/src/abseil-cpp/absl/container/internal/raw_hash_set.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2018 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | // |
15 | | // An open-addressing |
16 | | // hashtable with quadratic probing. |
17 | | // |
18 | | // This is a low level hashtable on top of which different interfaces can be |
19 | | // implemented, like flat_hash_set, node_hash_set, string_hash_set, etc. |
20 | | // |
21 | | // The table interface is similar to that of std::unordered_set. Notable |
22 | | // differences are that most member functions support heterogeneous keys when |
23 | | // BOTH the hash and eq functions are marked as transparent. They do so by |
24 | | // providing a typedef called `is_transparent`. |
25 | | // |
26 | | // When heterogeneous lookup is enabled, functions that take key_type act as if |
27 | | // they have an overload set like: |
28 | | // |
29 | | // iterator find(const key_type& key); |
30 | | // template <class K> |
31 | | // iterator find(const K& key); |
32 | | // |
33 | | // size_type erase(const key_type& key); |
34 | | // template <class K> |
35 | | // size_type erase(const K& key); |
36 | | // |
37 | | // std::pair<iterator, iterator> equal_range(const key_type& key); |
38 | | // template <class K> |
39 | | // std::pair<iterator, iterator> equal_range(const K& key); |
40 | | // |
41 | | // When heterogeneous lookup is disabled, only the explicit `key_type` overloads |
42 | | // exist. |
43 | | // |
44 | | // find() also supports passing the hash explicitly: |
45 | | // |
46 | | // iterator find(const key_type& key, size_t hash); |
47 | | // template <class U> |
48 | | // iterator find(const U& key, size_t hash); |
49 | | // |
50 | | // In addition the pointer to element and iterator stability guarantees are |
51 | | // weaker: all iterators and pointers are invalidated after a new element is |
52 | | // inserted. |
53 | | // |
54 | | // IMPLEMENTATION DETAILS |
55 | | // |
56 | | // # Table Layout |
57 | | // |
58 | | // A raw_hash_set's backing array consists of control bytes followed by slots |
59 | | // that may or may not contain objects. |
60 | | // |
61 | | // The layout of the backing array, for `capacity` slots, is thus, as a |
62 | | // pseudo-struct: |
63 | | // |
64 | | // struct BackingArray { |
65 | | // // Sampling handler. This field isn't present when the sampling is |
66 | | // // disabled or this allocation hasn't been selected for sampling. |
67 | | // HashtablezInfoHandle infoz_; |
68 | | // // The number of elements we can insert before growing the capacity. |
69 | | // size_t growth_left; |
70 | | // // Control bytes for the "real" slots. |
71 | | // ctrl_t ctrl[capacity]; |
72 | | // // Always `ctrl_t::kSentinel`. This is used by iterators to find when to |
73 | | // // stop and serves no other purpose. |
74 | | // ctrl_t sentinel; |
75 | | // // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so |
76 | | // // that if a probe sequence picks a value near the end of `ctrl`, |
77 | | // // `Group` will have valid control bytes to look at. |
78 | | // ctrl_t clones[kWidth - 1]; |
79 | | // // The actual slot data. |
80 | | // slot_type slots[capacity]; |
81 | | // }; |
82 | | // |
83 | | // The length of this array is computed by `AllocSize()` below. |
84 | | // |
85 | | // Control bytes (`ctrl_t`) are bytes (collected into groups of a |
86 | | // platform-specific size) that define the state of the corresponding slot in |
87 | | // the slot array. Group manipulation is tightly optimized to be as efficient |
88 | | // as possible: SSE and friends on x86, clever bit operations on other arches. |
89 | | // |
90 | | // Group 1 Group 2 Group 3 |
91 | | // +---------------+---------------+---------------+ |
92 | | // | | | | | | | | | | | | | | | | | | | | | | | | | |
93 | | // +---------------+---------------+---------------+ |
94 | | // |
95 | | // Each control byte is either a special value for empty slots, deleted slots |
96 | | // (sometimes called *tombstones*), and a special end-of-table marker used by |
97 | | // iterators, or, if occupied, seven bits (H2) from the hash of the value in the |
98 | | // corresponding slot. |
99 | | // |
100 | | // Storing control bytes in a separate array also has beneficial cache effects, |
101 | | // since more logical slots will fit into a cache line. |
102 | | // |
103 | | // # Hashing |
104 | | // |
105 | | // We compute two separate hashes, `H1` and `H2`, from the hash of an object. |
106 | | // `H1(hash(x))` is an index into `slots`, and essentially the starting point |
107 | | // for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out |
108 | | // objects that cannot possibly be the one we are looking for. |
109 | | // |
110 | | // # Table operations. |
111 | | // |
112 | | // The key operations are `insert`, `find`, and `erase`. |
113 | | // |
114 | | // Since `insert` and `erase` are implemented in terms of `find`, we describe |
115 | | // `find` first. To `find` a value `x`, we compute `hash(x)`. From |
116 | | // `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every |
117 | | // group of slots in some interesting order. |
118 | | // |
119 | | // We now walk through these indices. At each index, we select the entire group |
120 | | // starting with that index and extract potential candidates: occupied slots |
121 | | // with a control byte equal to `H2(hash(x))`. If we find an empty slot in the |
122 | | // group, we stop and return an error. Each candidate slot `y` is compared with |
123 | | // `x`; if `x == y`, we are done and return `&y`; otherwise we continue to the |
124 | | // next probe index. Tombstones effectively behave like full slots that never |
125 | | // match the value we're looking for. |
126 | | // |
127 | | // The `H2` bits ensure when we compare a slot to an object with `==`, we are |
128 | | // likely to have actually found the object. That is, the chance is low that |
129 | | // `==` is called and returns `false`. Thus, when we search for an object, we |
130 | | // are unlikely to call `==` many times. This likelyhood can be analyzed as |
131 | | // follows (assuming that H2 is a random enough hash function). |
132 | | // |
133 | | // Let's assume that there are `k` "wrong" objects that must be examined in a |
134 | | // probe sequence. For example, when doing a `find` on an object that is in the |
135 | | // table, `k` is the number of objects between the start of the probe sequence |
136 | | // and the final found object (not including the final found object). The |
137 | | // expected number of objects with an H2 match is then `k/128`. Measurements |
138 | | // and analysis indicate that even at high load factors, `k` is less than 32, |
139 | | // meaning that the number of "false positive" comparisons we must perform is |
140 | | // less than 1/8 per `find`. |
141 | | |
142 | | // `insert` is implemented in terms of `unchecked_insert`, which inserts a |
143 | | // value presumed to not be in the table (violating this requirement will cause |
144 | | // the table to behave erratically). Given `x` and its hash `hash(x)`, to insert |
145 | | // it, we construct a `probe_seq` once again, and use it to find the first |
146 | | // group with an unoccupied (empty *or* deleted) slot. We place `x` into the |
147 | | // first such slot in the group and mark it as full with `x`'s H2. |
148 | | // |
149 | | // To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and |
150 | | // perform a `find` to see if it's already present; if it is, we're done. If |
151 | | // it's not, we may decide the table is getting overcrowded (i.e. the load |
152 | | // factor is greater than 7/8 for big tables; `is_small()` tables use a max load |
153 | | // factor of 1); in this case, we allocate a bigger array, `unchecked_insert` |
154 | | // each element of the table into the new array (we know that no insertion here |
155 | | // will insert an already-present value), and discard the old backing array. At |
156 | | // this point, we may `unchecked_insert` the value `x`. |
157 | | // |
158 | | // Below, `unchecked_insert` is partly implemented by `prepare_insert`, which |
159 | | // presents a viable, initialized slot pointee to the caller. |
160 | | // |
161 | | // `erase` is implemented in terms of `erase_at`, which takes an index to a |
162 | | // slot. Given an offset, we simply create a tombstone and destroy its contents. |
163 | | // If we can prove that the slot would not appear in a probe sequence, we can |
164 | | // make the slot as empty, instead. We can prove this by observing that if a |
165 | | // group has any empty slots, it has never been full (assuming we never create |
166 | | // an empty slot in a group with no empties, which this heuristic guarantees we |
167 | | // never do) and find would stop at this group anyways (since it does not probe |
168 | | // beyond groups with empties). |
169 | | // |
170 | | // `erase` is `erase_at` composed with `find`: if we |
171 | | // have a value `x`, we can perform a `find`, and then `erase_at` the resulting |
172 | | // slot. |
173 | | // |
174 | | // To iterate, we simply traverse the array, skipping empty and deleted slots |
175 | | // and stopping when we hit a `kSentinel`. |
176 | | |
177 | | #ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ |
178 | | #define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ |
179 | | |
180 | | #include <algorithm> |
181 | | #include <cassert> |
182 | | #include <cmath> |
183 | | #include <cstddef> |
184 | | #include <cstdint> |
185 | | #include <cstring> |
186 | | #include <initializer_list> |
187 | | #include <iterator> |
188 | | #include <limits> |
189 | | #include <memory> |
190 | | #include <string> |
191 | | #include <tuple> |
192 | | #include <type_traits> |
193 | | #include <utility> |
194 | | |
195 | | #include "absl/base/attributes.h" |
196 | | #include "absl/base/config.h" |
197 | | #include "absl/base/internal/endian.h" |
198 | | #include "absl/base/internal/raw_logging.h" |
199 | | #include "absl/base/macros.h" |
200 | | #include "absl/base/optimization.h" |
201 | | #include "absl/base/options.h" |
202 | | #include "absl/base/port.h" |
203 | | #include "absl/base/prefetch.h" |
204 | | #include "absl/container/internal/common.h" |
205 | | #include "absl/container/internal/compressed_tuple.h" |
206 | | #include "absl/container/internal/container_memory.h" |
207 | | #include "absl/container/internal/hash_policy_traits.h" |
208 | | #include "absl/container/internal/hashtable_debug_hooks.h" |
209 | | #include "absl/container/internal/hashtablez_sampler.h" |
210 | | #include "absl/memory/memory.h" |
211 | | #include "absl/meta/type_traits.h" |
212 | | #include "absl/numeric/bits.h" |
213 | | #include "absl/utility/utility.h" |
214 | | |
215 | | #ifdef ABSL_INTERNAL_HAVE_SSE2 |
216 | | #include <emmintrin.h> |
217 | | #endif |
218 | | |
219 | | #ifdef ABSL_INTERNAL_HAVE_SSSE3 |
220 | | #include <tmmintrin.h> |
221 | | #endif |
222 | | |
223 | | #ifdef _MSC_VER |
224 | | #include <intrin.h> |
225 | | #endif |
226 | | |
227 | | #ifdef ABSL_INTERNAL_HAVE_ARM_NEON |
228 | | #include <arm_neon.h> |
229 | | #endif |
230 | | |
231 | | namespace absl { |
232 | | ABSL_NAMESPACE_BEGIN |
233 | | namespace container_internal { |
234 | | |
235 | | #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS |
236 | | #error ABSL_SWISSTABLE_ENABLE_GENERATIONS cannot be directly set |
237 | | #elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ |
238 | | defined(ABSL_HAVE_MEMORY_SANITIZER) |
239 | | // When compiled in sanitizer mode, we add generation integers to the backing |
240 | | // array and iterators. In the backing array, we store the generation between |
241 | | // the control bytes and the slots. When iterators are dereferenced, we assert |
242 | | // that the container has not been mutated in a way that could cause iterator |
243 | | // invalidation since the iterator was initialized. |
244 | | #define ABSL_SWISSTABLE_ENABLE_GENERATIONS |
245 | | #endif |
246 | | |
247 | | // We use uint8_t so we don't need to worry about padding. |
248 | | using GenerationType = uint8_t; |
249 | | |
250 | | // A sentinel value for empty generations. Using 0 makes it easy to constexpr |
251 | | // initialize an array of this value. |
252 | 8 | constexpr GenerationType SentinelEmptyGeneration() { return 0; } |
253 | | |
254 | 8 | constexpr GenerationType NextGeneration(GenerationType generation) { |
255 | 8 | return ++generation == SentinelEmptyGeneration() ? ++generation : generation; |
256 | 8 | } |
257 | | |
258 | | #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS |
259 | | constexpr bool SwisstableGenerationsEnabled() { return true; } |
260 | | constexpr size_t NumGenerationBytes() { return sizeof(GenerationType); } |
261 | | #else |
262 | 0 | constexpr bool SwisstableGenerationsEnabled() { return false; } |
263 | 22 | constexpr size_t NumGenerationBytes() { return 0; } |
264 | | #endif |
265 | | |
266 | | template <typename AllocType> |
267 | | void SwapAlloc(AllocType& lhs, AllocType& rhs, |
268 | | std::true_type /* propagate_on_container_swap */) { |
269 | | using std::swap; |
270 | | swap(lhs, rhs); |
271 | | } |
272 | | template <typename AllocType> |
273 | | void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/, |
274 | | std::false_type /* propagate_on_container_swap */) {} |
275 | | |
276 | | // The state for a probe sequence. |
277 | | // |
278 | | // Currently, the sequence is a triangular progression of the form |
279 | | // |
280 | | // p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1) |
281 | | // |
282 | | // The use of `Width` ensures that each probe step does not overlap groups; |
283 | | // the sequence effectively outputs the addresses of *groups* (although not |
284 | | // necessarily aligned to any boundary). The `Group` machinery allows us |
285 | | // to check an entire group with minimal branching. |
286 | | // |
287 | | // Wrapping around at `mask + 1` is important, but not for the obvious reason. |
288 | | // As described above, the first few entries of the control byte array |
289 | | // are mirrored at the end of the array, which `Group` will find and use |
290 | | // for selecting candidates. However, when those candidates' slots are |
291 | | // actually inspected, there are no corresponding slots for the cloned bytes, |
292 | | // so we need to make sure we've treated those offsets as "wrapping around". |
293 | | // |
294 | | // It turns out that this probe sequence visits every group exactly once if the |
295 | | // number of groups is a power of two, since (i^2+i)/2 is a bijection in |
296 | | // Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing |
297 | | template <size_t Width> |
298 | | class probe_seq { |
299 | | public: |
300 | | // Creates a new probe sequence using `hash` as the initial value of the |
301 | | // sequence and `mask` (usually the capacity of the table) as the mask to |
302 | | // apply to each value in the progression. |
303 | 90 | probe_seq(size_t hash, size_t mask) { |
304 | 90 | assert(((mask + 1) & mask) == 0 && "not a mask"); |
305 | 0 | mask_ = mask; |
306 | 90 | offset_ = hash & mask_; |
307 | 90 | } |
308 | | |
309 | | // The offset within the table, i.e., the value `p(i)` above. |
310 | 90 | size_t offset() const { return offset_; } |
311 | 90 | size_t offset(size_t i) const { return (offset_ + i) & mask_; } |
312 | | |
313 | 0 | void next() { |
314 | 0 | index_ += Width; |
315 | 0 | offset_ += index_; |
316 | 0 | offset_ &= mask_; |
317 | 0 | } |
318 | | // 0-based probe index, a multiple of `Width`. |
319 | 50 | size_t index() const { return index_; } |
320 | | |
321 | | private: |
322 | | size_t mask_; |
323 | | size_t offset_; |
324 | | size_t index_ = 0; |
325 | | }; |
326 | | |
327 | | template <class ContainerKey, class Hash, class Eq> |
328 | | struct RequireUsableKey { |
329 | | template <class PassedKey, class... Args> |
330 | | std::pair< |
331 | | decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())), |
332 | | decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(), |
333 | | std::declval<const PassedKey&>()))>* |
334 | | operator()(const PassedKey&, const Args&...) const; |
335 | | }; |
336 | | |
337 | | template <class E, class Policy, class Hash, class Eq, class... Ts> |
338 | | struct IsDecomposable : std::false_type {}; |
339 | | |
340 | | template <class Policy, class Hash, class Eq, class... Ts> |
341 | | struct IsDecomposable< |
342 | | absl::void_t<decltype(Policy::apply( |
343 | | RequireUsableKey<typename Policy::key_type, Hash, Eq>(), |
344 | | std::declval<Ts>()...))>, |
345 | | Policy, Hash, Eq, Ts...> : std::true_type {}; |
346 | | |
347 | | // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it. |
348 | | template <class T> |
349 | | constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) { |
350 | | using std::swap; |
351 | | return noexcept(swap(std::declval<T&>(), std::declval<T&>())); |
352 | | } |
353 | | template <class T> |
354 | | constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) { |
355 | | return false; |
356 | | } |
357 | | |
358 | | template <typename T> |
359 | 60 | uint32_t TrailingZeros(T x) { |
360 | 60 | ABSL_ASSUME(x != 0); |
361 | 0 | return static_cast<uint32_t>(countr_zero(x)); |
362 | 60 | } |
363 | | |
364 | | // An abstract bitmask, such as that emitted by a SIMD instruction. |
365 | | // |
366 | | // Specifically, this type implements a simple bitset whose representation is |
367 | | // controlled by `SignificantBits` and `Shift`. `SignificantBits` is the number |
368 | | // of abstract bits in the bitset, while `Shift` is the log-base-two of the |
369 | | // width of an abstract bit in the representation. |
370 | | // This mask provides operations for any number of real bits set in an abstract |
371 | | // bit. To add iteration on top of that, implementation must guarantee no more |
372 | | // than the most significant real bit is set in a set abstract bit. |
373 | | template <class T, int SignificantBits, int Shift = 0> |
374 | | class NonIterableBitMask { |
375 | | public: |
376 | 150 | explicit NonIterableBitMask(T mask) : mask_(mask) {} |
377 | | |
378 | 70 | explicit operator bool() const { return this->mask_ != 0; } |
379 | | |
380 | | // Returns the index of the lowest *abstract* bit set in `self`. |
381 | 60 | uint32_t LowestBitSet() const { |
382 | 60 | return container_internal::TrailingZeros(mask_) >> Shift; |
383 | 60 | } |
384 | | |
385 | | // Returns the index of the highest *abstract* bit set in `self`. |
386 | 10 | uint32_t HighestBitSet() const { |
387 | 10 | return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift); |
388 | 10 | } |
389 | | |
390 | | // Returns the number of trailing zero *abstract* bits. |
391 | 0 | uint32_t TrailingZeros() const { |
392 | 0 | return container_internal::TrailingZeros(mask_) >> Shift; |
393 | 0 | } |
394 | | |
395 | | // Returns the number of leading zero *abstract* bits. |
396 | 0 | uint32_t LeadingZeros() const { |
397 | 0 | constexpr int total_significant_bits = SignificantBits << Shift; |
398 | 0 | constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits; |
399 | 0 | return static_cast<uint32_t>(countl_zero(mask_ << extra_bits)) >> Shift; |
400 | 0 | } |
401 | | |
402 | | T mask_; |
403 | | }; |
404 | | |
405 | | // Mask that can be iterable |
406 | | // |
407 | | // For example, when `SignificantBits` is 16 and `Shift` is zero, this is just |
408 | | // an ordinary 16-bit bitset occupying the low 16 bits of `mask`. When |
409 | | // `SignificantBits` is 8 and `Shift` is 3, abstract bits are represented as |
410 | | // the bytes `0x00` and `0x80`, and it occupies all 64 bits of the bitmask. |
411 | | // |
412 | | // For example: |
413 | | // for (int i : BitMask<uint32_t, 16>(0b101)) -> yields 0, 2 |
414 | | // for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3 |
415 | | template <class T, int SignificantBits, int Shift = 0> |
416 | | class BitMask : public NonIterableBitMask<T, SignificantBits, Shift> { |
417 | | using Base = NonIterableBitMask<T, SignificantBits, Shift>; |
418 | | static_assert(std::is_unsigned<T>::value, ""); |
419 | | static_assert(Shift == 0 || Shift == 3, ""); |
420 | | |
421 | | public: |
422 | 80 | explicit BitMask(T mask) : Base(mask) {} |
423 | | // BitMask is an iterator over the indices of its abstract bits. |
424 | | using value_type = int; |
425 | | using iterator = BitMask; |
426 | | using const_iterator = BitMask; |
427 | | |
428 | 0 | BitMask& operator++() { |
429 | 0 | if (Shift == 3) { |
430 | 0 | constexpr uint64_t msbs = 0x8080808080808080ULL; |
431 | 0 | this->mask_ &= msbs; |
432 | 0 | } |
433 | 0 | this->mask_ &= (this->mask_ - 1); |
434 | 0 | return *this; |
435 | 0 | } |
436 | | |
437 | 20 | uint32_t operator*() const { return Base::LowestBitSet(); } |
438 | | |
439 | 40 | BitMask begin() const { return *this; } |
440 | 40 | BitMask end() const { return BitMask(0); } |
441 | | |
442 | | private: |
443 | | friend bool operator==(const BitMask& a, const BitMask& b) { |
444 | | return a.mask_ == b.mask_; |
445 | | } |
446 | 40 | friend bool operator!=(const BitMask& a, const BitMask& b) { |
447 | 40 | return a.mask_ != b.mask_; |
448 | 40 | } |
449 | | }; |
450 | | |
451 | | using h2_t = uint8_t; |
452 | | |
453 | | // The values here are selected for maximum performance. See the static asserts |
454 | | // below for details. |
455 | | |
456 | | // A `ctrl_t` is a single control byte, which can have one of four |
457 | | // states: empty, deleted, full (which has an associated seven-bit h2_t value) |
458 | | // and the sentinel. They have the following bit patterns: |
459 | | // |
460 | | // empty: 1 0 0 0 0 0 0 0 |
461 | | // deleted: 1 1 1 1 1 1 1 0 |
462 | | // full: 0 h h h h h h h // h represents the hash bits. |
463 | | // sentinel: 1 1 1 1 1 1 1 1 |
464 | | // |
465 | | // These values are specifically tuned for SSE-flavored SIMD. |
466 | | // The static_asserts below detail the source of these choices. |
467 | | // |
468 | | // We use an enum class so that when strict aliasing is enabled, the compiler |
469 | | // knows ctrl_t doesn't alias other types. |
470 | | enum class ctrl_t : int8_t { |
471 | | kEmpty = -128, // 0b10000000 |
472 | | kDeleted = -2, // 0b11111110 |
473 | | kSentinel = -1, // 0b11111111 |
474 | | }; |
475 | | static_assert( |
476 | | (static_cast<int8_t>(ctrl_t::kEmpty) & |
477 | | static_cast<int8_t>(ctrl_t::kDeleted) & |
478 | | static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0, |
479 | | "Special markers need to have the MSB to make checking for them efficient"); |
480 | | static_assert( |
481 | | ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel, |
482 | | "ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than " |
483 | | "ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient"); |
484 | | static_assert( |
485 | | ctrl_t::kSentinel == static_cast<ctrl_t>(-1), |
486 | | "ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD " |
487 | | "registers (pcmpeqd xmm, xmm)"); |
488 | | static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128), |
489 | | "ctrl_t::kEmpty must be -128 to make the SIMD check for its " |
490 | | "existence efficient (psignb xmm, xmm)"); |
491 | | static_assert( |
492 | | (~static_cast<int8_t>(ctrl_t::kEmpty) & |
493 | | ~static_cast<int8_t>(ctrl_t::kDeleted) & |
494 | | static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0, |
495 | | "ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not " |
496 | | "shared by ctrl_t::kSentinel to make the scalar test for " |
497 | | "MaskEmptyOrDeleted() efficient"); |
498 | | static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2), |
499 | | "ctrl_t::kDeleted must be -2 to make the implementation of " |
500 | | "ConvertSpecialToEmptyAndFullToDeleted efficient"); |
501 | | |
502 | | // See definition comment for why this is size 32. |
503 | | ABSL_DLL extern const ctrl_t kEmptyGroup[32]; |
504 | | |
505 | | // Returns a pointer to a control byte group that can be used by empty tables. |
506 | 104 | inline ctrl_t* EmptyGroup() { |
507 | | // Const must be cast away here; no uses of this function will actually write |
508 | | // to it, because it is only used for empty tables. |
509 | 104 | return const_cast<ctrl_t*>(kEmptyGroup + 16); |
510 | 104 | } |
511 | | |
512 | | // Returns a pointer to a generation to use for an empty hashtable. |
513 | | GenerationType* EmptyGeneration(); |
514 | | |
515 | | // Returns whether `generation` is a generation for an empty hashtable that |
516 | | // could be returned by EmptyGeneration(). |
517 | 0 | inline bool IsEmptyGeneration(const GenerationType* generation) { |
518 | 0 | return *generation == SentinelEmptyGeneration(); |
519 | 0 | } |
520 | | |
521 | | // Mixes a randomly generated per-process seed with `hash` and `ctrl` to |
522 | | // randomize insertion order within groups. |
523 | | bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl); |
524 | | |
525 | | // Returns a per-table, hash salt, which changes on resize. This gets mixed into |
526 | | // H1 to randomize iteration order per-table. |
527 | | // |
528 | | // The seed consists of the ctrl_ pointer, which adds enough entropy to ensure |
529 | | // non-determinism of iteration order in most cases. |
530 | 110 | inline size_t PerTableSalt(const ctrl_t* ctrl) { |
531 | | // The low bits of the pointer have little or no entropy because of |
532 | | // alignment. We shift the pointer to try to use higher entropy bits. A |
533 | | // good number seems to be 12 bits, because that aligns with page size. |
534 | 110 | return reinterpret_cast<uintptr_t>(ctrl) >> 12; |
535 | 110 | } |
536 | | // Extracts the H1 portion of a hash: 57 bits mixed with a per-table salt. |
537 | 110 | inline size_t H1(size_t hash, const ctrl_t* ctrl) { |
538 | 110 | return (hash >> 7) ^ PerTableSalt(ctrl); |
539 | 110 | } |
540 | | |
541 | | // Extracts the H2 portion of a hash: the 7 bits not used for H1. |
542 | | // |
543 | | // These are used as an occupied control byte. |
544 | 82 | inline h2_t H2(size_t hash) { return hash & 0x7F; } |
545 | | |
546 | | // Helpers for checking the state of a control byte. |
547 | 20 | inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; } |
548 | 124 | inline bool IsFull(ctrl_t c) { return c >= static_cast<ctrl_t>(0); } |
549 | 8 | inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; } |
550 | 0 | inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; } |
551 | | |
552 | | #ifdef ABSL_INTERNAL_HAVE_SSE2 |
553 | | // Quick reference guide for intrinsics used below: |
554 | | // |
555 | | // * __m128i: An XMM (128-bit) word. |
556 | | // |
557 | | // * _mm_setzero_si128: Returns a zero vector. |
558 | | // * _mm_set1_epi8: Returns a vector with the same i8 in each lane. |
559 | | // |
560 | | // * _mm_subs_epi8: Saturating-subtracts two i8 vectors. |
561 | | // * _mm_and_si128: Ands two i128s together. |
562 | | // * _mm_or_si128: Ors two i128s together. |
563 | | // * _mm_andnot_si128: And-nots two i128s together. |
564 | | // |
565 | | // * _mm_cmpeq_epi8: Component-wise compares two i8 vectors for equality, |
566 | | // filling each lane with 0x00 or 0xff. |
567 | | // * _mm_cmpgt_epi8: Same as above, but using > rather than ==. |
568 | | // |
569 | | // * _mm_loadu_si128: Performs an unaligned load of an i128. |
570 | | // * _mm_storeu_si128: Performs an unaligned store of an i128. |
571 | | // |
572 | | // * _mm_sign_epi8: Retains, negates, or zeroes each i8 lane of the first |
573 | | // argument if the corresponding lane of the second |
574 | | // argument is positive, negative, or zero, respectively. |
575 | | // * _mm_movemask_epi8: Selects the sign bit out of each i8 lane and produces a |
576 | | // bitmask consisting of those bits. |
577 | | // * _mm_shuffle_epi8: Selects i8s from the first argument, using the low |
578 | | // four bits of each i8 lane in the second argument as |
579 | | // indices. |
580 | | |
581 | | // https://github.com/abseil/abseil-cpp/issues/209 |
582 | | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853 |
583 | | // _mm_cmpgt_epi8 is broken under GCC with -funsigned-char |
584 | | // Work around this by using the portable implementation of Group |
585 | | // when using -funsigned-char under GCC. |
586 | 50 | inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) { |
587 | | #if defined(__GNUC__) && !defined(__clang__) |
588 | | if (std::is_unsigned<char>::value) { |
589 | | const __m128i mask = _mm_set1_epi8(0x80); |
590 | | const __m128i diff = _mm_subs_epi8(b, a); |
591 | | return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask); |
592 | | } |
593 | | #endif |
594 | 50 | return _mm_cmpgt_epi8(a, b); |
595 | 50 | } |
596 | | |
597 | | struct GroupSse2Impl { |
598 | | static constexpr size_t kWidth = 16; // the number of slots per group |
599 | | |
600 | 90 | explicit GroupSse2Impl(const ctrl_t* pos) { |
601 | 90 | ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos)); |
602 | 90 | } |
603 | | |
604 | | // Returns a bitmask representing the positions of slots that match hash. |
605 | 40 | BitMask<uint32_t, kWidth> Match(h2_t hash) const { |
606 | 40 | auto match = _mm_set1_epi8(static_cast<char>(hash)); |
607 | 40 | return BitMask<uint32_t, kWidth>( |
608 | 40 | static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)))); |
609 | 40 | } |
610 | | |
611 | | // Returns a bitmask representing the positions of empty slots. |
612 | 20 | NonIterableBitMask<uint32_t, kWidth> MaskEmpty() const { |
613 | | #ifdef ABSL_INTERNAL_HAVE_SSSE3 |
614 | | // This only works because ctrl_t::kEmpty is -128. |
615 | | return NonIterableBitMask<uint32_t, kWidth>( |
616 | | static_cast<uint32_t>(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl)))); |
617 | | #else |
618 | 20 | auto match = _mm_set1_epi8(static_cast<char>(ctrl_t::kEmpty)); |
619 | 20 | return NonIterableBitMask<uint32_t, kWidth>( |
620 | 20 | static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)))); |
621 | 20 | #endif |
622 | 20 | } |
623 | | |
624 | | // Returns a bitmask representing the positions of empty or deleted slots. |
625 | 50 | NonIterableBitMask<uint32_t, kWidth> MaskEmptyOrDeleted() const { |
626 | 50 | auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel)); |
627 | 50 | return NonIterableBitMask<uint32_t, kWidth>(static_cast<uint32_t>( |
628 | 50 | _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)))); |
629 | 50 | } |
630 | | |
631 | | // Returns the number of trailing empty or deleted elements in the group. |
632 | 0 | uint32_t CountLeadingEmptyOrDeleted() const { |
633 | 0 | auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel)); |
634 | 0 | return TrailingZeros(static_cast<uint32_t>( |
635 | 0 | _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1)); |
636 | 0 | } |
637 | | |
638 | 0 | void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
639 | 0 | auto msbs = _mm_set1_epi8(static_cast<char>(-128)); |
640 | 0 | auto x126 = _mm_set1_epi8(126); |
641 | | #ifdef ABSL_INTERNAL_HAVE_SSSE3 |
642 | | auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs); |
643 | | #else |
644 | 0 | auto zero = _mm_setzero_si128(); |
645 | 0 | auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl); |
646 | 0 | auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126)); |
647 | 0 | #endif |
648 | 0 | _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res); |
649 | 0 | } |
650 | | |
651 | | __m128i ctrl; |
652 | | }; |
653 | | #endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 |
654 | | |
655 | | #if defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN) |
656 | | struct GroupAArch64Impl { |
657 | | static constexpr size_t kWidth = 8; |
658 | | |
659 | | explicit GroupAArch64Impl(const ctrl_t* pos) { |
660 | | ctrl = vld1_u8(reinterpret_cast<const uint8_t*>(pos)); |
661 | | } |
662 | | |
663 | | BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const { |
664 | | uint8x8_t dup = vdup_n_u8(hash); |
665 | | auto mask = vceq_u8(ctrl, dup); |
666 | | return BitMask<uint64_t, kWidth, 3>( |
667 | | vget_lane_u64(vreinterpret_u64_u8(mask), 0)); |
668 | | } |
669 | | |
670 | | NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const { |
671 | | uint64_t mask = |
672 | | vget_lane_u64(vreinterpret_u64_u8(vceq_s8( |
673 | | vdup_n_s8(static_cast<int8_t>(ctrl_t::kEmpty)), |
674 | | vreinterpret_s8_u8(ctrl))), |
675 | | 0); |
676 | | return NonIterableBitMask<uint64_t, kWidth, 3>(mask); |
677 | | } |
678 | | |
679 | | NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const { |
680 | | uint64_t mask = |
681 | | vget_lane_u64(vreinterpret_u64_u8(vcgt_s8( |
682 | | vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)), |
683 | | vreinterpret_s8_u8(ctrl))), |
684 | | 0); |
685 | | return NonIterableBitMask<uint64_t, kWidth, 3>(mask); |
686 | | } |
687 | | |
688 | | uint32_t CountLeadingEmptyOrDeleted() const { |
689 | | uint64_t mask = |
690 | | vget_lane_u64(vreinterpret_u64_u8(vcle_s8( |
691 | | vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)), |
692 | | vreinterpret_s8_u8(ctrl))), |
693 | | 0); |
694 | | // Similar to MaskEmptyorDeleted() but we invert the logic to invert the |
695 | | // produced bitfield. We then count number of trailing zeros. |
696 | | // Clang and GCC optimize countr_zero to rbit+clz without any check for 0, |
697 | | // so we should be fine. |
698 | | return static_cast<uint32_t>(countr_zero(mask)) >> 3; |
699 | | } |
700 | | |
701 | | void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
702 | | uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0); |
703 | | constexpr uint64_t msbs = 0x8080808080808080ULL; |
704 | | constexpr uint64_t slsbs = 0x0202020202020202ULL; |
705 | | constexpr uint64_t midbs = 0x7e7e7e7e7e7e7e7eULL; |
706 | | auto x = slsbs & (mask >> 6); |
707 | | auto res = (x + midbs) | msbs; |
708 | | little_endian::Store64(dst, res); |
709 | | } |
710 | | |
711 | | uint8x8_t ctrl; |
712 | | }; |
713 | | #endif // ABSL_INTERNAL_HAVE_ARM_NEON && ABSL_IS_LITTLE_ENDIAN |
714 | | |
715 | | struct GroupPortableImpl { |
716 | | static constexpr size_t kWidth = 8; |
717 | | |
718 | | explicit GroupPortableImpl(const ctrl_t* pos) |
719 | 0 | : ctrl(little_endian::Load64(pos)) {} |
720 | | |
721 | 0 | BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const { |
722 | 0 | // For the technique, see: |
723 | 0 | // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord |
724 | 0 | // (Determine if a word has a byte equal to n). |
725 | 0 | // |
726 | 0 | // Caveat: there are false positives but: |
727 | 0 | // - they only occur if there is a real match |
728 | 0 | // - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel |
729 | 0 | // - they will be handled gracefully by subsequent checks in code |
730 | 0 | // |
731 | 0 | // Example: |
732 | 0 | // v = 0x1716151413121110 |
733 | 0 | // hash = 0x12 |
734 | 0 | // retval = (v - lsbs) & ~v & msbs = 0x0000000080800000 |
735 | 0 | constexpr uint64_t msbs = 0x8080808080808080ULL; |
736 | 0 | constexpr uint64_t lsbs = 0x0101010101010101ULL; |
737 | 0 | auto x = ctrl ^ (lsbs * hash); |
738 | 0 | return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs); |
739 | 0 | } |
740 | | |
741 | 0 | NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const { |
742 | 0 | constexpr uint64_t msbs = 0x8080808080808080ULL; |
743 | 0 | return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & ~(ctrl << 6)) & |
744 | 0 | msbs); |
745 | 0 | } |
746 | | |
747 | 0 | NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const { |
748 | 0 | constexpr uint64_t msbs = 0x8080808080808080ULL; |
749 | 0 | return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & ~(ctrl << 7)) & |
750 | 0 | msbs); |
751 | 0 | } |
752 | | |
753 | 0 | uint32_t CountLeadingEmptyOrDeleted() const { |
754 | 0 | // ctrl | ~(ctrl >> 7) will have the lowest bit set to zero for kEmpty and |
755 | 0 | // kDeleted. We lower all other bits and count number of trailing zeros. |
756 | 0 | constexpr uint64_t bits = 0x0101010101010101ULL; |
757 | 0 | return static_cast<uint32_t>(countr_zero((ctrl | ~(ctrl >> 7)) & bits) >> |
758 | 0 | 3); |
759 | 0 | } |
760 | | |
761 | 0 | void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
762 | 0 | constexpr uint64_t msbs = 0x8080808080808080ULL; |
763 | 0 | constexpr uint64_t lsbs = 0x0101010101010101ULL; |
764 | 0 | auto x = ctrl & msbs; |
765 | 0 | auto res = (~x + (x >> 7)) & ~lsbs; |
766 | 0 | little_endian::Store64(dst, res); |
767 | 0 | } |
768 | | |
769 | | uint64_t ctrl; |
770 | | }; |
771 | | |
772 | | #ifdef ABSL_INTERNAL_HAVE_SSE2 |
773 | | using Group = GroupSse2Impl; |
774 | | using GroupEmptyOrDeleted = GroupSse2Impl; |
775 | | #elif defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN) |
776 | | using Group = GroupAArch64Impl; |
777 | | // For Aarch64, we use the portable implementation for counting and masking |
778 | | // empty or deleted group elements. This is to avoid the latency of moving |
779 | | // between data GPRs and Neon registers when it does not provide a benefit. |
780 | | // Using Neon is profitable when we call Match(), but is not when we don't, |
781 | | // which is the case when we do *EmptyOrDeleted operations. It is difficult to |
782 | | // make a similar approach beneficial on other architectures such as x86 since |
783 | | // they have much lower GPR <-> vector register transfer latency and 16-wide |
784 | | // Groups. |
785 | | using GroupEmptyOrDeleted = GroupPortableImpl; |
786 | | #else |
787 | | using Group = GroupPortableImpl; |
788 | | using GroupEmptyOrDeleted = GroupPortableImpl; |
789 | | #endif |
790 | | |
791 | | // When there is an insertion with no reserved growth, we rehash with |
792 | | // probability `min(1, RehashProbabilityConstant() / capacity())`. Using a |
793 | | // constant divided by capacity ensures that inserting N elements is still O(N) |
794 | | // in the average case. Using the constant 16 means that we expect to rehash ~8 |
795 | | // times more often than when generations are disabled. We are adding expected |
796 | | // rehash_probability * #insertions/capacity_growth = 16/capacity * ((7/8 - |
797 | | // 7/16) * capacity)/capacity_growth = ~7 extra rehashes per capacity growth. |
798 | 0 | inline size_t RehashProbabilityConstant() { return 16; } |
799 | | |
800 | | class CommonFieldsGenerationInfoEnabled { |
801 | | // A sentinel value for reserved_growth_ indicating that we just ran out of |
802 | | // reserved growth on the last insertion. When reserve is called and then |
803 | | // insertions take place, reserved_growth_'s state machine is N, ..., 1, |
804 | | // kReservedGrowthJustRanOut, 0. |
805 | | static constexpr size_t kReservedGrowthJustRanOut = |
806 | | (std::numeric_limits<size_t>::max)(); |
807 | | |
808 | | public: |
809 | | CommonFieldsGenerationInfoEnabled() = default; |
810 | | CommonFieldsGenerationInfoEnabled(CommonFieldsGenerationInfoEnabled&& that) |
811 | | : reserved_growth_(that.reserved_growth_), |
812 | | reservation_size_(that.reservation_size_), |
813 | 0 | generation_(that.generation_) { |
814 | 0 | that.reserved_growth_ = 0; |
815 | 0 | that.reservation_size_ = 0; |
816 | 0 | that.generation_ = EmptyGeneration(); |
817 | 0 | } |
818 | | CommonFieldsGenerationInfoEnabled& operator=( |
819 | | CommonFieldsGenerationInfoEnabled&&) = default; |
820 | | |
821 | | // Whether we should rehash on insert in order to detect bugs of using invalid |
822 | | // references. We rehash on the first insertion after reserved_growth_ reaches |
823 | | // 0 after a call to reserve. We also do a rehash with low probability |
824 | | // whenever reserved_growth_ is zero. |
825 | | bool should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl, |
826 | | size_t capacity) const; |
827 | 0 | void maybe_increment_generation_on_insert() { |
828 | 0 | if (reserved_growth_ == kReservedGrowthJustRanOut) reserved_growth_ = 0; |
829 | 0 |
|
830 | 0 | if (reserved_growth_ > 0) { |
831 | 0 | if (--reserved_growth_ == 0) reserved_growth_ = kReservedGrowthJustRanOut; |
832 | 0 | } else { |
833 | 0 | *generation_ = NextGeneration(*generation_); |
834 | 0 | } |
835 | 0 | } |
836 | 0 | void reset_reserved_growth(size_t reservation, size_t size) { |
837 | 0 | reserved_growth_ = reservation - size; |
838 | 0 | } |
839 | 0 | size_t reserved_growth() const { return reserved_growth_; } |
840 | 0 | void set_reserved_growth(size_t r) { reserved_growth_ = r; } |
841 | 0 | size_t reservation_size() const { return reservation_size_; } |
842 | 0 | void set_reservation_size(size_t r) { reservation_size_ = r; } |
843 | 0 | GenerationType generation() const { return *generation_; } |
844 | 0 | void set_generation(GenerationType g) { *generation_ = g; } |
845 | 0 | GenerationType* generation_ptr() const { return generation_; } |
846 | 0 | void set_generation_ptr(GenerationType* g) { generation_ = g; } |
847 | | |
848 | | private: |
849 | | // The number of insertions remaining that are guaranteed to not rehash due to |
850 | | // a prior call to reserve. Note: we store reserved growth in addition to |
851 | | // reservation size because calls to erase() decrease size_ but don't decrease |
852 | | // reserved growth. |
853 | | size_t reserved_growth_ = 0; |
854 | | // The maximum argument to reserve() since the container was cleared. We need |
855 | | // to keep track of this, in addition to reserved growth, because we reset |
856 | | // reserved growth to this when erase(begin(), end()) is called. |
857 | | size_t reservation_size_ = 0; |
858 | | // Pointer to the generation counter, which is used to validate iterators and |
859 | | // is stored in the backing array between the control bytes and the slots. |
860 | | // Note that we can't store the generation inside the container itself and |
861 | | // keep a pointer to the container in the iterators because iterators must |
862 | | // remain valid when the container is moved. |
863 | | // Note: we could derive this pointer from the control pointer, but it makes |
864 | | // the code more complicated, and there's a benefit in having the sizes of |
865 | | // raw_hash_set in sanitizer mode and non-sanitizer mode a bit more different, |
866 | | // which is that tests are less likely to rely on the size remaining the same. |
867 | | GenerationType* generation_ = EmptyGeneration(); |
868 | | }; |
869 | | |
870 | | class CommonFieldsGenerationInfoDisabled { |
871 | | public: |
872 | | CommonFieldsGenerationInfoDisabled() = default; |
873 | | CommonFieldsGenerationInfoDisabled(CommonFieldsGenerationInfoDisabled&&) = |
874 | | default; |
875 | | CommonFieldsGenerationInfoDisabled& operator=( |
876 | | CommonFieldsGenerationInfoDisabled&&) = default; |
877 | | |
878 | 20 | bool should_rehash_for_bug_detection_on_insert(const ctrl_t*, size_t) const { |
879 | 20 | return false; |
880 | 20 | } |
881 | 20 | void maybe_increment_generation_on_insert() {} |
882 | 0 | void reset_reserved_growth(size_t, size_t) {} |
883 | 0 | size_t reserved_growth() const { return 0; } |
884 | 0 | void set_reserved_growth(size_t) {} |
885 | 0 | size_t reservation_size() const { return 0; } |
886 | 0 | void set_reservation_size(size_t) {} |
887 | 8 | GenerationType generation() const { return 0; } |
888 | 8 | void set_generation(GenerationType) {} |
889 | 80 | GenerationType* generation_ptr() const { return nullptr; } |
890 | 8 | void set_generation_ptr(GenerationType*) {} |
891 | | }; |
892 | | |
893 | | class HashSetIteratorGenerationInfoEnabled { |
894 | | public: |
895 | | HashSetIteratorGenerationInfoEnabled() = default; |
896 | | explicit HashSetIteratorGenerationInfoEnabled( |
897 | | const GenerationType* generation_ptr) |
898 | 0 | : generation_ptr_(generation_ptr), generation_(*generation_ptr) {} |
899 | | |
900 | 0 | GenerationType generation() const { return generation_; } |
901 | 0 | void reset_generation() { generation_ = *generation_ptr_; } |
902 | 0 | const GenerationType* generation_ptr() const { return generation_ptr_; } |
903 | 0 | void set_generation_ptr(const GenerationType* ptr) { generation_ptr_ = ptr; } |
904 | | |
905 | | private: |
906 | | const GenerationType* generation_ptr_ = EmptyGeneration(); |
907 | | GenerationType generation_ = *generation_ptr_; |
908 | | }; |
909 | | |
910 | | class HashSetIteratorGenerationInfoDisabled { |
911 | | public: |
912 | | HashSetIteratorGenerationInfoDisabled() = default; |
913 | 80 | explicit HashSetIteratorGenerationInfoDisabled(const GenerationType*) {} |
914 | | |
915 | 60 | GenerationType generation() const { return 0; } |
916 | 0 | void reset_generation() {} |
917 | 100 | const GenerationType* generation_ptr() const { return nullptr; } |
918 | 0 | void set_generation_ptr(const GenerationType*) {} |
919 | | }; |
920 | | |
921 | | #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS |
922 | | using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoEnabled; |
923 | | using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoEnabled; |
924 | | #else |
925 | | using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoDisabled; |
926 | | using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoDisabled; |
927 | | #endif |
928 | | |
929 | | // Returns whether `n` is a valid capacity (i.e., number of slots). |
930 | | // |
931 | | // A valid capacity is a non-zero integer `2^m - 1`. |
932 | 84 | inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; } |
933 | | |
934 | | // Computes the offset from the start of the backing allocation of control. |
935 | | // infoz and growth_left are stored at the beginning of the backing array. |
936 | 44 | inline size_t ControlOffset(bool has_infoz) { |
937 | 44 | return (has_infoz ? sizeof(HashtablezInfoHandle) : 0) + sizeof(size_t); |
938 | 44 | } |
939 | | |
940 | | // Returns the number of "cloned control bytes". |
941 | | // |
942 | | // This is the number of control bytes that are present both at the beginning |
943 | | // of the control byte array and at the end, such that we can create a |
944 | | // `Group::kWidth`-width probe window starting from any control byte. |
945 | 122 | constexpr size_t NumClonedBytes() { return Group::kWidth - 1; } |
946 | | |
947 | | // Given the capacity of a table, computes the offset (from the start of the |
948 | | // backing allocation) of the generation counter (if it exists). |
949 | 30 | inline size_t GenerationOffset(size_t capacity, bool has_infoz) { |
950 | 30 | assert(IsValidCapacity(capacity)); |
951 | 0 | const size_t num_control_bytes = capacity + 1 + NumClonedBytes(); |
952 | 30 | return ControlOffset(has_infoz) + num_control_bytes; |
953 | 30 | } |
954 | | |
955 | | // Given the capacity of a table, computes the offset (from the start of the |
956 | | // backing allocation) at which the slots begin. |
957 | 22 | inline size_t SlotOffset(size_t capacity, size_t slot_align, bool has_infoz) { |
958 | 22 | assert(IsValidCapacity(capacity)); |
959 | 0 | return (GenerationOffset(capacity, has_infoz) + NumGenerationBytes() + |
960 | 22 | slot_align - 1) & |
961 | 22 | (~slot_align + 1); |
962 | 22 | } |
963 | | |
964 | | // Given the capacity of a table, computes the total size of the backing |
965 | | // array. |
966 | | inline size_t AllocSize(size_t capacity, size_t slot_size, size_t slot_align, |
967 | 14 | bool has_infoz) { |
968 | 14 | return SlotOffset(capacity, slot_align, has_infoz) + capacity * slot_size; |
969 | 14 | } |
970 | | |
971 | | // CommonFields hold the fields in raw_hash_set that do not depend |
972 | | // on template parameters. This allows us to conveniently pass all |
973 | | // of this state to helper functions as a single argument. |
974 | | class CommonFields : public CommonFieldsGenerationInfo { |
975 | | public: |
976 | 2 | CommonFields() = default; |
977 | | |
978 | | // Not copyable |
979 | | CommonFields(const CommonFields&) = delete; |
980 | | CommonFields& operator=(const CommonFields&) = delete; |
981 | | |
982 | | // Movable |
983 | | CommonFields(CommonFields&& that) |
984 | | : CommonFieldsGenerationInfo( |
985 | | std::move(static_cast<CommonFieldsGenerationInfo&&>(that))), |
986 | | // Explicitly copying fields into "this" and then resetting "that" |
987 | | // fields generates less code then calling absl::exchange per field. |
988 | | control_(that.control()), |
989 | | slots_(that.slot_array()), |
990 | | capacity_(that.capacity()), |
991 | 2 | size_(that.size_) { |
992 | 2 | that.set_control(EmptyGroup()); |
993 | 2 | that.set_slots(nullptr); |
994 | 2 | that.set_capacity(0); |
995 | 2 | that.size_ = 0; |
996 | 2 | } |
997 | | CommonFields& operator=(CommonFields&&) = default; |
998 | | |
999 | 476 | ctrl_t* control() const { return control_; } |
1000 | 10 | void set_control(ctrl_t* c) { control_ = c; } |
1001 | 0 | void* backing_array_start() const { |
1002 | | // growth_left (and maybe infoz) is stored before control bytes. |
1003 | 0 | assert(reinterpret_cast<uintptr_t>(control()) % alignof(size_t) == 0); |
1004 | 0 | return control() - ControlOffset(has_infoz()); |
1005 | 0 | } |
1006 | | |
1007 | | // Note: we can't use slots() because Qt defines "slots" as a macro. |
1008 | 196 | void* slot_array() const { return slots_; } |
1009 | 10 | void set_slots(void* s) { slots_ = s; } |
1010 | | |
1011 | | // The number of filled slots. |
1012 | 36 | size_t size() const { return size_ >> HasInfozShift(); } |
1013 | 0 | void set_size(size_t s) { |
1014 | 0 | size_ = (s << HasInfozShift()) | (size_ & HasInfozMask()); |
1015 | 0 | } |
1016 | 20 | void increment_size() { |
1017 | 20 | assert(size() < capacity()); |
1018 | 0 | size_ += size_t{1} << HasInfozShift(); |
1019 | 20 | } |
1020 | 0 | void decrement_size() { |
1021 | 0 | assert(size() > 0); |
1022 | 0 | size_ -= size_t{1} << HasInfozShift(); |
1023 | 0 | } |
1024 | | |
1025 | | // The total number of available slots. |
1026 | 272 | size_t capacity() const { return capacity_; } |
1027 | 10 | void set_capacity(size_t c) { |
1028 | 10 | assert(c == 0 || IsValidCapacity(c)); |
1029 | 0 | capacity_ = c; |
1030 | 10 | } |
1031 | | |
1032 | | // The number of slots we can still fill without needing to rehash. |
1033 | | // This is stored in the heap allocation before the control bytes. |
1034 | 40 | size_t growth_left() const { |
1035 | 40 | const size_t* gl_ptr = reinterpret_cast<size_t*>(control()) - 1; |
1036 | 40 | assert(reinterpret_cast<uintptr_t>(gl_ptr) % alignof(size_t) == 0); |
1037 | 0 | return *gl_ptr; |
1038 | 40 | } |
1039 | 28 | void set_growth_left(size_t gl) { |
1040 | 28 | size_t* gl_ptr = reinterpret_cast<size_t*>(control()) - 1; |
1041 | 28 | assert(reinterpret_cast<uintptr_t>(gl_ptr) % alignof(size_t) == 0); |
1042 | 0 | *gl_ptr = gl; |
1043 | 28 | } |
1044 | | |
1045 | 42 | bool has_infoz() const { |
1046 | 42 | return ABSL_PREDICT_FALSE((size_ & HasInfozMask()) != 0); |
1047 | 42 | } |
1048 | 8 | void set_has_infoz(bool has_infoz) { |
1049 | 8 | size_ = (size() << HasInfozShift()) | static_cast<size_t>(has_infoz); |
1050 | 8 | } |
1051 | | |
1052 | 34 | HashtablezInfoHandle infoz() { |
1053 | 34 | return has_infoz() |
1054 | 34 | ? *reinterpret_cast<HashtablezInfoHandle*>(backing_array_start()) |
1055 | 34 | : HashtablezInfoHandle(); |
1056 | 34 | } |
1057 | 0 | void set_infoz(HashtablezInfoHandle infoz) { |
1058 | 0 | assert(has_infoz()); |
1059 | 0 | *reinterpret_cast<HashtablezInfoHandle*>(backing_array_start()) = infoz; |
1060 | 0 | } |
1061 | | |
1062 | 20 | bool should_rehash_for_bug_detection_on_insert() const { |
1063 | 20 | return CommonFieldsGenerationInfo:: |
1064 | 20 | should_rehash_for_bug_detection_on_insert(control(), capacity()); |
1065 | 20 | } |
1066 | 0 | void reset_reserved_growth(size_t reservation) { |
1067 | 0 | CommonFieldsGenerationInfo::reset_reserved_growth(reservation, size()); |
1068 | 0 | } |
1069 | | |
1070 | | // The size of the backing array allocation. |
1071 | 0 | size_t alloc_size(size_t slot_size, size_t slot_align) const { |
1072 | 0 | return AllocSize(capacity(), slot_size, slot_align, has_infoz()); |
1073 | 0 | } |
1074 | | |
1075 | | // Returns the number of control bytes set to kDeleted. For testing only. |
1076 | 0 | size_t TombstonesCount() const { |
1077 | 0 | return static_cast<size_t>( |
1078 | 0 | std::count(control(), control() + capacity(), ctrl_t::kDeleted)); |
1079 | 0 | } |
1080 | | |
1081 | | private: |
1082 | | // We store the has_infoz bit in the lowest bit of size_. |
1083 | 106 | static constexpr size_t HasInfozShift() { return 1; } |
1084 | 42 | static constexpr size_t HasInfozMask() { |
1085 | 42 | return (size_t{1} << HasInfozShift()) - 1; |
1086 | 42 | } |
1087 | | |
1088 | | // TODO(b/182800944): Investigate removing some of these fields: |
1089 | | // - control/slots can be derived from each other |
1090 | | |
1091 | | // The control bytes (and, also, a pointer near to the base of the backing |
1092 | | // array). |
1093 | | // |
1094 | | // This contains `capacity + 1 + NumClonedBytes()` entries, even |
1095 | | // when the table is empty (hence EmptyGroup). |
1096 | | // |
1097 | | // Note that growth_left is stored immediately before this pointer. |
1098 | | ctrl_t* control_ = EmptyGroup(); |
1099 | | |
1100 | | // The beginning of the slots, located at `SlotOffset()` bytes after |
1101 | | // `control`. May be null for empty tables. |
1102 | | void* slots_ = nullptr; |
1103 | | |
1104 | | // The number of slots in the backing array. This is always 2^N-1 for an |
1105 | | // integer N. NOTE: we tried experimenting with compressing the capacity and |
1106 | | // storing it together with size_: (a) using 6 bits to store the corresponding |
1107 | | // power (N in 2^N-1), and (b) storing 2^N as the most significant bit of |
1108 | | // size_ and storing size in the low bits. Both of these experiments were |
1109 | | // regressions, presumably because we need capacity to do find operations. |
1110 | | size_t capacity_ = 0; |
1111 | | |
1112 | | // The size and also has one bit that stores whether we have infoz. |
1113 | | size_t size_ = 0; |
1114 | | }; |
1115 | | |
1116 | | template <class Policy, class Hash, class Eq, class Alloc> |
1117 | | class raw_hash_set; |
1118 | | |
1119 | | // Returns the next valid capacity after `n`. |
1120 | 8 | inline size_t NextCapacity(size_t n) { |
1121 | 8 | assert(IsValidCapacity(n) || n == 0); |
1122 | 0 | return n * 2 + 1; |
1123 | 8 | } |
1124 | | |
1125 | | // Applies the following mapping to every byte in the control array: |
1126 | | // * kDeleted -> kEmpty |
1127 | | // * kEmpty -> kEmpty |
1128 | | // * _ -> kDeleted |
1129 | | // PRECONDITION: |
1130 | | // IsValidCapacity(capacity) |
1131 | | // ctrl[capacity] == ctrl_t::kSentinel |
1132 | | // ctrl[i] != ctrl_t::kSentinel for all i < capacity |
1133 | | void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity); |
1134 | | |
1135 | | // Converts `n` into the next valid capacity, per `IsValidCapacity`. |
1136 | 0 | inline size_t NormalizeCapacity(size_t n) { |
1137 | 0 | return n ? ~size_t{} >> countl_zero(n) : 1; |
1138 | 0 | } |
1139 | | |
1140 | | // General notes on capacity/growth methods below: |
1141 | | // - We use 7/8th as maximum load factor. For 16-wide groups, that gives an |
1142 | | // average of two empty slots per group. |
1143 | | // - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity. |
1144 | | // - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we |
1145 | | // never need to probe (the whole table fits in one group) so we don't need a |
1146 | | // load factor less than 1. |
1147 | | |
1148 | | // Given `capacity`, applies the load factor; i.e., it returns the maximum |
1149 | | // number of values we should put into the table before a resizing rehash. |
1150 | 8 | inline size_t CapacityToGrowth(size_t capacity) { |
1151 | 8 | assert(IsValidCapacity(capacity)); |
1152 | | // `capacity*7/8` |
1153 | 8 | if (Group::kWidth == 8 && capacity == 7) { |
1154 | | // x-x/8 does not work when x==7. |
1155 | 0 | return 6; |
1156 | 0 | } |
1157 | 8 | return capacity - capacity / 8; |
1158 | 8 | } |
1159 | | |
1160 | | // Given `growth`, "unapplies" the load factor to find how large the capacity |
1161 | | // should be to stay within the load factor. |
1162 | | // |
1163 | | // This might not be a valid capacity and `NormalizeCapacity()` should be |
1164 | | // called on this. |
1165 | 0 | inline size_t GrowthToLowerboundCapacity(size_t growth) { |
1166 | 0 | // `growth*8/7` |
1167 | 0 | if (Group::kWidth == 8 && growth == 7) { |
1168 | 0 | // x+(x-1)/7 does not work when x==7. |
1169 | 0 | return 8; |
1170 | 0 | } |
1171 | 0 | return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7); |
1172 | 0 | } |
1173 | | |
1174 | | template <class InputIter> |
1175 | | size_t SelectBucketCountForIterRange(InputIter first, InputIter last, |
1176 | | size_t bucket_count) { |
1177 | | if (bucket_count != 0) { |
1178 | | return bucket_count; |
1179 | | } |
1180 | | using InputIterCategory = |
1181 | | typename std::iterator_traits<InputIter>::iterator_category; |
1182 | | if (std::is_base_of<std::random_access_iterator_tag, |
1183 | | InputIterCategory>::value) { |
1184 | | return GrowthToLowerboundCapacity( |
1185 | | static_cast<size_t>(std::distance(first, last))); |
1186 | | } |
1187 | | return 0; |
1188 | | } |
1189 | | |
1190 | 0 | constexpr bool SwisstableDebugEnabled() { |
1191 | 0 | #if defined(ABSL_SWISSTABLE_ENABLE_GENERATIONS) || \ |
1192 | 0 | ABSL_OPTION_HARDENED == 1 || !defined(NDEBUG) |
1193 | 0 | return true; |
1194 | 0 | #else |
1195 | 0 | return false; |
1196 | 0 | #endif |
1197 | 0 | } |
1198 | | |
1199 | | inline void AssertIsFull(const ctrl_t* ctrl, GenerationType generation, |
1200 | | const GenerationType* generation_ptr, |
1201 | 20 | const char* operation) { |
1202 | 20 | if (!SwisstableDebugEnabled()) return; |
1203 | | // `SwisstableDebugEnabled()` is also true for release builds with hardening |
1204 | | // enabled. To minimize their impact in those builds: |
1205 | | // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout |
1206 | | // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve |
1207 | | // the chances that the hot paths will be inlined. |
1208 | 20 | if (ABSL_PREDICT_FALSE(ctrl == nullptr)) { |
1209 | 0 | ABSL_RAW_LOG(FATAL, "%s called on end() iterator.", operation); |
1210 | 0 | } |
1211 | 20 | if (ABSL_PREDICT_FALSE(ctrl == EmptyGroup())) { |
1212 | 0 | ABSL_RAW_LOG(FATAL, "%s called on default-constructed iterator.", |
1213 | 0 | operation); |
1214 | 0 | } |
1215 | 20 | if (SwisstableGenerationsEnabled()) { |
1216 | 0 | if (generation != *generation_ptr) { |
1217 | 0 | ABSL_INTERNAL_LOG(FATAL, |
1218 | 0 | std::string(operation) + |
1219 | 0 | " called on invalid iterator. The table could have " |
1220 | 0 | "rehashed since this iterator was initialized."); |
1221 | 0 | } |
1222 | 0 | if (!IsFull(*ctrl)) { |
1223 | 0 | ABSL_INTERNAL_LOG( |
1224 | 0 | FATAL, |
1225 | 0 | std::string(operation) + |
1226 | 0 | " called on invalid iterator. The element was likely erased."); |
1227 | 0 | } |
1228 | 20 | } else { |
1229 | 20 | if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) { |
1230 | 0 | ABSL_RAW_LOG( |
1231 | 0 | FATAL, |
1232 | 0 | "%s called on invalid iterator. The element might have been erased " |
1233 | 0 | "or the table might have rehashed. Consider running with " |
1234 | 0 | "--config=asan to diagnose rehashing issues.", |
1235 | 0 | operation); |
1236 | 0 | } |
1237 | 20 | } |
1238 | 20 | } |
1239 | | |
1240 | | // Note that for comparisons, null/end iterators are valid. |
1241 | | inline void AssertIsValidForComparison(const ctrl_t* ctrl, |
1242 | | GenerationType generation, |
1243 | 40 | const GenerationType* generation_ptr) { |
1244 | 40 | if (!SwisstableDebugEnabled()) return; |
1245 | 40 | const bool ctrl_is_valid_for_comparison = |
1246 | 40 | ctrl == nullptr || ctrl == EmptyGroup() || IsFull(*ctrl); |
1247 | 40 | if (SwisstableGenerationsEnabled()) { |
1248 | 0 | if (generation != *generation_ptr) { |
1249 | 0 | ABSL_INTERNAL_LOG(FATAL, |
1250 | 0 | "Invalid iterator comparison. The table could have " |
1251 | 0 | "rehashed since this iterator was initialized."); |
1252 | 0 | } |
1253 | 0 | if (!ctrl_is_valid_for_comparison) { |
1254 | 0 | ABSL_INTERNAL_LOG( |
1255 | 0 | FATAL, "Invalid iterator comparison. The element was likely erased."); |
1256 | 0 | } |
1257 | 40 | } else { |
1258 | 40 | ABSL_HARDENING_ASSERT( |
1259 | 40 | ctrl_is_valid_for_comparison && |
1260 | 40 | "Invalid iterator comparison. The element might have been erased or " |
1261 | 40 | "the table might have rehashed. Consider running with --config=asan to " |
1262 | 40 | "diagnose rehashing issues."); |
1263 | 40 | } |
1264 | 40 | } |
1265 | | |
1266 | | // If the two iterators come from the same container, then their pointers will |
1267 | | // interleave such that ctrl_a <= ctrl_b < slot_a <= slot_b or vice/versa. |
1268 | | // Note: we take slots by reference so that it's not UB if they're uninitialized |
1269 | | // as long as we don't read them (when ctrl is null). |
1270 | | inline bool AreItersFromSameContainer(const ctrl_t* ctrl_a, |
1271 | | const ctrl_t* ctrl_b, |
1272 | | const void* const& slot_a, |
1273 | 20 | const void* const& slot_b) { |
1274 | | // If either control byte is null, then we can't tell. |
1275 | 20 | if (ctrl_a == nullptr || ctrl_b == nullptr) return true; |
1276 | 20 | const void* low_slot = slot_a; |
1277 | 20 | const void* hi_slot = slot_b; |
1278 | 20 | if (ctrl_a > ctrl_b) { |
1279 | 0 | std::swap(ctrl_a, ctrl_b); |
1280 | 0 | std::swap(low_slot, hi_slot); |
1281 | 0 | } |
1282 | 20 | return ctrl_b < low_slot && low_slot <= hi_slot; |
1283 | 20 | } |
1284 | | |
1285 | | // Asserts that two iterators come from the same container. |
1286 | | // Note: we take slots by reference so that it's not UB if they're uninitialized |
1287 | | // as long as we don't read them (when ctrl is null). |
1288 | | inline void AssertSameContainer(const ctrl_t* ctrl_a, const ctrl_t* ctrl_b, |
1289 | | const void* const& slot_a, |
1290 | | const void* const& slot_b, |
1291 | | const GenerationType* generation_ptr_a, |
1292 | 20 | const GenerationType* generation_ptr_b) { |
1293 | 20 | if (!SwisstableDebugEnabled()) return; |
1294 | | // `SwisstableDebugEnabled()` is also true for release builds with hardening |
1295 | | // enabled. To minimize their impact in those builds: |
1296 | | // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout |
1297 | | // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve |
1298 | | // the chances that the hot paths will be inlined. |
1299 | 20 | const bool a_is_default = ctrl_a == EmptyGroup(); |
1300 | 20 | const bool b_is_default = ctrl_b == EmptyGroup(); |
1301 | 20 | if (ABSL_PREDICT_FALSE(a_is_default != b_is_default)) { |
1302 | 0 | ABSL_RAW_LOG( |
1303 | 0 | FATAL, |
1304 | 0 | "Invalid iterator comparison. Comparing default-constructed iterator " |
1305 | 0 | "with non-default-constructed iterator."); |
1306 | 0 | } |
1307 | 20 | if (a_is_default && b_is_default) return; |
1308 | | |
1309 | 20 | if (SwisstableGenerationsEnabled()) { |
1310 | 0 | if (generation_ptr_a == generation_ptr_b) return; |
1311 | 0 | const bool a_is_empty = IsEmptyGeneration(generation_ptr_a); |
1312 | 0 | const bool b_is_empty = IsEmptyGeneration(generation_ptr_b); |
1313 | 0 | if (a_is_empty != b_is_empty) { |
1314 | 0 | ABSL_INTERNAL_LOG(FATAL, |
1315 | 0 | "Invalid iterator comparison. Comparing iterator from " |
1316 | 0 | "a non-empty hashtable with an iterator from an empty " |
1317 | 0 | "hashtable."); |
1318 | 0 | } |
1319 | 0 | if (a_is_empty && b_is_empty) { |
1320 | 0 | ABSL_INTERNAL_LOG(FATAL, |
1321 | 0 | "Invalid iterator comparison. Comparing iterators from " |
1322 | 0 | "different empty hashtables."); |
1323 | 0 | } |
1324 | 0 | const bool a_is_end = ctrl_a == nullptr; |
1325 | 0 | const bool b_is_end = ctrl_b == nullptr; |
1326 | 0 | if (a_is_end || b_is_end) { |
1327 | 0 | ABSL_INTERNAL_LOG(FATAL, |
1328 | 0 | "Invalid iterator comparison. Comparing iterator with " |
1329 | 0 | "an end() iterator from a different hashtable."); |
1330 | 0 | } |
1331 | 0 | ABSL_INTERNAL_LOG(FATAL, |
1332 | 0 | "Invalid iterator comparison. Comparing non-end() " |
1333 | 0 | "iterators from different hashtables."); |
1334 | 20 | } else { |
1335 | 20 | ABSL_HARDENING_ASSERT( |
1336 | 20 | AreItersFromSameContainer(ctrl_a, ctrl_b, slot_a, slot_b) && |
1337 | 20 | "Invalid iterator comparison. The iterators may be from different " |
1338 | 20 | "containers or the container might have rehashed. Consider running " |
1339 | 20 | "with --config=asan to diagnose rehashing issues."); |
1340 | 20 | } |
1341 | 20 | } |
1342 | | |
1343 | | struct FindInfo { |
1344 | | size_t offset; |
1345 | | size_t probe_length; |
1346 | | }; |
1347 | | |
1348 | | // Whether a table is "small". A small table fits entirely into a probing |
1349 | | // group, i.e., has a capacity < `Group::kWidth`. |
1350 | | // |
1351 | | // In small mode we are able to use the whole capacity. The extra control |
1352 | | // bytes give us at least one "empty" control byte to stop the iteration. |
1353 | | // This is important to make 1 a valid capacity. |
1354 | | // |
1355 | | // In small mode only the first `capacity` control bytes after the sentinel |
1356 | | // are valid. The rest contain dummy ctrl_t::kEmpty values that do not |
1357 | | // represent a real slot. This is important to take into account on |
1358 | | // `find_first_non_full()`, where we never try |
1359 | | // `ShouldInsertBackwards()` for small tables. |
1360 | 50 | inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; } |
1361 | | |
1362 | | // Begins a probing operation on `common.control`, using `hash`. |
1363 | | inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, const size_t capacity, |
1364 | 90 | size_t hash) { |
1365 | 90 | return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity); |
1366 | 90 | } |
1367 | 90 | inline probe_seq<Group::kWidth> probe(const CommonFields& common, size_t hash) { |
1368 | 90 | return probe(common.control(), common.capacity(), hash); |
1369 | 90 | } |
1370 | | |
1371 | | // Probes an array of control bits using a probe sequence derived from `hash`, |
1372 | | // and returns the offset corresponding to the first deleted or empty slot. |
1373 | | // |
1374 | | // Behavior when the entire table is full is undefined. |
1375 | | // |
1376 | | // NOTE: this function must work with tables having both empty and deleted |
1377 | | // slots in the same group. Such tables appear during `erase()`. |
1378 | | template <typename = void> |
1379 | 50 | inline FindInfo find_first_non_full(const CommonFields& common, size_t hash) { |
1380 | 50 | auto seq = probe(common, hash); |
1381 | 50 | const ctrl_t* ctrl = common.control(); |
1382 | 50 | while (true) { |
1383 | 50 | GroupEmptyOrDeleted g{ctrl + seq.offset()}; |
1384 | 50 | auto mask = g.MaskEmptyOrDeleted(); |
1385 | 50 | if (mask) { |
1386 | 50 | #if !defined(NDEBUG) |
1387 | | // We want to add entropy even when ASLR is not enabled. |
1388 | | // In debug build we will randomly insert in either the front or back of |
1389 | | // the group. |
1390 | | // TODO(kfm,sbenza): revisit after we do unconditional mixing |
1391 | 50 | if (!is_small(common.capacity()) && ShouldInsertBackwards(hash, ctrl)) { |
1392 | 10 | return {seq.offset(mask.HighestBitSet()), seq.index()}; |
1393 | 10 | } |
1394 | 40 | #endif |
1395 | 40 | return {seq.offset(mask.LowestBitSet()), seq.index()}; |
1396 | 50 | } |
1397 | 0 | seq.next(); |
1398 | 0 | assert(seq.index() <= common.capacity() && "full table!"); |
1399 | 0 | } |
1400 | 50 | } |
1401 | | |
1402 | | // Extern template for inline function keep possibility of inlining. |
1403 | | // When compiler decided to not inline, no symbols will be added to the |
1404 | | // corresponding translation unit. |
1405 | | extern template FindInfo find_first_non_full(const CommonFields&, size_t); |
1406 | | |
1407 | | // Non-inlined version of find_first_non_full for use in less |
1408 | | // performance critical routines. |
1409 | | FindInfo find_first_non_full_outofline(const CommonFields&, size_t); |
1410 | | |
1411 | 8 | inline void ResetGrowthLeft(CommonFields& common) { |
1412 | 8 | common.set_growth_left(CapacityToGrowth(common.capacity()) - common.size()); |
1413 | 8 | } |
1414 | | |
1415 | | // Sets `ctrl` to `{kEmpty, kSentinel, ..., kEmpty}`, marking the entire |
1416 | | // array as marked as empty. |
1417 | 8 | inline void ResetCtrl(CommonFields& common, size_t slot_size) { |
1418 | 8 | const size_t capacity = common.capacity(); |
1419 | 8 | ctrl_t* ctrl = common.control(); |
1420 | 8 | std::memset(ctrl, static_cast<int8_t>(ctrl_t::kEmpty), |
1421 | 8 | capacity + 1 + NumClonedBytes()); |
1422 | 8 | ctrl[capacity] = ctrl_t::kSentinel; |
1423 | 8 | SanitizerPoisonMemoryRegion(common.slot_array(), slot_size * capacity); |
1424 | 8 | ResetGrowthLeft(common); |
1425 | 8 | } |
1426 | | |
1427 | | // Sets `ctrl[i]` to `h`. |
1428 | | // |
1429 | | // Unlike setting it directly, this function will perform bounds checks and |
1430 | | // mirror the value to the cloned tail if necessary. |
1431 | | inline void SetCtrl(const CommonFields& common, size_t i, ctrl_t h, |
1432 | 42 | size_t slot_size) { |
1433 | 42 | const size_t capacity = common.capacity(); |
1434 | 42 | assert(i < capacity); |
1435 | | |
1436 | 0 | auto* slot_i = static_cast<const char*>(common.slot_array()) + i * slot_size; |
1437 | 42 | if (IsFull(h)) { |
1438 | 42 | SanitizerUnpoisonMemoryRegion(slot_i, slot_size); |
1439 | 42 | } else { |
1440 | 0 | SanitizerPoisonMemoryRegion(slot_i, slot_size); |
1441 | 0 | } |
1442 | | |
1443 | 42 | ctrl_t* ctrl = common.control(); |
1444 | 42 | ctrl[i] = h; |
1445 | 42 | ctrl[((i - NumClonedBytes()) & capacity) + (NumClonedBytes() & capacity)] = h; |
1446 | 42 | } |
1447 | | |
1448 | | // Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`. |
1449 | | inline void SetCtrl(const CommonFields& common, size_t i, h2_t h, |
1450 | 42 | size_t slot_size) { |
1451 | 42 | SetCtrl(common, i, static_cast<ctrl_t>(h), slot_size); |
1452 | 42 | } |
1453 | | |
1454 | | // growth_left (which is a size_t) is stored with the backing array. |
1455 | 0 | constexpr size_t BackingArrayAlignment(size_t align_of_slot) { |
1456 | 0 | return (std::max)(align_of_slot, alignof(size_t)); |
1457 | 0 | } |
1458 | | |
1459 | | template <typename Alloc, size_t SizeOfSlot, size_t AlignOfSlot> |
1460 | 8 | ABSL_ATTRIBUTE_NOINLINE void InitializeSlots(CommonFields& c, Alloc alloc) { |
1461 | 8 | assert(c.capacity()); |
1462 | | // Folks with custom allocators often make unwarranted assumptions about the |
1463 | | // behavior of their classes vis-a-vis trivial destructability and what |
1464 | | // calls they will or won't make. Avoid sampling for people with custom |
1465 | | // allocators to get us out of this mess. This is not a hard guarantee but |
1466 | | // a workaround while we plan the exact guarantee we want to provide. |
1467 | 0 | const size_t sample_size = |
1468 | 8 | (std::is_same<Alloc, std::allocator<char>>::value && |
1469 | 8 | c.slot_array() == nullptr) |
1470 | 8 | ? SizeOfSlot |
1471 | 8 | : 0; |
1472 | 8 | HashtablezInfoHandle infoz = |
1473 | 8 | sample_size > 0 ? Sample(sample_size) : c.infoz(); |
1474 | | |
1475 | 8 | const bool has_infoz = infoz.IsSampled(); |
1476 | 8 | const size_t cap = c.capacity(); |
1477 | 8 | const size_t alloc_size = AllocSize(cap, SizeOfSlot, AlignOfSlot, has_infoz); |
1478 | 8 | char* mem = static_cast<char*>( |
1479 | 8 | Allocate<BackingArrayAlignment(AlignOfSlot)>(&alloc, alloc_size)); |
1480 | 8 | const GenerationType old_generation = c.generation(); |
1481 | 8 | c.set_generation_ptr(reinterpret_cast<GenerationType*>( |
1482 | 8 | mem + GenerationOffset(cap, has_infoz))); |
1483 | 8 | c.set_generation(NextGeneration(old_generation)); |
1484 | 8 | c.set_control(reinterpret_cast<ctrl_t*>(mem + ControlOffset(has_infoz))); |
1485 | 8 | c.set_slots(mem + SlotOffset(cap, AlignOfSlot, has_infoz)); |
1486 | 8 | ResetCtrl(c, SizeOfSlot); |
1487 | 8 | c.set_has_infoz(has_infoz); |
1488 | 8 | if (has_infoz) { |
1489 | 0 | infoz.RecordStorageChanged(c.size(), cap); |
1490 | 0 | c.set_infoz(infoz); |
1491 | 0 | } |
1492 | 8 | } |
1493 | | |
1494 | | // PolicyFunctions bundles together some information for a particular |
1495 | | // raw_hash_set<T, ...> instantiation. This information is passed to |
1496 | | // type-erased functions that want to do small amounts of type-specific |
1497 | | // work. |
1498 | | struct PolicyFunctions { |
1499 | | size_t slot_size; |
1500 | | |
1501 | | // Returns the hash of the pointed-to slot. |
1502 | | size_t (*hash_slot)(void* set, void* slot); |
1503 | | |
1504 | | // Transfer the contents of src_slot to dst_slot. |
1505 | | void (*transfer)(void* set, void* dst_slot, void* src_slot); |
1506 | | |
1507 | | // Deallocate the backing store from common. |
1508 | | void (*dealloc)(CommonFields& common, const PolicyFunctions& policy); |
1509 | | }; |
1510 | | |
1511 | | // ClearBackingArray clears the backing array, either modifying it in place, |
1512 | | // or creating a new one based on the value of "reuse". |
1513 | | // REQUIRES: c.capacity > 0 |
1514 | | void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy, |
1515 | | bool reuse); |
1516 | | |
1517 | | // Type-erased version of raw_hash_set::erase_meta_only. |
1518 | | void EraseMetaOnly(CommonFields& c, ctrl_t* it, size_t slot_size); |
1519 | | |
1520 | | // Function to place in PolicyFunctions::dealloc for raw_hash_sets |
1521 | | // that are using std::allocator. This allows us to share the same |
1522 | | // function body for raw_hash_set instantiations that have the |
1523 | | // same slot alignment. |
1524 | | template <size_t AlignOfSlot> |
1525 | | ABSL_ATTRIBUTE_NOINLINE void DeallocateStandard(CommonFields& common, |
1526 | 0 | const PolicyFunctions& policy) { |
1527 | | // Unpoison before returning the memory to the allocator. |
1528 | 0 | SanitizerUnpoisonMemoryRegion(common.slot_array(), |
1529 | 0 | policy.slot_size * common.capacity()); |
1530 | |
|
1531 | 0 | std::allocator<char> alloc; |
1532 | 0 | common.infoz().Unregister(); |
1533 | 0 | Deallocate<BackingArrayAlignment(AlignOfSlot)>( |
1534 | 0 | &alloc, common.backing_array_start(), |
1535 | 0 | common.alloc_size(policy.slot_size, AlignOfSlot)); |
1536 | 0 | } |
1537 | | |
1538 | | // For trivially relocatable types we use memcpy directly. This allows us to |
1539 | | // share the same function body for raw_hash_set instantiations that have the |
1540 | | // same slot size as long as they are relocatable. |
1541 | | template <size_t SizeOfSlot> |
1542 | 0 | ABSL_ATTRIBUTE_NOINLINE void TransferRelocatable(void*, void* dst, void* src) { |
1543 | 0 | memcpy(dst, src, SizeOfSlot); |
1544 | 0 | } |
1545 | | |
1546 | | // Type-erased version of raw_hash_set::drop_deletes_without_resize. |
1547 | | void DropDeletesWithoutResize(CommonFields& common, |
1548 | | const PolicyFunctions& policy, void* tmp_space); |
1549 | | |
1550 | | // A SwissTable. |
1551 | | // |
1552 | | // Policy: a policy defines how to perform different operations on |
1553 | | // the slots of the hashtable (see hash_policy_traits.h for the full interface |
1554 | | // of policy). |
1555 | | // |
1556 | | // Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The |
1557 | | // functor should accept a key and return size_t as hash. For best performance |
1558 | | // it is important that the hash function provides high entropy across all bits |
1559 | | // of the hash. |
1560 | | // |
1561 | | // Eq: a (possibly polymorphic) functor that compares two keys for equality. It |
1562 | | // should accept two (of possibly different type) keys and return a bool: true |
1563 | | // if they are equal, false if they are not. If two keys compare equal, then |
1564 | | // their hash values as defined by Hash MUST be equal. |
1565 | | // |
1566 | | // Allocator: an Allocator |
1567 | | // [https://en.cppreference.com/w/cpp/named_req/Allocator] with which |
1568 | | // the storage of the hashtable will be allocated and the elements will be |
1569 | | // constructed and destroyed. |
1570 | | template <class Policy, class Hash, class Eq, class Alloc> |
1571 | | class raw_hash_set { |
1572 | | using PolicyTraits = hash_policy_traits<Policy>; |
1573 | | using KeyArgImpl = |
1574 | | KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>; |
1575 | | |
1576 | | public: |
1577 | | using init_type = typename PolicyTraits::init_type; |
1578 | | using key_type = typename PolicyTraits::key_type; |
1579 | | // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user |
1580 | | // code fixes! |
1581 | | using slot_type = typename PolicyTraits::slot_type; |
1582 | | using allocator_type = Alloc; |
1583 | | using size_type = size_t; |
1584 | | using difference_type = ptrdiff_t; |
1585 | | using hasher = Hash; |
1586 | | using key_equal = Eq; |
1587 | | using policy_type = Policy; |
1588 | | using value_type = typename PolicyTraits::value_type; |
1589 | | using reference = value_type&; |
1590 | | using const_reference = const value_type&; |
1591 | | using pointer = typename absl::allocator_traits< |
1592 | | allocator_type>::template rebind_traits<value_type>::pointer; |
1593 | | using const_pointer = typename absl::allocator_traits< |
1594 | | allocator_type>::template rebind_traits<value_type>::const_pointer; |
1595 | | |
1596 | | // Alias used for heterogeneous lookup functions. |
1597 | | // `key_arg<K>` evaluates to `K` when the functors are transparent and to |
1598 | | // `key_type` otherwise. It permits template argument deduction on `K` for the |
1599 | | // transparent case. |
1600 | | template <class K> |
1601 | | using key_arg = typename KeyArgImpl::template type<K, key_type>; |
1602 | | |
1603 | | private: |
1604 | | // Give an early error when key_type is not hashable/eq. |
1605 | | auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k)); |
1606 | | auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k)); |
1607 | | |
1608 | | using AllocTraits = absl::allocator_traits<allocator_type>; |
1609 | | using SlotAlloc = typename absl::allocator_traits< |
1610 | | allocator_type>::template rebind_alloc<slot_type>; |
1611 | | using SlotAllocTraits = typename absl::allocator_traits< |
1612 | | allocator_type>::template rebind_traits<slot_type>; |
1613 | | |
1614 | | static_assert(std::is_lvalue_reference<reference>::value, |
1615 | | "Policy::element() must return a reference"); |
1616 | | |
1617 | | template <typename T> |
1618 | | struct SameAsElementReference |
1619 | | : std::is_same<typename std::remove_cv< |
1620 | | typename std::remove_reference<reference>::type>::type, |
1621 | | typename std::remove_cv< |
1622 | | typename std::remove_reference<T>::type>::type> {}; |
1623 | | |
1624 | | // An enabler for insert(T&&): T must be convertible to init_type or be the |
1625 | | // same as [cv] value_type [ref]. |
1626 | | // Note: we separate SameAsElementReference into its own type to avoid using |
1627 | | // reference unless we need to. MSVC doesn't seem to like it in some |
1628 | | // cases. |
1629 | | template <class T> |
1630 | | using RequiresInsertable = typename std::enable_if< |
1631 | | absl::disjunction<std::is_convertible<T, init_type>, |
1632 | | SameAsElementReference<T>>::value, |
1633 | | int>::type; |
1634 | | |
1635 | | // RequiresNotInit is a workaround for gcc prior to 7.1. |
1636 | | // See https://godbolt.org/g/Y4xsUh. |
1637 | | template <class T> |
1638 | | using RequiresNotInit = |
1639 | | typename std::enable_if<!std::is_same<T, init_type>::value, int>::type; |
1640 | | |
1641 | | template <class... Ts> |
1642 | | using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>; |
1643 | | |
1644 | | public: |
1645 | | static_assert(std::is_same<pointer, value_type*>::value, |
1646 | | "Allocators with custom pointer types are not supported"); |
1647 | | static_assert(std::is_same<const_pointer, const value_type*>::value, |
1648 | | "Allocators with custom pointer types are not supported"); |
1649 | | |
1650 | | class iterator : private HashSetIteratorGenerationInfo { |
1651 | | friend class raw_hash_set; |
1652 | | |
1653 | | public: |
1654 | | using iterator_category = std::forward_iterator_tag; |
1655 | | using value_type = typename raw_hash_set::value_type; |
1656 | | using reference = |
1657 | | absl::conditional_t<PolicyTraits::constant_iterators::value, |
1658 | | const value_type&, value_type&>; |
1659 | | using pointer = absl::remove_reference_t<reference>*; |
1660 | | using difference_type = typename raw_hash_set::difference_type; |
1661 | | |
1662 | | iterator() {} |
1663 | | |
1664 | | // PRECONDITION: not an end() iterator. |
1665 | 20 | reference operator*() const { |
1666 | 20 | AssertIsFull(ctrl_, generation(), generation_ptr(), "operator*()"); |
1667 | 20 | return PolicyTraits::element(slot_); |
1668 | 20 | } |
1669 | | |
1670 | | // PRECONDITION: not an end() iterator. |
1671 | 0 | pointer operator->() const { |
1672 | 0 | AssertIsFull(ctrl_, generation(), generation_ptr(), "operator->"); |
1673 | 0 | return &operator*(); |
1674 | 0 | } |
1675 | | |
1676 | | // PRECONDITION: not an end() iterator. |
1677 | 0 | iterator& operator++() { |
1678 | 0 | AssertIsFull(ctrl_, generation(), generation_ptr(), "operator++"); |
1679 | 0 | ++ctrl_; |
1680 | 0 | ++slot_; |
1681 | 0 | skip_empty_or_deleted(); |
1682 | 0 | return *this; |
1683 | 0 | } |
1684 | | // PRECONDITION: not an end() iterator. |
1685 | | iterator operator++(int) { |
1686 | | auto tmp = *this; |
1687 | | ++*this; |
1688 | | return tmp; |
1689 | | } |
1690 | | |
1691 | 20 | friend bool operator==(const iterator& a, const iterator& b) { |
1692 | 20 | AssertIsValidForComparison(a.ctrl_, a.generation(), a.generation_ptr()); |
1693 | 20 | AssertIsValidForComparison(b.ctrl_, b.generation(), b.generation_ptr()); |
1694 | 20 | AssertSameContainer(a.ctrl_, b.ctrl_, a.slot_, b.slot_, |
1695 | 20 | a.generation_ptr(), b.generation_ptr()); |
1696 | 20 | return a.ctrl_ == b.ctrl_; |
1697 | 20 | } |
1698 | 0 | friend bool operator!=(const iterator& a, const iterator& b) { |
1699 | 0 | return !(a == b); |
1700 | 0 | } |
1701 | | |
1702 | | private: |
1703 | | iterator(ctrl_t* ctrl, slot_type* slot, |
1704 | | const GenerationType* generation_ptr) |
1705 | | : HashSetIteratorGenerationInfo(generation_ptr), |
1706 | | ctrl_(ctrl), |
1707 | 80 | slot_(slot) { |
1708 | | // This assumption helps the compiler know that any non-end iterator is |
1709 | | // not equal to any end iterator. |
1710 | 80 | ABSL_ASSUME(ctrl != nullptr); |
1711 | 80 | } |
1712 | | // For end() iterators. |
1713 | | explicit iterator(const GenerationType* generation_ptr) |
1714 | 0 | : HashSetIteratorGenerationInfo(generation_ptr), ctrl_(nullptr) {} |
1715 | | |
1716 | | // Fixes up `ctrl_` to point to a full by advancing it and `slot_` until |
1717 | | // they reach one. |
1718 | | // |
1719 | | // If a sentinel is reached, we null `ctrl_` out instead. |
1720 | 0 | void skip_empty_or_deleted() { |
1721 | 0 | while (IsEmptyOrDeleted(*ctrl_)) { |
1722 | 0 | uint32_t shift = |
1723 | 0 | GroupEmptyOrDeleted{ctrl_}.CountLeadingEmptyOrDeleted(); |
1724 | 0 | ctrl_ += shift; |
1725 | 0 | slot_ += shift; |
1726 | 0 | } |
1727 | 0 | if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr; |
1728 | 0 | } |
1729 | | |
1730 | | // We use EmptyGroup() for default-constructed iterators so that they can |
1731 | | // be distinguished from end iterators, which have nullptr ctrl_. |
1732 | | ctrl_t* ctrl_ = EmptyGroup(); |
1733 | | // To avoid uninitialized member warnings, put slot_ in an anonymous union. |
1734 | | // The member is not initialized on singleton and end iterators. |
1735 | | union { |
1736 | | slot_type* slot_; |
1737 | | }; |
1738 | | }; |
1739 | | |
1740 | | class const_iterator { |
1741 | | friend class raw_hash_set; |
1742 | | |
1743 | | public: |
1744 | | using iterator_category = typename iterator::iterator_category; |
1745 | | using value_type = typename raw_hash_set::value_type; |
1746 | | using reference = typename raw_hash_set::const_reference; |
1747 | | using pointer = typename raw_hash_set::const_pointer; |
1748 | | using difference_type = typename raw_hash_set::difference_type; |
1749 | | |
1750 | | const_iterator() = default; |
1751 | | // Implicit construction from iterator. |
1752 | 40 | const_iterator(iterator i) : inner_(std::move(i)) {} // NOLINT |
1753 | | |
1754 | | reference operator*() const { return *inner_; } |
1755 | | pointer operator->() const { return inner_.operator->(); } |
1756 | | |
1757 | | const_iterator& operator++() { |
1758 | | ++inner_; |
1759 | | return *this; |
1760 | | } |
1761 | | const_iterator operator++(int) { return inner_++; } |
1762 | | |
1763 | 20 | friend bool operator==(const const_iterator& a, const const_iterator& b) { |
1764 | 20 | return a.inner_ == b.inner_; |
1765 | 20 | } |
1766 | | friend bool operator!=(const const_iterator& a, const const_iterator& b) { |
1767 | | return !(a == b); |
1768 | | } |
1769 | | |
1770 | | private: |
1771 | | const_iterator(const ctrl_t* ctrl, const slot_type* slot, |
1772 | | const GenerationType* gen) |
1773 | | : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot), gen) { |
1774 | | } |
1775 | | |
1776 | | iterator inner_; |
1777 | | }; |
1778 | | |
1779 | | using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>; |
1780 | | using insert_return_type = InsertReturnType<iterator, node_type>; |
1781 | | |
1782 | | // Note: can't use `= default` due to non-default noexcept (causes |
1783 | | // problems for some compilers). NOLINTNEXTLINE |
1784 | | raw_hash_set() noexcept( |
1785 | | std::is_nothrow_default_constructible<hasher>::value && |
1786 | | std::is_nothrow_default_constructible<key_equal>::value && |
1787 | 2 | std::is_nothrow_default_constructible<allocator_type>::value) {} |
1788 | | |
1789 | | ABSL_ATTRIBUTE_NOINLINE explicit raw_hash_set( |
1790 | | size_t bucket_count, const hasher& hash = hasher(), |
1791 | | const key_equal& eq = key_equal(), |
1792 | | const allocator_type& alloc = allocator_type()) |
1793 | | : settings_(CommonFields{}, hash, eq, alloc) { |
1794 | | if (bucket_count) { |
1795 | | common().set_capacity(NormalizeCapacity(bucket_count)); |
1796 | | initialize_slots(); |
1797 | | } |
1798 | | } |
1799 | | |
1800 | | raw_hash_set(size_t bucket_count, const hasher& hash, |
1801 | | const allocator_type& alloc) |
1802 | | : raw_hash_set(bucket_count, hash, key_equal(), alloc) {} |
1803 | | |
1804 | | raw_hash_set(size_t bucket_count, const allocator_type& alloc) |
1805 | | : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {} |
1806 | | |
1807 | | explicit raw_hash_set(const allocator_type& alloc) |
1808 | | : raw_hash_set(0, hasher(), key_equal(), alloc) {} |
1809 | | |
1810 | | template <class InputIter> |
1811 | | raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0, |
1812 | | const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
1813 | | const allocator_type& alloc = allocator_type()) |
1814 | | : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count), |
1815 | | hash, eq, alloc) { |
1816 | | insert(first, last); |
1817 | | } |
1818 | | |
1819 | | template <class InputIter> |
1820 | | raw_hash_set(InputIter first, InputIter last, size_t bucket_count, |
1821 | | const hasher& hash, const allocator_type& alloc) |
1822 | | : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {} |
1823 | | |
1824 | | template <class InputIter> |
1825 | | raw_hash_set(InputIter first, InputIter last, size_t bucket_count, |
1826 | | const allocator_type& alloc) |
1827 | | : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {} |
1828 | | |
1829 | | template <class InputIter> |
1830 | | raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc) |
1831 | | : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {} |
1832 | | |
1833 | | // Instead of accepting std::initializer_list<value_type> as the first |
1834 | | // argument like std::unordered_set<value_type> does, we have two overloads |
1835 | | // that accept std::initializer_list<T> and std::initializer_list<init_type>. |
1836 | | // This is advantageous for performance. |
1837 | | // |
1838 | | // // Turns {"abc", "def"} into std::initializer_list<std::string>, then |
1839 | | // // copies the strings into the set. |
1840 | | // std::unordered_set<std::string> s = {"abc", "def"}; |
1841 | | // |
1842 | | // // Turns {"abc", "def"} into std::initializer_list<const char*>, then |
1843 | | // // copies the strings into the set. |
1844 | | // absl::flat_hash_set<std::string> s = {"abc", "def"}; |
1845 | | // |
1846 | | // The same trick is used in insert(). |
1847 | | // |
1848 | | // The enabler is necessary to prevent this constructor from triggering where |
1849 | | // the copy constructor is meant to be called. |
1850 | | // |
1851 | | // absl::flat_hash_set<int> a, b{a}; |
1852 | | // |
1853 | | // RequiresNotInit<T> is a workaround for gcc prior to 7.1. |
1854 | | template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
1855 | | raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0, |
1856 | | const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
1857 | | const allocator_type& alloc = allocator_type()) |
1858 | | : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} |
1859 | | |
1860 | | raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0, |
1861 | | const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
1862 | | const allocator_type& alloc = allocator_type()) |
1863 | | : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} |
1864 | | |
1865 | | template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
1866 | | raw_hash_set(std::initializer_list<T> init, size_t bucket_count, |
1867 | | const hasher& hash, const allocator_type& alloc) |
1868 | | : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} |
1869 | | |
1870 | | raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, |
1871 | | const hasher& hash, const allocator_type& alloc) |
1872 | | : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} |
1873 | | |
1874 | | template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
1875 | | raw_hash_set(std::initializer_list<T> init, size_t bucket_count, |
1876 | | const allocator_type& alloc) |
1877 | | : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} |
1878 | | |
1879 | | raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, |
1880 | | const allocator_type& alloc) |
1881 | | : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} |
1882 | | |
1883 | | template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
1884 | | raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc) |
1885 | | : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} |
1886 | | |
1887 | | raw_hash_set(std::initializer_list<init_type> init, |
1888 | | const allocator_type& alloc) |
1889 | | : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} |
1890 | | |
1891 | | raw_hash_set(const raw_hash_set& that) |
1892 | | : raw_hash_set(that, AllocTraits::select_on_container_copy_construction( |
1893 | | that.alloc_ref())) {} |
1894 | | |
1895 | | raw_hash_set(const raw_hash_set& that, const allocator_type& a) |
1896 | | : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) { |
1897 | | const size_t size = that.size(); |
1898 | | if (size == 0) return; |
1899 | | reserve(size); |
1900 | | // Because the table is guaranteed to be empty, we can do something faster |
1901 | | // than a full `insert`. |
1902 | | for (const auto& v : that) { |
1903 | | const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v); |
1904 | | auto target = find_first_non_full_outofline(common(), hash); |
1905 | | SetCtrl(common(), target.offset, H2(hash), sizeof(slot_type)); |
1906 | | emplace_at(target.offset, v); |
1907 | | common().maybe_increment_generation_on_insert(); |
1908 | | infoz().RecordInsert(hash, target.probe_length); |
1909 | | } |
1910 | | common().set_size(size); |
1911 | | set_growth_left(growth_left() - size); |
1912 | | } |
1913 | | |
1914 | | ABSL_ATTRIBUTE_NOINLINE raw_hash_set(raw_hash_set&& that) noexcept( |
1915 | | std::is_nothrow_copy_constructible<hasher>::value && |
1916 | | std::is_nothrow_copy_constructible<key_equal>::value && |
1917 | | std::is_nothrow_copy_constructible<allocator_type>::value) |
1918 | | : // Hash, equality and allocator are copied instead of moved because |
1919 | | // `that` must be left valid. If Hash is std::function<Key>, moving it |
1920 | | // would create a nullptr functor that cannot be called. |
1921 | | settings_(absl::exchange(that.common(), CommonFields{}), |
1922 | | that.hash_ref(), that.eq_ref(), that.alloc_ref()) {} |
1923 | | |
1924 | | raw_hash_set(raw_hash_set&& that, const allocator_type& a) |
1925 | | : settings_(CommonFields{}, that.hash_ref(), that.eq_ref(), a) { |
1926 | | if (a == that.alloc_ref()) { |
1927 | | std::swap(common(), that.common()); |
1928 | | } else { |
1929 | | reserve(that.size()); |
1930 | | // Note: this will copy keys instead of moving them. This can be fixed if |
1931 | | // it ever becomes an issue. |
1932 | | for (auto& elem : that) insert(std::move(elem)); |
1933 | | } |
1934 | | } |
1935 | | |
1936 | | raw_hash_set& operator=(const raw_hash_set& that) { |
1937 | | raw_hash_set tmp(that, |
1938 | | AllocTraits::propagate_on_container_copy_assignment::value |
1939 | | ? that.alloc_ref() |
1940 | | : alloc_ref()); |
1941 | | swap(tmp); |
1942 | | return *this; |
1943 | | } |
1944 | | |
1945 | | raw_hash_set& operator=(raw_hash_set&& that) noexcept( |
1946 | | absl::allocator_traits<allocator_type>::is_always_equal::value && |
1947 | | std::is_nothrow_move_assignable<hasher>::value && |
1948 | | std::is_nothrow_move_assignable<key_equal>::value) { |
1949 | | // TODO(sbenza): We should only use the operations from the noexcept clause |
1950 | | // to make sure we actually adhere to that contract. |
1951 | | // NOLINTNEXTLINE: not returning *this for performance. |
1952 | | return move_assign( |
1953 | | std::move(that), |
1954 | | typename AllocTraits::propagate_on_container_move_assignment()); |
1955 | | } |
1956 | | |
1957 | 0 | ~raw_hash_set() { |
1958 | 0 | const size_t cap = capacity(); |
1959 | 0 | if (!cap) return; |
1960 | 0 | destroy_slots(); |
1961 | | |
1962 | | // Unpoison before returning the memory to the allocator. |
1963 | 0 | SanitizerUnpoisonMemoryRegion(slot_array(), sizeof(slot_type) * cap); |
1964 | 0 | infoz().Unregister(); |
1965 | 0 | Deallocate<BackingArrayAlignment(alignof(slot_type))>( |
1966 | 0 | &alloc_ref(), common().backing_array_start(), |
1967 | 0 | common().alloc_size(sizeof(slot_type), alignof(slot_type))); |
1968 | 0 | } |
1969 | | |
1970 | 0 | iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1971 | 0 | auto it = iterator_at(0); |
1972 | 0 | it.skip_empty_or_deleted(); |
1973 | 0 | return it; |
1974 | 0 | } |
1975 | 0 | iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1976 | 0 | return iterator(common().generation_ptr()); |
1977 | 0 | } |
1978 | | |
1979 | | const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1980 | | return const_cast<raw_hash_set*>(this)->begin(); |
1981 | | } |
1982 | | const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1983 | | return iterator(common().generation_ptr()); |
1984 | | } |
1985 | | const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
1986 | | return begin(); |
1987 | | } |
1988 | | const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); } |
1989 | | |
1990 | | bool empty() const { return !size(); } |
1991 | 0 | size_t size() const { return common().size(); } |
1992 | 8 | size_t capacity() const { return common().capacity(); } |
1993 | | size_t max_size() const { return (std::numeric_limits<size_t>::max)(); } |
1994 | | |
1995 | 0 | ABSL_ATTRIBUTE_REINITIALIZES void clear() { |
1996 | | // Iterating over this container is O(bucket_count()). When bucket_count() |
1997 | | // is much greater than size(), iteration becomes prohibitively expensive. |
1998 | | // For clear() it is more important to reuse the allocated array when the |
1999 | | // container is small because allocation takes comparatively long time |
2000 | | // compared to destruction of the elements of the container. So we pick the |
2001 | | // largest bucket_count() threshold for which iteration is still fast and |
2002 | | // past that we simply deallocate the array. |
2003 | 0 | const size_t cap = capacity(); |
2004 | 0 | if (cap == 0) { |
2005 | | // Already guaranteed to be empty; so nothing to do. |
2006 | 0 | } else { |
2007 | 0 | destroy_slots(); |
2008 | 0 | ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/cap < 128); |
2009 | 0 | } |
2010 | 0 | common().set_reserved_growth(0); |
2011 | 0 | common().set_reservation_size(0); |
2012 | 0 | } |
2013 | | |
2014 | | // This overload kicks in when the argument is an rvalue of insertable and |
2015 | | // decomposable type other than init_type. |
2016 | | // |
2017 | | // flat_hash_map<std::string, int> m; |
2018 | | // m.insert(std::make_pair("abc", 42)); |
2019 | | // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc |
2020 | | // bug. |
2021 | | template <class T, RequiresInsertable<T> = 0, class T2 = T, |
2022 | | typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, |
2023 | | T* = nullptr> |
2024 | 20 | std::pair<iterator, bool> insert(T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2025 | 20 | return emplace(std::forward<T>(value)); |
2026 | 20 | } |
2027 | | |
2028 | | // This overload kicks in when the argument is a bitfield or an lvalue of |
2029 | | // insertable and decomposable type. |
2030 | | // |
2031 | | // union { int n : 1; }; |
2032 | | // flat_hash_set<int> s; |
2033 | | // s.insert(n); |
2034 | | // |
2035 | | // flat_hash_set<std::string> s; |
2036 | | // const char* p = "hello"; |
2037 | | // s.insert(p); |
2038 | | // |
2039 | | template < |
2040 | | class T, RequiresInsertable<const T&> = 0, |
2041 | | typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0> |
2042 | | std::pair<iterator, bool> insert(const T& value) |
2043 | | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2044 | | return emplace(value); |
2045 | | } |
2046 | | |
2047 | | // This overload kicks in when the argument is an rvalue of init_type. Its |
2048 | | // purpose is to handle brace-init-list arguments. |
2049 | | // |
2050 | | // flat_hash_map<std::string, int> s; |
2051 | | // s.insert({"abc", 42}); |
2052 | | std::pair<iterator, bool> insert(init_type&& value) |
2053 | 0 | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2054 | 0 | return emplace(std::move(value)); |
2055 | 0 | } |
2056 | | |
2057 | | // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc |
2058 | | // bug. |
2059 | | template <class T, RequiresInsertable<T> = 0, class T2 = T, |
2060 | | typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, |
2061 | | T* = nullptr> |
2062 | | iterator insert(const_iterator, T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2063 | | return insert(std::forward<T>(value)).first; |
2064 | | } |
2065 | | |
2066 | | template < |
2067 | | class T, RequiresInsertable<const T&> = 0, |
2068 | | typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0> |
2069 | | iterator insert(const_iterator, |
2070 | | const T& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2071 | | return insert(value).first; |
2072 | | } |
2073 | | |
2074 | | iterator insert(const_iterator, |
2075 | | init_type&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2076 | | return insert(std::move(value)).first; |
2077 | | } |
2078 | | |
2079 | | template <class InputIt> |
2080 | | void insert(InputIt first, InputIt last) { |
2081 | | for (; first != last; ++first) emplace(*first); |
2082 | | } |
2083 | | |
2084 | | template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0> |
2085 | | void insert(std::initializer_list<T> ilist) { |
2086 | | insert(ilist.begin(), ilist.end()); |
2087 | | } |
2088 | | |
2089 | | void insert(std::initializer_list<init_type> ilist) { |
2090 | | insert(ilist.begin(), ilist.end()); |
2091 | | } |
2092 | | |
2093 | | insert_return_type insert(node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2094 | | if (!node) return {end(), false, node_type()}; |
2095 | | const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node)); |
2096 | | auto res = PolicyTraits::apply( |
2097 | | InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))}, |
2098 | | elem); |
2099 | | if (res.second) { |
2100 | | CommonAccess::Reset(&node); |
2101 | | return {res.first, true, node_type()}; |
2102 | | } else { |
2103 | | return {res.first, false, std::move(node)}; |
2104 | | } |
2105 | | } |
2106 | | |
2107 | | iterator insert(const_iterator, |
2108 | | node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2109 | | auto res = insert(std::move(node)); |
2110 | | node = std::move(res.node); |
2111 | | return res.position; |
2112 | | } |
2113 | | |
2114 | | // This overload kicks in if we can deduce the key from args. This enables us |
2115 | | // to avoid constructing value_type if an entry with the same key already |
2116 | | // exists. |
2117 | | // |
2118 | | // For example: |
2119 | | // |
2120 | | // flat_hash_map<std::string, std::string> m = {{"abc", "def"}}; |
2121 | | // // Creates no std::string copies and makes no heap allocations. |
2122 | | // m.emplace("abc", "xyz"); |
2123 | | template <class... Args, typename std::enable_if< |
2124 | | IsDecomposable<Args...>::value, int>::type = 0> |
2125 | | std::pair<iterator, bool> emplace(Args&&... args) |
2126 | 20 | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2127 | 20 | return PolicyTraits::apply(EmplaceDecomposable{*this}, |
2128 | 20 | std::forward<Args>(args)...); |
2129 | 20 | } std::__1::pair<absl::container_internal::raw_hash_set<absl::container_internal::FlatHashMapPolicy<absl::string_view, absl::CommandLineFlag*>, absl::container_internal::StringHash, absl::container_internal::StringEq, std::__1::allocator<std::__1::pair<absl::string_view const, absl::CommandLineFlag*> > >::iterator, bool> absl::container_internal::raw_hash_set<absl::container_internal::FlatHashMapPolicy<absl::string_view, absl::CommandLineFlag*>, absl::container_internal::StringHash, absl::container_internal::StringEq, std::__1::allocator<std::__1::pair<absl::string_view const, absl::CommandLineFlag*> > >::emplace<std::__1::pair<absl::string_view const, absl::CommandLineFlag*>, 0>(std::__1::pair<absl::string_view const, absl::CommandLineFlag*>&&) Line | Count | Source | 2126 | 20 | ABSL_ATTRIBUTE_LIFETIME_BOUND { | 2127 | 20 | return PolicyTraits::apply(EmplaceDecomposable{*this}, | 2128 | 20 | std::forward<Args>(args)...); | 2129 | 20 | } |
Unexecuted instantiation: std::__1::pair<absl::container_internal::raw_hash_set<absl::container_internal::FlatHashMapPolicy<absl::string_view, absl::CommandLineFlag*>, absl::container_internal::StringHash, absl::container_internal::StringEq, std::__1::allocator<std::__1::pair<absl::string_view const, absl::CommandLineFlag*> > >::iterator, bool> absl::container_internal::raw_hash_set<absl::container_internal::FlatHashMapPolicy<absl::string_view, absl::CommandLineFlag*>, absl::container_internal::StringHash, absl::container_internal::StringEq, std::__1::allocator<std::__1::pair<absl::string_view const, absl::CommandLineFlag*> > >::emplace<std::__1::pair<absl::string_view, absl::CommandLineFlag*>, 0>(std::__1::pair<absl::string_view, absl::CommandLineFlag*>&&) |
2130 | | |
2131 | | // This overload kicks in if we cannot deduce the key from args. It constructs |
2132 | | // value_type unconditionally and then either moves it into the table or |
2133 | | // destroys. |
2134 | | template <class... Args, typename std::enable_if< |
2135 | | !IsDecomposable<Args...>::value, int>::type = 0> |
2136 | | std::pair<iterator, bool> emplace(Args&&... args) |
2137 | | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2138 | | alignas(slot_type) unsigned char raw[sizeof(slot_type)]; |
2139 | | slot_type* slot = reinterpret_cast<slot_type*>(&raw); |
2140 | | |
2141 | | PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...); |
2142 | | const auto& elem = PolicyTraits::element(slot); |
2143 | | return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem); |
2144 | | } |
2145 | | |
2146 | | template <class... Args> |
2147 | | iterator emplace_hint(const_iterator, |
2148 | | Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2149 | | return emplace(std::forward<Args>(args)...).first; |
2150 | | } |
2151 | | |
2152 | | // Extension API: support for lazy emplace. |
2153 | | // |
2154 | | // Looks up key in the table. If found, returns the iterator to the element. |
2155 | | // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`, |
2156 | | // and returns an iterator to the new element. |
2157 | | // |
2158 | | // `f` must abide by several restrictions: |
2159 | | // - it MUST call `raw_hash_set::constructor` with arguments as if a |
2160 | | // `raw_hash_set::value_type` is constructed, |
2161 | | // - it MUST NOT access the container before the call to |
2162 | | // `raw_hash_set::constructor`, and |
2163 | | // - it MUST NOT erase the lazily emplaced element. |
2164 | | // Doing any of these is undefined behavior. |
2165 | | // |
2166 | | // For example: |
2167 | | // |
2168 | | // std::unordered_set<ArenaString> s; |
2169 | | // // Makes ArenaStr even if "abc" is in the map. |
2170 | | // s.insert(ArenaString(&arena, "abc")); |
2171 | | // |
2172 | | // flat_hash_set<ArenaStr> s; |
2173 | | // // Makes ArenaStr only if "abc" is not in the map. |
2174 | | // s.lazy_emplace("abc", [&](const constructor& ctor) { |
2175 | | // ctor(&arena, "abc"); |
2176 | | // }); |
2177 | | // |
2178 | | // WARNING: This API is currently experimental. If there is a way to implement |
2179 | | // the same thing with the rest of the API, prefer that. |
2180 | | class constructor { |
2181 | | friend class raw_hash_set; |
2182 | | |
2183 | | public: |
2184 | | template <class... Args> |
2185 | | void operator()(Args&&... args) const { |
2186 | | assert(*slot_); |
2187 | | PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...); |
2188 | | *slot_ = nullptr; |
2189 | | } |
2190 | | |
2191 | | private: |
2192 | | constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {} |
2193 | | |
2194 | | allocator_type* alloc_; |
2195 | | slot_type** slot_; |
2196 | | }; |
2197 | | |
2198 | | template <class K = key_type, class F> |
2199 | | iterator lazy_emplace(const key_arg<K>& key, |
2200 | | F&& f) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2201 | | auto res = find_or_prepare_insert(key); |
2202 | | if (res.second) { |
2203 | | slot_type* slot = slot_array() + res.first; |
2204 | | std::forward<F>(f)(constructor(&alloc_ref(), &slot)); |
2205 | | assert(!slot); |
2206 | | } |
2207 | | return iterator_at(res.first); |
2208 | | } |
2209 | | |
2210 | | // Extension API: support for heterogeneous keys. |
2211 | | // |
2212 | | // std::unordered_set<std::string> s; |
2213 | | // // Turns "abc" into std::string. |
2214 | | // s.erase("abc"); |
2215 | | // |
2216 | | // flat_hash_set<std::string> s; |
2217 | | // // Uses "abc" directly without copying it into std::string. |
2218 | | // s.erase("abc"); |
2219 | | template <class K = key_type> |
2220 | | size_type erase(const key_arg<K>& key) { |
2221 | | auto it = find(key); |
2222 | | if (it == end()) return 0; |
2223 | | erase(it); |
2224 | | return 1; |
2225 | | } |
2226 | | |
2227 | | // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`, |
2228 | | // this method returns void to reduce algorithmic complexity to O(1). The |
2229 | | // iterator is invalidated, so any increment should be done before calling |
2230 | | // erase. In order to erase while iterating across a map, use the following |
2231 | | // idiom (which also works for standard containers): |
2232 | | // |
2233 | | // for (auto it = m.begin(), end = m.end(); it != end;) { |
2234 | | // // `erase()` will invalidate `it`, so advance `it` first. |
2235 | | // auto copy_it = it++; |
2236 | | // if (<pred>) { |
2237 | | // m.erase(copy_it); |
2238 | | // } |
2239 | | // } |
2240 | | void erase(const_iterator cit) { erase(cit.inner_); } |
2241 | | |
2242 | | // This overload is necessary because otherwise erase<K>(const K&) would be |
2243 | | // a better match if non-const iterator is passed as an argument. |
2244 | | void erase(iterator it) { |
2245 | | AssertIsFull(it.ctrl_, it.generation(), it.generation_ptr(), "erase()"); |
2246 | | PolicyTraits::destroy(&alloc_ref(), it.slot_); |
2247 | | erase_meta_only(it); |
2248 | | } |
2249 | | |
2250 | | iterator erase(const_iterator first, |
2251 | | const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2252 | | // We check for empty first because ClearBackingArray requires that |
2253 | | // capacity() > 0 as a precondition. |
2254 | | if (empty()) return end(); |
2255 | | if (first == begin() && last == end()) { |
2256 | | // TODO(ezb): we access control bytes in destroy_slots so it could make |
2257 | | // sense to combine destroy_slots and ClearBackingArray to avoid cache |
2258 | | // misses when the table is large. Note that we also do this in clear(). |
2259 | | destroy_slots(); |
2260 | | ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/true); |
2261 | | common().set_reserved_growth(common().reservation_size()); |
2262 | | return end(); |
2263 | | } |
2264 | | while (first != last) { |
2265 | | erase(first++); |
2266 | | } |
2267 | | return last.inner_; |
2268 | | } |
2269 | | |
2270 | | // Moves elements from `src` into `this`. |
2271 | | // If the element already exists in `this`, it is left unmodified in `src`. |
2272 | | template <typename H, typename E> |
2273 | | void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT |
2274 | | assert(this != &src); |
2275 | | for (auto it = src.begin(), e = src.end(); it != e;) { |
2276 | | auto next = std::next(it); |
2277 | | if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)}, |
2278 | | PolicyTraits::element(it.slot_)) |
2279 | | .second) { |
2280 | | src.erase_meta_only(it); |
2281 | | } |
2282 | | it = next; |
2283 | | } |
2284 | | } |
2285 | | |
2286 | | template <typename H, typename E> |
2287 | | void merge(raw_hash_set<Policy, H, E, Alloc>&& src) { |
2288 | | merge(src); |
2289 | | } |
2290 | | |
2291 | | node_type extract(const_iterator position) { |
2292 | | AssertIsFull(position.inner_.ctrl_, position.inner_.generation(), |
2293 | | position.inner_.generation_ptr(), "extract()"); |
2294 | | auto node = |
2295 | | CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_); |
2296 | | erase_meta_only(position); |
2297 | | return node; |
2298 | | } |
2299 | | |
2300 | | template < |
2301 | | class K = key_type, |
2302 | | typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0> |
2303 | | node_type extract(const key_arg<K>& key) { |
2304 | | auto it = find(key); |
2305 | | return it == end() ? node_type() : extract(const_iterator{it}); |
2306 | | } |
2307 | | |
2308 | | void swap(raw_hash_set& that) noexcept( |
2309 | | IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() && |
2310 | | IsNoThrowSwappable<allocator_type>( |
2311 | | typename AllocTraits::propagate_on_container_swap{})) { |
2312 | | using std::swap; |
2313 | | swap(common(), that.common()); |
2314 | | swap(hash_ref(), that.hash_ref()); |
2315 | | swap(eq_ref(), that.eq_ref()); |
2316 | | SwapAlloc(alloc_ref(), that.alloc_ref(), |
2317 | | typename AllocTraits::propagate_on_container_swap{}); |
2318 | | } |
2319 | | |
2320 | | void rehash(size_t n) { |
2321 | | if (n == 0 && capacity() == 0) return; |
2322 | | if (n == 0 && size() == 0) { |
2323 | | ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/false); |
2324 | | return; |
2325 | | } |
2326 | | |
2327 | | // bitor is a faster way of doing `max` here. We will round up to the next |
2328 | | // power-of-2-minus-1, so bitor is good enough. |
2329 | | auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size())); |
2330 | | // n == 0 unconditionally rehashes as per the standard. |
2331 | | if (n == 0 || m > capacity()) { |
2332 | | resize(m); |
2333 | | |
2334 | | // This is after resize, to ensure that we have completed the allocation |
2335 | | // and have potentially sampled the hashtable. |
2336 | | infoz().RecordReservation(n); |
2337 | | } |
2338 | | } |
2339 | | |
2340 | | void reserve(size_t n) { |
2341 | | if (n > size() + growth_left()) { |
2342 | | size_t m = GrowthToLowerboundCapacity(n); |
2343 | | resize(NormalizeCapacity(m)); |
2344 | | |
2345 | | // This is after resize, to ensure that we have completed the allocation |
2346 | | // and have potentially sampled the hashtable. |
2347 | | infoz().RecordReservation(n); |
2348 | | } |
2349 | | common().reset_reserved_growth(n); |
2350 | | common().set_reservation_size(n); |
2351 | | } |
2352 | | |
2353 | | // Extension API: support for heterogeneous keys. |
2354 | | // |
2355 | | // std::unordered_set<std::string> s; |
2356 | | // // Turns "abc" into std::string. |
2357 | | // s.count("abc"); |
2358 | | // |
2359 | | // ch_set<std::string> s; |
2360 | | // // Uses "abc" directly without copying it into std::string. |
2361 | | // s.count("abc"); |
2362 | | template <class K = key_type> |
2363 | | size_t count(const key_arg<K>& key) const { |
2364 | | return find(key) == end() ? 0 : 1; |
2365 | | } |
2366 | | |
2367 | | // Issues CPU prefetch instructions for the memory needed to find or insert |
2368 | | // a key. Like all lookup functions, this support heterogeneous keys. |
2369 | | // |
2370 | | // NOTE: This is a very low level operation and should not be used without |
2371 | | // specific benchmarks indicating its importance. |
2372 | | template <class K = key_type> |
2373 | | void prefetch(const key_arg<K>& key) const { |
2374 | | (void)key; |
2375 | | // Avoid probing if we won't be able to prefetch the addresses received. |
2376 | | #ifdef ABSL_HAVE_PREFETCH |
2377 | | prefetch_heap_block(); |
2378 | | auto seq = probe(common(), hash_ref()(key)); |
2379 | | PrefetchToLocalCache(control() + seq.offset()); |
2380 | | PrefetchToLocalCache(slot_array() + seq.offset()); |
2381 | | #endif // ABSL_HAVE_PREFETCH |
2382 | | } |
2383 | | |
2384 | | // The API of find() has two extensions. |
2385 | | // |
2386 | | // 1. The hash can be passed by the user. It must be equal to the hash of the |
2387 | | // key. |
2388 | | // |
2389 | | // 2. The type of the key argument doesn't have to be key_type. This is so |
2390 | | // called heterogeneous key support. |
2391 | | template <class K = key_type> |
2392 | | iterator find(const key_arg<K>& key, |
2393 | 20 | size_t hash) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2394 | 20 | auto seq = probe(common(), hash); |
2395 | 20 | slot_type* slot_ptr = slot_array(); |
2396 | 20 | const ctrl_t* ctrl = control(); |
2397 | 20 | while (true) { |
2398 | 20 | Group g{ctrl + seq.offset()}; |
2399 | 20 | for (uint32_t i : g.Match(H2(hash))) { |
2400 | 20 | if (ABSL_PREDICT_TRUE(PolicyTraits::apply( |
2401 | 20 | EqualElement<K>{key, eq_ref()}, |
2402 | 20 | PolicyTraits::element(slot_ptr + seq.offset(i))))) |
2403 | 20 | return iterator_at(seq.offset(i)); |
2404 | 20 | } |
2405 | 0 | if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return end(); |
2406 | 0 | seq.next(); |
2407 | 0 | assert(seq.index() <= capacity() && "full table!"); |
2408 | 0 | } |
2409 | 20 | } |
2410 | | template <class K = key_type> |
2411 | 0 | iterator find(const key_arg<K>& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2412 | 0 | prefetch_heap_block(); |
2413 | 0 | return find(key, hash_ref()(key)); |
2414 | 0 | } |
2415 | | |
2416 | | template <class K = key_type> |
2417 | | const_iterator find(const key_arg<K>& key, |
2418 | 20 | size_t hash) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2419 | 20 | return const_cast<raw_hash_set*>(this)->find(key, hash); |
2420 | 20 | } |
2421 | | template <class K = key_type> |
2422 | | const_iterator find(const key_arg<K>& key) const |
2423 | 20 | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2424 | 20 | prefetch_heap_block(); |
2425 | 20 | return find(key, hash_ref()(key)); |
2426 | 20 | } |
2427 | | |
2428 | | template <class K = key_type> |
2429 | | bool contains(const key_arg<K>& key) const { |
2430 | | return find(key) != end(); |
2431 | | } |
2432 | | |
2433 | | template <class K = key_type> |
2434 | | std::pair<iterator, iterator> equal_range(const key_arg<K>& key) |
2435 | | ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2436 | | auto it = find(key); |
2437 | | if (it != end()) return {it, std::next(it)}; |
2438 | | return {it, it}; |
2439 | | } |
2440 | | template <class K = key_type> |
2441 | | std::pair<const_iterator, const_iterator> equal_range( |
2442 | | const key_arg<K>& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2443 | | auto it = find(key); |
2444 | | if (it != end()) return {it, std::next(it)}; |
2445 | | return {it, it}; |
2446 | | } |
2447 | | |
2448 | | size_t bucket_count() const { return capacity(); } |
2449 | | float load_factor() const { |
2450 | | return capacity() ? static_cast<double>(size()) / capacity() : 0.0; |
2451 | | } |
2452 | | float max_load_factor() const { return 1.0f; } |
2453 | | void max_load_factor(float) { |
2454 | | // Does nothing. |
2455 | | } |
2456 | | |
2457 | | hasher hash_function() const { return hash_ref(); } |
2458 | | key_equal key_eq() const { return eq_ref(); } |
2459 | | allocator_type get_allocator() const { return alloc_ref(); } |
2460 | | |
2461 | | friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) { |
2462 | | if (a.size() != b.size()) return false; |
2463 | | const raw_hash_set* outer = &a; |
2464 | | const raw_hash_set* inner = &b; |
2465 | | if (outer->capacity() > inner->capacity()) std::swap(outer, inner); |
2466 | | for (const value_type& elem : *outer) { |
2467 | | auto it = PolicyTraits::apply(FindElement{*inner}, elem); |
2468 | | if (it == inner->end() || !(*it == elem)) return false; |
2469 | | } |
2470 | | return true; |
2471 | | } |
2472 | | |
2473 | | friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) { |
2474 | | return !(a == b); |
2475 | | } |
2476 | | |
2477 | | template <typename H> |
2478 | | friend typename std::enable_if<H::template is_hashable<value_type>::value, |
2479 | | H>::type |
2480 | | AbslHashValue(H h, const raw_hash_set& s) { |
2481 | | return H::combine(H::combine_unordered(std::move(h), s.begin(), s.end()), |
2482 | | s.size()); |
2483 | | } |
2484 | | |
2485 | | friend void swap(raw_hash_set& a, |
2486 | | raw_hash_set& b) noexcept(noexcept(a.swap(b))) { |
2487 | | a.swap(b); |
2488 | | } |
2489 | | |
2490 | | private: |
2491 | | template <class Container, typename Enabler> |
2492 | | friend struct absl::container_internal::hashtable_debug_internal:: |
2493 | | HashtableDebugAccess; |
2494 | | |
2495 | | struct FindElement { |
2496 | | template <class K, class... Args> |
2497 | 20 | const_iterator operator()(const K& key, Args&&...) const { |
2498 | 20 | return s.find(key); |
2499 | 20 | } |
2500 | | const raw_hash_set& s; |
2501 | | }; |
2502 | | |
2503 | | struct HashElement { |
2504 | | template <class K, class... Args> |
2505 | 22 | size_t operator()(const K& key, Args&&...) const { |
2506 | 22 | return h(key); |
2507 | 22 | } |
2508 | | const hasher& h; |
2509 | | }; |
2510 | | |
2511 | | template <class K1> |
2512 | | struct EqualElement { |
2513 | | template <class K2, class... Args> |
2514 | 20 | bool operator()(const K2& lhs, Args&&...) const { |
2515 | 20 | return eq(lhs, rhs); |
2516 | 20 | } |
2517 | | const K1& rhs; |
2518 | | const key_equal& eq; |
2519 | | }; |
2520 | | |
2521 | | struct EmplaceDecomposable { |
2522 | | template <class K, class... Args> |
2523 | 20 | std::pair<iterator, bool> operator()(const K& key, Args&&... args) const { |
2524 | 20 | auto res = s.find_or_prepare_insert(key); |
2525 | 20 | if (res.second) { |
2526 | 20 | s.emplace_at(res.first, std::forward<Args>(args)...); |
2527 | 20 | } |
2528 | 20 | return {s.iterator_at(res.first), res.second}; |
2529 | 20 | } std::__1::pair<absl::container_internal::raw_hash_set<absl::container_internal::FlatHashMapPolicy<absl::string_view, absl::CommandLineFlag*>, absl::container_internal::StringHash, absl::container_internal::StringEq, std::__1::allocator<std::__1::pair<absl::string_view const, absl::CommandLineFlag*> > >::iterator, bool> absl::container_internal::raw_hash_set<absl::container_internal::FlatHashMapPolicy<absl::string_view, absl::CommandLineFlag*>, absl::container_internal::StringHash, absl::container_internal::StringEq, std::__1::allocator<std::__1::pair<absl::string_view const, absl::CommandLineFlag*> > >::EmplaceDecomposable::operator()<absl::string_view, std::__1::piecewise_construct_t const&, std::__1::tuple<absl::string_view const&&>, std::__1::tuple<absl::CommandLineFlag*&&> >(absl::string_view const&, std::__1::piecewise_construct_t const&, std::__1::tuple<absl::string_view const&&>&&, std::__1::tuple<absl::CommandLineFlag*&&>&&) const Line | Count | Source | 2523 | 20 | std::pair<iterator, bool> operator()(const K& key, Args&&... args) const { | 2524 | 20 | auto res = s.find_or_prepare_insert(key); | 2525 | 20 | if (res.second) { | 2526 | 20 | s.emplace_at(res.first, std::forward<Args>(args)...); | 2527 | 20 | } | 2528 | 20 | return {s.iterator_at(res.first), res.second}; | 2529 | 20 | } |
Unexecuted instantiation: std::__1::pair<absl::container_internal::raw_hash_set<absl::container_internal::FlatHashMapPolicy<absl::string_view, absl::CommandLineFlag*>, absl::container_internal::StringHash, absl::container_internal::StringEq, std::__1::allocator<std::__1::pair<absl::string_view const, absl::CommandLineFlag*> > >::iterator, bool> absl::container_internal::raw_hash_set<absl::container_internal::FlatHashMapPolicy<absl::string_view, absl::CommandLineFlag*>, absl::container_internal::StringHash, absl::container_internal::StringEq, std::__1::allocator<std::__1::pair<absl::string_view const, absl::CommandLineFlag*> > >::EmplaceDecomposable::operator()<absl::string_view, std::__1::piecewise_construct_t const&, std::__1::tuple<absl::string_view&&>, std::__1::tuple<absl::CommandLineFlag*&&> >(absl::string_view const&, std::__1::piecewise_construct_t const&, std::__1::tuple<absl::string_view&&>&&, std::__1::tuple<absl::CommandLineFlag*&&>&&) const |
2530 | | raw_hash_set& s; |
2531 | | }; |
2532 | | |
2533 | | template <bool do_destroy> |
2534 | | struct InsertSlot { |
2535 | | template <class K, class... Args> |
2536 | | std::pair<iterator, bool> operator()(const K& key, Args&&...) && { |
2537 | | auto res = s.find_or_prepare_insert(key); |
2538 | | if (res.second) { |
2539 | | PolicyTraits::transfer(&s.alloc_ref(), s.slot_array() + res.first, |
2540 | | &slot); |
2541 | | } else if (do_destroy) { |
2542 | | PolicyTraits::destroy(&s.alloc_ref(), &slot); |
2543 | | } |
2544 | | return {s.iterator_at(res.first), res.second}; |
2545 | | } |
2546 | | raw_hash_set& s; |
2547 | | // Constructed slot. Either moved into place or destroyed. |
2548 | | slot_type&& slot; |
2549 | | }; |
2550 | | |
2551 | 0 | inline void destroy_slots() { |
2552 | 0 | const size_t cap = capacity(); |
2553 | 0 | const ctrl_t* ctrl = control(); |
2554 | 0 | slot_type* slot = slot_array(); |
2555 | 0 | for (size_t i = 0; i != cap; ++i) { |
2556 | 0 | if (IsFull(ctrl[i])) { |
2557 | 0 | PolicyTraits::destroy(&alloc_ref(), slot + i); |
2558 | 0 | } |
2559 | 0 | } |
2560 | 0 | } |
2561 | | |
2562 | | // Erases, but does not destroy, the value pointed to by `it`. |
2563 | | // |
2564 | | // This merely updates the pertinent control byte. This can be used in |
2565 | | // conjunction with Policy::transfer to move the object to another place. |
2566 | | void erase_meta_only(const_iterator it) { |
2567 | | EraseMetaOnly(common(), it.inner_.ctrl_, sizeof(slot_type)); |
2568 | | } |
2569 | | |
2570 | | // Allocates a backing array for `self` and initializes its control bytes. |
2571 | | // This reads `capacity` and updates all other fields based on the result of |
2572 | | // the allocation. |
2573 | | // |
2574 | | // This does not free the currently held array; `capacity` must be nonzero. |
2575 | 8 | inline void initialize_slots() { |
2576 | | // People are often sloppy with the exact type of their allocator (sometimes |
2577 | | // it has an extra const or is missing the pair, but rebinds made it work |
2578 | | // anyway). |
2579 | 8 | using CharAlloc = |
2580 | 8 | typename absl::allocator_traits<Alloc>::template rebind_alloc<char>; |
2581 | 8 | InitializeSlots<CharAlloc, sizeof(slot_type), alignof(slot_type)>( |
2582 | 8 | common(), CharAlloc(alloc_ref())); |
2583 | 8 | } |
2584 | | |
2585 | 8 | ABSL_ATTRIBUTE_NOINLINE void resize(size_t new_capacity) { |
2586 | 8 | assert(IsValidCapacity(new_capacity)); |
2587 | 0 | auto* old_ctrl = control(); |
2588 | 8 | auto* old_slots = slot_array(); |
2589 | 8 | const bool had_infoz = common().has_infoz(); |
2590 | 8 | const size_t old_capacity = common().capacity(); |
2591 | 8 | common().set_capacity(new_capacity); |
2592 | 8 | initialize_slots(); |
2593 | | |
2594 | 8 | auto* new_slots = slot_array(); |
2595 | 8 | size_t total_probe_length = 0; |
2596 | 30 | for (size_t i = 0; i != old_capacity; ++i) { |
2597 | 22 | if (IsFull(old_ctrl[i])) { |
2598 | 22 | size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, |
2599 | 22 | PolicyTraits::element(old_slots + i)); |
2600 | 22 | auto target = find_first_non_full(common(), hash); |
2601 | 22 | size_t new_i = target.offset; |
2602 | 22 | total_probe_length += target.probe_length; |
2603 | 22 | SetCtrl(common(), new_i, H2(hash), sizeof(slot_type)); |
2604 | 22 | PolicyTraits::transfer(&alloc_ref(), new_slots + new_i, old_slots + i); |
2605 | 22 | } |
2606 | 22 | } |
2607 | 8 | if (old_capacity) { |
2608 | 6 | SanitizerUnpoisonMemoryRegion(old_slots, |
2609 | 6 | sizeof(slot_type) * old_capacity); |
2610 | 6 | Deallocate<BackingArrayAlignment(alignof(slot_type))>( |
2611 | 6 | &alloc_ref(), old_ctrl - ControlOffset(had_infoz), |
2612 | 6 | AllocSize(old_capacity, sizeof(slot_type), alignof(slot_type), |
2613 | 6 | had_infoz)); |
2614 | 6 | } |
2615 | 8 | infoz().RecordRehash(total_probe_length); |
2616 | 8 | } |
2617 | | |
2618 | | // Prunes control bytes to remove as many tombstones as possible. |
2619 | | // |
2620 | | // See the comment on `rehash_and_grow_if_necessary()`. |
2621 | 0 | inline void drop_deletes_without_resize() { |
2622 | | // Stack-allocate space for swapping elements. |
2623 | 0 | alignas(slot_type) unsigned char tmp[sizeof(slot_type)]; |
2624 | 0 | DropDeletesWithoutResize(common(), GetPolicyFunctions(), tmp); |
2625 | 0 | } |
2626 | | |
2627 | | // Called whenever the table *might* need to conditionally grow. |
2628 | | // |
2629 | | // This function is an optimization opportunity to perform a rehash even when |
2630 | | // growth is unnecessary, because vacating tombstones is beneficial for |
2631 | | // performance in the long-run. |
2632 | 8 | void rehash_and_grow_if_necessary() { |
2633 | 8 | const size_t cap = capacity(); |
2634 | 8 | if (cap > Group::kWidth && |
2635 | | // Do these calculations in 64-bit to avoid overflow. |
2636 | 8 | size() * uint64_t{32} <= cap * uint64_t{25}) { |
2637 | | // Squash DELETED without growing if there is enough capacity. |
2638 | | // |
2639 | | // Rehash in place if the current size is <= 25/32 of capacity. |
2640 | | // Rationale for such a high factor: 1) drop_deletes_without_resize() is |
2641 | | // faster than resize, and 2) it takes quite a bit of work to add |
2642 | | // tombstones. In the worst case, seems to take approximately 4 |
2643 | | // insert/erase pairs to create a single tombstone and so if we are |
2644 | | // rehashing because of tombstones, we can afford to rehash-in-place as |
2645 | | // long as we are reclaiming at least 1/8 the capacity without doing more |
2646 | | // than 2X the work. (Where "work" is defined to be size() for rehashing |
2647 | | // or rehashing in place, and 1 for an insert or erase.) But rehashing in |
2648 | | // place is faster per operation than inserting or even doubling the size |
2649 | | // of the table, so we actually afford to reclaim even less space from a |
2650 | | // resize-in-place. The decision is to rehash in place if we can reclaim |
2651 | | // at about 1/8th of the usable capacity (specifically 3/28 of the |
2652 | | // capacity) which means that the total cost of rehashing will be a small |
2653 | | // fraction of the total work. |
2654 | | // |
2655 | | // Here is output of an experiment using the BM_CacheInSteadyState |
2656 | | // benchmark running the old case (where we rehash-in-place only if we can |
2657 | | // reclaim at least 7/16*capacity) vs. this code (which rehashes in place |
2658 | | // if we can recover 3/32*capacity). |
2659 | | // |
2660 | | // Note that although in the worst-case number of rehashes jumped up from |
2661 | | // 15 to 190, but the number of operations per second is almost the same. |
2662 | | // |
2663 | | // Abridged output of running BM_CacheInSteadyState benchmark from |
2664 | | // raw_hash_set_benchmark. N is the number of insert/erase operations. |
2665 | | // |
2666 | | // | OLD (recover >= 7/16 | NEW (recover >= 3/32) |
2667 | | // size | N/s LoadFactor NRehashes | N/s LoadFactor NRehashes |
2668 | | // 448 | 145284 0.44 18 | 140118 0.44 19 |
2669 | | // 493 | 152546 0.24 11 | 151417 0.48 28 |
2670 | | // 538 | 151439 0.26 11 | 151152 0.53 38 |
2671 | | // 583 | 151765 0.28 11 | 150572 0.57 50 |
2672 | | // 628 | 150241 0.31 11 | 150853 0.61 66 |
2673 | | // 672 | 149602 0.33 12 | 150110 0.66 90 |
2674 | | // 717 | 149998 0.35 12 | 149531 0.70 129 |
2675 | | // 762 | 149836 0.37 13 | 148559 0.74 190 |
2676 | | // 807 | 149736 0.39 14 | 151107 0.39 14 |
2677 | | // 852 | 150204 0.42 15 | 151019 0.42 15 |
2678 | 0 | drop_deletes_without_resize(); |
2679 | 8 | } else { |
2680 | | // Otherwise grow the container. |
2681 | 8 | resize(NextCapacity(cap)); |
2682 | 8 | } |
2683 | 8 | } |
2684 | | |
2685 | | // TODO(alkis): Optimize this assuming *this and that don't overlap. |
2686 | | raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) { |
2687 | | raw_hash_set tmp(std::move(that)); |
2688 | | swap(tmp); |
2689 | | return *this; |
2690 | | } |
2691 | | raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) { |
2692 | | raw_hash_set tmp(std::move(that), alloc_ref()); |
2693 | | swap(tmp); |
2694 | | return *this; |
2695 | | } |
2696 | | |
2697 | | protected: |
2698 | | // Attempts to find `key` in the table; if it isn't found, returns a slot that |
2699 | | // the value can be inserted into, with the control byte already set to |
2700 | | // `key`'s H2. |
2701 | | template <class K> |
2702 | 20 | std::pair<size_t, bool> find_or_prepare_insert(const K& key) { |
2703 | 20 | prefetch_heap_block(); |
2704 | 20 | auto hash = hash_ref()(key); |
2705 | 20 | auto seq = probe(common(), hash); |
2706 | 20 | const ctrl_t* ctrl = control(); |
2707 | 20 | while (true) { |
2708 | 20 | Group g{ctrl + seq.offset()}; |
2709 | 20 | for (uint32_t i : g.Match(H2(hash))) { |
2710 | 0 | if (ABSL_PREDICT_TRUE(PolicyTraits::apply( |
2711 | 0 | EqualElement<K>{key, eq_ref()}, |
2712 | 0 | PolicyTraits::element(slot_array() + seq.offset(i))))) |
2713 | 0 | return {seq.offset(i), false}; |
2714 | 0 | } |
2715 | 20 | if (ABSL_PREDICT_TRUE(g.MaskEmpty())) break; |
2716 | 0 | seq.next(); |
2717 | 0 | assert(seq.index() <= capacity() && "full table!"); |
2718 | 0 | } |
2719 | 20 | return {prepare_insert(hash), true}; |
2720 | 20 | } |
2721 | | |
2722 | | // Given the hash of a value not currently in the table, finds the next |
2723 | | // viable slot index to insert it at. |
2724 | | // |
2725 | | // REQUIRES: At least one non-full slot available. |
2726 | 20 | size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE { |
2727 | 20 | const bool rehash_for_bug_detection = |
2728 | 20 | common().should_rehash_for_bug_detection_on_insert(); |
2729 | 20 | if (rehash_for_bug_detection) { |
2730 | | // Move to a different heap allocation in order to detect bugs. |
2731 | 0 | const size_t cap = capacity(); |
2732 | 0 | resize(growth_left() > 0 ? cap : NextCapacity(cap)); |
2733 | 0 | } |
2734 | 20 | auto target = find_first_non_full(common(), hash); |
2735 | 20 | if (!rehash_for_bug_detection && |
2736 | 20 | ABSL_PREDICT_FALSE(growth_left() == 0 && |
2737 | 20 | !IsDeleted(control()[target.offset]))) { |
2738 | 8 | rehash_and_grow_if_necessary(); |
2739 | 8 | target = find_first_non_full(common(), hash); |
2740 | 8 | } |
2741 | 20 | common().increment_size(); |
2742 | 20 | set_growth_left(growth_left() - IsEmpty(control()[target.offset])); |
2743 | 20 | SetCtrl(common(), target.offset, H2(hash), sizeof(slot_type)); |
2744 | 20 | common().maybe_increment_generation_on_insert(); |
2745 | 20 | infoz().RecordInsert(hash, target.probe_length); |
2746 | 20 | return target.offset; |
2747 | 20 | } |
2748 | | |
2749 | | // Constructs the value in the space pointed by the iterator. This only works |
2750 | | // after an unsuccessful find_or_prepare_insert() and before any other |
2751 | | // modifications happen in the raw_hash_set. |
2752 | | // |
2753 | | // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where |
2754 | | // k is the key decomposed from `forward<Args>(args)...`, and the bool |
2755 | | // returned by find_or_prepare_insert(k) was true. |
2756 | | // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...). |
2757 | | template <class... Args> |
2758 | 20 | void emplace_at(size_t i, Args&&... args) { |
2759 | 20 | PolicyTraits::construct(&alloc_ref(), slot_array() + i, |
2760 | 20 | std::forward<Args>(args)...); |
2761 | | |
2762 | 20 | assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) == |
2763 | 20 | iterator_at(i) && |
2764 | 20 | "constructed value does not match the lookup key"); |
2765 | 20 | } void absl::container_internal::raw_hash_set<absl::container_internal::FlatHashMapPolicy<absl::string_view, absl::CommandLineFlag*>, absl::container_internal::StringHash, absl::container_internal::StringEq, std::__1::allocator<std::__1::pair<absl::string_view const, absl::CommandLineFlag*> > >::emplace_at<std::__1::piecewise_construct_t const&, std::__1::tuple<absl::string_view const&&>, std::__1::tuple<absl::CommandLineFlag*&&> >(unsigned long, std::__1::piecewise_construct_t const&, std::__1::tuple<absl::string_view const&&>&&, std::__1::tuple<absl::CommandLineFlag*&&>&&) Line | Count | Source | 2758 | 20 | void emplace_at(size_t i, Args&&... args) { | 2759 | 20 | PolicyTraits::construct(&alloc_ref(), slot_array() + i, | 2760 | 20 | std::forward<Args>(args)...); | 2761 | | | 2762 | 20 | assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) == | 2763 | 20 | iterator_at(i) && | 2764 | 20 | "constructed value does not match the lookup key"); | 2765 | 20 | } |
Unexecuted instantiation: void absl::container_internal::raw_hash_set<absl::container_internal::FlatHashMapPolicy<absl::string_view, absl::CommandLineFlag*>, absl::container_internal::StringHash, absl::container_internal::StringEq, std::__1::allocator<std::__1::pair<absl::string_view const, absl::CommandLineFlag*> > >::emplace_at<std::__1::piecewise_construct_t const&, std::__1::tuple<absl::string_view&&>, std::__1::tuple<absl::CommandLineFlag*&&> >(unsigned long, std::__1::piecewise_construct_t const&, std::__1::tuple<absl::string_view&&>&&, std::__1::tuple<absl::CommandLineFlag*&&>&&) |
2766 | | |
2767 | 80 | iterator iterator_at(size_t i) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2768 | 80 | return {control() + i, slot_array() + i, common().generation_ptr()}; |
2769 | 80 | } |
2770 | | const_iterator iterator_at(size_t i) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
2771 | | return {control() + i, slot_array() + i, common().generation_ptr()}; |
2772 | | } |
2773 | | |
2774 | | private: |
2775 | | friend struct RawHashSetTestOnlyAccess; |
2776 | | |
2777 | | // The number of slots we can still fill without needing to rehash. |
2778 | | // |
2779 | | // This is stored separately due to tombstones: we do not include tombstones |
2780 | | // in the growth capacity, because we'd like to rehash when the table is |
2781 | | // otherwise filled with tombstones: otherwise, probe sequences might get |
2782 | | // unacceptably long without triggering a rehash. Callers can also force a |
2783 | | // rehash via the standard `rehash(0)`, which will recompute this value as a |
2784 | | // side-effect. |
2785 | | // |
2786 | | // See `CapacityToGrowth()`. |
2787 | 40 | size_t growth_left() const { return common().growth_left(); } |
2788 | 20 | void set_growth_left(size_t gl) { return common().set_growth_left(gl); } |
2789 | | |
2790 | | // Prefetch the heap-allocated memory region to resolve potential TLB and |
2791 | | // cache misses. This is intended to overlap with execution of calculating the |
2792 | | // hash for a key. |
2793 | 40 | void prefetch_heap_block() const { |
2794 | 40 | #if ABSL_HAVE_BUILTIN(__builtin_prefetch) || defined(__GNUC__) |
2795 | 40 | __builtin_prefetch(control(), 0, 1); |
2796 | 40 | #endif |
2797 | 40 | } |
2798 | | |
2799 | 352 | CommonFields& common() { return settings_.template get<0>(); } |
2800 | 380 | const CommonFields& common() const { return settings_.template get<0>(); } |
2801 | | |
2802 | 196 | ctrl_t* control() const { return common().control(); } |
2803 | 136 | slot_type* slot_array() const { |
2804 | 136 | return static_cast<slot_type*>(common().slot_array()); |
2805 | 136 | } |
2806 | 28 | HashtablezInfoHandle infoz() { return common().infoz(); } |
2807 | | |
2808 | 42 | hasher& hash_ref() { return settings_.template get<1>(); } |
2809 | 20 | const hasher& hash_ref() const { return settings_.template get<1>(); } |
2810 | 20 | key_equal& eq_ref() { return settings_.template get<2>(); } |
2811 | | const key_equal& eq_ref() const { return settings_.template get<2>(); } |
2812 | 56 | allocator_type& alloc_ref() { return settings_.template get<3>(); } |
2813 | | const allocator_type& alloc_ref() const { |
2814 | | return settings_.template get<3>(); |
2815 | | } |
2816 | | |
2817 | | // Make type-specific functions for this type's PolicyFunctions struct. |
2818 | 0 | static size_t hash_slot_fn(void* set, void* slot) { |
2819 | 0 | auto* h = static_cast<raw_hash_set*>(set); |
2820 | 0 | return PolicyTraits::apply( |
2821 | 0 | HashElement{h->hash_ref()}, |
2822 | 0 | PolicyTraits::element(static_cast<slot_type*>(slot))); |
2823 | 0 | } |
2824 | 0 | static void transfer_slot_fn(void* set, void* dst, void* src) { |
2825 | 0 | auto* h = static_cast<raw_hash_set*>(set); |
2826 | 0 | PolicyTraits::transfer(&h->alloc_ref(), static_cast<slot_type*>(dst), |
2827 | 0 | static_cast<slot_type*>(src)); |
2828 | 0 | } |
2829 | | // Note: dealloc_fn will only be used if we have a non-standard allocator. |
2830 | 0 | static void dealloc_fn(CommonFields& common, const PolicyFunctions&) { |
2831 | 0 | auto* set = reinterpret_cast<raw_hash_set*>(&common); |
2832 | 0 |
|
2833 | 0 | // Unpoison before returning the memory to the allocator. |
2834 | 0 | SanitizerUnpoisonMemoryRegion(common.slot_array(), |
2835 | 0 | sizeof(slot_type) * common.capacity()); |
2836 | 0 |
|
2837 | 0 | common.infoz().Unregister(); |
2838 | 0 | Deallocate<BackingArrayAlignment(alignof(slot_type))>( |
2839 | 0 | &set->alloc_ref(), common.backing_array_start(), |
2840 | 0 | common.alloc_size(sizeof(slot_type), alignof(slot_type))); |
2841 | 0 | } |
2842 | | |
2843 | 0 | static const PolicyFunctions& GetPolicyFunctions() { |
2844 | 0 | static constexpr PolicyFunctions value = { |
2845 | 0 | sizeof(slot_type), |
2846 | 0 | &raw_hash_set::hash_slot_fn, |
2847 | 0 | PolicyTraits::transfer_uses_memcpy() |
2848 | 0 | ? TransferRelocatable<sizeof(slot_type)> |
2849 | 0 | : &raw_hash_set::transfer_slot_fn, |
2850 | 0 | (std::is_same<SlotAlloc, std::allocator<slot_type>>::value |
2851 | 0 | ? &DeallocateStandard<alignof(slot_type)> |
2852 | 0 | : &raw_hash_set::dealloc_fn), |
2853 | 0 | }; |
2854 | 0 | return value; |
2855 | 0 | } |
2856 | | |
2857 | | // Bundle together CommonFields plus other objects which might be empty. |
2858 | | // CompressedTuple will ensure that sizeof is not affected by any of the empty |
2859 | | // fields that occur after CommonFields. |
2860 | | absl::container_internal::CompressedTuple<CommonFields, hasher, key_equal, |
2861 | | allocator_type> |
2862 | | settings_{CommonFields{}, hasher{}, key_equal{}, allocator_type{}}; |
2863 | | }; |
2864 | | |
2865 | | // Erases all elements that satisfy the predicate `pred` from the container `c`. |
2866 | | template <typename P, typename H, typename E, typename A, typename Predicate> |
2867 | | typename raw_hash_set<P, H, E, A>::size_type EraseIf( |
2868 | | Predicate& pred, raw_hash_set<P, H, E, A>* c) { |
2869 | | const auto initial_size = c->size(); |
2870 | | for (auto it = c->begin(), last = c->end(); it != last;) { |
2871 | | if (pred(*it)) { |
2872 | | c->erase(it++); |
2873 | | } else { |
2874 | | ++it; |
2875 | | } |
2876 | | } |
2877 | | return initial_size - c->size(); |
2878 | | } |
2879 | | |
2880 | | namespace hashtable_debug_internal { |
2881 | | template <typename Set> |
2882 | | struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> { |
2883 | | using Traits = typename Set::PolicyTraits; |
2884 | | using Slot = typename Traits::slot_type; |
2885 | | |
2886 | | static size_t GetNumProbes(const Set& set, |
2887 | | const typename Set::key_type& key) { |
2888 | | size_t num_probes = 0; |
2889 | | size_t hash = set.hash_ref()(key); |
2890 | | auto seq = probe(set.common(), hash); |
2891 | | const ctrl_t* ctrl = set.control(); |
2892 | | while (true) { |
2893 | | container_internal::Group g{ctrl + seq.offset()}; |
2894 | | for (uint32_t i : g.Match(container_internal::H2(hash))) { |
2895 | | if (Traits::apply( |
2896 | | typename Set::template EqualElement<typename Set::key_type>{ |
2897 | | key, set.eq_ref()}, |
2898 | | Traits::element(set.slot_array() + seq.offset(i)))) |
2899 | | return num_probes; |
2900 | | ++num_probes; |
2901 | | } |
2902 | | if (g.MaskEmpty()) return num_probes; |
2903 | | seq.next(); |
2904 | | ++num_probes; |
2905 | | } |
2906 | | } |
2907 | | |
2908 | | static size_t AllocatedByteSize(const Set& c) { |
2909 | | size_t capacity = c.capacity(); |
2910 | | if (capacity == 0) return 0; |
2911 | | size_t m = c.common().alloc_size(sizeof(Slot), alignof(Slot)); |
2912 | | |
2913 | | size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr)); |
2914 | | if (per_slot != ~size_t{}) { |
2915 | | m += per_slot * c.size(); |
2916 | | } else { |
2917 | | const ctrl_t* ctrl = c.control(); |
2918 | | for (size_t i = 0; i != capacity; ++i) { |
2919 | | if (container_internal::IsFull(ctrl[i])) { |
2920 | | m += Traits::space_used(c.slot_array() + i); |
2921 | | } |
2922 | | } |
2923 | | } |
2924 | | return m; |
2925 | | } |
2926 | | }; |
2927 | | |
2928 | | } // namespace hashtable_debug_internal |
2929 | | } // namespace container_internal |
2930 | | ABSL_NAMESPACE_END |
2931 | | } // namespace absl |
2932 | | |
2933 | | #undef ABSL_SWISSTABLE_ENABLE_GENERATIONS |
2934 | | |
2935 | | #endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ |