Coverage Report

Created: 2023-09-25 06:27

/src/abseil-cpp/absl/debugging/internal/stacktrace_x86-inl.inc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2017 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// Produce stack trace
16
17
#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
18
#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
19
20
#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
21
#include <ucontext.h>  // for ucontext_t
22
#endif
23
24
#if !defined(_WIN32)
25
#include <unistd.h>
26
#endif
27
28
#include <cassert>
29
#include <cstdint>
30
#include <limits>
31
32
#include "absl/base/attributes.h"
33
#include "absl/base/macros.h"
34
#include "absl/base/port.h"
35
#include "absl/debugging/internal/address_is_readable.h"
36
#include "absl/debugging/internal/vdso_support.h"  // a no-op on non-elf or non-glibc systems
37
#include "absl/debugging/stacktrace.h"
38
39
using absl::debugging_internal::AddressIsReadable;
40
41
#if defined(__linux__) && defined(__i386__)
42
// Count "push %reg" instructions in VDSO __kernel_vsyscall(),
43
// preceding "syscall" or "sysenter".
44
// If __kernel_vsyscall uses frame pointer, answer 0.
45
//
46
// kMaxBytes tells how many instruction bytes of __kernel_vsyscall
47
// to analyze before giving up. Up to kMaxBytes+1 bytes of
48
// instructions could be accessed.
49
//
50
// Here are known __kernel_vsyscall instruction sequences:
51
//
52
// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
53
// Used on Intel.
54
//  0xffffe400 <__kernel_vsyscall+0>:       push   %ecx
55
//  0xffffe401 <__kernel_vsyscall+1>:       push   %edx
56
//  0xffffe402 <__kernel_vsyscall+2>:       push   %ebp
57
//  0xffffe403 <__kernel_vsyscall+3>:       mov    %esp,%ebp
58
//  0xffffe405 <__kernel_vsyscall+5>:       sysenter
59
//
60
// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
61
// Used on AMD.
62
//  0xffffe400 <__kernel_vsyscall+0>:       push   %ebp
63
//  0xffffe401 <__kernel_vsyscall+1>:       mov    %ecx,%ebp
64
//  0xffffe403 <__kernel_vsyscall+3>:       syscall
65
//
66
67
// The sequence below isn't actually expected in Google fleet,
68
// here only for completeness. Remove this comment from OSS release.
69
70
// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
71
//  0xffffe400 <__kernel_vsyscall+0>:       int $0x80
72
//  0xffffe401 <__kernel_vsyscall+1>:       ret
73
//
74
static const int kMaxBytes = 10;
75
76
// We use assert()s instead of DCHECK()s -- this is too low level
77
// for DCHECK().
78
79
static int CountPushInstructions(const unsigned char *const addr) {
80
  int result = 0;
81
  for (int i = 0; i < kMaxBytes; ++i) {
82
    if (addr[i] == 0x89) {
83
      // "mov reg,reg"
84
      if (addr[i + 1] == 0xE5) {
85
        // Found "mov %esp,%ebp".
86
        return 0;
87
      }
88
      ++i;  // Skip register encoding byte.
89
    } else if (addr[i] == 0x0F &&
90
               (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
91
      // Found "sysenter" or "syscall".
92
      return result;
93
    } else if ((addr[i] & 0xF0) == 0x50) {
94
      // Found "push %reg".
95
      ++result;
96
    } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
97
      // Found "int $0x80"
98
      assert(result == 0);
99
      return 0;
100
    } else {
101
      // Unexpected instruction.
102
      assert(false && "unexpected instruction in __kernel_vsyscall");
103
      return 0;
104
    }
105
  }
106
  // Unexpected: didn't find SYSENTER or SYSCALL in
107
  // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
108
  assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
109
  return 0;
110
}
111
#endif
112
113
// Assume stack frames larger than 100,000 bytes are bogus.
114
static const int kMaxFrameBytes = 100000;
115
// Stack end to use when we don't know the actual stack end
116
// (effectively just the end of address space).
117
constexpr uintptr_t kUnknownStackEnd =
118
    std::numeric_limits<size_t>::max() - sizeof(void *);
119
120
// Returns the stack frame pointer from signal context, 0 if unknown.
121
// vuc is a ucontext_t *.  We use void* to avoid the use
122
// of ucontext_t on non-POSIX systems.
123
0
static uintptr_t GetFP(const void *vuc) {
124
#if !defined(__linux__)
125
  static_cast<void>(vuc);  // Avoid an unused argument compiler warning.
126
#else
127
0
  if (vuc != nullptr) {
128
0
    auto *uc = reinterpret_cast<const ucontext_t *>(vuc);
129
#if defined(__i386__)
130
    const auto bp = uc->uc_mcontext.gregs[REG_EBP];
131
    const auto sp = uc->uc_mcontext.gregs[REG_ESP];
132
#elif defined(__x86_64__)
133
0
    const auto bp = uc->uc_mcontext.gregs[REG_RBP];
134
0
    const auto sp = uc->uc_mcontext.gregs[REG_RSP];
135
#else
136
    const uintptr_t bp = 0;
137
    const uintptr_t sp = 0;
138
#endif
139
    // Sanity-check that the base pointer is valid. It's possible that some
140
    // code in the process is compiled with --copt=-fomit-frame-pointer or
141
    // --copt=-momit-leaf-frame-pointer.
142
    //
143
    // TODO(bcmills): -momit-leaf-frame-pointer is currently the default
144
    // behavior when building with clang.  Talk to the C++ toolchain team about
145
    // fixing that.
146
0
    if (bp >= sp && bp - sp <= kMaxFrameBytes)
147
0
      return static_cast<uintptr_t>(bp);
148
149
    // If bp isn't a plausible frame pointer, return the stack pointer instead.
150
    // If we're lucky, it points to the start of a stack frame; otherwise, we'll
151
    // get one frame of garbage in the stack trace and fail the sanity check on
152
    // the next iteration.
153
0
    return static_cast<uintptr_t>(sp);
154
0
  }
155
0
#endif
156
0
  return 0;
157
0
}
158
159
// Given a pointer to a stack frame, locate and return the calling
160
// stackframe, or return null if no stackframe can be found. Perform sanity
161
// checks (the strictness of which is controlled by the boolean parameter
162
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
163
template <bool STRICT_UNWINDING, bool WITH_CONTEXT>
164
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS  // May read random elements from stack.
165
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY   // May read random elements from stack.
166
static void **NextStackFrame(void **old_fp, const void *uc,
167
0
                             size_t stack_low, size_t stack_high) {
168
0
  void **new_fp = (void **)*old_fp;
169
170
#if defined(__linux__) && defined(__i386__)
171
  if (WITH_CONTEXT && uc != nullptr) {
172
    // How many "push %reg" instructions are there at __kernel_vsyscall?
173
    // This is constant for a given kernel and processor, so compute
174
    // it only once.
175
    static int num_push_instructions = -1;  // Sentinel: not computed yet.
176
    // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
177
    // be there.
178
    static const unsigned char *kernel_rt_sigreturn_address = nullptr;
179
    static const unsigned char *kernel_vsyscall_address = nullptr;
180
    if (num_push_instructions == -1) {
181
#ifdef ABSL_HAVE_VDSO_SUPPORT
182
      absl::debugging_internal::VDSOSupport vdso;
183
      if (vdso.IsPresent()) {
184
        absl::debugging_internal::VDSOSupport::SymbolInfo
185
            rt_sigreturn_symbol_info;
186
        absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info;
187
        if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC,
188
                               &rt_sigreturn_symbol_info) ||
189
            !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC,
190
                               &vsyscall_symbol_info) ||
191
            rt_sigreturn_symbol_info.address == nullptr ||
192
            vsyscall_symbol_info.address == nullptr) {
193
          // Unexpected: 32-bit VDSO is present, yet one of the expected
194
          // symbols is missing or null.
195
          assert(false && "VDSO is present, but doesn't have expected symbols");
196
          num_push_instructions = 0;
197
        } else {
198
          kernel_rt_sigreturn_address =
199
              reinterpret_cast<const unsigned char *>(
200
                  rt_sigreturn_symbol_info.address);
201
          kernel_vsyscall_address =
202
              reinterpret_cast<const unsigned char *>(
203
                  vsyscall_symbol_info.address);
204
          num_push_instructions =
205
              CountPushInstructions(kernel_vsyscall_address);
206
        }
207
      } else {
208
        num_push_instructions = 0;
209
      }
210
#else  // ABSL_HAVE_VDSO_SUPPORT
211
      num_push_instructions = 0;
212
#endif  // ABSL_HAVE_VDSO_SUPPORT
213
    }
214
    if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr &&
215
        old_fp[1] == kernel_rt_sigreturn_address) {
216
      const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
217
      // This kernel does not use frame pointer in its VDSO code,
218
      // and so %ebp is not suitable for unwinding.
219
      void **const reg_ebp =
220
          reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
221
      const unsigned char *const reg_eip =
222
          reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
223
      if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip &&
224
          reg_eip - kernel_vsyscall_address < kMaxBytes) {
225
        // We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
226
        // Restore from 'ucv' instead.
227
        void **const reg_esp =
228
            reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
229
        // Check that alleged %esp is not null and is reasonably aligned.
230
        if (reg_esp &&
231
            ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
232
          // Check that alleged %esp is actually readable. This is to prevent
233
          // "double fault" in case we hit the first fault due to e.g. stack
234
          // corruption.
235
          void *const reg_esp2 = reg_esp[num_push_instructions - 1];
236
          if (AddressIsReadable(reg_esp2)) {
237
            // Alleged %esp is readable, use it for further unwinding.
238
            new_fp = reinterpret_cast<void **>(reg_esp2);
239
          }
240
        }
241
      }
242
    }
243
  }
244
#endif
245
246
0
  const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp);
247
0
  const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp);
248
249
  // Check that the transition from frame pointer old_fp to frame
250
  // pointer new_fp isn't clearly bogus.  Skip the checks if new_fp
251
  // matches the signal context, so that we don't skip out early when
252
  // using an alternate signal stack.
253
  //
254
  // TODO(bcmills): The GetFP call should be completely unnecessary when
255
  // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's
256
  // stack by this point), but it is empirically still needed (e.g. when the
257
  // stack includes a call to abort).  unw_get_reg returns UNW_EBADREG for some
258
  // frames.  Figure out why GetValidFrameAddr and/or libunwind isn't doing what
259
  // it's supposed to.
260
0
  if (STRICT_UNWINDING &&
261
0
      (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) {
262
    // With the stack growing downwards, older stack frame must be
263
    // at a greater address that the current one.
264
0
    if (new_fp_u <= old_fp_u) return nullptr;
265
266
    // If we get a very large frame size, it may be an indication that we
267
    // guessed frame pointers incorrectly and now risk a paging fault
268
    // dereferencing a wrong frame pointer. Or maybe not because large frames
269
    // are possible as well. The main stack is assumed to be readable,
270
    // so we assume the large frame is legit if we know the real stack bounds
271
    // and are within the stack.
272
0
    if (new_fp_u - old_fp_u > kMaxFrameBytes) {
273
0
      if (stack_high < kUnknownStackEnd &&
274
0
          static_cast<size_t>(getpagesize()) < stack_low) {
275
        // Stack bounds are known.
276
0
        if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
277
          // new_fp_u is not within the known stack.
278
0
          return nullptr;
279
0
        }
280
0
      } else {
281
        // Stack bounds are unknown, prefer truncated stack to possible crash.
282
0
        return nullptr;
283
0
      }
284
0
    }
285
0
    if (stack_low < old_fp_u && old_fp_u <= stack_high) {
286
      // Old BP was in the expected stack region...
287
0
      if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
288
        // ... but new BP is outside of expected stack region.
289
        // It is most likely bogus.
290
0
        return nullptr;
291
0
      }
292
0
    } else {
293
      // We may be here if we are executing in a co-routine with a
294
      // separate stack. We can't do safety checks in this case.
295
0
    }
296
0
  } else {
297
0
    if (new_fp == nullptr) return nullptr;  // skip AddressIsReadable() below
298
    // In the non-strict mode, allow discontiguous stack frames.
299
    // (alternate-signal-stacks for example).
300
0
    if (new_fp == old_fp) return nullptr;
301
0
  }
302
303
0
  if (new_fp_u & (sizeof(void *) - 1)) return nullptr;
304
#ifdef __i386__
305
  // On 32-bit machines, the stack pointer can be very close to
306
  // 0xffffffff, so we explicitly check for a pointer into the
307
  // last two pages in the address space
308
  if (new_fp_u >= 0xffffe000) return nullptr;
309
#endif
310
0
#if !defined(_WIN32)
311
0
  if (!STRICT_UNWINDING) {
312
    // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test
313
    // on AMD-based machines with VDSO-enabled kernels.
314
    // Make an extra sanity check to insure new_fp is readable.
315
    // Note: NextStackFrame<false>() is only called while the program
316
    //       is already on its last leg, so it's ok to be slow here.
317
318
0
    if (!AddressIsReadable(new_fp)) {
319
0
      return nullptr;
320
0
    }
321
0
  }
322
0
#endif
323
0
  return new_fp;
324
0
}
Unexecuted instantiation: stacktrace.cc:void** NextStackFrame<true, false>(void**, void const*, unsigned long, unsigned long)
Unexecuted instantiation: stacktrace.cc:void** NextStackFrame<true, true>(void**, void const*, unsigned long, unsigned long)
Unexecuted instantiation: stacktrace.cc:void** NextStackFrame<false, false>(void**, void const*, unsigned long, unsigned long)
Unexecuted instantiation: stacktrace.cc:void** NextStackFrame<false, true>(void**, void const*, unsigned long, unsigned long)
325
326
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
327
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS  // May read random elements from stack.
328
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY   // May read random elements from stack.
329
ABSL_ATTRIBUTE_NOINLINE
330
static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count,
331
0
                      const void *ucp, int *min_dropped_frames) {
332
0
  int n = 0;
333
0
  void **fp = reinterpret_cast<void **>(__builtin_frame_address(0));
334
335
  // Assume that the first page is not stack.
336
0
  size_t stack_low = static_cast<size_t>(getpagesize());
337
0
  size_t stack_high = kUnknownStackEnd;
338
339
0
  while (fp && n < max_depth) {
340
0
    if (*(fp + 1) == reinterpret_cast<void *>(0)) {
341
      // In 64-bit code, we often see a frame that
342
      // points to itself and has a return address of 0.
343
0
      break;
344
0
    }
345
0
    void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
346
0
        fp, ucp, stack_low, stack_high);
347
0
    if (skip_count > 0) {
348
0
      skip_count--;
349
0
    } else {
350
0
      result[n] = *(fp + 1);
351
0
      if (IS_STACK_FRAMES) {
352
0
        if (next_fp > fp) {
353
0
          sizes[n] = static_cast<int>(
354
0
              reinterpret_cast<uintptr_t>(next_fp) -
355
0
              reinterpret_cast<uintptr_t>(fp));
356
0
        } else {
357
          // A frame-size of 0 is used to indicate unknown frame size.
358
0
          sizes[n] = 0;
359
0
        }
360
0
      }
361
0
      n++;
362
0
    }
363
0
    fp = next_fp;
364
0
  }
365
0
  if (min_dropped_frames != nullptr) {
366
    // Implementation detail: we clamp the max of frames we are willing to
367
    // count, so as not to spend too much time in the loop below.
368
0
    const int kMaxUnwind = 1000;
369
0
    int num_dropped_frames = 0;
370
0
    for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) {
371
0
      if (skip_count > 0) {
372
0
        skip_count--;
373
0
      } else {
374
0
        num_dropped_frames++;
375
0
      }
376
0
      fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low,
377
0
                                                             stack_high);
378
0
    }
379
0
    *min_dropped_frames = num_dropped_frames;
380
0
  }
381
0
  return n;
382
0
}
Unexecuted instantiation: stacktrace.cc:int UnwindImpl<false, false>(void**, int*, int, int, void const*, int*)
Unexecuted instantiation: stacktrace.cc:int UnwindImpl<false, true>(void**, int*, int, int, void const*, int*)
Unexecuted instantiation: stacktrace.cc:int UnwindImpl<true, false>(void**, int*, int, int, void const*, int*)
Unexecuted instantiation: stacktrace.cc:int UnwindImpl<true, true>(void**, int*, int, int, void const*, int*)
383
384
namespace absl {
385
ABSL_NAMESPACE_BEGIN
386
namespace debugging_internal {
387
0
bool StackTraceWorksForTest() {
388
0
  return true;
389
0
}
390
}  // namespace debugging_internal
391
ABSL_NAMESPACE_END
392
}  // namespace absl
393
394
#endif  // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_