase` will provide a complete implementation for a hash state
213
// object in terms of these two methods.
214
//
215
// Example:
216
//
217
//   // Use CRTP to define your derived class.
218
//   struct MyHashState : HashStateBase<MyHashState> {
219
//       static H combine_contiguous(H state, const unsigned char*, size_t);
220
//       using MyHashState::HashStateBase::combine;
221
//       using MyHashState::HashStateBase::combine_contiguous;
222
//       using MyHashState::HashStateBase::combine_unordered;
223
//     private:
224
//       template <typename CombinerT>
225
//       static H RunCombineUnordered(H state, CombinerT combiner);
226
//   };
227
template <typename H>
228
class HashStateBase {
229
 public:
230
  // Combines an arbitrary number of values into a hash state, returning the
231
  // updated state.
232
  //
233
  // Each of the value types `T` must be separately hashable by the Abseil
234
  // hashing framework.
235
  //
236
  // NOTE:
237
  //
238
  //   state = H::combine(std::move(state), value1, value2, value3);
239
  //
240
  // is guaranteed to produce the same hash expansion as:
241
  //
242
  //   state = H::combine(std::move(state), value1);
243
  //   state = H::combine(std::move(state), value2);
244
  //   state = H::combine(std::move(state), value3);
245
  template <typename T, typename... Ts>
246
  static H combine(H state, const T& value, const Ts&... values);
247
30
  static H combine(H state) { return state; }
248
249
  // Combines a contiguous array of `size` elements into a hash state, returning
250
  // the updated state.
251
  //
252
  // NOTE:
253
  //
254
  //   state = H::combine_contiguous(std::move(state), data, size);
255
  //
256
  // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
257
  // perform internal optimizations).  If you need this guarantee, use the
258
  // for-loop instead.
259
  template <typename T>
260
  static H combine_contiguous(H state, const T* data, size_t size);
261
262
  template <typename I>
263
  static H combine_unordered(H state, I begin, I end);
264
265
  using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
266
267
  template <typename T>
268
  using is_hashable = absl::hash_internal::is_hashable<T>;
269
270
 private:
271
  // Common implementation of the iteration step of a "combiner", as described
272
  // above.
273
  template <typename I>
274
  struct CombineUnorderedCallback {
275
    I begin;
276
    I end;
277
278
    template <typename InnerH, typename ElementStateConsumer>
279
    void operator()(InnerH inner_state, ElementStateConsumer cb) {
280
      for (; begin != end; ++begin) {
281
        inner_state = H::combine(std::move(inner_state), *begin);
282
        cb(inner_state);
283
      }
284
    }
285
  };
286
};
287
288
// `is_uniquely_represented<T>` is a trait class that indicates whether `T`
289
// is uniquely represented.
290
//
291
// A type is "uniquely represented" if two equal values of that type are
292
// guaranteed to have the same bytes in their underlying storage. In other
293
// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
294
// zero. This property cannot be detected automatically, so this trait is false
295
// by default, but can be specialized by types that wish to assert that they are
296
// uniquely represented. This makes them eligible for certain optimizations.
297
//
298
// If you have any doubt whatsoever, do not specialize this template.
299
// The default is completely safe, and merely disables some optimizations
300
// that will not matter for most types. Specializing this template,
301
// on the other hand, can be very hazardous.
302
//
303
// To be uniquely represented, a type must not have multiple ways of
304
// representing the same value; for example, float and double are not
305
// uniquely represented, because they have distinct representations for
306
// +0 and -0. Furthermore, the type's byte representation must consist
307
// solely of user-controlled data, with no padding bits and no compiler-
308
// controlled data such as vptrs or sanitizer metadata. This is usually
309
// very difficult to guarantee, because in most cases the compiler can
310
// insert data and padding bits at its own discretion.
311
//
312
// If you specialize this template for a type `T`, you must do so in the file
313
// that defines that type (or in this file). If you define that specialization
314
// anywhere else, `is_uniquely_represented<T>` could have different meanings
315
// in different places.
316
//
317
// The Enable parameter is meaningless; it is provided as a convenience,
318
// to support certain SFINAE techniques when defining specializations.
319
template <typename T, typename Enable = void>
320
struct is_uniquely_represented : std::false_type {};
321
322
// unsigned char is a synonym for "byte", so it is guaranteed to be
323
// uniquely represented.
324
template <>
325
struct is_uniquely_represented<unsigned char> : std::true_type {};
326
327
// is_uniquely_represented for non-standard integral types
328
//
329
// Integral types other than bool should be uniquely represented on any
330
// platform that this will plausibly be ported to.
331
template <typename Integral>
332
struct is_uniquely_represented<
333
    Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
334
    : std::true_type {};
335
336
template <>
337
struct is_uniquely_represented<bool> : std::false_type {};
338
339
#ifdef ABSL_HAVE_INTRINSIC_INT128
340
// Specialize the trait for GNU extension types.
341
template <>
342
struct is_uniquely_represented<__int128> : std::true_type {};
343
template <>
344
struct is_uniquely_represented<unsigned __int128> : std::true_type {};
345
#endif  // ABSL_HAVE_INTRINSIC_INT128
346
347
template <typename T>
348
struct FitsIn64Bits : std::integral_constant<bool, sizeof(T) <= 8> {};
349
350
struct CombineRaw {
351
  template <typename H>
352
0
  H operator()(H state, uint64_t value) const {
353
0
    return H::combine_raw(std::move(state), value);
354
0
  }
355
};
356
357
// For use in `raw_hash_set` to pass a seed to the hash function.
358
struct HashWithSeed {
359
  template <typename Hasher, typename T>
360
60
  size_t hash(const Hasher& hasher, const T& value, size_t seed) const {
361
    // NOLINTNEXTLINE(clang-diagnostic-sign-conversion)
362
60
    return hasher.hash_with_seed(value, seed);
363
60
  }
unsigned long absl::hash_internal::HashWithSeed::hash<absl::container_internal::StringHash, std::__1::basic_string_view<char, std::__1::char_traits<char> > >(absl::container_internal::StringHash const&, std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, unsigned long) const
Line
Count
Source
360
30
  size_t hash(const Hasher& hasher, const T& value, size_t seed) const {
361
    // NOLINTNEXTLINE(clang-diagnostic-sign-conversion)
362
30
    return hasher.hash_with_seed(value, seed);
363
30
  }
unsigned long absl::hash_internal::HashWithSeed::hash<absl::hash_internal::Hash<std::__1::basic_string_view<char, std::__1::char_traits<char> > >, std::__1::basic_string_view<char, std::__1::char_traits<char> > >(absl::hash_internal::Hash<std::__1::basic_string_view<char, std::__1::char_traits<char> > > const&, std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, unsigned long) const
Line
Count
Source
360
30
  size_t hash(const Hasher& hasher, const T& value, size_t seed) const {
361
    // NOLINTNEXTLINE(clang-diagnostic-sign-conversion)
362
30
    return hasher.hash_with_seed(value, seed);
363
30
  }
Unexecuted instantiation: unsigned long absl::hash_internal::HashWithSeed::hash<absl::hash_internal::Hash<absl::Cord>, absl::Cord>(absl::hash_internal::Hash<absl::Cord> const&, absl::Cord const&, unsigned long) const
364
};
365
366
// Convenience function that combines `hash_state` with the byte representation
367
// of `value`.
368
template <typename H, typename T,
369
          absl::enable_if_t<FitsIn64Bits<T>::value, int> = 0>
370
0
H hash_bytes(H hash_state, const T& value) {
371
0
  const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
372
0
  uint64_t v;
373
  if constexpr (sizeof(T) == 1) {
374
    v = *start;
375
  } else if constexpr (sizeof(T) == 2) {
376
    v = absl::base_internal::UnalignedLoad16(start);
377
0
  } else if constexpr (sizeof(T) == 4) {
378
0
    v = absl::base_internal::UnalignedLoad32(start);
379
0
  } else {
380
0
    static_assert(sizeof(T) == 8);
381
0
    v = absl::base_internal::UnalignedLoad64(start);
382
0
  }
383
0
  return CombineRaw()(std::move(hash_state), v);
384
0
}
Unexecuted instantiation: _ZN4absl13hash_internal10hash_bytesINS0_15MixingHashStateEmTnNSt3__19enable_ifIXsr12FitsIn64BitsIT0_EE5valueEiE4typeELi0EEET_S8_RKS5_
Unexecuted instantiation: _ZN4absl13hash_internal10hash_bytesINS0_15MixingHashStateEiTnNSt3__19enable_ifIXsr12FitsIn64BitsIT0_EE5valueEiE4typeELi0EEET_S8_RKS5_
385
template <typename H, typename T,
386
          absl::enable_if_t<!FitsIn64Bits<T>::value, int> = 0>
387
H hash_bytes(H hash_state, const T& value) {
388
  const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
389
  return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
390
}
391
392
template <typename H>
393
H hash_weakly_mixed_integer(H hash_state, WeaklyMixedInteger value) {
394
  return H::combine_weakly_mixed_integer(std::move(hash_state), value);
395
}
396
397
// -----------------------------------------------------------------------------
398
// AbslHashValue for Basic Types
399
// -----------------------------------------------------------------------------
400
401
// Note: Default `AbslHashValue` implementations live in `hash_internal`. This
402
// allows us to block lexical scope lookup when doing an unqualified call to
403
// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
404
// only be found via ADL.
405
406
// AbslHashValue() for hashing bool values
407
//
408
// We use SFINAE to ensure that this overload only accepts bool, not types that
409
// are convertible to bool.
410
template <typename H, typename B>
411
typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
412
    H hash_state, B value) {
413
  // We use ~size_t{} instead of 1 so that all bits are different between
414
  // true/false instead of only 1.
415
  return H::combine(std::move(hash_state),
416
                    static_cast<size_t>(value ? ~size_t{} : 0));
417
}
418
419
// AbslHashValue() for hashing enum values
420
template <typename H, typename Enum>
421
typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
422
    H hash_state, Enum e) {
423
  // In practice, we could almost certainly just invoke hash_bytes directly,
424
  // but it's possible that a sanitizer might one day want to
425
  // store data in the unused bits of an enum. To avoid that risk, we
426
  // convert to the underlying type before hashing. Hopefully this will get
427
  // optimized away; if not, we can reopen discussion with c-toolchain-team.
428
  return H::combine(std::move(hash_state),
429
                    static_cast<typename std::underlying_type<Enum>::type>(e));
430
}
431
// AbslHashValue() for hashing floating-point values
432
template <typename H, typename Float>
433
typename std::enable_if<std::is_same<Float, float>::value ||
434
                            std::is_same<Float, double>::value,
435
                        H>::type
436
AbslHashValue(H hash_state, Float value) {
437
  return hash_internal::hash_bytes(std::move(hash_state),
438
                                   value == 0 ? 0 : value);
439
}
440
441
// Long double has the property that it might have extra unused bytes in it.
442
// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
443
// of it. This means we can't use hash_bytes on a long double and have to
444
// convert it to something else first.
445
template <typename H, typename LongDouble>
446
typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
447
AbslHashValue(H hash_state, LongDouble value) {
448
  const int category = std::fpclassify(value);
449
  switch (category) {
450
    case FP_INFINITE:
451
      // Add the sign bit to differentiate between +Inf and -Inf
452
      hash_state = H::combine(std::move(hash_state), std::signbit(value));
453
      break;
454
455
    case FP_NAN:
456
    case FP_ZERO:
457
    default:
458
      // Category is enough for these.
459
      break;
460
461
    case FP_NORMAL:
462
    case FP_SUBNORMAL:
463
      // We can't convert `value` directly to double because this would have
464
      // undefined behavior if the value is out of range.
465
      // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
466
      // guaranteed to be in range for `double`. The truncation is
467
      // implementation defined, but that works as long as it is deterministic.
468
      int exp;
469
      auto mantissa = static_cast<double>(std::frexp(value, &exp));
470
      hash_state = H::combine(std::move(hash_state), mantissa, exp);
471
  }
472
473
  return H::combine(std::move(hash_state), category);
474
}
475
476
// Without this overload, an array decays to a pointer and we hash that, which
477
// is not likely to be what the caller intended.
478
template <typename H, typename T, size_t N>
479
H AbslHashValue(H hash_state, T (&)[N]) {
480
  static_assert(
481
      sizeof(T) == -1,
482
      "Hashing C arrays is not allowed. For string literals, wrap the literal "
483
      "in absl::string_view(). To hash the array contents, use "
484
      "absl::MakeSpan() or make the array an std::array. To hash the array "
485
      "address, use &array[0].");
486
  return hash_state;
487
}
488
489
// AbslHashValue() for hashing pointers
490
template <typename H, typename T>
491
std::enable_if_t<std::is_pointer<T>::value, H> AbslHashValue(H hash_state,
492
                                                             T ptr) {
493
  auto v = reinterpret_cast<uintptr_t>(ptr);
494
  // Due to alignment, pointers tend to have low bits as zero, and the next few
495
  // bits follow a pattern since they are also multiples of some base value.
496
  // The PointerAlignment test verifies that our mixing is good enough to handle
497
  // these cases.
498
  return H::combine(std::move(hash_state), v);
499
}
500
501
// AbslHashValue() for hashing nullptr_t
502
template <typename H>
503
H AbslHashValue(H hash_state, std::nullptr_t) {
504
  return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
505
}
506
507
// AbslHashValue() for hashing pointers-to-member
508
template <typename H, typename T, typename C>
509
H AbslHashValue(H hash_state, T C::*ptr) {
510
  auto salient_ptm_size = [](std::size_t n) -> std::size_t {
511
#if defined(_MSC_VER)
512
    // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2,
513
    // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain
514
    // padding (namely when they have 1 or 3 ints). The value below is a lower
515
    // bound on the number of salient, non-padding bytes that we use for
516
    // hashing.
517
    if constexpr (alignof(T C::*) == alignof(int)) {
518
      // No padding when all subobjects have the same size as the total
519
      // alignment. This happens in 32-bit mode.
520
      return n;
521
    } else {
522
      // Padding for 1 int (size 16) or 3 ints (size 24).
523
      // With 2 ints, the size is 16 with no padding, which we pessimize.
524
      return n == 24 ? 20 : n == 16 ? 12 : n;
525
    }
526
#else
527
  // On other platforms, we assume that pointers-to-members do not have
528
  // padding.
529
#ifdef __cpp_lib_has_unique_object_representations
530
    static_assert(std::has_unique_object_representations<T C::*>::value);
531
#endif  // __cpp_lib_has_unique_object_representations
532
    return n;
533
#endif
534
  };
535
  return H::combine_contiguous(std::move(hash_state),
536
                               reinterpret_cast<unsigned char*>(&ptr),
537
                               salient_ptm_size(sizeof ptr));
538
}
539
540
// -----------------------------------------------------------------------------
541
// AbslHashValue for Composite Types
542
// -----------------------------------------------------------------------------
543
544
// AbslHashValue() for hashing pairs
545
template <typename H, typename T1, typename T2>
546
typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
547
                        H>::type
548
AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
549
  return H::combine(std::move(hash_state), p.first, p.second);
550
}
551
552
// Helper function for hashing a tuple. The third argument should
553
// be an index_sequence running from 0 to tuple_size<Tuple> - 1.
554
template <typename H, typename Tuple, size_t... Is>
555
0
H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
556
0
  return H::combine(std::move(hash_state), std::get<Is>(t)...);
557
0
}
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::hash_tuple<absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&>, 0ul>(absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&, std::__1::integer_sequence<unsigned long, 0ul>)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::hash_tuple<absl::hash_internal::MixingHashState, std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&>, 0ul, 1ul>(absl::hash_internal::MixingHashState, std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&, std::__1::integer_sequence<unsigned long, 0ul, 1ul>)
558
559
// AbslHashValue for hashing tuples
560
template <typename H, typename... Ts>
561
#if defined(_MSC_VER)
562
// This SFINAE gets MSVC confused under some conditions. Let's just disable it
563
// for now.
564
H
565
#else   // _MSC_VER
566
typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
567
#endif  // _MSC_VER
568
0
AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
569
0
  return hash_internal::hash_tuple(std::move(hash_state), t,
570
0
                                   absl::make_index_sequence<sizeof...(Ts)>());
571
0
}
Unexecuted instantiation: _ZN4absl13hash_internal13AbslHashValueINS0_15MixingHashStateEJRKmEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS0_11is_hashableIT0_EEEE5valueET_E4typeESB_RKNS5_5tupleIJDpS8_EEE
Unexecuted instantiation: _ZN4absl13hash_internal13AbslHashValueINS0_15MixingHashStateEJRKNSt3__117basic_string_viewIcNS3_11char_traitsIcEEEERKiEEENS3_9enable_ifIXsr4absl11conjunctionIDpNS0_11is_hashableIT0_EEEE5valueET_E4typeESH_RKNS3_5tupleIJDpSE_EEE
572
573
// -----------------------------------------------------------------------------
574
// AbslHashValue for Pointers
575
// -----------------------------------------------------------------------------
576
577
// AbslHashValue for hashing unique_ptr
578
template <typename H, typename T, typename D>
579
H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
580
  return H::combine(std::move(hash_state), ptr.get());
581
}
582
583
// AbslHashValue for hashing shared_ptr
584
template <typename H, typename T>
585
H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
586
  return H::combine(std::move(hash_state), ptr.get());
587
}
588
589
// -----------------------------------------------------------------------------
590
// AbslHashValue for String-Like Types
591
// -----------------------------------------------------------------------------
592
593
// AbslHashValue for hashing strings
594
//
595
// All the string-like types supported here provide the same hash expansion for
596
// the same character sequence. These types are:
597
//
598
//  - `absl::Cord`
599
//  - `std::string` (and std::basic_string<T, std::char_traits<T>, A> for
600
//      any allocator A and any T in {char, wchar_t, char16_t, char32_t})
601
//  - `absl::string_view`, `std::string_view`, `std::wstring_view`,
602
//    `std::u16string_view`, and `std::u32_string_view`.
603
//
604
// For simplicity, we currently support only strings built on `char`, `wchar_t`,
605
// `char16_t`, or `char32_t`. This support may be broadened, if necessary, but
606
// with some caution - this overload would misbehave in cases where the traits'
607
// `eq()` member isn't equivalent to `==` on the underlying character type.
608
template <typename H>
609
30
H AbslHashValue(H hash_state, absl::string_view str) {
610
30
  return H::combine_contiguous(std::move(hash_state), str.data(), str.size());
611
30
}
612
613
// Support std::wstring, std::u16string and std::u32string.
614
template <typename Char, typename Alloc, typename H,
615
          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
616
                                       std::is_same<Char, char16_t>::value ||
617
                                       std::is_same<Char, char32_t>::value>>
618
H AbslHashValue(
619
    H hash_state,
620
    const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
621
  return H::combine_contiguous(std::move(hash_state), str.data(), str.size());
622
}
623
624
// Support std::wstring_view, std::u16string_view and std::u32string_view.
625
template <typename Char, typename H,
626
          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
627
                                       std::is_same<Char, char16_t>::value ||
628
                                       std::is_same<Char, char32_t>::value>>
629
H AbslHashValue(H hash_state, std::basic_string_view<Char> str) {
630
  return H::combine_contiguous(std::move(hash_state), str.data(), str.size());
631
}
632
633
#if defined(__cpp_lib_filesystem) && __cpp_lib_filesystem >= 201703L && \
634
    (!defined(__ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__) ||        \
635
     __ENVIRONMENT_IPHONE_OS_VERSION_MIN_REQUIRED__ >= 130000) &&       \
636
    (!defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) ||         \
637
     __ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ >= 101500) &&        \
638
    (!defined(__XTENSA__))
639
640
#define ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE 1
641
642
// Support std::filesystem::path. The SFINAE is required because some string
643
// types are implicitly convertible to std::filesystem::path.
644
template <typename Path, typename H,
645
          typename = absl::enable_if_t<
646
              std::is_same_v<Path, std::filesystem::path>>>
647
H AbslHashValue(H hash_state, const Path& path) {
648
  // This is implemented by deferring to the standard library to compute the
649
  // hash.  The standard library requires that for two paths, `p1 == p2`, then
650
  // `hash_value(p1) == hash_value(p2)`. `AbslHashValue` has the same
651
  // requirement. Since `operator==` does platform specific matching, deferring
652
  // to the standard library is the simplest approach.
653
  return H::combine(std::move(hash_state), std::filesystem::hash_value(path));
654
}
655
656
#endif  // ABSL_INTERNAL_STD_FILESYSTEM_PATH_HASH_AVAILABLE
657
658
// -----------------------------------------------------------------------------
659
// AbslHashValue for Sequence Containers
660
// -----------------------------------------------------------------------------
661
662
// AbslHashValue for hashing std::array
663
template <typename H, typename T, size_t N>
664
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
665
    H hash_state, const std::array<T, N>& array) {
666
  return H::combine_contiguous(std::move(hash_state), array.data(),
667
                               array.size());
668
}
669
670
// AbslHashValue for hashing std::deque
671
template <typename H, typename T, typename Allocator>
672
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
673
    H hash_state, const std::deque<T, Allocator>& deque) {
674
  // TODO(gromer): investigate a more efficient implementation taking
675
  // advantage of the chunk structure.
676
  for (const auto& t : deque) {
677
    hash_state = H::combine(std::move(hash_state), t);
678
  }
679
  return H::combine(std::move(hash_state), WeaklyMixedInteger{deque.size()});
680
}
681
682
// AbslHashValue for hashing std::forward_list
683
template <typename H, typename T, typename Allocator>
684
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
685
    H hash_state, const std::forward_list<T, Allocator>& list) {
686
  size_t size = 0;
687
  for (const T& t : list) {
688
    hash_state = H::combine(std::move(hash_state), t);
689
    ++size;
690
  }
691
  return H::combine(std::move(hash_state), WeaklyMixedInteger{size});
692
}
693
694
// AbslHashValue for hashing std::list
695
template <typename H, typename T, typename Allocator>
696
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
697
    H hash_state, const std::list<T, Allocator>& list) {
698
  for (const auto& t : list) {
699
    hash_state = H::combine(std::move(hash_state), t);
700
  }
701
  return H::combine(std::move(hash_state), WeaklyMixedInteger{list.size()});
702
}
703
704
// AbslHashValue for hashing std::vector
705
//
706
// Do not use this for vector<bool> on platforms that have a working
707
// implementation of std::hash. It does not have a .data(), and a fallback for
708
// std::hash<> is most likely faster.
709
template <typename H, typename T, typename Allocator>
710
typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
711
                        H>::type
712
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
713
  return H::combine_contiguous(std::move(hash_state), vector.data(),
714
                               vector.size());
715
}
716
717
// AbslHashValue special cases for hashing std::vector<bool>
718
719
#if defined(ABSL_IS_BIG_ENDIAN) && \
720
    (defined(__GLIBCXX__) || defined(__GLIBCPP__))
721
722
// std::hash in libstdc++ does not work correctly with vector<bool> on Big
723
// Endian platforms therefore we need to implement a custom AbslHashValue for
724
// it. More details on the bug:
725
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
726
template <typename H, typename T, typename Allocator>
727
typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
728
                        H>::type
729
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
730
  typename H::AbslInternalPiecewiseCombiner combiner;
731
  for (const auto& i : vector) {
732
    unsigned char c = static_cast<unsigned char>(i);
733
    hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
734
  }
735
  return H::combine(combiner.finalize(std::move(hash_state)),
736
                    WeaklyMixedInteger{vector.size()});
737
}
738
#else
739
// When not working around the libstdc++ bug above, we still have to contend
740
// with the fact that std::hash<vector<bool>> is often poor quality, hashing
741
// directly on the internal words and on no other state.  On these platforms,
742
// vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value.
743
//
744
// Mixing in the size (as we do in our other vector<> implementations) on top
745
// of the library-provided hash implementation avoids this QOI issue.
746
template <typename H, typename T, typename Allocator>
747
typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
748
                        H>::type
749
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
750
  return H::combine(std::move(hash_state),
751
                    std::hash<std::vector<T, Allocator>>{}(vector),
752
                    WeaklyMixedInteger{vector.size()});
753
}
754
#endif
755
756
// -----------------------------------------------------------------------------
757
// AbslHashValue for Ordered Associative Containers
758
// -----------------------------------------------------------------------------
759
760
// AbslHashValue for hashing std::map
761
template <typename H, typename Key, typename T, typename Compare,
762
          typename Allocator>
763
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
764
                        H>::type
765
AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
766
  for (const auto& t : map) {
767
    hash_state = H::combine(std::move(hash_state), t);
768
  }
769
  return H::combine(std::move(hash_state), WeaklyMixedInteger{map.size()});
770
}
771
772
// AbslHashValue for hashing std::multimap
773
template <typename H, typename Key, typename T, typename Compare,
774
          typename Allocator>
775
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
776
                        H>::type
777
AbslHashValue(H hash_state,
778
              const std::multimap<Key, T, Compare, Allocator>& map) {
779
  for (const auto& t : map) {
780
    hash_state = H::combine(std::move(hash_state), t);
781
  }
782
  return H::combine(std::move(hash_state), WeaklyMixedInteger{map.size()});
783
}
784
785
// AbslHashValue for hashing std::set
786
template <typename H, typename Key, typename Compare, typename Allocator>
787
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
788
    H hash_state, const std::set<Key, Compare, Allocator>& set) {
789
  for (const auto& t : set) {
790
    hash_state = H::combine(std::move(hash_state), t);
791
  }
792
  return H::combine(std::move(hash_state), WeaklyMixedInteger{set.size()});
793
}
794
795
// AbslHashValue for hashing std::multiset
796
template <typename H, typename Key, typename Compare, typename Allocator>
797
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
798
    H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
799
  for (const auto& t : set) {
800
    hash_state = H::combine(std::move(hash_state), t);
801
  }
802
  return H::combine(std::move(hash_state), WeaklyMixedInteger{set.size()});
803
}
804
805
// -----------------------------------------------------------------------------
806
// AbslHashValue for Unordered Associative Containers
807
// -----------------------------------------------------------------------------
808
809
// AbslHashValue for hashing std::unordered_set
810
template <typename H, typename Key, typename Hash, typename KeyEqual,
811
          typename Alloc>
812
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
813
    H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) {
814
  return H::combine(
815
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
816
      WeaklyMixedInteger{s.size()});
817
}
818
819
// AbslHashValue for hashing std::unordered_multiset
820
template <typename H, typename Key, typename Hash, typename KeyEqual,
821
          typename Alloc>
822
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
823
    H hash_state,
824
    const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) {
825
  return H::combine(
826
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
827
      WeaklyMixedInteger{s.size()});
828
}
829
830
// AbslHashValue for hashing std::unordered_set
831
template <typename H, typename Key, typename T, typename Hash,
832
          typename KeyEqual, typename Alloc>
833
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
834
                        H>::type
835
AbslHashValue(H hash_state,
836
              const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) {
837
  return H::combine(
838
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
839
      WeaklyMixedInteger{s.size()});
840
}
841
842
// AbslHashValue for hashing std::unordered_multiset
843
template <typename H, typename Key, typename T, typename Hash,
844
          typename KeyEqual, typename Alloc>
845
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
846
                        H>::type
847
AbslHashValue(H hash_state,
848
              const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) {
849
  return H::combine(
850
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
851
      WeaklyMixedInteger{s.size()});
852
}
853
854
// -----------------------------------------------------------------------------
855
// AbslHashValue for Wrapper Types
856
// -----------------------------------------------------------------------------
857
858
// AbslHashValue for hashing std::reference_wrapper
859
template <typename H, typename T>
860
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
861
    H hash_state, std::reference_wrapper<T> opt) {
862
  return H::combine(std::move(hash_state), opt.get());
863
}
864
865
// AbslHashValue for hashing absl::optional
866
template <typename H, typename T>
867
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
868
    H hash_state, const absl::optional<T>& opt) {
869
  if (opt) hash_state = H::combine(std::move(hash_state), *opt);
870
  return H::combine(std::move(hash_state), opt.has_value());
871
}
872
873
template <typename H>
874
struct VariantVisitor {
875
  H&& hash_state;
876
  template <typename T>
877
  H operator()(const T& t) const {
878
    return H::combine(std::move(hash_state), t);
879
  }
880
};
881
882
// AbslHashValue for hashing absl::variant
883
template <typename H, typename... T>
884
typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
885
AbslHashValue(H hash_state, const absl::variant<T...>& v) {
886
  if (!v.valueless_by_exception()) {
887
    hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
888
  }
889
  return H::combine(std::move(hash_state), v.index());
890
}
891
892
// -----------------------------------------------------------------------------
893
// AbslHashValue for Other Types
894
// -----------------------------------------------------------------------------
895
896
// AbslHashValue for hashing std::bitset is not defined on Little Endian
897
// platforms, for the same reason as for vector<bool> (see std::vector above):
898
// It does not expose the raw bytes, and a fallback to std::hash<> is most
899
// likely faster.
900
901
#if defined(ABSL_IS_BIG_ENDIAN) && \
902
    (defined(__GLIBCXX__) || defined(__GLIBCPP__))
903
// AbslHashValue for hashing std::bitset
904
//
905
// std::hash in libstdc++ does not work correctly with std::bitset on Big Endian
906
// platforms therefore we need to implement a custom AbslHashValue for it. More
907
// details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
908
template <typename H, size_t N>
909
H AbslHashValue(H hash_state, const std::bitset<N>& set) {
910
  typename H::AbslInternalPiecewiseCombiner combiner;
911
  for (size_t i = 0; i < N; i++) {
912
    unsigned char c = static_cast<unsigned char>(set[i]);
913
    hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
914
  }
915
  return H::combine(combiner.finalize(std::move(hash_state)), N);
916
}
917
#endif
918
919
// -----------------------------------------------------------------------------
920
921
// Mixes all values in the range [data, data+size) into the hash state.
922
// This overload accepts only uniquely-represented types, and hashes them by
923
// hashing the entire range of bytes.
924
template <typename H, typename T>
925
typename std::enable_if<is_uniquely_represented<T>::value, H>::type
926
30
hash_range_or_bytes(H hash_state, const T* data, size_t size) {
927
30
  const auto* bytes = reinterpret_cast<const unsigned char*>(data);
928
30
  return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
929
30
}
930
931
template <typename H, typename T>
932
typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
933
hash_range_or_bytes(H hash_state, const T* data, size_t size) {
934
  for (const auto end = data + size; data < end; ++data) {
935
    hash_state = H::combine(std::move(hash_state), *data);
936
  }
937
  return H::combine(std::move(hash_state),
938
                    hash_internal::WeaklyMixedInteger{size});
939
}
940
941
inline constexpr uint64_t kMul = uint64_t{0x79d5f9e0de1e8cf5};
942
943
// Random data taken from the hexadecimal digits of Pi's fractional component.
944
// https://en.wikipedia.org/wiki/Nothing-up-my-sleeve_number
945
ABSL_CACHELINE_ALIGNED inline constexpr uint64_t kStaticRandomData[] = {
946
    0x243f'6a88'85a3'08d3, 0x1319'8a2e'0370'7344, 0xa409'3822'299f'31d0,
947
    0x082e'fa98'ec4e'6c89, 0x4528'21e6'38d0'1377,
948
};
949
950
// Extremely weak mixture of length that is mixed into the state before
951
// combining the data. It is used only for small strings. This also ensures that
952
// we have high entropy in all bits of the state.
953
12
inline uint64_t PrecombineLengthMix(uint64_t state, size_t len) {
954
12
  ABSL_ASSUME(len + sizeof(uint64_t) <= sizeof(kStaticRandomData));
955
12
  uint64_t data = absl::base_internal::UnalignedLoad64(
956
12
      reinterpret_cast<const unsigned char*>(&kStaticRandomData[0]) + len);
957
12
  return state ^ data;
958
12
}
959
960
92
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t Mix(uint64_t lhs, uint64_t rhs) {
961
  // Though the 128-bit product needs multiple instructions on non-x86-64
962
  // platforms, it is still a good balance between speed and hash quality.
963
92
  absl::uint128 m = lhs;
964
92
  m *= rhs;
965
92
  return Uint128High64(m) ^ Uint128Low64(m);
966
92
}
967
968
// Reads 8 bytes from p.
969
32
inline uint64_t Read8(const unsigned char* p) {
970
// Suppress erroneous array bounds errors on GCC.
971
#if defined(__GNUC__) && !defined(__clang__)
972
#pragma GCC diagnostic push
973
#pragma GCC diagnostic ignored "-Warray-bounds"
974
#endif
975
32
  return absl::base_internal::UnalignedLoad64(p);
976
#if defined(__GNUC__) && !defined(__clang__)
977
#pragma GCC diagnostic pop
978
#endif
979
32
}
980
981
// Reads 9 to 16 bytes from p.
982
// The first 8 bytes are in .first, and the rest of the bytes are in .second
983
// along with duplicated bytes from .first if len<16.
984
inline std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
985
0
                                               size_t len) {
986
0
  return {Read8(p), Read8(p + len - 8)};
987
0
}
988
989
// Reads 4 to 8 bytes from p.
990
// Bytes are permuted and some input bytes may be duplicated in output.
991
4
inline uint64_t Read4To8(const unsigned char* p, size_t len) {
992
  // If `len < 8`, we duplicate bytes. We always put low memory at the end.
993
  // E.g., on little endian platforms:
994
  // `ABCD` will be read as `ABCDABCD`.
995
  // `ABCDE` will be read as `BCDEABCD`.
996
  // `ABCDEF` will be read as `CDEFABCD`.
997
  // `ABCDEFG` will be read as `DEFGABCD`.
998
  // `ABCDEFGH` will be read as `EFGHABCD`.
999
  // We also do not care about endianness. On big-endian platforms, bytes will
1000
  // be permuted differently. We always shift low memory by 32, because that
1001
  // can be pipelined earlier. Reading high memory requires computing
1002
  // `p + len - 4`.
1003
4
  uint64_t most_significant =
1004
4
      static_cast<uint64_t>(absl::base_internal::UnalignedLoad32(p)) << 32;
1005
4
  uint64_t least_significant =
1006
4
      absl::base_internal::UnalignedLoad32(p + len - 4);
1007
4
  return most_significant | least_significant;
1008
4
}
1009
1010
// Reads 1 to 3 bytes from p. Some input bytes may be duplicated in output.
1011
0
inline uint32_t Read1To3(const unsigned char* p, size_t len) {
1012
  // The trick used by this implementation is to avoid branches.
1013
  // We always read three bytes by duplicating.
1014
  // E.g.,
1015
  // `A` is read as `AAA`.
1016
  // `AB` is read as `ABB`.
1017
  // `ABC` is read as `ABC`.
1018
  // We always shift `p[0]` so that it can be pipelined better.
1019
  // Other bytes require extra computation to find indices.
1020
0
  uint32_t mem0 = (static_cast<uint32_t>(p[0]) << 16) | p[len - 1];
1021
0
  uint32_t mem1 = static_cast<uint32_t>(p[len / 2]) << 8;
1022
0
  return mem0 | mem1;
1023
0
}
1024
1025
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineRawImpl(uint64_t state,
1026
4
                                                            uint64_t value) {
1027
4
  return Mix(state ^ value, kMul);
1028
4
}
1029
1030
// Slow dispatch path for calls to CombineContiguousImpl with a size argument
1031
// larger than inlined size. Has the same effect as calling
1032
// CombineContiguousImpl() repeatedly with the chunk stride size.
1033
uint64_t CombineLargeContiguousImplOn32BitLengthGt8(const unsigned char* first,
1034
                                                    size_t len, uint64_t state);
1035
uint64_t CombineLargeContiguousImplOn64BitLengthGt32(const unsigned char* first,
1036
                                                     size_t len,
1037
                                                     uint64_t state);
1038
1039
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineSmallContiguousImpl(
1040
4
    uint64_t state, const unsigned char* first, size_t len) {
1041
4
  ABSL_ASSUME(len <= 8);
1042
4
  uint64_t v;
1043
4
  if (len >= 4) {
1044
4
    v = Read4To8(first, len);
1045
4
  } else if (len > 0) {
1046
0
    v = Read1To3(first, len);
1047
0
  } else {
1048
    // Empty string must modify the state.
1049
0
    v = 0x57;
1050
0
  }
1051
4
  return CombineRawImpl(state, v);
1052
4
}
1053
1054
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineContiguousImpl9to16(
1055
0
    uint64_t state, const unsigned char* first, size_t len) {
1056
0
  ABSL_ASSUME(len >= 9);
1057
0
  ABSL_ASSUME(len <= 16);
1058
  // Note: any time one half of the mix function becomes zero it will fail to
1059
  // incorporate any bits from the other half. However, there is exactly 1 in
1060
  // 2^64 values for each side that achieve this, and only when the size is
1061
  // exactly 16 -- for smaller sizes there is an overlapping byte that makes
1062
  // this impossible unless the seed is *also* incredibly unlucky.
1063
0
  auto p = Read9To16(first, len);
1064
0
  return Mix(state ^ p.first, kMul ^ p.second);
1065
0
}
1066
1067
ABSL_ATTRIBUTE_ALWAYS_INLINE inline uint64_t CombineContiguousImpl17to32(
1068
8
    uint64_t state, const unsigned char* first, size_t len) {
1069
8
  ABSL_ASSUME(len >= 17);
1070
8
  ABSL_ASSUME(len <= 32);
1071
  // Do two mixes of overlapping 16-byte ranges in parallel to minimize
1072
  // latency.
1073
8
  const uint64_t m0 =
1074
8
      Mix(Read8(first) ^ kStaticRandomData[1], Read8(first + 8) ^ state);
1075
1076
8
  const unsigned char* tail_16b_ptr = first + (len - 16);
1077
8
  const uint64_t m1 = Mix(Read8(tail_16b_ptr) ^ kStaticRandomData[3],
1078
8
                          Read8(tail_16b_ptr + 8) ^ state);
1079
8
  return m0 ^ m1;
1080
8
}
1081
1082
// Implementation of the base case for combine_contiguous where we actually
1083
// mix the bytes into the state.
1084
// Dispatch to different implementations of combine_contiguous depending
1085
// on the value of `sizeof(size_t)`.
1086
inline uint64_t CombineContiguousImpl(
1087
    uint64_t state, const unsigned char* first, size_t len,
1088
0
    std::integral_constant<int, 4> /* sizeof_size_t */) {
1089
0
  // For large values we use CityHash, for small ones we use custom low latency
1090
0
  // hash.
1091
0
  if (len <= 8) {
1092
0
    return CombineSmallContiguousImpl(PrecombineLengthMix(state, len), first,
1093
0
                                      len);
1094
0
  }
1095
0
  return CombineLargeContiguousImplOn32BitLengthGt8(first, len, state);
1096
0
}
1097
1098
inline uint64_t CombineContiguousImpl(
1099
    uint64_t state, const unsigned char* first, size_t len,
1100
30
    std::integral_constant<int, 8> /* sizeof_size_t */) {
1101
  // For large values we use LowLevelHash or CityHash depending on the platform,
1102
  // for small ones we use custom low latency hash.
1103
30
  if (len <= 8) {
1104
4
    return CombineSmallContiguousImpl(PrecombineLengthMix(state, len), first,
1105
4
                                      len);
1106
4
  }
1107
26
  if (len <= 16) {
1108
0
    return CombineContiguousImpl9to16(PrecombineLengthMix(state, len), first,
1109
0
                                      len);
1110
0
  }
1111
26
  if (len <= 32) {
1112
8
    return CombineContiguousImpl17to32(PrecombineLengthMix(state, len), first,
1113
8
                                       len);
1114
8
  }
1115
  // We must not mix length into the state here because calling
1116
  // CombineContiguousImpl twice with PiecewiseChunkSize() must be equivalent
1117
  // to calling CombineLargeContiguousImpl once with 2 * PiecewiseChunkSize().
1118
18
  return CombineLargeContiguousImplOn64BitLengthGt32(first, len, state);
1119
26
}
1120
1121
#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
1122
    ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
1123
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
1124
#else
1125
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
1126
#endif
1127
1128
// Type trait to select the appropriate hash implementation to use.
1129
// HashSelect::type<T> will give the proper hash implementation, to be invoked
1130
// as:
1131
//   HashSelect::type<T>::Invoke(state, value)
1132
// Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
1133
// valid `Invoke` function. Types that are not hashable will have a ::value of
1134
// `false`.
1135
struct HashSelect {
1136
 private:
1137
  struct WeaklyMixedIntegerProbe {
1138
    template <typename H>
1139
    static H Invoke(H state, WeaklyMixedInteger value) {
1140
      return hash_internal::hash_weakly_mixed_integer(std::move(state), value);
1141
    }
1142
  };
1143
1144
  struct State : HashStateBase<State> {
1145
    static State combine_contiguous(State hash_state, const unsigned char*,
1146
                                    size_t);
1147
    using State::HashStateBase::combine_contiguous;
1148
    static State combine_raw(State state, uint64_t value);
1149
    static State combine_weakly_mixed_integer(State hash_state,
1150
                                              WeaklyMixedInteger value);
1151
  };
1152
1153
  struct UniquelyRepresentedProbe {
1154
    template <typename H, typename T>
1155
    static auto Invoke(H state, const T& value)
1156
0
        -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
1157
0
      return hash_internal::hash_bytes(std::move(state), value);
1158
0
    }
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS0_15MixingHashStateEmEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES8_RKS7_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS0_15MixingHashStateEiEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES8_RKS7_
1159
  };
1160
1161
  struct HashValueProbe {
1162
    template <typename H, typename T>
1163
    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
1164
        std::is_same<H,
1165
                     decltype(AbslHashValue(std::move(state), value))>::value,
1166
30
        H> {
1167
30
      return AbslHashValue(std::move(state), value);
1168
30
    }
_ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__117basic_string_viewIcNS5_11char_traitsIcEEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESB_E4typeESB_RKT0_
Line
Count
Source
1166
30
        H> {
1167
30
      return AbslHashValue(std::move(state), value);
1168
30
    }
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENS_4CordEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES8_E4typeES8_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__15tupleIJRKmEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESB_E4typeESB_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__15tupleIJRKNS5_17basic_string_viewIcNS5_11char_traitsIcEEEERKiEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESH_E4typeESH_RKT0_
1169
  };
1170
1171
  struct LegacyHashProbe {
1172
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
1173
    template <typename H, typename T>
1174
    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
1175
        std::is_convertible<
1176
            decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
1177
            size_t>::value,
1178
        H> {
1179
      return hash_internal::hash_bytes(
1180
          std::move(state),
1181
          ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
1182
    }
1183
#endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
1184
  };
1185
1186
  struct StdHashProbe {
1187
    template <typename H, typename T>
1188
    static auto Invoke(H state, const T& value)
1189
        -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
1190
      return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
1191
    }
1192
  };
1193
1194
  template <typename Hash, typename T>
1195
  struct Probe : Hash {
1196
   private:
1197
    template <typename H, typename = decltype(H::Invoke(
1198
                              std::declval<State>(), std::declval<const T&>()))>
1199
    static std::true_type Test(int);
1200
    template <typename U>
1201
    static std::false_type Test(char);
1202
1203
   public:
1204
    static constexpr bool value = decltype(Test<Hash>(0))::value;
1205
  };
1206
1207
 public:
1208
  // Probe each implementation in order.
1209
  // disjunction provides short circuiting wrt instantiation.
1210
  template <typename T>
1211
  using Apply = absl::disjunction<         //
1212
      Probe<WeaklyMixedIntegerProbe, T>,   //
1213
      Probe<UniquelyRepresentedProbe, T>,  //
1214
      Probe<HashValueProbe, T>,            //
1215
      Probe<LegacyHashProbe, T>,           //
1216
      Probe<StdHashProbe, T>,              //
1217
      std::false_type>;
1218
};
1219
1220
template <typename T>
1221
struct is_hashable
1222
    : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
1223
1224
class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
1225
  template <typename T>
1226
  using IntegralFastPath =
1227
      conjunction<std::is_integral<T>, is_uniquely_represented<T>,
1228
                  FitsIn64Bits<T>>;
1229
1230
 public:
1231
  // Move only
1232
  MixingHashState(MixingHashState&&) = default;
1233
  MixingHashState& operator=(MixingHashState&&) = default;
1234
1235
  // Fundamental base case for hash recursion: mixes the given range of bytes
1236
  // into the hash state.
1237
  static MixingHashState combine_contiguous(MixingHashState hash_state,
1238
                                            const unsigned char* first,
1239
30
                                            size_t size) {
1240
30
    return MixingHashState(
1241
30
        CombineContiguousImpl(hash_state.state_, first, size,
1242
30
                              std::integral_constant<int, sizeof(size_t)>{}));
1243
30
  }
1244
  using MixingHashState::HashStateBase::combine_contiguous;
1245
1246
  template <typename T>
1247
0
  static size_t hash(const T& value) {
1248
0
    return hash_with_seed(value, Seed());
1249
0
  }
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::basic_string_view<char, std::__1::char_traits<char> > >(std::__1::basic_string_view<char, std::__1::char_traits<char> > const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<absl::Cord>(absl::Cord const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::tuple<unsigned long const&> >(std::__1::tuple<unsigned long const&> const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> >(std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&)
1250
1251
  // For performance reasons in non-opt mode, we specialize this for
1252
  // integral types.
1253
  // Otherwise we would be instantiating and calling dozens of functions for
1254
  // something that is just one multiplication and a couple xor's.
1255
  // The result should be the same as running the whole algorithm, but faster.
1256
  template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
1257
  static size_t hash_with_seed(T value, size_t seed) {
1258
    return static_cast<size_t>(
1259
        CombineRawImpl(seed, static_cast<std::make_unsigned_t<T>>(value)));
1260
  }
1261
1262
  template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
1263
30
  static size_t hash_with_seed(const T& value, size_t seed) {
1264
30
    return static_cast<size_t>(combine(MixingHashState{seed}, value).state_);
1265
30
  }
_ZN4absl13hash_internal15MixingHashState14hash_with_seedINSt3__117basic_string_viewIcNS3_11char_traitsIcEEEETnNS3_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS9_m
Line
Count
Source
1263
30
  static size_t hash_with_seed(const T& value, size_t seed) {
1264
30
    return static_cast<size_t>(combine(MixingHashState{seed}, value).state_);
1265
30
  }
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINS_4CordETnNSt3__19enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS6_m
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINSt3__15tupleIJRKmEEETnNS3_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKS9_m
Unexecuted instantiation: _ZN4absl13hash_internal15MixingHashState14hash_with_seedINSt3__15tupleIJRKNS3_17basic_string_viewIcNS3_11char_traitsIcEEEERKiEEETnNS3_9enable_ifIXntsr16IntegralFastPathIT_EE5valueEiE4typeELi0EEEmRKSF_m
1266
1267
 private:
1268
  friend class MixingHashState::HashStateBase;
1269
  template <typename H>
1270
  friend H absl::hash_internal::hash_weakly_mixed_integer(H,
1271
                                                          WeaklyMixedInteger);
1272
  // Allow the HashState type-erasure implementation to invoke
1273
  // RunCombinedUnordered() directly.
1274
  friend class absl::HashState;
1275
  friend struct CombineRaw;
1276
1277
  // For use in Seed().
1278
  static const void* const kSeed;
1279
1280
  // Invoked only once for a given argument; that plus the fact that this is
1281
  // move-only ensures that there is only one non-moved-from object.
1282
0
  MixingHashState() : state_(Seed()) {}
1283
1284
  // Workaround for MSVC bug.
1285
  // We make the type copyable to fix the calling convention, even though we
1286
  // never actually copy it. Keep it private to not affect the public API of the
1287
  // type.
1288
  MixingHashState(const MixingHashState&) = default;
1289
1290
60
  explicit MixingHashState(uint64_t state) : state_(state) {}
1291
1292
  // Combines a raw value from e.g. integrals/floats/pointers/etc. This allows
1293
  // us to be consistent with IntegralFastPath when combining raw types, but
1294
  // optimize Read1To3 and Read4To8 differently for the string case.
1295
  static MixingHashState combine_raw(MixingHashState hash_state,
1296
0
                                     uint64_t value) {
1297
0
    return MixingHashState(CombineRawImpl(hash_state.state_, value));
1298
0
  }
1299
1300
  static MixingHashState combine_weakly_mixed_integer(
1301
0
      MixingHashState hash_state, WeaklyMixedInteger value) {
1302
0
    // Some transformation for the value is needed to make an empty
1303
0
    // string/container change the mixing hash state.
1304
0
    // We use constant smaller than 8 bits to make compiler use
1305
0
    // `add` with an immediate operand with 1 byte value.
1306
0
    return MixingHashState{hash_state.state_ + (0x57 + value.value)};
1307
0
  }
1308
1309
  template <typename CombinerT>
1310
  static MixingHashState RunCombineUnordered(MixingHashState state,
1311
                                             CombinerT combiner) {
1312
    uint64_t unordered_state = 0;
1313
    combiner(MixingHashState{}, [&](MixingHashState& inner_state) {
1314
      // Add the hash state of the element to the running total, but mix the
1315
      // carry bit back into the low bit.  This in intended to avoid losing
1316
      // entropy to overflow, especially when unordered_multisets contain
1317
      // multiple copies of the same value.
1318
      auto element_state = inner_state.state_;
1319
      unordered_state += element_state;
1320
      if (unordered_state < element_state) {
1321
        ++unordered_state;
1322
      }
1323
      inner_state = MixingHashState{};
1324
    });
1325
    return MixingHashState::combine(std::move(state), unordered_state);
1326
  }
1327
1328
  // A non-deterministic seed.
1329
  //
1330
  // The current purpose of this seed is to generate non-deterministic results
1331
  // and prevent having users depend on the particular hash values.
1332
  // It is not meant as a security feature right now, but it leaves the door
1333
  // open to upgrade it to a true per-process random seed. A true random seed
1334
  // costs more and we don't need to pay for that right now.
1335
  //
1336
  // On platforms with ASLR, we take advantage of it to make a per-process
1337
  // random value.
1338
  // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
1339
  //
1340
  // On other platforms this is still going to be non-deterministic but most
1341
  // probably per-build and not per-process.
1342
0
  ABSL_ATTRIBUTE_ALWAYS_INLINE static size_t Seed() {
1343
0
#if (!defined(__clang__) || __clang_major__ > 11) && \
1344
0
    (!defined(__apple_build_version__) ||            \
1345
0
     __apple_build_version__ >= 19558921)  // Xcode 12
1346
0
    return static_cast<size_t>(reinterpret_cast<uintptr_t>(&kSeed));
1347
#else
1348
    // Workaround the absence of
1349
    // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
1350
    return static_cast<size_t>(reinterpret_cast<uintptr_t>(kSeed));
1351
#endif
1352
0
  }
1353
1354
  uint64_t state_;
1355
};
1356
1357
struct AggregateBarrier {};
1358
1359
// Add a private base class to make sure this type is not an aggregate.
1360
// Aggregates can be aggregate initialized even if the default constructor is
1361
// deleted.
1362
struct PoisonedHash : private AggregateBarrier {
1363
  PoisonedHash() = delete;
1364
  PoisonedHash(const PoisonedHash&) = delete;
1365
  PoisonedHash& operator=(const PoisonedHash&) = delete;
1366
};
1367
1368
template <typename T>
1369
struct HashImpl {
1370
0
  size_t operator()(const T& value) const {
1371
0
    return MixingHashState::hash(value);
1372
0
  }
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::basic_string_view<char, std::__1::char_traits<char> > >::operator()(std::__1::basic_string_view<char, std::__1::char_traits<char> > const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<absl::Cord>::operator()(absl::Cord const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::tuple<unsigned long const&> >::operator()(std::__1::tuple<unsigned long const&> const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> >::operator()(std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&) const
1373
1374
 private:
1375
  friend struct HashWithSeed;
1376
1377
30
  size_t hash_with_seed(const T& value, size_t seed) const {
1378
30
    return MixingHashState::hash_with_seed(value, seed);
1379
30
  }
absl::hash_internal::HashImpl<std::__1::basic_string_view<char, std::__1::char_traits<char> > >::hash_with_seed(std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, unsigned long) const
Line
Count
Source
1377
30
  size_t hash_with_seed(const T& value, size_t seed) const {
1378
30
    return MixingHashState::hash_with_seed(value, seed);
1379
30
  }
Unexecuted instantiation: absl::hash_internal::HashImpl<absl::Cord>::hash_with_seed(absl::Cord const&, unsigned long) const
1380
};
1381
1382
template <typename T>
1383
struct Hash
1384
    : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
1385
1386
template <typename H>
1387
template <typename T, typename... Ts>
1388
30
H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1389
30
  return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1390
30
                        std::move(state), value),
1391
30
                    values...);
1392
30
}
absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::basic_string_view<char, std::__1::char_traits<char> >>(absl::hash_internal::MixingHashState, std::__1::basic_string_view<char, std::__1::char_traits<char> > const&)
Line
Count
Source
1388
30
H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1389
30
  return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1390
30
                        std::move(state), value),
1391
30
                    values...);
1392
30
}
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<absl::Cord>(absl::hash_internal::MixingHashState, absl::Cord const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::tuple<unsigned long const&>>(absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<unsigned long>(absl::hash_internal::MixingHashState, unsigned long const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&>>(absl::hash_internal::MixingHashState, std::__1::tuple<std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&> const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::basic_string_view<char, std::__1::char_traits<char> >, int>(absl::hash_internal::MixingHashState, std::__1::basic_string_view<char, std::__1::char_traits<char> > const&, int const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<int>(absl::hash_internal::MixingHashState, int const&)
1393
1394
template <typename H>
1395
template <typename T>
1396
30
H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
1397
30
  return hash_internal::hash_range_or_bytes(std::move(state), data, size);
1398
30
}
1399
1400
template <typename H>
1401
template <typename I>
1402
H HashStateBase<H>::combine_unordered(H state, I begin, I end) {
1403
  return H::RunCombineUnordered(std::move(state),
1404
                                CombineUnorderedCallback<I>{begin, end});
1405
}
1406
1407
template <typename H>
1408
H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
1409
0
                                size_t size) {
1410
0
  if (position_ + size < PiecewiseChunkSize()) {
1411
0
    // This partial chunk does not fill our existing buffer
1412
0
    memcpy(buf_ + position_, data, size);
1413
0
    position_ += size;
1414
0
    return state;
1415
0
  }
1416
0
  added_something_ = true;
1417
0
  // If the buffer is partially filled we need to complete the buffer
1418
0
  // and hash it.
1419
0
  if (position_ != 0) {
1420
0
    const size_t bytes_needed = PiecewiseChunkSize() - position_;
1421
0
    memcpy(buf_ + position_, data, bytes_needed);
1422
0
    state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
1423
0
    data += bytes_needed;
1424
0
    size -= bytes_needed;
1425
0
  }
1426
0
1427
0
  // Hash whatever chunks we can without copying
1428
0
  while (size >= PiecewiseChunkSize()) {
1429
0
    state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
1430
0
    data += PiecewiseChunkSize();
1431
0
    size -= PiecewiseChunkSize();
1432
0
  }
1433
0
  // Fill the buffer with the remainder
1434
0
  memcpy(buf_, data, size);
1435
0
  position_ = size;
1436
0
  return state;
1437
0
}
1438
1439
template <typename H>
1440
0
H PiecewiseCombiner::finalize(H state) {
1441
0
  // Do not call combine_contiguous with empty remainder since it is modifying
1442
0
  // state.
1443
0
  if (added_something_ && position_ == 0) {
1444
0
    return state;
1445
0
  }
1446
0
  // We still call combine_contiguous for the entirely empty buffer.
1447
0
  return H::combine_contiguous(std::move(state), buf_, position_);
1448
0
}
1449
1450
}  // namespace hash_internal
1451
ABSL_NAMESPACE_END
1452
}  // namespace absl
1453
1454
#endif  // ABSL_HASH_INTERNAL_HASH_H_