Coverage Report

Created: 2025-10-10 07:13

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/abseil-cpp/absl/synchronization/mutex.h
Line
Count
Source
1
// Copyright 2017 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// mutex.h
17
// -----------------------------------------------------------------------------
18
//
19
// This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20
// most common type of synchronization primitive for facilitating locks on
21
// shared resources. A mutex is used to prevent multiple threads from accessing
22
// and/or writing to a shared resource concurrently.
23
//
24
// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25
// features:
26
//   * Conditional predicates intrinsic to the `Mutex` object
27
//   * Shared/reader locks, in addition to standard exclusive/writer locks
28
//   * Deadlock detection and debug support.
29
//
30
// The following helper classes are also defined within this file:
31
//
32
//  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33
//              write access within the current scope.
34
//
35
//  ReaderMutexLock
36
//            - An RAII wrapper to acquire and release a `Mutex` for shared/read
37
//              access within the current scope.
38
//
39
//  WriterMutexLock
40
//            - Effectively an alias for `MutexLock` above, designed for use in
41
//              distinguishing reader and writer locks within code.
42
//
43
// In addition to simple mutex locks, this file also defines ways to perform
44
// locking under certain conditions.
45
//
46
//  Condition - (Preferred) Used to wait for a particular predicate that
47
//              depends on state protected by the `Mutex` to become true.
48
//  CondVar   - A lower-level variant of `Condition` that relies on
49
//              application code to explicitly signal the `CondVar` when
50
//              a condition has been met.
51
//
52
// See below for more information on using `Condition` or `CondVar`.
53
//
54
// Mutexes and mutex behavior can be quite complicated. The information within
55
// this header file is limited, as a result. Please consult the Mutex guide for
56
// more complete information and examples.
57
58
#ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59
#define ABSL_SYNCHRONIZATION_MUTEX_H_
60
61
#include <atomic>
62
#include <cstdint>
63
#include <cstring>
64
65
#include "absl/base/attributes.h"
66
#include "absl/base/config.h"
67
#include "absl/base/const_init.h"
68
#include "absl/base/internal/thread_identity.h"
69
#include "absl/base/internal/tsan_mutex_interface.h"
70
#include "absl/base/macros.h"
71
#include "absl/base/nullability.h"
72
#include "absl/base/thread_annotations.h"
73
#include "absl/meta/type_traits.h"
74
#include "absl/synchronization/internal/kernel_timeout.h"
75
#include "absl/synchronization/internal/per_thread_sem.h"
76
#include "absl/time/time.h"
77
78
namespace absl {
79
ABSL_NAMESPACE_BEGIN
80
81
class Condition;
82
struct SynchWaitParams;
83
84
// -----------------------------------------------------------------------------
85
// Mutex
86
// -----------------------------------------------------------------------------
87
//
88
// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
89
// on some resource, typically a variable or data structure with associated
90
// invariants. Proper usage of mutexes prevents concurrent access by different
91
// threads to the same resource.
92
//
93
// A `Mutex` has two basic operations: `Mutex::lock()` and `Mutex::unlock()`.
94
// The `lock()` operation *acquires* a `Mutex` (in a state known as an
95
// *exclusive* -- or *write* -- lock), and the `unlock()` operation *releases* a
96
// Mutex. During the span of time between the lock() and unlock() operations,
97
// a mutex is said to be *held*. By design, all mutexes support exclusive/write
98
// locks, as this is the most common way to use a mutex.
99
//
100
// Mutex operations are only allowed under certain conditions; otherwise an
101
// operation is "invalid", and disallowed by the API. The conditions concern
102
// both the current state of the mutex and the identity of the threads that
103
// are performing the operations.
104
//
105
// The `Mutex` state machine for basic lock/unlock operations is quite simple:
106
//
107
// |                | lock()                 | unlock() |
108
// |----------------+------------------------+----------|
109
// | Free           | Exclusive              | invalid  |
110
// | Exclusive      | blocks, then exclusive | Free     |
111
//
112
// The full conditions are as follows.
113
//
114
// * Calls to `unlock()` require that the mutex be held, and must be made in the
115
//   same thread that performed the corresponding `lock()` operation which
116
//   acquired the mutex; otherwise the call is invalid.
117
//
118
// * The mutex being non-reentrant (or non-recursive) means that a call to
119
//   `lock()` or `try_lock()` must not be made in a thread that already holds
120
//   the mutex; such a call is invalid.
121
//
122
// * In other words, the state of being "held" has both a temporal component
123
//   (from `lock()` until `unlock()`) as well as a thread identity component:
124
//   the mutex is held *by a particular thread*.
125
//
126
// An "invalid" operation has undefined behavior. The `Mutex` implementation
127
// is allowed to do anything on an invalid call, including, but not limited to,
128
// crashing with a useful error message, silently succeeding, or corrupting
129
// data structures. In debug mode, the implementation may crash with a useful
130
// error message.
131
//
132
// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
133
// is, however, approximately fair over long periods, and starvation-free for
134
// threads at the same priority.
135
//
136
// The lock/unlock primitives are now annotated with lock annotations
137
// defined in (base/thread_annotations.h). When writing multi-threaded code,
138
// you should use lock annotations whenever possible to document your lock
139
// synchronization policy. Besides acting as documentation, these annotations
140
// also help compilers or static analysis tools to identify and warn about
141
// issues that could potentially result in race conditions and deadlocks.
142
//
143
// For more information about the lock annotations, please see
144
// [Thread Safety
145
// Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) in the Clang
146
// documentation.
147
//
148
// See also `MutexLock`, below, for scoped `Mutex` acquisition.
149
150
class ABSL_LOCKABLE ABSL_ATTRIBUTE_WARN_UNUSED Mutex {
151
 public:
152
  // Creates a `Mutex` that is not held by anyone. This constructor is
153
  // typically used for Mutexes allocated on the heap or the stack.
154
  //
155
  // To create `Mutex` instances with static storage duration
156
  // (e.g. a namespace-scoped or global variable), see
157
  // `Mutex::Mutex(absl::kConstInit)` below instead.
158
  Mutex();
159
160
  // Creates a mutex with static storage duration.  A global variable
161
  // constructed this way avoids the lifetime issues that can occur on program
162
  // startup and shutdown.  (See absl/base/const_init.h.)
163
  //
164
  // For Mutexes allocated on the heap and stack, instead use the default
165
  // constructor, which can interact more fully with the thread sanitizer.
166
  //
167
  // Example usage:
168
  //   namespace foo {
169
  //   ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
170
  //   }
171
  explicit constexpr Mutex(absl::ConstInitType);
172
173
  ~Mutex();
174
175
  // Mutex::lock()
176
  //
177
  // Blocks the calling thread, if necessary, until this `Mutex` is free, and
178
  // then acquires it exclusively. (This lock is also known as a "write lock.")
179
  void lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
180
181
0
  inline void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { lock(); }
182
183
  // Mutex::unlock()
184
  //
185
  // Releases this `Mutex` and returns it from the exclusive/write state to the
186
  // free state. Calling thread must hold the `Mutex` exclusively.
187
  void unlock() ABSL_UNLOCK_FUNCTION();
188
189
0
  inline void Unlock() ABSL_UNLOCK_FUNCTION() { unlock(); }
190
191
  // Mutex::try_lock()
192
  //
193
  // If the mutex can be acquired without blocking, does so exclusively and
194
  // returns `true`. Otherwise, returns `false`. Returns `true` with high
195
  // probability if the `Mutex` was free.
196
  [[nodiscard]] bool try_lock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
197
198
0
  [[nodiscard]] bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
199
0
    return try_lock();
200
0
  }
201
202
  // Mutex::AssertHeld()
203
  //
204
  // Require that the mutex be held exclusively (write mode) by this thread.
205
  //
206
  // If the mutex is not currently held by this thread, this function may report
207
  // an error (typically by crashing with a diagnostic) or it may do nothing.
208
  // This function is intended only as a tool to assist debugging; it doesn't
209
  // guarantee correctness.
210
  void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
211
212
  // ---------------------------------------------------------------------------
213
  // Reader-Writer Locking
214
  // ---------------------------------------------------------------------------
215
216
  // A Mutex can also be used as a starvation-free reader-writer lock.
217
  // Neither read-locks nor write-locks are reentrant/recursive to avoid
218
  // potential client programming errors.
219
  //
220
  // The Mutex API provides `Writer*()` aliases for the existing `lock()`,
221
  // `unlock()` and `try_lock()` methods for use within applications mixing
222
  // reader/writer locks. Using `*_shared()` and `Writer*()` operations in this
223
  // manner can make locking behavior clearer when mixing read and write modes.
224
  //
225
  // Introducing reader locks necessarily complicates the `Mutex` state
226
  // machine somewhat. The table below illustrates the allowed state transitions
227
  // of a mutex in such cases. Note that lock_shared() may block even if the
228
  // lock is held in shared mode; this occurs when another thread is blocked on
229
  // a call to lock().
230
  //
231
  // ---------------------------------------------------------------------------
232
  //     Operation: lock()       unlock()  lock_shared() unlock_shared()
233
  // ---------------------------------------------------------------------------
234
  // State
235
  // ---------------------------------------------------------------------------
236
  // Free           Exclusive    invalid   Shared(1)              invalid
237
  // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
238
  // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
239
  // Exclusive      blocks       Free      blocks                 invalid
240
  // ---------------------------------------------------------------------------
241
  //
242
  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
243
244
  // Mutex::lock_shared()
245
  //
246
  // Blocks the calling thread, if necessary, until this `Mutex` is either free,
247
  // or in shared mode, and then acquires a share of it. Note that
248
  // `lock_shared()` will block if some other thread has an exclusive/writer
249
  // lock on the mutex.
250
  void lock_shared() ABSL_SHARED_LOCK_FUNCTION();
251
252
0
  void ReaderLock() ABSL_SHARED_LOCK_FUNCTION() { lock_shared(); }
253
254
  // Mutex::unlock_shared()
255
  //
256
  // Releases a read share of this `Mutex`. `unlock_shared` may return a mutex
257
  // to the free state if this thread holds the last reader lock on the mutex.
258
  // Note that you cannot call `unlock_shared()` on a mutex held in write mode.
259
  void unlock_shared() ABSL_UNLOCK_FUNCTION();
260
261
0
  void ReaderUnlock() ABSL_UNLOCK_FUNCTION() { unlock_shared(); }
262
263
  // Mutex::try_lock_shared()
264
  //
265
  // If the mutex can be acquired without blocking, acquires this mutex for
266
  // shared access and returns `true`. Otherwise, returns `false`. Returns
267
  // `true` with high probability if the `Mutex` was free or shared.
268
  [[nodiscard]] bool try_lock_shared() ABSL_SHARED_TRYLOCK_FUNCTION(true);
269
270
0
  [[nodiscard]] bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true) {
271
0
    return try_lock_shared();
272
0
  }
273
274
  // Mutex::AssertReaderHeld()
275
  //
276
  // Require that the mutex be held at least in shared mode (read mode) by this
277
  // thread.
278
  //
279
  // If the mutex is not currently held by this thread, this function may report
280
  // an error (typically by crashing with a diagnostic) or it may do nothing.
281
  // This function is intended only as a tool to assist debugging; it doesn't
282
  // guarantee correctness.
283
  void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
284
285
  // Mutex::WriterLock()
286
  // Mutex::WriterUnlock()
287
  // Mutex::WriterTryLock()
288
  //
289
  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
290
  //
291
  // These methods may be used (along with the complementary `Reader*()`
292
  // methods) to distinguish simple exclusive `Mutex` usage (`Lock()`,
293
  // etc.) from reader/writer lock usage.
294
0
  void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { lock(); }
295
296
0
  void WriterUnlock() ABSL_UNLOCK_FUNCTION() { unlock(); }
297
298
0
  [[nodiscard]] bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
299
0
    return try_lock();
300
0
  }
301
302
  // ---------------------------------------------------------------------------
303
  // Conditional Critical Regions
304
  // ---------------------------------------------------------------------------
305
306
  // Conditional usage of a `Mutex` can occur using two distinct paradigms:
307
  //
308
  //   * Use of `Mutex` member functions with `Condition` objects.
309
  //   * Use of the separate `CondVar` abstraction.
310
  //
311
  // In general, prefer use of `Condition` and the `Mutex` member functions
312
  // listed below over `CondVar`. When there are multiple threads waiting on
313
  // distinctly different conditions, however, a battery of `CondVar`s may be
314
  // more efficient. This section discusses use of `Condition` objects.
315
  //
316
  // `Mutex` contains member functions for performing lock operations only under
317
  // certain conditions, of class `Condition`. For correctness, the `Condition`
318
  // must return a boolean that is a pure function, only of state protected by
319
  // the `Mutex`. The condition must be invariant w.r.t. environmental state
320
  // such as thread, cpu id, or time, and must be `noexcept`. The condition will
321
  // always be invoked with the mutex held in at least read mode, so you should
322
  // not block it for long periods or sleep it on a timer.
323
  //
324
  // Since a condition must not depend directly on the current time, use
325
  // `*WithTimeout()` member function variants to make your condition
326
  // effectively true after a given duration, or `*WithDeadline()` variants to
327
  // make your condition effectively true after a given time.
328
  //
329
  // The condition function should have no side-effects aside from debug
330
  // logging; as a special exception, the function may acquire other mutexes
331
  // provided it releases all those that it acquires.  (This exception was
332
  // required to allow logging.)
333
334
  // Mutex::Await()
335
  //
336
  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
337
  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
338
  // same mode in which it was previously held. If the condition is initially
339
  // `true`, `Await()` *may* skip the release/re-acquire step.
340
  //
341
  // `Await()` requires that this thread holds this `Mutex` in some mode.
342
0
  void Await(const Condition& cond) {
343
0
    AwaitCommon(cond, synchronization_internal::KernelTimeout::Never());
344
0
  }
345
346
  // Mutex::LockWhen()
347
  // Mutex::ReaderLockWhen()
348
  // Mutex::WriterLockWhen()
349
  //
350
  // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
351
  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
352
  // logically equivalent to `*Lock(); Await();` though they may have different
353
  // performance characteristics.
354
0
  void LockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
355
0
    LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
356
0
                   true);
357
0
  }
358
359
0
  void ReaderLockWhen(const Condition& cond) ABSL_SHARED_LOCK_FUNCTION() {
360
0
    LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
361
0
                   false);
362
0
  }
363
364
0
  void WriterLockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
365
0
    this->LockWhen(cond);
366
0
  }
367
368
  // ---------------------------------------------------------------------------
369
  // Mutex Variants with Timeouts/Deadlines
370
  // ---------------------------------------------------------------------------
371
372
  // Mutex::AwaitWithTimeout()
373
  // Mutex::AwaitWithDeadline()
374
  //
375
  // Unlocks this `Mutex` and blocks until simultaneously:
376
  //   - either `cond` is true or the {timeout has expired, deadline has passed}
377
  //     and
378
  //   - this `Mutex` can be reacquired,
379
  // then reacquire this `Mutex` in the same mode in which it was previously
380
  // held, returning `true` iff `cond` is `true` on return.
381
  //
382
  // If the condition is initially `true`, the implementation *may* skip the
383
  // release/re-acquire step and return immediately.
384
  //
385
  // Deadlines in the past are equivalent to an immediate deadline.
386
  // Negative timeouts are equivalent to a zero timeout.
387
  //
388
  // This method requires that this thread holds this `Mutex` in some mode.
389
0
  bool AwaitWithTimeout(const Condition& cond, absl::Duration timeout) {
390
0
    return AwaitCommon(cond, synchronization_internal::KernelTimeout{timeout});
391
0
  }
392
393
0
  bool AwaitWithDeadline(const Condition& cond, absl::Time deadline) {
394
0
    return AwaitCommon(cond, synchronization_internal::KernelTimeout{deadline});
395
0
  }
396
397
  // Mutex::LockWhenWithTimeout()
398
  // Mutex::ReaderLockWhenWithTimeout()
399
  // Mutex::WriterLockWhenWithTimeout()
400
  //
401
  // Blocks until simultaneously both:
402
  //   - either `cond` is `true` or the timeout has expired, and
403
  //   - this `Mutex` can be acquired,
404
  // then atomically acquires this `Mutex`, returning `true` iff `cond` is
405
  // `true` on return.
406
  //
407
  // Negative timeouts are equivalent to a zero timeout.
408
  bool LockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
409
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
410
0
    return LockWhenCommon(
411
0
        cond, synchronization_internal::KernelTimeout{timeout}, true);
412
0
  }
413
  bool ReaderLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
414
0
      ABSL_SHARED_LOCK_FUNCTION() {
415
0
    return LockWhenCommon(
416
0
        cond, synchronization_internal::KernelTimeout{timeout}, false);
417
0
  }
418
  bool WriterLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
419
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
420
0
    return this->LockWhenWithTimeout(cond, timeout);
421
0
  }
422
423
  // Mutex::LockWhenWithDeadline()
424
  // Mutex::ReaderLockWhenWithDeadline()
425
  // Mutex::WriterLockWhenWithDeadline()
426
  //
427
  // Blocks until simultaneously both:
428
  //   - either `cond` is `true` or the deadline has been passed, and
429
  //   - this `Mutex` can be acquired,
430
  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
431
  // on return.
432
  //
433
  // Deadlines in the past are equivalent to an immediate deadline.
434
  bool LockWhenWithDeadline(const Condition& cond, absl::Time deadline)
435
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
436
0
    return LockWhenCommon(
437
0
        cond, synchronization_internal::KernelTimeout{deadline}, true);
438
0
  }
439
  bool ReaderLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
440
0
      ABSL_SHARED_LOCK_FUNCTION() {
441
0
    return LockWhenCommon(
442
0
        cond, synchronization_internal::KernelTimeout{deadline}, false);
443
0
  }
444
  bool WriterLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
445
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
446
0
    return this->LockWhenWithDeadline(cond, deadline);
447
0
  }
448
449
  // ---------------------------------------------------------------------------
450
  // Debug Support: Invariant Checking, Deadlock Detection, Logging.
451
  // ---------------------------------------------------------------------------
452
453
  // Mutex::EnableInvariantDebugging()
454
  //
455
  // If `invariant`!=null and if invariant debugging has been enabled globally,
456
  // cause `(*invariant)(arg)` to be called at moments when the invariant for
457
  // this `Mutex` should hold (for example: just after acquire, just before
458
  // release).
459
  //
460
  // The routine `invariant` should have no side-effects since it is not
461
  // guaranteed how many times it will be called; it should check the invariant
462
  // and crash if it does not hold. Enabling global invariant debugging may
463
  // substantially reduce `Mutex` performance; it should be set only for
464
  // non-production runs.  Optimization options may also disable invariant
465
  // checks.
466
  void EnableInvariantDebugging(
467
      void (*absl_nullable invariant)(void* absl_nullability_unknown),
468
      void* absl_nullability_unknown arg);
469
470
  // Mutex::EnableDebugLog()
471
  //
472
  // Cause all subsequent uses of this `Mutex` to be logged via
473
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
474
  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
475
  //
476
  // Note: This method substantially reduces `Mutex` performance.
477
  void EnableDebugLog(const char* absl_nullable name);
478
479
  // Deadlock detection
480
481
  // Mutex::ForgetDeadlockInfo()
482
  //
483
  // Forget any deadlock-detection information previously gathered
484
  // about this `Mutex`. Call this method in debug mode when the lock ordering
485
  // of a `Mutex` changes.
486
  void ForgetDeadlockInfo();
487
488
  // Mutex::AssertNotHeld()
489
  //
490
  // Return immediately if this thread does not hold this `Mutex` in any
491
  // mode; otherwise, may report an error (typically by crashing with a
492
  // diagnostic), or may return immediately.
493
  //
494
  // Currently this check is performed only if all of:
495
  //    - in debug mode
496
  //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
497
  //    - number of locks concurrently held by this thread is not large.
498
  // are true.
499
  void AssertNotHeld() const;
500
501
  // Special cases.
502
503
  // A `MuHow` is a constant that indicates how a lock should be acquired.
504
  // Internal implementation detail.  Clients should ignore.
505
  typedef const struct MuHowS* MuHow;
506
507
  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
508
  //
509
  // Causes the `Mutex` implementation to prepare itself for re-entry caused by
510
  // future use of `Mutex` within a fatal signal handler. This method is
511
  // intended for use only for last-ditch attempts to log crash information.
512
  // It does not guarantee that attempts to use Mutexes within the handler will
513
  // not deadlock; it merely makes other faults less likely.
514
  //
515
  // WARNING:  This routine must be invoked from a signal handler, and the
516
  // signal handler must either loop forever or terminate the process.
517
  // Attempts to return from (or `longjmp` out of) the signal handler once this
518
  // call has been made may cause arbitrary program behaviour including
519
  // crashes and deadlocks.
520
  static void InternalAttemptToUseMutexInFatalSignalHandler();
521
522
 private:
523
  std::atomic<intptr_t> mu_;  // The Mutex state.
524
525
  // Post()/Wait() versus associated PerThreadSem; in class for required
526
  // friendship with PerThreadSem.
527
  static void IncrementSynchSem(Mutex* absl_nonnull mu,
528
                                base_internal::PerThreadSynch* absl_nonnull w);
529
  static bool DecrementSynchSem(Mutex* absl_nonnull mu,
530
                                base_internal::PerThreadSynch* absl_nonnull w,
531
                                synchronization_internal::KernelTimeout t);
532
533
  // slow path acquire
534
  void LockSlowLoop(SynchWaitParams* absl_nonnull waitp, int flags);
535
  // wrappers around LockSlowLoop()
536
  bool LockSlowWithDeadline(MuHow absl_nonnull how,
537
                            const Condition* absl_nullable cond,
538
                            synchronization_internal::KernelTimeout t,
539
                            int flags);
540
  void LockSlow(MuHow absl_nonnull how, const Condition* absl_nullable cond,
541
                int flags) ABSL_ATTRIBUTE_COLD;
542
  // slow path release
543
  void UnlockSlow(SynchWaitParams* absl_nullable waitp) ABSL_ATTRIBUTE_COLD;
544
  // TryLock slow path.
545
  bool TryLockSlow();
546
  // ReaderTryLock slow path.
547
  bool ReaderTryLockSlow();
548
  // Common code between Await() and AwaitWithTimeout/Deadline()
549
  bool AwaitCommon(const Condition& cond,
550
                   synchronization_internal::KernelTimeout t);
551
  bool LockWhenCommon(const Condition& cond,
552
                      synchronization_internal::KernelTimeout t, bool write);
553
  // Attempt to remove thread s from queue.
554
  void TryRemove(base_internal::PerThreadSynch* absl_nonnull s);
555
  // Block a thread on mutex.
556
  void Block(base_internal::PerThreadSynch* absl_nonnull s);
557
  // Wake a thread; return successor.
558
  base_internal::PerThreadSynch* absl_nullable Wakeup(
559
      base_internal::PerThreadSynch* absl_nonnull w);
560
  void Dtor();
561
562
  friend class CondVar;                // for access to Trans()/Fer().
563
  void Trans(MuHow absl_nonnull how);  // used for CondVar->Mutex transfer
564
  void Fer(base_internal::PerThreadSynch* absl_nonnull
565
               w);  // used for CondVar->Mutex transfer
566
567
  // Catch the error of writing Mutex when intending MutexLock.
568
0
  explicit Mutex(const volatile Mutex* absl_nullable /*ignored*/) {}
569
570
  Mutex(const Mutex&) = delete;
571
  Mutex& operator=(const Mutex&) = delete;
572
};
573
574
// -----------------------------------------------------------------------------
575
// Mutex RAII Wrappers
576
// -----------------------------------------------------------------------------
577
578
// MutexLock
579
//
580
// `MutexLock` is a helper class, which acquires and releases a `Mutex` via
581
// RAII.
582
//
583
// Example:
584
//
585
// Class Foo {
586
//  public:
587
//   Foo::Bar* Baz() {
588
//     MutexLock lock(mu_);
589
//     ...
590
//     return bar;
591
//   }
592
//
593
// private:
594
//   Mutex mu_;
595
// };
596
class ABSL_SCOPED_LOCKABLE MutexLock {
597
 public:
598
  // Constructors
599
600
  // Calls `mu.lock()` and returns when that call returns. That is, `mu` is
601
  // guaranteed to be locked when this object is constructed.
602
  explicit MutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
603
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
604
32
      : mu_(mu) {
605
32
    this->mu_.lock();
606
32
  }
607
608
  // Calls `mu->lock()` and returns when that call returns. That is, `*mu` is
609
  // guaranteed to be locked when this object is constructed. Requires that
610
  // `mu` be dereferenceable.
611
  explicit MutexLock(Mutex* absl_nonnull mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
612
0
      : MutexLock(*mu) {}
613
614
  // Like above, but calls `mu.LockWhen(cond)` instead. That is, in addition to
615
  // the above, the condition given by `cond` is also guaranteed to hold when
616
  // this object is constructed.
617
  explicit MutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this),
618
                     const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
619
0
      : mu_(mu) {
620
0
    this->mu_.LockWhen(cond);
621
0
  }
622
623
  explicit MutexLock(Mutex* absl_nonnull mu, const Condition& cond)
624
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
625
0
      : MutexLock(*mu, cond) {}
626
627
  MutexLock(const MutexLock&) = delete;  // NOLINT(runtime/mutex)
628
  MutexLock(MutexLock&&) = delete;       // NOLINT(runtime/mutex)
629
  MutexLock& operator=(const MutexLock&) = delete;
630
  MutexLock& operator=(MutexLock&&) = delete;
631
632
32
  ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_.unlock(); }
633
634
 private:
635
  Mutex& mu_;
636
};
637
638
// ReaderMutexLock
639
//
640
// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
641
// releases a shared lock on a `Mutex` via RAII.
642
class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
643
 public:
644
  explicit ReaderMutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
645
      ABSL_SHARED_LOCK_FUNCTION(mu)
646
3.09M
      : mu_(mu) {
647
3.09M
    mu.lock_shared();
648
3.09M
  }
649
650
  explicit ReaderMutexLock(Mutex* absl_nonnull mu) ABSL_SHARED_LOCK_FUNCTION(mu)
651
0
      : ReaderMutexLock(*mu) {}
652
653
  explicit ReaderMutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this),
654
                           const Condition& cond) ABSL_SHARED_LOCK_FUNCTION(mu)
655
0
      : mu_(mu) {
656
0
    mu.ReaderLockWhen(cond);
657
0
  }
658
659
  explicit ReaderMutexLock(Mutex* absl_nonnull mu, const Condition& cond)
660
      ABSL_SHARED_LOCK_FUNCTION(mu)
661
0
      : ReaderMutexLock(*mu, cond) {}
662
663
  ReaderMutexLock(const ReaderMutexLock&) = delete;
664
  ReaderMutexLock(ReaderMutexLock&&) = delete;
665
  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
666
  ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
667
668
3.09M
  ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_.unlock_shared(); }
669
670
 private:
671
  Mutex& mu_;
672
};
673
674
// WriterMutexLock
675
//
676
// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
677
// releases a write (exclusive) lock on a `Mutex` via RAII.
678
class ABSL_SCOPED_LOCKABLE WriterMutexLock {
679
 public:
680
  explicit WriterMutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this))
681
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
682
1
      : mu_(mu) {
683
1
    mu.lock();
684
1
  }
685
686
  explicit WriterMutexLock(Mutex* absl_nonnull mu)
687
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
688
0
      : WriterMutexLock(*mu) {}
689
690
  explicit WriterMutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this),
691
                           const Condition& cond)
692
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
693
0
      : mu_(mu) {
694
0
    mu.WriterLockWhen(cond);
695
0
  }
696
697
  explicit WriterMutexLock(Mutex* absl_nonnull mu, const Condition& cond)
698
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
699
0
      : WriterMutexLock(*mu, cond) {}
700
701
  WriterMutexLock(const WriterMutexLock&) = delete;
702
  WriterMutexLock(WriterMutexLock&&) = delete;
703
  WriterMutexLock& operator=(const WriterMutexLock&) = delete;
704
  WriterMutexLock& operator=(WriterMutexLock&&) = delete;
705
706
1
  ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_.unlock(); }
707
708
 private:
709
  Mutex& mu_;
710
};
711
712
// -----------------------------------------------------------------------------
713
// Condition
714
// -----------------------------------------------------------------------------
715
//
716
// `Mutex` contains a number of member functions which take a `Condition` as an
717
// argument; clients can wait for conditions to become `true` before attempting
718
// to acquire the mutex. These sections are known as "condition critical"
719
// sections. To use a `Condition`, you simply need to construct it, and use
720
// within an appropriate `Mutex` member function; everything else in the
721
// `Condition` class is an implementation detail.
722
//
723
// A `Condition` is specified as a function pointer which returns a boolean.
724
// `Condition` functions should be pure functions -- their results should depend
725
// only on passed arguments, should not consult any external state (such as
726
// clocks), and should have no side-effects, aside from debug logging. Any
727
// objects that the function may access should be limited to those which are
728
// constant while the mutex is blocked on the condition (e.g. a stack variable),
729
// or objects of state protected explicitly by the mutex.
730
//
731
// No matter which construction is used for `Condition`, the underlying
732
// function pointer / functor / callable must not throw any
733
// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
734
// the face of a throwing `Condition`. (When Abseil is allowed to depend
735
// on C++17, these function pointers will be explicitly marked
736
// `noexcept`; until then this requirement cannot be enforced in the
737
// type system.)
738
//
739
// Note: to use a `Condition`, you need only construct it and pass it to a
740
// suitable `Mutex' member function, such as `Mutex::Await()`, or to the
741
// constructor of one of the scope guard classes.
742
//
743
// Example using LockWhen/Unlock:
744
//
745
//   // assume count_ is not internal reference count
746
//   int count_ ABSL_GUARDED_BY(mu_);
747
//   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
748
//
749
//   mu_.LockWhen(count_is_zero);
750
//   // ...
751
//   mu_.Unlock();
752
//
753
// Example using a scope guard:
754
//
755
//   {
756
//     MutexLock lock(mu_, count_is_zero);
757
//     // ...
758
//   }
759
//
760
// When multiple threads are waiting on exactly the same condition, make sure
761
// that they are constructed with the same parameters (same pointer to function
762
// + arg, or same pointer to object + method), so that the mutex implementation
763
// can avoid redundantly evaluating the same condition for each thread.
764
class Condition {
765
 public:
766
  // A Condition that returns the result of "(*func)(arg)"
767
  Condition(bool (*absl_nonnull func)(void* absl_nullability_unknown),
768
            void* absl_nullability_unknown arg);
769
770
  // Templated version for people who are averse to casts.
771
  //
772
  // To use a lambda, prepend it with unary plus, which converts the lambda
773
  // into a function pointer:
774
  //     Condition(+[](T* t) { return ...; }, arg).
775
  //
776
  // Note: lambdas in this case must contain no bound variables.
777
  //
778
  // See class comment for performance advice.
779
  template <typename T>
780
  Condition(bool (*absl_nonnull func)(T* absl_nullability_unknown),
781
            T* absl_nullability_unknown arg);
782
783
  // Same as above, but allows for cases where `arg` comes from a pointer that
784
  // is convertible to the function parameter type `T*` but not an exact match.
785
  //
786
  // For example, the argument might be `X*` but the function takes `const X*`,
787
  // or the argument might be `Derived*` while the function takes `Base*`, and
788
  // so on for cases where the argument pointer can be implicitly converted.
789
  //
790
  // Implementation notes: This constructor overload is required in addition to
791
  // the one above to allow deduction of `T` from `arg` for cases such as where
792
  // a function template is passed as `func`. Also, the dummy `typename = void`
793
  // template parameter exists just to work around a MSVC mangling bug.
794
  template <typename T, typename = void>
795
  Condition(
796
      bool (*absl_nonnull func)(T* absl_nullability_unknown),
797
      typename absl::type_identity<T>::type* absl_nullability_unknown
798
          arg);
799
800
  // Templated version for invoking a method that returns a `bool`.
801
  //
802
  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
803
  // `object->Method()`.
804
  //
805
  // Implementation Note: `absl::type_identity` is used to allow
806
  // methods to come from base classes. A simpler signature like
807
  // `Condition(T*, bool (T::*)())` does not suffice.
808
  template <typename T>
809
  Condition(
810
      T* absl_nonnull object,
811
      bool (absl::type_identity<T>::type::* absl_nonnull method)());
812
813
  // Same as above, for const members
814
  template <typename T>
815
  Condition(
816
      const T* absl_nonnull object,
817
      bool (absl::type_identity<T>::type::* absl_nonnull method)()
818
          const);
819
820
  // A Condition that returns the value of `*cond`
821
  explicit Condition(const bool* absl_nonnull cond);
822
823
  // Templated version for invoking a functor that returns a `bool`.
824
  // This approach accepts pointers to non-mutable lambdas, `std::function`,
825
  // the result of` std::bind` and user-defined functors that define
826
  // `bool F::operator()() const`.
827
  //
828
  // Example:
829
  //
830
  //   auto reached = [this, current]() {
831
  //     mu_.AssertReaderHeld();                // For annotalysis.
832
  //     return processed_ >= current;
833
  //   };
834
  //   mu_.Await(Condition(&reached));
835
  //
836
  // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
837
  // the lambda as it may be called when the mutex is being unlocked from a
838
  // scope holding only a reader lock, which will make the assertion not
839
  // fulfilled and crash the binary.
840
841
  // See class comment for performance advice. In particular, if there
842
  // might be more than one waiter for the same condition, make sure
843
  // that all waiters construct the condition with the same pointers.
844
845
  // Implementation note: The second template parameter ensures that this
846
  // constructor doesn't participate in overload resolution if T doesn't have
847
  // `bool operator() const`.
848
  template <typename T, typename E = decltype(static_cast<bool (T::*)() const>(
849
                            &T::operator()))>
850
  explicit Condition(const T* absl_nonnull obj)
851
      : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
852
853
  // A Condition that always returns `true`.
854
  // kTrue is only useful in a narrow set of circumstances, mostly when
855
  // it's passed conditionally. For example:
856
  //
857
  //   mu.LockWhen(some_flag ? kTrue : SomeOtherCondition);
858
  //
859
  // Note: {LockWhen,Await}With{Deadline,Timeout} methods with kTrue condition
860
  // don't return immediately when the timeout happens, they still block until
861
  // the Mutex becomes available. The return value of these methods does
862
  // not indicate if the timeout was reached; rather it indicates whether or
863
  // not the condition is true.
864
  ABSL_CONST_INIT static const Condition kTrue;
865
866
  // Evaluates the condition.
867
  bool Eval() const;
868
869
  // Returns `true` if the two conditions are guaranteed to return the same
870
  // value if evaluated at the same time, `false` if the evaluation *may* return
871
  // different results.
872
  //
873
  // Two `Condition` values are guaranteed equal if both their `func` and `arg`
874
  // components are the same. A null pointer is equivalent to a `true`
875
  // condition.
876
  static bool GuaranteedEqual(const Condition* absl_nullable a,
877
                              const Condition* absl_nullable b);
878
879
 private:
880
  // Sizing an allocation for a method pointer can be subtle. In the Itanium
881
  // specifications, a method pointer has a predictable, uniform size. On the
882
  // other hand, MSVC ABI, method pointer sizes vary based on the
883
  // inheritance of the class. Specifically, method pointers from classes with
884
  // multiple inheritance are bigger than those of classes with single
885
  // inheritance. Other variations also exist.
886
887
#ifndef _MSC_VER
888
  // Allocation for a function pointer or method pointer.
889
  // The {0} initializer ensures that all unused bytes of this buffer are
890
  // always zeroed out.  This is necessary, because GuaranteedEqual() compares
891
  // all of the bytes, unaware of which bytes are relevant to a given `eval_`.
892
  using MethodPtr = bool (Condition::*)();
893
  char callback_[sizeof(MethodPtr)] = {0};
894
#else
895
  // It is well known that the larget MSVC pointer-to-member is 24 bytes. This
896
  // may be the largest known pointer-to-member of any platform. For this
897
  // reason we will allocate 24 bytes for MSVC platform toolchains.
898
  char callback_[24] = {0};
899
#endif
900
901
  // Function with which to evaluate callbacks and/or arguments.
902
  bool (*absl_nullable eval_)(const Condition* absl_nonnull) = nullptr;
903
904
  // Either an argument for a function call or an object for a method call.
905
  void* absl_nullable arg_ = nullptr;
906
907
  // Various functions eval_ can point to:
908
  static bool CallVoidPtrFunction(const Condition* absl_nonnull c);
909
  template <typename T>
910
  static bool CastAndCallFunction(const Condition* absl_nonnull c);
911
  template <typename T, typename ConditionMethodPtr>
912
  static bool CastAndCallMethod(const Condition* absl_nonnull c);
913
914
  // Helper methods for storing, validating, and reading callback arguments.
915
  template <typename T>
916
0
  inline void StoreCallback(T callback) {
917
0
    static_assert(
918
0
        sizeof(callback) <= sizeof(callback_),
919
0
        "An overlarge pointer was passed as a callback to Condition.");
920
0
    std::memcpy(callback_, &callback, sizeof(callback));
921
0
  }
Unexecuted instantiation: void absl::Condition::StoreCallback<bool (*)(absl::SynchEvent*)>(bool (*)(absl::SynchEvent*))
Unexecuted instantiation: void absl::Condition::StoreCallback<bool (*)(void*)>(bool (*)(void*))
922
923
  template <typename T>
924
0
  inline void ReadCallback(T* absl_nonnull callback) const {
925
0
    std::memcpy(callback, callback_, sizeof(*callback));
926
0
  }
927
928
0
  static bool AlwaysTrue(const Condition* absl_nullable) { return true; }
929
930
  // Used only to create kTrue.
931
0
  constexpr Condition() : eval_(AlwaysTrue), arg_(nullptr) {}
932
};
933
934
// -----------------------------------------------------------------------------
935
// CondVar
936
// -----------------------------------------------------------------------------
937
//
938
// A condition variable, reflecting state evaluated separately outside of the
939
// `Mutex` object, which can be signaled to wake callers.
940
// This class is not normally needed; use `Mutex` member functions such as
941
// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
942
// with many threads and many conditions, `CondVar` may be faster.
943
//
944
// The implementation may deliver signals to any condition variable at
945
// any time, even when no call to `Signal()` or `SignalAll()` is made; as a
946
// result, upon being awoken, you must check the logical condition you have
947
// been waiting upon.
948
//
949
// Examples:
950
//
951
// Usage for a thread waiting for some condition C protected by mutex mu:
952
//       mu.Lock();
953
//       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
954
//       //  C holds; process data
955
//       mu.Unlock();
956
//
957
// Usage to wake T is:
958
//       mu.Lock();
959
//       // process data, possibly establishing C
960
//       if (C) { cv->Signal(); }
961
//       mu.Unlock();
962
//
963
// If C may be useful to more than one waiter, use `SignalAll()` instead of
964
// `Signal()`.
965
//
966
// With this implementation it is efficient to use `Signal()/SignalAll()` inside
967
// the locked region; this usage can make reasoning about your program easier.
968
//
969
class CondVar {
970
 public:
971
  // A `CondVar` allocated on the heap or on the stack can use the this
972
  // constructor.
973
  CondVar();
974
975
  // CondVar::Wait()
976
  //
977
  // Atomically releases a `Mutex` and blocks on this condition variable.
978
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
979
  // spurious wakeup), then reacquires the `Mutex` and returns.
980
  //
981
  // Requires and ensures that the current thread holds the `Mutex`.
982
0
  void Wait(Mutex* absl_nonnull mu) {
983
0
    WaitCommon(mu, synchronization_internal::KernelTimeout::Never());
984
0
  }
985
986
  // CondVar::WaitWithTimeout()
987
  //
988
  // Atomically releases a `Mutex` and blocks on this condition variable.
989
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
990
  // spurious wakeup), or until the timeout has expired, then reacquires
991
  // the `Mutex` and returns.
992
  //
993
  // Returns true if the timeout has expired without this `CondVar`
994
  // being signalled in any manner. If both the timeout has expired
995
  // and this `CondVar` has been signalled, the implementation is free
996
  // to return `true` or `false`.
997
  //
998
  // Requires and ensures that the current thread holds the `Mutex`.
999
0
  bool WaitWithTimeout(Mutex* absl_nonnull mu, absl::Duration timeout) {
1000
0
    return WaitCommon(mu, synchronization_internal::KernelTimeout(timeout));
1001
0
  }
1002
1003
  // CondVar::WaitWithDeadline()
1004
  //
1005
  // Atomically releases a `Mutex` and blocks on this condition variable.
1006
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
1007
  // spurious wakeup), or until the deadline has passed, then reacquires
1008
  // the `Mutex` and returns.
1009
  //
1010
  // Deadlines in the past are equivalent to an immediate deadline.
1011
  //
1012
  // Returns true if the deadline has passed without this `CondVar`
1013
  // being signalled in any manner. If both the deadline has passed
1014
  // and this `CondVar` has been signalled, the implementation is free
1015
  // to return `true` or `false`.
1016
  //
1017
  // Requires and ensures that the current thread holds the `Mutex`.
1018
0
  bool WaitWithDeadline(Mutex* absl_nonnull mu, absl::Time deadline) {
1019
0
    return WaitCommon(mu, synchronization_internal::KernelTimeout(deadline));
1020
0
  }
1021
1022
  // CondVar::Signal()
1023
  //
1024
  // Signal this `CondVar`; wake at least one waiter if one exists.
1025
  void Signal();
1026
1027
  // CondVar::SignalAll()
1028
  //
1029
  // Signal this `CondVar`; wake all waiters.
1030
  void SignalAll();
1031
1032
  // CondVar::EnableDebugLog()
1033
  //
1034
  // Causes all subsequent uses of this `CondVar` to be logged via
1035
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
1036
  // Note: this method substantially reduces `CondVar` performance.
1037
  void EnableDebugLog(const char* absl_nullable name);
1038
1039
 private:
1040
  bool WaitCommon(Mutex* absl_nonnull mutex,
1041
                  synchronization_internal::KernelTimeout t);
1042
  void Remove(base_internal::PerThreadSynch* absl_nonnull s);
1043
  std::atomic<intptr_t> cv_;  // Condition variable state.
1044
  CondVar(const CondVar&) = delete;
1045
  CondVar& operator=(const CondVar&) = delete;
1046
};
1047
1048
// Variants of MutexLock.
1049
//
1050
// If you find yourself using one of these, consider instead using
1051
// Mutex::Unlock() and/or if-statements for clarity.
1052
1053
// MutexLockMaybe
1054
//
1055
// MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
1056
class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
1057
 public:
1058
  explicit MutexLockMaybe(Mutex* absl_nullable mu)
1059
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1060
0
      : mu_(mu) {
1061
0
    if (this->mu_ != nullptr) {
1062
0
      this->mu_->lock();
1063
0
    }
1064
0
  }
1065
1066
  explicit MutexLockMaybe(Mutex* absl_nullable mu, const Condition& cond)
1067
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1068
0
      : mu_(mu) {
1069
0
    if (this->mu_ != nullptr) {
1070
0
      this->mu_->LockWhen(cond);
1071
0
    }
1072
0
  }
1073
1074
0
  ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
1075
0
    if (this->mu_ != nullptr) {
1076
0
      this->mu_->unlock();
1077
0
    }
1078
0
  }
1079
1080
 private:
1081
  Mutex* absl_nullable const mu_;
1082
  MutexLockMaybe(const MutexLockMaybe&) = delete;
1083
  MutexLockMaybe(MutexLockMaybe&&) = delete;
1084
  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
1085
  MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
1086
};
1087
1088
// ReleasableMutexLock
1089
//
1090
// ReleasableMutexLock is like MutexLock, but permits `Release()` of its
1091
// mutex before destruction. `Release()` may be called at most once.
1092
class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
1093
 public:
1094
  explicit ReleasableMutexLock(Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(
1095
      this)) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1096
0
      : mu_(&mu) {
1097
0
    this->mu_->lock();
1098
0
  }
1099
1100
  explicit ReleasableMutexLock(Mutex* absl_nonnull mu)
1101
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1102
0
      : ReleasableMutexLock(*mu) {}
1103
1104
  explicit ReleasableMutexLock(
1105
      Mutex& mu ABSL_INTERNAL_ATTRIBUTE_CAPTURED_BY(this),
1106
      const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1107
0
      : mu_(&mu) {
1108
0
    this->mu_->LockWhen(cond);
1109
0
  }
1110
1111
  explicit ReleasableMutexLock(Mutex* absl_nonnull mu, const Condition& cond)
1112
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1113
0
      : ReleasableMutexLock(*mu, cond) {}
1114
1115
0
  ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
1116
0
    if (this->mu_ != nullptr) {
1117
0
      this->mu_->unlock();
1118
0
    }
1119
0
  }
1120
1121
  void Release() ABSL_UNLOCK_FUNCTION();
1122
1123
 private:
1124
  Mutex* absl_nullable mu_;
1125
  ReleasableMutexLock(const ReleasableMutexLock&) = delete;
1126
  ReleasableMutexLock(ReleasableMutexLock&&) = delete;
1127
  ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
1128
  ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
1129
};
1130
1131
6
inline Mutex::Mutex() : mu_(0) {
1132
6
  ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
1133
6
}
1134
1135
inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
1136
1137
#if !defined(__APPLE__) && !defined(ABSL_BUILD_DLL)
1138
ABSL_ATTRIBUTE_ALWAYS_INLINE
1139
0
inline Mutex::~Mutex() { Dtor(); }
1140
#endif
1141
1142
#if defined(NDEBUG) && !defined(ABSL_HAVE_THREAD_SANITIZER)
1143
// Use default (empty) destructor in release build for performance reasons.
1144
// We need to mark both Dtor and ~Mutex as always inline for inconsistent
1145
// builds that use both NDEBUG and !NDEBUG with dynamic libraries. In these
1146
// cases we want the empty functions to dissolve entirely rather than being
1147
// exported from dynamic libraries and potentially override the non-empty ones.
1148
ABSL_ATTRIBUTE_ALWAYS_INLINE
1149
inline void Mutex::Dtor() {}
1150
#endif
1151
1152
inline CondVar::CondVar() : cv_(0) {}
1153
1154
// static
1155
template <typename T, typename ConditionMethodPtr>
1156
bool Condition::CastAndCallMethod(const Condition* absl_nonnull c) {
1157
  T* object = static_cast<T*>(c->arg_);
1158
  ConditionMethodPtr condition_method_pointer;
1159
  c->ReadCallback(&condition_method_pointer);
1160
  return (object->*condition_method_pointer)();
1161
}
1162
1163
// static
1164
template <typename T>
1165
0
bool Condition::CastAndCallFunction(const Condition* absl_nonnull c) {
1166
0
  bool (*function)(T*);
1167
0
  c->ReadCallback(&function);
1168
0
  T* argument = static_cast<T*>(c->arg_);
1169
0
  return (*function)(argument);
1170
0
}
1171
1172
template <typename T>
1173
inline Condition::Condition(
1174
    bool (*absl_nonnull func)(T* absl_nullability_unknown),
1175
    T* absl_nullability_unknown arg)
1176
0
    : eval_(&CastAndCallFunction<T>),
1177
0
      arg_(const_cast<void*>(static_cast<const void*>(arg))) {
1178
0
  static_assert(sizeof(&func) <= sizeof(callback_),
1179
0
                "An overlarge function pointer was passed to Condition.");
1180
0
  StoreCallback(func);
1181
0
}
1182
1183
template <typename T, typename>
1184
inline Condition::Condition(
1185
    bool (*absl_nonnull func)(T* absl_nullability_unknown),
1186
    typename absl::type_identity<T>::type* absl_nullability_unknown
1187
        arg)
1188
    // Just delegate to the overload above.
1189
    : Condition(func, arg) {}
1190
1191
template <typename T>
1192
inline Condition::Condition(
1193
    T* absl_nonnull object,
1194
    bool (absl::type_identity<T>::type::* absl_nonnull method)())
1195
    : eval_(&CastAndCallMethod<T, decltype(method)>), arg_(object) {
1196
  static_assert(sizeof(&method) <= sizeof(callback_),
1197
                "An overlarge method pointer was passed to Condition.");
1198
  StoreCallback(method);
1199
}
1200
1201
template <typename T>
1202
inline Condition::Condition(
1203
    const T* absl_nonnull object,
1204
    bool (absl::type_identity<T>::type::* absl_nonnull method)()
1205
        const)
1206
    : eval_(&CastAndCallMethod<const T, decltype(method)>),
1207
      arg_(reinterpret_cast<void*>(const_cast<T*>(object))) {
1208
  StoreCallback(method);
1209
}
1210
1211
// Register hooks for profiling support.
1212
//
1213
// The function pointer registered here will be called whenever a mutex is
1214
// contended.  The callback is given the cycles for which waiting happened (as
1215
// measured by //absl/base/internal/cycleclock.h, and which may not
1216
// be real "cycle" counts.)
1217
//
1218
// There is no ordering guarantee between when the hook is registered and when
1219
// callbacks will begin.  Only a single profiler can be installed in a running
1220
// binary; if this function is called a second time with a different function
1221
// pointer, the value is ignored (and will cause an assertion failure in debug
1222
// mode.)
1223
void RegisterMutexProfiler(void (*absl_nonnull fn)(int64_t wait_cycles));
1224
1225
// Register a hook for Mutex tracing.
1226
//
1227
// The function pointer registered here will be called whenever a mutex is
1228
// contended.  The callback is given an opaque handle to the contended mutex,
1229
// an event name, and the number of wait cycles (as measured by
1230
// //absl/base/internal/cycleclock.h, and which may not be real
1231
// "cycle" counts.)
1232
//
1233
// The only event name currently sent is "slow release".
1234
//
1235
// This has the same ordering and single-use limitations as
1236
// RegisterMutexProfiler() above.
1237
void RegisterMutexTracer(void (*absl_nonnull fn)(const char* absl_nonnull msg,
1238
                                                 const void* absl_nonnull obj,
1239
                                                 int64_t wait_cycles));
1240
1241
// Register a hook for CondVar tracing.
1242
//
1243
// The function pointer registered here will be called here on various CondVar
1244
// events.  The callback is given an opaque handle to the CondVar object and
1245
// a string identifying the event.  This is thread-safe, but only a single
1246
// tracer can be registered.
1247
//
1248
// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1249
// "SignalAll wakeup".
1250
//
1251
// This has the same ordering and single-use limitations as
1252
// RegisterMutexProfiler() above.
1253
void RegisterCondVarTracer(void (*absl_nonnull fn)(
1254
    const char* absl_nonnull msg, const void* absl_nonnull cv));
1255
1256
// EnableMutexInvariantDebugging()
1257
//
1258
// Enable or disable global support for Mutex invariant debugging.  If enabled,
1259
// then invariant predicates can be registered per-Mutex for debug checking.
1260
// See Mutex::EnableInvariantDebugging().
1261
void EnableMutexInvariantDebugging(bool enabled);
1262
1263
// When in debug mode, and when the feature has been enabled globally, the
1264
// implementation will keep track of lock ordering and complain (or optionally
1265
// crash) if a cycle is detected in the acquired-before graph.
1266
1267
// Possible modes of operation for the deadlock detector in debug mode.
1268
enum class OnDeadlockCycle {
1269
  kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1270
  kReport,  // Report lock cycles to stderr when detected
1271
  kAbort,   // Report lock cycles to stderr when detected, then abort
1272
};
1273
1274
// SetMutexDeadlockDetectionMode()
1275
//
1276
// Enable or disable global support for detection of potential deadlocks
1277
// due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1278
// lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1279
// will be maintained internally, and detected cycles will be reported in
1280
// the manner chosen here.
1281
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1282
1283
ABSL_NAMESPACE_END
1284
}  // namespace absl
1285
1286
// In some build configurations we pass --detect-odr-violations to the
1287
// gold linker.  This causes it to flag weak symbol overrides as ODR
1288
// violations.  Because ODR only applies to C++ and not C,
1289
// --detect-odr-violations ignores symbols not mangled with C++ names.
1290
// By changing our extension points to be extern "C", we dodge this
1291
// check.
1292
extern "C" {
1293
void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
1294
}  // extern "C"
1295
1296
#endif  // ABSL_SYNCHRONIZATION_MUTEX_H_