Coverage Report

Created: 2023-09-25 06:27

/src/abseil-cpp/absl/hash/internal/hash.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2018 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// File: hash.h
17
// -----------------------------------------------------------------------------
18
//
19
#ifndef ABSL_HASH_INTERNAL_HASH_H_
20
#define ABSL_HASH_INTERNAL_HASH_H_
21
22
#include <algorithm>
23
#include <array>
24
#include <bitset>
25
#include <cmath>
26
#include <cstddef>
27
#include <cstring>
28
#include <deque>
29
#include <forward_list>
30
#include <functional>
31
#include <iterator>
32
#include <limits>
33
#include <list>
34
#include <map>
35
#include <memory>
36
#include <set>
37
#include <string>
38
#include <tuple>
39
#include <type_traits>
40
#include <unordered_map>
41
#include <unordered_set>
42
#include <utility>
43
#include <vector>
44
45
#include "absl/base/config.h"
46
#include "absl/base/internal/unaligned_access.h"
47
#include "absl/base/port.h"
48
#include "absl/container/fixed_array.h"
49
#include "absl/hash/internal/city.h"
50
#include "absl/hash/internal/low_level_hash.h"
51
#include "absl/meta/type_traits.h"
52
#include "absl/numeric/bits.h"
53
#include "absl/numeric/int128.h"
54
#include "absl/strings/string_view.h"
55
#include "absl/types/optional.h"
56
#include "absl/types/variant.h"
57
#include "absl/utility/utility.h"
58
59
#ifdef ABSL_HAVE_STD_STRING_VIEW
60
#include <string_view>
61
#endif
62
63
namespace absl {
64
ABSL_NAMESPACE_BEGIN
65
66
class HashState;
67
68
namespace hash_internal {
69
70
// Internal detail: Large buffers are hashed in smaller chunks.  This function
71
// returns the size of these chunks.
72
56
constexpr size_t PiecewiseChunkSize() { return 1024; }
73
74
// PiecewiseCombiner
75
//
76
// PiecewiseCombiner is an internal-only helper class for hashing a piecewise
77
// buffer of `char` or `unsigned char` as though it were contiguous.  This class
78
// provides two methods:
79
//
80
//   H add_buffer(state, data, size)
81
//   H finalize(state)
82
//
83
// `add_buffer` can be called zero or more times, followed by a single call to
84
// `finalize`.  This will produce the same hash expansion as concatenating each
85
// buffer piece into a single contiguous buffer, and passing this to
86
// `H::combine_contiguous`.
87
//
88
//  Example usage:
89
//    PiecewiseCombiner combiner;
90
//    for (const auto& piece : pieces) {
91
//      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
92
//    }
93
//    return combiner.finalize(std::move(state));
94
class PiecewiseCombiner {
95
 public:
96
0
  PiecewiseCombiner() : position_(0) {}
97
  PiecewiseCombiner(const PiecewiseCombiner&) = delete;
98
  PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
99
100
  // PiecewiseCombiner::add_buffer()
101
  //
102
  // Appends the given range of bytes to the sequence to be hashed, which may
103
  // modify the provided hash state.
104
  template <typename H>
105
  H add_buffer(H state, const unsigned char* data, size_t size);
106
  template <typename H>
107
0
  H add_buffer(H state, const char* data, size_t size) {
108
0
    return add_buffer(std::move(state),
109
0
                      reinterpret_cast<const unsigned char*>(data), size);
110
0
  }
111
112
  // PiecewiseCombiner::finalize()
113
  //
114
  // Finishes combining the hash sequence, which may may modify the provided
115
  // hash state.
116
  //
117
  // Once finalize() is called, add_buffer() may no longer be called. The
118
  // resulting hash state will be the same as if the pieces passed to
119
  // add_buffer() were concatenated into a single flat buffer, and then provided
120
  // to H::combine_contiguous().
121
  template <typename H>
122
  H finalize(H state);
123
124
 private:
125
  unsigned char buf_[PiecewiseChunkSize()];
126
  size_t position_;
127
};
128
129
// is_hashable()
130
//
131
// Trait class which returns true if T is hashable by the absl::Hash framework.
132
// Used for the AbslHashValue implementations for composite types below.
133
template <typename T>
134
struct is_hashable;
135
136
// HashStateBase
137
//
138
// An internal implementation detail that contains common implementation details
139
// for all of the "hash state objects" objects generated by Abseil.  This is not
140
// a public API; users should not create classes that inherit from this.
141
//
142
// A hash state object is the template argument `H` passed to `AbslHashValue`.
143
// It represents an intermediate state in the computation of an unspecified hash
144
// algorithm. `HashStateBase` provides a CRTP style base class for hash state
145
// implementations. Developers adding type support for `absl::Hash` should not
146
// rely on any parts of the state object other than the following member
147
// functions:
148
//
149
//   * HashStateBase::combine()
150
//   * HashStateBase::combine_contiguous()
151
//   * HashStateBase::combine_unordered()
152
//
153
// A derived hash state class of type `H` must provide a public member function
154
// with a signature similar to the following:
155
//
156
//    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
157
//
158
// It must also provide a private template method named RunCombineUnordered.
159
//
160
// A "consumer" is a 1-arg functor returning void.  Its argument is a reference
161
// to an inner hash state object, and it may be called multiple times.  When
162
// called, the functor consumes the entropy from the provided state object,
163
// and resets that object to its empty state.
164
//
165
// A "combiner" is a stateless 2-arg functor returning void.  Its arguments are
166
// an inner hash state object and an ElementStateConsumer functor.  A combiner
167
// uses the provided inner hash state object to hash each element of the
168
// container, passing the inner hash state object to the consumer after hashing
169
// each element.
170
//
171
// Given these definitions, a derived hash state class of type H
172
// must provide a private template method with a signature similar to the
173
// following:
174
//
175
//    `template <typename CombinerT>`
176
//    `static H RunCombineUnordered(H outer_state, CombinerT combiner)`
177
//
178
// This function is responsible for constructing the inner state object and
179
// providing a consumer to the combiner.  It uses side effects of the consumer
180
// and combiner to mix the state of each element in an order-independent manner,
181
// and uses this to return an updated value of `outer_state`.
182
//
183
// This inside-out approach generates efficient object code in the normal case,
184
// but allows us to use stack storage to implement the absl::HashState type
185
// erasure mechanism (avoiding heap allocations while hashing).
186
//
187
// `HashStateBase` will provide a complete implementation for a hash state
188
// object in terms of these two methods.
189
//
190
// Example:
191
//
192
//   // Use CRTP to define your derived class.
193
//   struct MyHashState : HashStateBase<MyHashState> {
194
//       static H combine_contiguous(H state, const unsigned char*, size_t);
195
//       using MyHashState::HashStateBase::combine;
196
//       using MyHashState::HashStateBase::combine_contiguous;
197
//       using MyHashState::HashStateBase::combine_unordered;
198
//     private:
199
//       template <typename CombinerT>
200
//       static H RunCombineUnordered(H state, CombinerT combiner);
201
//   };
202
template <typename H>
203
class HashStateBase {
204
 public:
205
  // HashStateBase::combine()
206
  //
207
  // Combines an arbitrary number of values into a hash state, returning the
208
  // updated state.
209
  //
210
  // Each of the value types `T` must be separately hashable by the Abseil
211
  // hashing framework.
212
  //
213
  // NOTE:
214
  //
215
  //   state = H::combine(std::move(state), value1, value2, value3);
216
  //
217
  // is guaranteed to produce the same hash expansion as:
218
  //
219
  //   state = H::combine(std::move(state), value1);
220
  //   state = H::combine(std::move(state), value2);
221
  //   state = H::combine(std::move(state), value3);
222
  template <typename T, typename... Ts>
223
  static H combine(H state, const T& value, const Ts&... values);
224
124
  static H combine(H state) { return state; }
225
226
  // HashStateBase::combine_contiguous()
227
  //
228
  // Combines a contiguous array of `size` elements into a hash state, returning
229
  // the updated state.
230
  //
231
  // NOTE:
232
  //
233
  //   state = H::combine_contiguous(std::move(state), data, size);
234
  //
235
  // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
236
  // perform internal optimizations).  If you need this guarantee, use the
237
  // for-loop instead.
238
  template <typename T>
239
  static H combine_contiguous(H state, const T* data, size_t size);
240
241
  template <typename I>
242
  static H combine_unordered(H state, I begin, I end);
243
244
  using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
245
246
  template <typename T>
247
  using is_hashable = absl::hash_internal::is_hashable<T>;
248
249
 private:
250
  // Common implementation of the iteration step of a "combiner", as described
251
  // above.
252
  template <typename I>
253
  struct CombineUnorderedCallback {
254
    I begin;
255
    I end;
256
257
    template <typename InnerH, typename ElementStateConsumer>
258
    void operator()(InnerH inner_state, ElementStateConsumer cb) {
259
      for (; begin != end; ++begin) {
260
        inner_state = H::combine(std::move(inner_state), *begin);
261
        cb(inner_state);
262
      }
263
    }
264
  };
265
};
266
267
// is_uniquely_represented
268
//
269
// `is_uniquely_represented<T>` is a trait class that indicates whether `T`
270
// is uniquely represented.
271
//
272
// A type is "uniquely represented" if two equal values of that type are
273
// guaranteed to have the same bytes in their underlying storage. In other
274
// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
275
// zero. This property cannot be detected automatically, so this trait is false
276
// by default, but can be specialized by types that wish to assert that they are
277
// uniquely represented. This makes them eligible for certain optimizations.
278
//
279
// If you have any doubt whatsoever, do not specialize this template.
280
// The default is completely safe, and merely disables some optimizations
281
// that will not matter for most types. Specializing this template,
282
// on the other hand, can be very hazardous.
283
//
284
// To be uniquely represented, a type must not have multiple ways of
285
// representing the same value; for example, float and double are not
286
// uniquely represented, because they have distinct representations for
287
// +0 and -0. Furthermore, the type's byte representation must consist
288
// solely of user-controlled data, with no padding bits and no compiler-
289
// controlled data such as vptrs or sanitizer metadata. This is usually
290
// very difficult to guarantee, because in most cases the compiler can
291
// insert data and padding bits at its own discretion.
292
//
293
// If you specialize this template for a type `T`, you must do so in the file
294
// that defines that type (or in this file). If you define that specialization
295
// anywhere else, `is_uniquely_represented<T>` could have different meanings
296
// in different places.
297
//
298
// The Enable parameter is meaningless; it is provided as a convenience,
299
// to support certain SFINAE techniques when defining specializations.
300
template <typename T, typename Enable = void>
301
struct is_uniquely_represented : std::false_type {};
302
303
// is_uniquely_represented<unsigned char>
304
//
305
// unsigned char is a synonym for "byte", so it is guaranteed to be
306
// uniquely represented.
307
template <>
308
struct is_uniquely_represented<unsigned char> : std::true_type {};
309
310
// is_uniquely_represented for non-standard integral types
311
//
312
// Integral types other than bool should be uniquely represented on any
313
// platform that this will plausibly be ported to.
314
template <typename Integral>
315
struct is_uniquely_represented<
316
    Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
317
    : std::true_type {};
318
319
// is_uniquely_represented<bool>
320
//
321
//
322
template <>
323
struct is_uniquely_represented<bool> : std::false_type {};
324
325
// hash_bytes()
326
//
327
// Convenience function that combines `hash_state` with the byte representation
328
// of `value`.
329
template <typename H, typename T>
330
62
H hash_bytes(H hash_state, const T& value) {
331
62
  const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
332
62
  return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
333
62
}
absl::hash_internal::MixingHashState absl::hash_internal::hash_bytes<absl::hash_internal::MixingHashState, unsigned long>(absl::hash_internal::MixingHashState, unsigned long const&)
Line
Count
Source
330
62
H hash_bytes(H hash_state, const T& value) {
331
62
  const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
332
62
  return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
333
62
}
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::hash_bytes<absl::hash_internal::MixingHashState, int>(absl::hash_internal::MixingHashState, int const&)
334
335
// -----------------------------------------------------------------------------
336
// AbslHashValue for Basic Types
337
// -----------------------------------------------------------------------------
338
339
// Note: Default `AbslHashValue` implementations live in `hash_internal`. This
340
// allows us to block lexical scope lookup when doing an unqualified call to
341
// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
342
// only be found via ADL.
343
344
// AbslHashValue() for hashing bool values
345
//
346
// We use SFINAE to ensure that this overload only accepts bool, not types that
347
// are convertible to bool.
348
template <typename H, typename B>
349
typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
350
    H hash_state, B value) {
351
  return H::combine(std::move(hash_state),
352
                    static_cast<unsigned char>(value ? 1 : 0));
353
}
354
355
// AbslHashValue() for hashing enum values
356
template <typename H, typename Enum>
357
typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
358
    H hash_state, Enum e) {
359
  // In practice, we could almost certainly just invoke hash_bytes directly,
360
  // but it's possible that a sanitizer might one day want to
361
  // store data in the unused bits of an enum. To avoid that risk, we
362
  // convert to the underlying type before hashing. Hopefully this will get
363
  // optimized away; if not, we can reopen discussion with c-toolchain-team.
364
  return H::combine(std::move(hash_state),
365
                    static_cast<typename std::underlying_type<Enum>::type>(e));
366
}
367
// AbslHashValue() for hashing floating-point values
368
template <typename H, typename Float>
369
typename std::enable_if<std::is_same<Float, float>::value ||
370
                            std::is_same<Float, double>::value,
371
                        H>::type
372
AbslHashValue(H hash_state, Float value) {
373
  return hash_internal::hash_bytes(std::move(hash_state),
374
                                   value == 0 ? 0 : value);
375
}
376
377
// Long double has the property that it might have extra unused bytes in it.
378
// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
379
// of it. This means we can't use hash_bytes on a long double and have to
380
// convert it to something else first.
381
template <typename H, typename LongDouble>
382
typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
383
AbslHashValue(H hash_state, LongDouble value) {
384
  const int category = std::fpclassify(value);
385
  switch (category) {
386
    case FP_INFINITE:
387
      // Add the sign bit to differentiate between +Inf and -Inf
388
      hash_state = H::combine(std::move(hash_state), std::signbit(value));
389
      break;
390
391
    case FP_NAN:
392
    case FP_ZERO:
393
    default:
394
      // Category is enough for these.
395
      break;
396
397
    case FP_NORMAL:
398
    case FP_SUBNORMAL:
399
      // We can't convert `value` directly to double because this would have
400
      // undefined behavior if the value is out of range.
401
      // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
402
      // guaranteed to be in range for `double`. The truncation is
403
      // implementation defined, but that works as long as it is deterministic.
404
      int exp;
405
      auto mantissa = static_cast<double>(std::frexp(value, &exp));
406
      hash_state = H::combine(std::move(hash_state), mantissa, exp);
407
  }
408
409
  return H::combine(std::move(hash_state), category);
410
}
411
412
// AbslHashValue() for hashing pointers
413
template <typename H, typename T>
414
H AbslHashValue(H hash_state, T* ptr) {
415
  auto v = reinterpret_cast<uintptr_t>(ptr);
416
  // Due to alignment, pointers tend to have low bits as zero, and the next few
417
  // bits follow a pattern since they are also multiples of some base value.
418
  // Mixing the pointer twice helps prevent stuck low bits for certain alignment
419
  // values.
420
  return H::combine(std::move(hash_state), v, v);
421
}
422
423
// AbslHashValue() for hashing nullptr_t
424
template <typename H>
425
H AbslHashValue(H hash_state, std::nullptr_t) {
426
  return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
427
}
428
429
// AbslHashValue() for hashing pointers-to-member
430
template <typename H, typename T, typename C>
431
H AbslHashValue(H hash_state, T C::*ptr) {
432
  auto salient_ptm_size = [](std::size_t n) -> std::size_t {
433
#if defined(_MSC_VER)
434
    // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2,
435
    // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain
436
    // padding (namely when they have 1 or 3 ints). The value below is a lower
437
    // bound on the number of salient, non-padding bytes that we use for
438
    // hashing.
439
    if (alignof(T C::*) == alignof(int)) {
440
      // No padding when all subobjects have the same size as the total
441
      // alignment. This happens in 32-bit mode.
442
      return n;
443
    } else {
444
      // Padding for 1 int (size 16) or 3 ints (size 24).
445
      // With 2 ints, the size is 16 with no padding, which we pessimize.
446
      return n == 24 ? 20 : n == 16 ? 12 : n;
447
    }
448
#else
449
  // On other platforms, we assume that pointers-to-members do not have
450
  // padding.
451
#ifdef __cpp_lib_has_unique_object_representations
452
    static_assert(std::has_unique_object_representations<T C::*>::value);
453
#endif  // __cpp_lib_has_unique_object_representations
454
    return n;
455
#endif
456
  };
457
  return H::combine_contiguous(std::move(hash_state),
458
                               reinterpret_cast<unsigned char*>(&ptr),
459
                               salient_ptm_size(sizeof ptr));
460
}
461
462
// -----------------------------------------------------------------------------
463
// AbslHashValue for Composite Types
464
// -----------------------------------------------------------------------------
465
466
// AbslHashValue() for hashing pairs
467
template <typename H, typename T1, typename T2>
468
typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
469
                        H>::type
470
AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
471
  return H::combine(std::move(hash_state), p.first, p.second);
472
}
473
474
// hash_tuple()
475
//
476
// Helper function for hashing a tuple. The third argument should
477
// be an index_sequence running from 0 to tuple_size<Tuple> - 1.
478
template <typename H, typename Tuple, size_t... Is>
479
0
H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
480
0
  return H::combine(std::move(hash_state), std::get<Is>(t)...);
481
0
}
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::hash_tuple<absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&>, 0ul>(absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&, absl::integer_sequence<unsigned long, 0ul>)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::hash_tuple<absl::hash_internal::MixingHashState, std::__1::tuple<absl::string_view const&, int const&>, 0ul, 1ul>(absl::hash_internal::MixingHashState, std::__1::tuple<absl::string_view const&, int const&> const&, absl::integer_sequence<unsigned long, 0ul, 1ul>)
482
483
// AbslHashValue for hashing tuples
484
template <typename H, typename... Ts>
485
#if defined(_MSC_VER)
486
// This SFINAE gets MSVC confused under some conditions. Let's just disable it
487
// for now.
488
H
489
#else   // _MSC_VER
490
typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
491
#endif  // _MSC_VER
492
0
AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
493
0
  return hash_internal::hash_tuple(std::move(hash_state), t,
494
0
                                   absl::make_index_sequence<sizeof...(Ts)>());
495
0
}
Unexecuted instantiation: _ZN4absl13hash_internal13AbslHashValueINS0_15MixingHashStateEJRKmEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS0_11is_hashableIT0_EEEE5valueET_E4typeESB_RKNS5_5tupleIJDpS8_EEE
Unexecuted instantiation: _ZN4absl13hash_internal13AbslHashValueINS0_15MixingHashStateEJRKNS_11string_viewERKiEEENSt3__19enable_ifIXsr4absl11conjunctionIDpNS0_11is_hashableIT0_EEEE5valueET_E4typeESE_RKNS8_5tupleIJDpSB_EEE
496
497
// -----------------------------------------------------------------------------
498
// AbslHashValue for Pointers
499
// -----------------------------------------------------------------------------
500
501
// AbslHashValue for hashing unique_ptr
502
template <typename H, typename T, typename D>
503
H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
504
  return H::combine(std::move(hash_state), ptr.get());
505
}
506
507
// AbslHashValue for hashing shared_ptr
508
template <typename H, typename T>
509
H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
510
  return H::combine(std::move(hash_state), ptr.get());
511
}
512
513
// -----------------------------------------------------------------------------
514
// AbslHashValue for String-Like Types
515
// -----------------------------------------------------------------------------
516
517
// AbslHashValue for hashing strings
518
//
519
// All the string-like types supported here provide the same hash expansion for
520
// the same character sequence. These types are:
521
//
522
//  - `absl::Cord`
523
//  - `std::string` (and std::basic_string<T, std::char_traits<T>, A> for
524
//      any allocator A and any T in {char, wchar_t, char16_t, char32_t})
525
//  - `absl::string_view`, `std::string_view`, `std::wstring_view`,
526
//    `std::u16string_view`, and `std::u32_string_view`.
527
//
528
// For simplicity, we currently support only strings built on `char`, `wchar_t`,
529
// `char16_t`, or `char32_t`. This support may be broadened, if necessary, but
530
// with some caution - this overload would misbehave in cases where the traits'
531
// `eq()` member isn't equivalent to `==` on the underlying character type.
532
template <typename H>
533
62
H AbslHashValue(H hash_state, absl::string_view str) {
534
62
  return H::combine(
535
62
      H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
536
62
      str.size());
537
62
}
538
539
// Support std::wstring, std::u16string and std::u32string.
540
template <typename Char, typename Alloc, typename H,
541
          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
542
                                       std::is_same<Char, char16_t>::value ||
543
                                       std::is_same<Char, char32_t>::value>>
544
H AbslHashValue(
545
    H hash_state,
546
    const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
547
  return H::combine(
548
      H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
549
      str.size());
550
}
551
552
#ifdef ABSL_HAVE_STD_STRING_VIEW
553
554
// Support std::wstring_view, std::u16string_view and std::u32string_view.
555
template <typename Char, typename H,
556
          typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
557
                                       std::is_same<Char, char16_t>::value ||
558
                                       std::is_same<Char, char32_t>::value>>
559
H AbslHashValue(H hash_state, std::basic_string_view<Char> str) {
560
  return H::combine(
561
      H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
562
      str.size());
563
}
564
565
#endif  // ABSL_HAVE_STD_STRING_VIEW
566
567
// -----------------------------------------------------------------------------
568
// AbslHashValue for Sequence Containers
569
// -----------------------------------------------------------------------------
570
571
// AbslHashValue for hashing std::array
572
template <typename H, typename T, size_t N>
573
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
574
    H hash_state, const std::array<T, N>& array) {
575
  return H::combine_contiguous(std::move(hash_state), array.data(),
576
                               array.size());
577
}
578
579
// AbslHashValue for hashing std::deque
580
template <typename H, typename T, typename Allocator>
581
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
582
    H hash_state, const std::deque<T, Allocator>& deque) {
583
  // TODO(gromer): investigate a more efficient implementation taking
584
  // advantage of the chunk structure.
585
  for (const auto& t : deque) {
586
    hash_state = H::combine(std::move(hash_state), t);
587
  }
588
  return H::combine(std::move(hash_state), deque.size());
589
}
590
591
// AbslHashValue for hashing std::forward_list
592
template <typename H, typename T, typename Allocator>
593
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
594
    H hash_state, const std::forward_list<T, Allocator>& list) {
595
  size_t size = 0;
596
  for (const T& t : list) {
597
    hash_state = H::combine(std::move(hash_state), t);
598
    ++size;
599
  }
600
  return H::combine(std::move(hash_state), size);
601
}
602
603
// AbslHashValue for hashing std::list
604
template <typename H, typename T, typename Allocator>
605
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
606
    H hash_state, const std::list<T, Allocator>& list) {
607
  for (const auto& t : list) {
608
    hash_state = H::combine(std::move(hash_state), t);
609
  }
610
  return H::combine(std::move(hash_state), list.size());
611
}
612
613
// AbslHashValue for hashing std::vector
614
//
615
// Do not use this for vector<bool> on platforms that have a working
616
// implementation of std::hash. It does not have a .data(), and a fallback for
617
// std::hash<> is most likely faster.
618
template <typename H, typename T, typename Allocator>
619
typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
620
                        H>::type
621
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
622
  return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
623
                                          vector.size()),
624
                    vector.size());
625
}
626
627
// AbslHashValue special cases for hashing std::vector<bool>
628
629
#if defined(ABSL_IS_BIG_ENDIAN) && \
630
    (defined(__GLIBCXX__) || defined(__GLIBCPP__))
631
632
// std::hash in libstdc++ does not work correctly with vector<bool> on Big
633
// Endian platforms therefore we need to implement a custom AbslHashValue for
634
// it. More details on the bug:
635
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
636
template <typename H, typename T, typename Allocator>
637
typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
638
                        H>::type
639
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
640
  typename H::AbslInternalPiecewiseCombiner combiner;
641
  for (const auto& i : vector) {
642
    unsigned char c = static_cast<unsigned char>(i);
643
    hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
644
  }
645
  return H::combine(combiner.finalize(std::move(hash_state)), vector.size());
646
}
647
#else
648
// When not working around the libstdc++ bug above, we still have to contend
649
// with the fact that std::hash<vector<bool>> is often poor quality, hashing
650
// directly on the internal words and on no other state.  On these platforms,
651
// vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value.
652
//
653
// Mixing in the size (as we do in our other vector<> implementations) on top
654
// of the library-provided hash implementation avoids this QOI issue.
655
template <typename H, typename T, typename Allocator>
656
typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
657
                        H>::type
658
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
659
  return H::combine(std::move(hash_state),
660
                    std::hash<std::vector<T, Allocator>>{}(vector),
661
                    vector.size());
662
}
663
#endif
664
665
// -----------------------------------------------------------------------------
666
// AbslHashValue for Ordered Associative Containers
667
// -----------------------------------------------------------------------------
668
669
// AbslHashValue for hashing std::map
670
template <typename H, typename Key, typename T, typename Compare,
671
          typename Allocator>
672
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
673
                        H>::type
674
AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
675
  for (const auto& t : map) {
676
    hash_state = H::combine(std::move(hash_state), t);
677
  }
678
  return H::combine(std::move(hash_state), map.size());
679
}
680
681
// AbslHashValue for hashing std::multimap
682
template <typename H, typename Key, typename T, typename Compare,
683
          typename Allocator>
684
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
685
                        H>::type
686
AbslHashValue(H hash_state,
687
              const std::multimap<Key, T, Compare, Allocator>& map) {
688
  for (const auto& t : map) {
689
    hash_state = H::combine(std::move(hash_state), t);
690
  }
691
  return H::combine(std::move(hash_state), map.size());
692
}
693
694
// AbslHashValue for hashing std::set
695
template <typename H, typename Key, typename Compare, typename Allocator>
696
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
697
    H hash_state, const std::set<Key, Compare, Allocator>& set) {
698
  for (const auto& t : set) {
699
    hash_state = H::combine(std::move(hash_state), t);
700
  }
701
  return H::combine(std::move(hash_state), set.size());
702
}
703
704
// AbslHashValue for hashing std::multiset
705
template <typename H, typename Key, typename Compare, typename Allocator>
706
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
707
    H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
708
  for (const auto& t : set) {
709
    hash_state = H::combine(std::move(hash_state), t);
710
  }
711
  return H::combine(std::move(hash_state), set.size());
712
}
713
714
// -----------------------------------------------------------------------------
715
// AbslHashValue for Unordered Associative Containers
716
// -----------------------------------------------------------------------------
717
718
// AbslHashValue for hashing std::unordered_set
719
template <typename H, typename Key, typename Hash, typename KeyEqual,
720
          typename Alloc>
721
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
722
    H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) {
723
  return H::combine(
724
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
725
      s.size());
726
}
727
728
// AbslHashValue for hashing std::unordered_multiset
729
template <typename H, typename Key, typename Hash, typename KeyEqual,
730
          typename Alloc>
731
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
732
    H hash_state,
733
    const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) {
734
  return H::combine(
735
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
736
      s.size());
737
}
738
739
// AbslHashValue for hashing std::unordered_set
740
template <typename H, typename Key, typename T, typename Hash,
741
          typename KeyEqual, typename Alloc>
742
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
743
                        H>::type
744
AbslHashValue(H hash_state,
745
              const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) {
746
  return H::combine(
747
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
748
      s.size());
749
}
750
751
// AbslHashValue for hashing std::unordered_multiset
752
template <typename H, typename Key, typename T, typename Hash,
753
          typename KeyEqual, typename Alloc>
754
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
755
                        H>::type
756
AbslHashValue(H hash_state,
757
              const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) {
758
  return H::combine(
759
      H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
760
      s.size());
761
}
762
763
// -----------------------------------------------------------------------------
764
// AbslHashValue for Wrapper Types
765
// -----------------------------------------------------------------------------
766
767
// AbslHashValue for hashing std::reference_wrapper
768
template <typename H, typename T>
769
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
770
    H hash_state, std::reference_wrapper<T> opt) {
771
  return H::combine(std::move(hash_state), opt.get());
772
}
773
774
// AbslHashValue for hashing absl::optional
775
template <typename H, typename T>
776
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
777
    H hash_state, const absl::optional<T>& opt) {
778
  if (opt) hash_state = H::combine(std::move(hash_state), *opt);
779
  return H::combine(std::move(hash_state), opt.has_value());
780
}
781
782
// VariantVisitor
783
template <typename H>
784
struct VariantVisitor {
785
  H&& hash_state;
786
  template <typename T>
787
  H operator()(const T& t) const {
788
    return H::combine(std::move(hash_state), t);
789
  }
790
};
791
792
// AbslHashValue for hashing absl::variant
793
template <typename H, typename... T>
794
typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
795
AbslHashValue(H hash_state, const absl::variant<T...>& v) {
796
  if (!v.valueless_by_exception()) {
797
    hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
798
  }
799
  return H::combine(std::move(hash_state), v.index());
800
}
801
802
// -----------------------------------------------------------------------------
803
// AbslHashValue for Other Types
804
// -----------------------------------------------------------------------------
805
806
// AbslHashValue for hashing std::bitset is not defined on Little Endian
807
// platforms, for the same reason as for vector<bool> (see std::vector above):
808
// It does not expose the raw bytes, and a fallback to std::hash<> is most
809
// likely faster.
810
811
#if defined(ABSL_IS_BIG_ENDIAN) && \
812
    (defined(__GLIBCXX__) || defined(__GLIBCPP__))
813
// AbslHashValue for hashing std::bitset
814
//
815
// std::hash in libstdc++ does not work correctly with std::bitset on Big Endian
816
// platforms therefore we need to implement a custom AbslHashValue for it. More
817
// details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
818
template <typename H, size_t N>
819
H AbslHashValue(H hash_state, const std::bitset<N>& set) {
820
  typename H::AbslInternalPiecewiseCombiner combiner;
821
  for (int i = 0; i < N; i++) {
822
    unsigned char c = static_cast<unsigned char>(set[i]);
823
    hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
824
  }
825
  return H::combine(combiner.finalize(std::move(hash_state)), N);
826
}
827
#endif
828
829
// -----------------------------------------------------------------------------
830
831
// hash_range_or_bytes()
832
//
833
// Mixes all values in the range [data, data+size) into the hash state.
834
// This overload accepts only uniquely-represented types, and hashes them by
835
// hashing the entire range of bytes.
836
template <typename H, typename T>
837
typename std::enable_if<is_uniquely_represented<T>::value, H>::type
838
62
hash_range_or_bytes(H hash_state, const T* data, size_t size) {
839
62
  const auto* bytes = reinterpret_cast<const unsigned char*>(data);
840
62
  return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
841
62
}
842
843
// hash_range_or_bytes()
844
template <typename H, typename T>
845
typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
846
hash_range_or_bytes(H hash_state, const T* data, size_t size) {
847
  for (const auto end = data + size; data < end; ++data) {
848
    hash_state = H::combine(std::move(hash_state), *data);
849
  }
850
  return hash_state;
851
}
852
853
#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
854
    ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
855
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
856
#else
857
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
858
#endif
859
860
// HashSelect
861
//
862
// Type trait to select the appropriate hash implementation to use.
863
// HashSelect::type<T> will give the proper hash implementation, to be invoked
864
// as:
865
//   HashSelect::type<T>::Invoke(state, value)
866
// Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
867
// valid `Invoke` function. Types that are not hashable will have a ::value of
868
// `false`.
869
struct HashSelect {
870
 private:
871
  struct State : HashStateBase<State> {
872
    static State combine_contiguous(State hash_state, const unsigned char*,
873
                                    size_t);
874
    using State::HashStateBase::combine_contiguous;
875
  };
876
877
  struct UniquelyRepresentedProbe {
878
    template <typename H, typename T>
879
    static auto Invoke(H state, const T& value)
880
62
        -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
881
62
      return hash_internal::hash_bytes(std::move(state), value);
882
62
    }
_ZN4absl13hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS0_15MixingHashStateEmEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES8_RKS7_
Line
Count
Source
880
62
        -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
881
62
      return hash_internal::hash_bytes(std::move(state), value);
882
62
    }
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect24UniquelyRepresentedProbe6InvokeINS0_15MixingHashStateEiEENSt3__19enable_ifIXsr23is_uniquely_representedIT0_EE5valueET_E4typeES8_RKS7_
883
  };
884
885
  struct HashValueProbe {
886
    template <typename H, typename T>
887
    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
888
        std::is_same<H,
889
                     decltype(AbslHashValue(std::move(state), value))>::value,
890
62
        H> {
891
62
      return AbslHashValue(std::move(state), value);
892
62
    }
_ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENS_11string_viewEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES8_E4typeES8_RKT0_
Line
Count
Source
890
62
        H> {
891
62
      return AbslHashValue(std::move(state), value);
892
62
    }
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENS_4CordEEENSt3__19enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueES8_E4typeES8_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__15tupleIJRKmEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESB_E4typeESB_RKT0_
Unexecuted instantiation: _ZN4absl13hash_internal10HashSelect14HashValueProbe6InvokeINS0_15MixingHashStateENSt3__15tupleIJRKNS_11string_viewERKiEEEEENS5_9enable_ifIXsr3std7is_sameIT_DTcl13AbslHashValueclsr3stdE4movefp_Efp0_EEEE5valueESE_E4typeESE_RKT0_
893
  };
894
895
  struct LegacyHashProbe {
896
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
897
    template <typename H, typename T>
898
    static auto Invoke(H state, const T& value) -> absl::enable_if_t<
899
        std::is_convertible<
900
            decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
901
            size_t>::value,
902
        H> {
903
      return hash_internal::hash_bytes(
904
          std::move(state),
905
          ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
906
    }
907
#endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
908
  };
909
910
  struct StdHashProbe {
911
    template <typename H, typename T>
912
    static auto Invoke(H state, const T& value)
913
        -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
914
      return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
915
    }
916
  };
917
918
  template <typename Hash, typename T>
919
  struct Probe : Hash {
920
   private:
921
    template <typename H, typename = decltype(H::Invoke(
922
                              std::declval<State>(), std::declval<const T&>()))>
923
    static std::true_type Test(int);
924
    template <typename U>
925
    static std::false_type Test(char);
926
927
   public:
928
    static constexpr bool value = decltype(Test<Hash>(0))::value;
929
  };
930
931
 public:
932
  // Probe each implementation in order.
933
  // disjunction provides short circuiting wrt instantiation.
934
  template <typename T>
935
  using Apply = absl::disjunction<         //
936
      Probe<UniquelyRepresentedProbe, T>,  //
937
      Probe<HashValueProbe, T>,            //
938
      Probe<LegacyHashProbe, T>,           //
939
      Probe<StdHashProbe, T>,              //
940
      std::false_type>;
941
};
942
943
template <typename T>
944
struct is_hashable
945
    : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
946
947
// MixingHashState
948
class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
949
  // absl::uint128 is not an alias or a thin wrapper around the intrinsic.
950
  // We use the intrinsic when available to improve performance.
951
#ifdef ABSL_HAVE_INTRINSIC_INT128
952
  using uint128 = __uint128_t;
953
#else   // ABSL_HAVE_INTRINSIC_INT128
954
  using uint128 = absl::uint128;
955
#endif  // ABSL_HAVE_INTRINSIC_INT128
956
957
  static constexpr uint64_t kMul =
958
  sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
959
                      : uint64_t{0x9ddfea08eb382d69};
960
961
  template <typename T>
962
  using IntegralFastPath =
963
      conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
964
965
 public:
966
  // Move only
967
  MixingHashState(MixingHashState&&) = default;
968
  MixingHashState& operator=(MixingHashState&&) = default;
969
970
  // MixingHashState::combine_contiguous()
971
  //
972
  // Fundamental base case for hash recursion: mixes the given range of bytes
973
  // into the hash state.
974
  static MixingHashState combine_contiguous(MixingHashState hash_state,
975
                                            const unsigned char* first,
976
124
                                            size_t size) {
977
124
    return MixingHashState(
978
124
        CombineContiguousImpl(hash_state.state_, first, size,
979
124
                              std::integral_constant<int, sizeof(size_t)>{}));
980
124
  }
981
  using MixingHashState::HashStateBase::combine_contiguous;
982
983
  // MixingHashState::hash()
984
  //
985
  // For performance reasons in non-opt mode, we specialize this for
986
  // integral types.
987
  // Otherwise we would be instantiating and calling dozens of functions for
988
  // something that is just one multiplication and a couple xor's.
989
  // The result should be the same as running the whole algorithm, but faster.
990
  template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
991
  static size_t hash(T value) {
992
    return static_cast<size_t>(
993
        Mix(Seed(), static_cast<std::make_unsigned_t<T>>(value)));
994
  }
995
996
  // Overload of MixingHashState::hash()
997
  template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
998
62
  static size_t hash(const T& value) {
999
62
    return static_cast<size_t>(combine(MixingHashState{}, value).state_);
1000
62
  }
unsigned long absl::hash_internal::MixingHashState::hash<absl::string_view, 0>(absl::string_view const&)
Line
Count
Source
998
62
  static size_t hash(const T& value) {
999
62
    return static_cast<size_t>(combine(MixingHashState{}, value).state_);
1000
62
  }
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<absl::Cord, 0>(absl::Cord const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::tuple<unsigned long const&>, 0>(std::__1::tuple<unsigned long const&> const&)
Unexecuted instantiation: unsigned long absl::hash_internal::MixingHashState::hash<std::__1::tuple<absl::string_view const&, int const&>, 0>(std::__1::tuple<absl::string_view const&, int const&> const&)
1001
1002
 private:
1003
  // Invoked only once for a given argument; that plus the fact that this is
1004
  // move-only ensures that there is only one non-moved-from object.
1005
62
  MixingHashState() : state_(Seed()) {}
1006
1007
  friend class MixingHashState::HashStateBase;
1008
1009
  template <typename CombinerT>
1010
  static MixingHashState RunCombineUnordered(MixingHashState state,
1011
                                             CombinerT combiner) {
1012
    uint64_t unordered_state = 0;
1013
    combiner(MixingHashState{}, [&](MixingHashState& inner_state) {
1014
      // Add the hash state of the element to the running total, but mix the
1015
      // carry bit back into the low bit.  This in intended to avoid losing
1016
      // entropy to overflow, especially when unordered_multisets contain
1017
      // multiple copies of the same value.
1018
      auto element_state = inner_state.state_;
1019
      unordered_state += element_state;
1020
      if (unordered_state < element_state) {
1021
        ++unordered_state;
1022
      }
1023
      inner_state = MixingHashState{};
1024
    });
1025
    return MixingHashState::combine(std::move(state), unordered_state);
1026
  }
1027
1028
  // Allow the HashState type-erasure implementation to invoke
1029
  // RunCombinedUnordered() directly.
1030
  friend class absl::HashState;
1031
1032
  // Workaround for MSVC bug.
1033
  // We make the type copyable to fix the calling convention, even though we
1034
  // never actually copy it. Keep it private to not affect the public API of the
1035
  // type.
1036
  MixingHashState(const MixingHashState&) = default;
1037
1038
124
  explicit MixingHashState(uint64_t state) : state_(state) {}
1039
1040
  // Implementation of the base case for combine_contiguous where we actually
1041
  // mix the bytes into the state.
1042
  // Dispatch to different implementations of the combine_contiguous depending
1043
  // on the value of `sizeof(size_t)`.
1044
  static uint64_t CombineContiguousImpl(uint64_t state,
1045
                                        const unsigned char* first, size_t len,
1046
                                        std::integral_constant<int, 4>
1047
                                        /* sizeof_size_t */);
1048
  static uint64_t CombineContiguousImpl(uint64_t state,
1049
                                        const unsigned char* first, size_t len,
1050
                                        std::integral_constant<int, 8>
1051
                                        /* sizeof_size_t */);
1052
1053
  // Slow dispatch path for calls to CombineContiguousImpl with a size argument
1054
  // larger than PiecewiseChunkSize().  Has the same effect as calling
1055
  // CombineContiguousImpl() repeatedly with the chunk stride size.
1056
  static uint64_t CombineLargeContiguousImpl32(uint64_t state,
1057
                                               const unsigned char* first,
1058
                                               size_t len);
1059
  static uint64_t CombineLargeContiguousImpl64(uint64_t state,
1060
                                               const unsigned char* first,
1061
                                               size_t len);
1062
1063
  // Reads 9 to 16 bytes from p.
1064
  // The least significant 8 bytes are in .first, the rest (zero padded) bytes
1065
  // are in .second.
1066
  static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
1067
0
                                                 size_t len) {
1068
0
    uint64_t low_mem = absl::base_internal::UnalignedLoad64(p);
1069
0
    uint64_t high_mem = absl::base_internal::UnalignedLoad64(p + len - 8);
1070
0
#ifdef ABSL_IS_LITTLE_ENDIAN
1071
0
    uint64_t most_significant = high_mem;
1072
0
    uint64_t least_significant = low_mem;
1073
#else
1074
    uint64_t most_significant = low_mem;
1075
    uint64_t least_significant = high_mem;
1076
#endif
1077
0
    return {least_significant, most_significant};
1078
0
  }
1079
1080
  // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
1081
68
  static uint64_t Read4To8(const unsigned char* p, size_t len) {
1082
68
    uint32_t low_mem = absl::base_internal::UnalignedLoad32(p);
1083
68
    uint32_t high_mem = absl::base_internal::UnalignedLoad32(p + len - 4);
1084
68
#ifdef ABSL_IS_LITTLE_ENDIAN
1085
68
    uint32_t most_significant = high_mem;
1086
68
    uint32_t least_significant = low_mem;
1087
#else
1088
    uint32_t most_significant = low_mem;
1089
    uint32_t least_significant = high_mem;
1090
#endif
1091
68
    return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) |
1092
68
           least_significant;
1093
68
  }
1094
1095
  // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
1096
0
  static uint32_t Read1To3(const unsigned char* p, size_t len) {
1097
    // The trick used by this implementation is to avoid branches if possible.
1098
0
    unsigned char mem0 = p[0];
1099
0
    unsigned char mem1 = p[len / 2];
1100
0
    unsigned char mem2 = p[len - 1];
1101
0
#ifdef ABSL_IS_LITTLE_ENDIAN
1102
0
    unsigned char significant2 = mem2;
1103
0
    unsigned char significant1 = mem1;
1104
0
    unsigned char significant0 = mem0;
1105
#else
1106
    unsigned char significant2 = mem0;
1107
    unsigned char significant1 = len == 2 ? mem0 : mem1;
1108
    unsigned char significant0 = mem2;
1109
#endif
1110
0
    return static_cast<uint32_t>(significant0 |                     //
1111
0
                                 (significant1 << (len / 2 * 8)) |  //
1112
0
                                 (significant2 << ((len - 1) * 8)));
1113
0
  }
1114
1115
124
  ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
1116
    // Though the 128-bit product on AArch64 needs two instructions, it is
1117
    // still a good balance between speed and hash quality.
1118
124
    using MultType =
1119
124
        absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
1120
    // We do the addition in 64-bit space to make sure the 128-bit
1121
    // multiplication is fast. If we were to do it as MultType the compiler has
1122
    // to assume that the high word is non-zero and needs to perform 2
1123
    // multiplications instead of one.
1124
124
    MultType m = state + v;
1125
124
    m *= kMul;
1126
124
    return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
1127
124
  }
1128
1129
  // An extern to avoid bloat on a direct call to LowLevelHash() with fixed
1130
  // values for both the seed and salt parameters.
1131
  static uint64_t LowLevelHashImpl(const unsigned char* data, size_t len);
1132
1133
  ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Hash64(const unsigned char* data,
1134
56
                                                      size_t len) {
1135
56
#ifdef ABSL_HAVE_INTRINSIC_INT128
1136
56
    return LowLevelHashImpl(data, len);
1137
#else
1138
    return hash_internal::CityHash64(reinterpret_cast<const char*>(data), len);
1139
#endif
1140
56
  }
1141
1142
  // Seed()
1143
  //
1144
  // A non-deterministic seed.
1145
  //
1146
  // The current purpose of this seed is to generate non-deterministic results
1147
  // and prevent having users depend on the particular hash values.
1148
  // It is not meant as a security feature right now, but it leaves the door
1149
  // open to upgrade it to a true per-process random seed. A true random seed
1150
  // costs more and we don't need to pay for that right now.
1151
  //
1152
  // On platforms with ASLR, we take advantage of it to make a per-process
1153
  // random value.
1154
  // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
1155
  //
1156
  // On other platforms this is still going to be non-deterministic but most
1157
  // probably per-build and not per-process.
1158
118
  ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
1159
118
#if (!defined(__clang__) || __clang_major__ > 11) && \
1160
118
    (!defined(__apple_build_version__) ||            \
1161
118
     __apple_build_version__ >= 19558921)  // Xcode 12
1162
118
    return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed));
1163
#else
1164
    // Workaround the absence of
1165
    // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
1166
    return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
1167
#endif
1168
118
  }
1169
  static const void* const kSeed;
1170
1171
  uint64_t state_;
1172
};
1173
1174
// MixingHashState::CombineContiguousImpl()
1175
inline uint64_t MixingHashState::CombineContiguousImpl(
1176
    uint64_t state, const unsigned char* first, size_t len,
1177
0
    std::integral_constant<int, 4> /* sizeof_size_t */) {
1178
  // For large values we use CityHash, for small ones we just use a
1179
  // multiplicative hash.
1180
0
  uint64_t v;
1181
0
  if (len > 8) {
1182
0
    if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1183
0
      return CombineLargeContiguousImpl32(state, first, len);
1184
0
    }
1185
0
    v = hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
1186
0
  } else if (len >= 4) {
1187
0
    v = Read4To8(first, len);
1188
0
  } else if (len > 0) {
1189
0
    v = Read1To3(first, len);
1190
0
  } else {
1191
    // Empty ranges have no effect.
1192
0
    return state;
1193
0
  }
1194
0
  return Mix(state, v);
1195
0
}
1196
1197
// Overload of MixingHashState::CombineContiguousImpl()
1198
inline uint64_t MixingHashState::CombineContiguousImpl(
1199
    uint64_t state, const unsigned char* first, size_t len,
1200
124
    std::integral_constant<int, 8> /* sizeof_size_t */) {
1201
  // For large values we use LowLevelHash or CityHash depending on the platform,
1202
  // for small ones we just use a multiplicative hash.
1203
124
  uint64_t v;
1204
124
  if (len > 16) {
1205
56
    if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1206
0
      return CombineLargeContiguousImpl64(state, first, len);
1207
0
    }
1208
56
    v = Hash64(first, len);
1209
68
  } else if (len > 8) {
1210
    // This hash function was constructed by the ML-driven algorithm discovery
1211
    // using reinforcement learning. We fed the agent lots of inputs from
1212
    // microbenchmarks, SMHasher, low hamming distance from generated inputs and
1213
    // picked up the one that was good on micro and macrobenchmarks.
1214
0
    auto p = Read9To16(first, len);
1215
0
    uint64_t lo = p.first;
1216
0
    uint64_t hi = p.second;
1217
    // Rotation by 53 was found to be most often useful when discovering these
1218
    // hashing algorithms with ML techniques.
1219
0
    lo = absl::rotr(lo, 53);
1220
0
    state += kMul;
1221
0
    lo += state;
1222
0
    state ^= hi;
1223
0
    uint128 m = state;
1224
0
    m *= lo;
1225
0
    return static_cast<uint64_t>(m ^ (m >> 64));
1226
68
  } else if (len >= 4) {
1227
68
    v = Read4To8(first, len);
1228
68
  } else if (len > 0) {
1229
0
    v = Read1To3(first, len);
1230
0
  } else {
1231
    // Empty ranges have no effect.
1232
0
    return state;
1233
0
  }
1234
124
  return Mix(state, v);
1235
124
}
1236
1237
struct AggregateBarrier {};
1238
1239
// HashImpl
1240
1241
// Add a private base class to make sure this type is not an aggregate.
1242
// Aggregates can be aggregate initialized even if the default constructor is
1243
// deleted.
1244
struct PoisonedHash : private AggregateBarrier {
1245
  PoisonedHash() = delete;
1246
  PoisonedHash(const PoisonedHash&) = delete;
1247
  PoisonedHash& operator=(const PoisonedHash&) = delete;
1248
};
1249
1250
template <typename T>
1251
struct HashImpl {
1252
62
  size_t operator()(const T& value) const {
1253
62
    return MixingHashState::hash(value);
1254
62
  }
absl::hash_internal::HashImpl<absl::string_view>::operator()(absl::string_view const&) const
Line
Count
Source
1252
62
  size_t operator()(const T& value) const {
1253
62
    return MixingHashState::hash(value);
1254
62
  }
Unexecuted instantiation: absl::hash_internal::HashImpl<absl::Cord>::operator()(absl::Cord const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::tuple<unsigned long const&> >::operator()(std::__1::tuple<unsigned long const&> const&) const
Unexecuted instantiation: absl::hash_internal::HashImpl<std::__1::tuple<absl::string_view const&, int const&> >::operator()(std::__1::tuple<absl::string_view const&, int const&> const&) const
1255
};
1256
1257
template <typename T>
1258
struct Hash
1259
    : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
1260
1261
template <typename H>
1262
template <typename T, typename... Ts>
1263
124
H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1264
124
  return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1265
124
                        std::move(state), value),
1266
124
                    values...);
1267
124
}
absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<absl::string_view>(absl::hash_internal::MixingHashState, absl::string_view const&)
Line
Count
Source
1263
62
H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1264
62
  return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1265
62
                        std::move(state), value),
1266
62
                    values...);
1267
62
}
absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<unsigned long>(absl::hash_internal::MixingHashState, unsigned long const&)
Line
Count
Source
1263
62
H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1264
62
  return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1265
62
                        std::move(state), value),
1266
62
                    values...);
1267
62
}
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<absl::Cord>(absl::hash_internal::MixingHashState, absl::Cord const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::tuple<unsigned long const&>>(absl::hash_internal::MixingHashState, std::__1::tuple<unsigned long const&> const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<std::__1::tuple<absl::string_view const&, int const&>>(absl::hash_internal::MixingHashState, std::__1::tuple<absl::string_view const&, int const&> const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<absl::string_view, int>(absl::hash_internal::MixingHashState, absl::string_view const&, int const&)
Unexecuted instantiation: absl::hash_internal::MixingHashState absl::hash_internal::HashStateBase<absl::hash_internal::MixingHashState>::combine<int>(absl::hash_internal::MixingHashState, int const&)
1268
1269
// HashStateBase::combine_contiguous()
1270
template <typename H>
1271
template <typename T>
1272
62
H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
1273
62
  return hash_internal::hash_range_or_bytes(std::move(state), data, size);
1274
62
}
1275
1276
// HashStateBase::combine_unordered()
1277
template <typename H>
1278
template <typename I>
1279
H HashStateBase<H>::combine_unordered(H state, I begin, I end) {
1280
  return H::RunCombineUnordered(std::move(state),
1281
                                CombineUnorderedCallback<I>{begin, end});
1282
}
1283
1284
// HashStateBase::PiecewiseCombiner::add_buffer()
1285
template <typename H>
1286
H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
1287
0
                                size_t size) {
1288
0
  if (position_ + size < PiecewiseChunkSize()) {
1289
0
    // This partial chunk does not fill our existing buffer
1290
0
    memcpy(buf_ + position_, data, size);
1291
0
    position_ += size;
1292
0
    return state;
1293
0
  }
1294
0
1295
0
  // If the buffer is partially filled we need to complete the buffer
1296
0
  // and hash it.
1297
0
  if (position_ != 0) {
1298
0
    const size_t bytes_needed = PiecewiseChunkSize() - position_;
1299
0
    memcpy(buf_ + position_, data, bytes_needed);
1300
0
    state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
1301
0
    data += bytes_needed;
1302
0
    size -= bytes_needed;
1303
0
  }
1304
0
1305
0
  // Hash whatever chunks we can without copying
1306
0
  while (size >= PiecewiseChunkSize()) {
1307
0
    state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
1308
0
    data += PiecewiseChunkSize();
1309
0
    size -= PiecewiseChunkSize();
1310
0
  }
1311
0
  // Fill the buffer with the remainder
1312
0
  memcpy(buf_, data, size);
1313
0
  position_ = size;
1314
0
  return state;
1315
0
}
1316
1317
// HashStateBase::PiecewiseCombiner::finalize()
1318
template <typename H>
1319
0
H PiecewiseCombiner::finalize(H state) {
1320
0
  // Hash the remainder left in the buffer, which may be empty
1321
0
  return H::combine_contiguous(std::move(state), buf_, position_);
1322
0
}
1323
1324
}  // namespace hash_internal
1325
ABSL_NAMESPACE_END
1326
}  // namespace absl
1327
1328
#endif  // ABSL_HASH_INTERNAL_HASH_H_