Coverage Report

Created: 2023-09-25 06:27

/src/abseil-cpp/absl/synchronization/mutex.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2017 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// mutex.h
17
// -----------------------------------------------------------------------------
18
//
19
// This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20
// most common type of synchronization primitive for facilitating locks on
21
// shared resources. A mutex is used to prevent multiple threads from accessing
22
// and/or writing to a shared resource concurrently.
23
//
24
// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25
// features:
26
//   * Conditional predicates intrinsic to the `Mutex` object
27
//   * Shared/reader locks, in addition to standard exclusive/writer locks
28
//   * Deadlock detection and debug support.
29
//
30
// The following helper classes are also defined within this file:
31
//
32
//  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33
//              write access within the current scope.
34
//
35
//  ReaderMutexLock
36
//            - An RAII wrapper to acquire and release a `Mutex` for shared/read
37
//              access within the current scope.
38
//
39
//  WriterMutexLock
40
//            - Effectively an alias for `MutexLock` above, designed for use in
41
//              distinguishing reader and writer locks within code.
42
//
43
// In addition to simple mutex locks, this file also defines ways to perform
44
// locking under certain conditions.
45
//
46
//  Condition - (Preferred) Used to wait for a particular predicate that
47
//              depends on state protected by the `Mutex` to become true.
48
//  CondVar   - A lower-level variant of `Condition` that relies on
49
//              application code to explicitly signal the `CondVar` when
50
//              a condition has been met.
51
//
52
// See below for more information on using `Condition` or `CondVar`.
53
//
54
// Mutexes and mutex behavior can be quite complicated. The information within
55
// this header file is limited, as a result. Please consult the Mutex guide for
56
// more complete information and examples.
57
58
#ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59
#define ABSL_SYNCHRONIZATION_MUTEX_H_
60
61
#include <atomic>
62
#include <cstdint>
63
#include <cstring>
64
#include <iterator>
65
#include <string>
66
67
#include "absl/base/const_init.h"
68
#include "absl/base/internal/identity.h"
69
#include "absl/base/internal/low_level_alloc.h"
70
#include "absl/base/internal/thread_identity.h"
71
#include "absl/base/internal/tsan_mutex_interface.h"
72
#include "absl/base/port.h"
73
#include "absl/base/thread_annotations.h"
74
#include "absl/synchronization/internal/kernel_timeout.h"
75
#include "absl/synchronization/internal/per_thread_sem.h"
76
#include "absl/time/time.h"
77
78
namespace absl {
79
ABSL_NAMESPACE_BEGIN
80
81
class Condition;
82
struct SynchWaitParams;
83
84
// -----------------------------------------------------------------------------
85
// Mutex
86
// -----------------------------------------------------------------------------
87
//
88
// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
89
// on some resource, typically a variable or data structure with associated
90
// invariants. Proper usage of mutexes prevents concurrent access by different
91
// threads to the same resource.
92
//
93
// A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
94
// The `Lock()` operation *acquires* a `Mutex` (in a state known as an
95
// *exclusive* -- or *write* -- lock), and the `Unlock()` operation *releases* a
96
// Mutex. During the span of time between the Lock() and Unlock() operations,
97
// a mutex is said to be *held*. By design, all mutexes support exclusive/write
98
// locks, as this is the most common way to use a mutex.
99
//
100
// Mutex operations are only allowed under certain conditions; otherwise an
101
// operation is "invalid", and disallowed by the API. The conditions concern
102
// both the current state of the mutex and the identity of the threads that
103
// are performing the operations.
104
//
105
// The `Mutex` state machine for basic lock/unlock operations is quite simple:
106
//
107
// |                | Lock()                 | Unlock() |
108
// |----------------+------------------------+----------|
109
// | Free           | Exclusive              | invalid  |
110
// | Exclusive      | blocks, then exclusive | Free     |
111
//
112
// The full conditions are as follows.
113
//
114
// * Calls to `Unlock()` require that the mutex be held, and must be made in the
115
//   same thread that performed the corresponding `Lock()` operation which
116
//   acquired the mutex; otherwise the call is invalid.
117
//
118
// * The mutex being non-reentrant (or non-recursive) means that a call to
119
//   `Lock()` or `TryLock()` must not be made in a thread that already holds the
120
//   mutex; such a call is invalid.
121
//
122
// * In other words, the state of being "held" has both a temporal component
123
//   (from `Lock()` until `Unlock()`) as well as a thread identity component:
124
//   the mutex is held *by a particular thread*.
125
//
126
// An "invalid" operation has undefined behavior. The `Mutex` implementation
127
// is allowed to do anything on an invalid call, including, but not limited to,
128
// crashing with a useful error message, silently succeeding, or corrupting
129
// data structures. In debug mode, the implementation may crash with a useful
130
// error message.
131
//
132
// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
133
// is, however, approximately fair over long periods, and starvation-free for
134
// threads at the same priority.
135
//
136
// The lock/unlock primitives are now annotated with lock annotations
137
// defined in (base/thread_annotations.h). When writing multi-threaded code,
138
// you should use lock annotations whenever possible to document your lock
139
// synchronization policy. Besides acting as documentation, these annotations
140
// also help compilers or static analysis tools to identify and warn about
141
// issues that could potentially result in race conditions and deadlocks.
142
//
143
// For more information about the lock annotations, please see
144
// [Thread Safety
145
// Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) in the Clang
146
// documentation.
147
//
148
// See also `MutexLock`, below, for scoped `Mutex` acquisition.
149
150
class ABSL_LOCKABLE Mutex {
151
 public:
152
  // Creates a `Mutex` that is not held by anyone. This constructor is
153
  // typically used for Mutexes allocated on the heap or the stack.
154
  //
155
  // To create `Mutex` instances with static storage duration
156
  // (e.g. a namespace-scoped or global variable), see
157
  // `Mutex::Mutex(absl::kConstInit)` below instead.
158
  Mutex();
159
160
  // Creates a mutex with static storage duration.  A global variable
161
  // constructed this way avoids the lifetime issues that can occur on program
162
  // startup and shutdown.  (See absl/base/const_init.h.)
163
  //
164
  // For Mutexes allocated on the heap and stack, instead use the default
165
  // constructor, which can interact more fully with the thread sanitizer.
166
  //
167
  // Example usage:
168
  //   namespace foo {
169
  //   ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
170
  //   }
171
  explicit constexpr Mutex(absl::ConstInitType);
172
173
  ~Mutex();
174
175
  // Mutex::Lock()
176
  //
177
  // Blocks the calling thread, if necessary, until this `Mutex` is free, and
178
  // then acquires it exclusively. (This lock is also known as a "write lock.")
179
  void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
180
181
  // Mutex::Unlock()
182
  //
183
  // Releases this `Mutex` and returns it from the exclusive/write state to the
184
  // free state. Calling thread must hold the `Mutex` exclusively.
185
  void Unlock() ABSL_UNLOCK_FUNCTION();
186
187
  // Mutex::TryLock()
188
  //
189
  // If the mutex can be acquired without blocking, does so exclusively and
190
  // returns `true`. Otherwise, returns `false`. Returns `true` with high
191
  // probability if the `Mutex` was free.
192
  bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
193
194
  // Mutex::AssertHeld()
195
  //
196
  // Require that the mutex be held exclusively (write mode) by this thread.
197
  //
198
  // If the mutex is not currently held by this thread, this function may report
199
  // an error (typically by crashing with a diagnostic) or it may do nothing.
200
  // This function is intended only as a tool to assist debugging; it doesn't
201
  // guarantee correctness.
202
  void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
203
204
  // ---------------------------------------------------------------------------
205
  // Reader-Writer Locking
206
  // ---------------------------------------------------------------------------
207
208
  // A Mutex can also be used as a starvation-free reader-writer lock.
209
  // Neither read-locks nor write-locks are reentrant/recursive to avoid
210
  // potential client programming errors.
211
  //
212
  // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
213
  // `Unlock()` and `TryLock()` methods for use within applications mixing
214
  // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
215
  // manner can make locking behavior clearer when mixing read and write modes.
216
  //
217
  // Introducing reader locks necessarily complicates the `Mutex` state
218
  // machine somewhat. The table below illustrates the allowed state transitions
219
  // of a mutex in such cases. Note that ReaderLock() may block even if the lock
220
  // is held in shared mode; this occurs when another thread is blocked on a
221
  // call to WriterLock().
222
  //
223
  // ---------------------------------------------------------------------------
224
  //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
225
  // ---------------------------------------------------------------------------
226
  // State
227
  // ---------------------------------------------------------------------------
228
  // Free           Exclusive    invalid   Shared(1)              invalid
229
  // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
230
  // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
231
  // Exclusive      blocks       Free      blocks                 invalid
232
  // ---------------------------------------------------------------------------
233
  //
234
  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
235
236
  // Mutex::ReaderLock()
237
  //
238
  // Blocks the calling thread, if necessary, until this `Mutex` is either free,
239
  // or in shared mode, and then acquires a share of it. Note that
240
  // `ReaderLock()` will block if some other thread has an exclusive/writer lock
241
  // on the mutex.
242
243
  void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
244
245
  // Mutex::ReaderUnlock()
246
  //
247
  // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
248
  // the free state if this thread holds the last reader lock on the mutex. Note
249
  // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
250
  void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
251
252
  // Mutex::ReaderTryLock()
253
  //
254
  // If the mutex can be acquired without blocking, acquires this mutex for
255
  // shared access and returns `true`. Otherwise, returns `false`. Returns
256
  // `true` with high probability if the `Mutex` was free or shared.
257
  bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
258
259
  // Mutex::AssertReaderHeld()
260
  //
261
  // Require that the mutex be held at least in shared mode (read mode) by this
262
  // thread.
263
  //
264
  // If the mutex is not currently held by this thread, this function may report
265
  // an error (typically by crashing with a diagnostic) or it may do nothing.
266
  // This function is intended only as a tool to assist debugging; it doesn't
267
  // guarantee correctness.
268
  void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
269
270
  // Mutex::WriterLock()
271
  // Mutex::WriterUnlock()
272
  // Mutex::WriterTryLock()
273
  //
274
  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
275
  //
276
  // These methods may be used (along with the complementary `Reader*()`
277
  // methods) to distinguish simple exclusive `Mutex` usage (`Lock()`,
278
  // etc.) from reader/writer lock usage.
279
1
  void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
280
281
1
  void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
282
283
0
  bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
284
0
    return this->TryLock();
285
0
  }
286
287
  // ---------------------------------------------------------------------------
288
  // Conditional Critical Regions
289
  // ---------------------------------------------------------------------------
290
291
  // Conditional usage of a `Mutex` can occur using two distinct paradigms:
292
  //
293
  //   * Use of `Mutex` member functions with `Condition` objects.
294
  //   * Use of the separate `CondVar` abstraction.
295
  //
296
  // In general, prefer use of `Condition` and the `Mutex` member functions
297
  // listed below over `CondVar`. When there are multiple threads waiting on
298
  // distinctly different conditions, however, a battery of `CondVar`s may be
299
  // more efficient. This section discusses use of `Condition` objects.
300
  //
301
  // `Mutex` contains member functions for performing lock operations only under
302
  // certain conditions, of class `Condition`. For correctness, the `Condition`
303
  // must return a boolean that is a pure function, only of state protected by
304
  // the `Mutex`. The condition must be invariant w.r.t. environmental state
305
  // such as thread, cpu id, or time, and must be `noexcept`. The condition will
306
  // always be invoked with the mutex held in at least read mode, so you should
307
  // not block it for long periods or sleep it on a timer.
308
  //
309
  // Since a condition must not depend directly on the current time, use
310
  // `*WithTimeout()` member function variants to make your condition
311
  // effectively true after a given duration, or `*WithDeadline()` variants to
312
  // make your condition effectively true after a given time.
313
  //
314
  // The condition function should have no side-effects aside from debug
315
  // logging; as a special exception, the function may acquire other mutexes
316
  // provided it releases all those that it acquires.  (This exception was
317
  // required to allow logging.)
318
319
  // Mutex::Await()
320
  //
321
  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
322
  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
323
  // same mode in which it was previously held. If the condition is initially
324
  // `true`, `Await()` *may* skip the release/re-acquire step.
325
  //
326
  // `Await()` requires that this thread holds this `Mutex` in some mode.
327
0
  void Await(const Condition& cond) {
328
0
    AwaitCommon(cond, synchronization_internal::KernelTimeout::Never());
329
0
  }
330
331
  // Mutex::LockWhen()
332
  // Mutex::ReaderLockWhen()
333
  // Mutex::WriterLockWhen()
334
  //
335
  // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
336
  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
337
  // logically equivalent to `*Lock(); Await();` though they may have different
338
  // performance characteristics.
339
0
  void LockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
340
0
    LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
341
0
                   true);
342
0
  }
343
344
0
  void ReaderLockWhen(const Condition& cond) ABSL_SHARED_LOCK_FUNCTION() {
345
0
    LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
346
0
                   false);
347
0
  }
348
349
0
  void WriterLockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
350
0
    this->LockWhen(cond);
351
0
  }
352
353
  // ---------------------------------------------------------------------------
354
  // Mutex Variants with Timeouts/Deadlines
355
  // ---------------------------------------------------------------------------
356
357
  // Mutex::AwaitWithTimeout()
358
  // Mutex::AwaitWithDeadline()
359
  //
360
  // Unlocks this `Mutex` and blocks until simultaneously:
361
  //   - either `cond` is true or the {timeout has expired, deadline has passed}
362
  //     and
363
  //   - this `Mutex` can be reacquired,
364
  // then reacquire this `Mutex` in the same mode in which it was previously
365
  // held, returning `true` iff `cond` is `true` on return.
366
  //
367
  // If the condition is initially `true`, the implementation *may* skip the
368
  // release/re-acquire step and return immediately.
369
  //
370
  // Deadlines in the past are equivalent to an immediate deadline.
371
  // Negative timeouts are equivalent to a zero timeout.
372
  //
373
  // This method requires that this thread holds this `Mutex` in some mode.
374
0
  bool AwaitWithTimeout(const Condition& cond, absl::Duration timeout) {
375
0
    return AwaitCommon(cond, synchronization_internal::KernelTimeout{timeout});
376
0
  }
377
378
0
  bool AwaitWithDeadline(const Condition& cond, absl::Time deadline) {
379
0
    return AwaitCommon(cond, synchronization_internal::KernelTimeout{deadline});
380
0
  }
381
382
  // Mutex::LockWhenWithTimeout()
383
  // Mutex::ReaderLockWhenWithTimeout()
384
  // Mutex::WriterLockWhenWithTimeout()
385
  //
386
  // Blocks until simultaneously both:
387
  //   - either `cond` is `true` or the timeout has expired, and
388
  //   - this `Mutex` can be acquired,
389
  // then atomically acquires this `Mutex`, returning `true` iff `cond` is
390
  // `true` on return.
391
  //
392
  // Negative timeouts are equivalent to a zero timeout.
393
  bool LockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
394
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
395
0
    return LockWhenCommon(
396
0
        cond, synchronization_internal::KernelTimeout{timeout}, true);
397
0
  }
398
  bool ReaderLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
399
0
      ABSL_SHARED_LOCK_FUNCTION() {
400
0
    return LockWhenCommon(
401
0
        cond, synchronization_internal::KernelTimeout{timeout}, false);
402
0
  }
403
  bool WriterLockWhenWithTimeout(const Condition& cond, absl::Duration timeout)
404
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
405
0
    return this->LockWhenWithTimeout(cond, timeout);
406
0
  }
407
408
  // Mutex::LockWhenWithDeadline()
409
  // Mutex::ReaderLockWhenWithDeadline()
410
  // Mutex::WriterLockWhenWithDeadline()
411
  //
412
  // Blocks until simultaneously both:
413
  //   - either `cond` is `true` or the deadline has been passed, and
414
  //   - this `Mutex` can be acquired,
415
  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
416
  // on return.
417
  //
418
  // Deadlines in the past are equivalent to an immediate deadline.
419
  bool LockWhenWithDeadline(const Condition& cond, absl::Time deadline)
420
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
421
0
    return LockWhenCommon(
422
0
        cond, synchronization_internal::KernelTimeout{deadline}, true);
423
0
  }
424
  bool ReaderLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
425
0
      ABSL_SHARED_LOCK_FUNCTION() {
426
0
    return LockWhenCommon(
427
0
        cond, synchronization_internal::KernelTimeout{deadline}, false);
428
0
  }
429
  bool WriterLockWhenWithDeadline(const Condition& cond, absl::Time deadline)
430
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
431
0
    return this->LockWhenWithDeadline(cond, deadline);
432
0
  }
433
434
  // ---------------------------------------------------------------------------
435
  // Debug Support: Invariant Checking, Deadlock Detection, Logging.
436
  // ---------------------------------------------------------------------------
437
438
  // Mutex::EnableInvariantDebugging()
439
  //
440
  // If `invariant`!=null and if invariant debugging has been enabled globally,
441
  // cause `(*invariant)(arg)` to be called at moments when the invariant for
442
  // this `Mutex` should hold (for example: just after acquire, just before
443
  // release).
444
  //
445
  // The routine `invariant` should have no side-effects since it is not
446
  // guaranteed how many times it will be called; it should check the invariant
447
  // and crash if it does not hold. Enabling global invariant debugging may
448
  // substantially reduce `Mutex` performance; it should be set only for
449
  // non-production runs.  Optimization options may also disable invariant
450
  // checks.
451
  void EnableInvariantDebugging(void (*invariant)(void*), void* arg);
452
453
  // Mutex::EnableDebugLog()
454
  //
455
  // Cause all subsequent uses of this `Mutex` to be logged via
456
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
457
  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
458
  //
459
  // Note: This method substantially reduces `Mutex` performance.
460
  void EnableDebugLog(const char* name);
461
462
  // Deadlock detection
463
464
  // Mutex::ForgetDeadlockInfo()
465
  //
466
  // Forget any deadlock-detection information previously gathered
467
  // about this `Mutex`. Call this method in debug mode when the lock ordering
468
  // of a `Mutex` changes.
469
  void ForgetDeadlockInfo();
470
471
  // Mutex::AssertNotHeld()
472
  //
473
  // Return immediately if this thread does not hold this `Mutex` in any
474
  // mode; otherwise, may report an error (typically by crashing with a
475
  // diagnostic), or may return immediately.
476
  //
477
  // Currently this check is performed only if all of:
478
  //    - in debug mode
479
  //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
480
  //    - number of locks concurrently held by this thread is not large.
481
  // are true.
482
  void AssertNotHeld() const;
483
484
  // Special cases.
485
486
  // A `MuHow` is a constant that indicates how a lock should be acquired.
487
  // Internal implementation detail.  Clients should ignore.
488
  typedef const struct MuHowS* MuHow;
489
490
  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
491
  //
492
  // Causes the `Mutex` implementation to prepare itself for re-entry caused by
493
  // future use of `Mutex` within a fatal signal handler. This method is
494
  // intended for use only for last-ditch attempts to log crash information.
495
  // It does not guarantee that attempts to use Mutexes within the handler will
496
  // not deadlock; it merely makes other faults less likely.
497
  //
498
  // WARNING:  This routine must be invoked from a signal handler, and the
499
  // signal handler must either loop forever or terminate the process.
500
  // Attempts to return from (or `longjmp` out of) the signal handler once this
501
  // call has been made may cause arbitrary program behaviour including
502
  // crashes and deadlocks.
503
  static void InternalAttemptToUseMutexInFatalSignalHandler();
504
505
 private:
506
  std::atomic<intptr_t> mu_;  // The Mutex state.
507
508
  // Post()/Wait() versus associated PerThreadSem; in class for required
509
  // friendship with PerThreadSem.
510
  static void IncrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w);
511
  static bool DecrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w,
512
                                synchronization_internal::KernelTimeout t);
513
514
  // slow path acquire
515
  void LockSlowLoop(SynchWaitParams* waitp, int flags);
516
  // wrappers around LockSlowLoop()
517
  bool LockSlowWithDeadline(MuHow how, const Condition* cond,
518
                            synchronization_internal::KernelTimeout t,
519
                            int flags);
520
  void LockSlow(MuHow how, const Condition* cond,
521
                int flags) ABSL_ATTRIBUTE_COLD;
522
  // slow path release
523
  void UnlockSlow(SynchWaitParams* waitp) ABSL_ATTRIBUTE_COLD;
524
  // TryLock slow path.
525
  bool TryLockSlow();
526
  // ReaderTryLock slow path.
527
  bool ReaderTryLockSlow();
528
  // Common code between Await() and AwaitWithTimeout/Deadline()
529
  bool AwaitCommon(const Condition& cond,
530
                   synchronization_internal::KernelTimeout t);
531
  bool LockWhenCommon(const Condition& cond,
532
                      synchronization_internal::KernelTimeout t, bool write);
533
  // Attempt to remove thread s from queue.
534
  void TryRemove(base_internal::PerThreadSynch* s);
535
  // Block a thread on mutex.
536
  void Block(base_internal::PerThreadSynch* s);
537
  // Wake a thread; return successor.
538
  base_internal::PerThreadSynch* Wakeup(base_internal::PerThreadSynch* w);
539
540
  friend class CondVar;   // for access to Trans()/Fer().
541
  void Trans(MuHow how);  // used for CondVar->Mutex transfer
542
  void Fer(
543
      base_internal::PerThreadSynch* w);  // used for CondVar->Mutex transfer
544
545
  // Catch the error of writing Mutex when intending MutexLock.
546
0
  explicit Mutex(const volatile Mutex* /*ignored*/) {}
547
548
  Mutex(const Mutex&) = delete;
549
  Mutex& operator=(const Mutex&) = delete;
550
};
551
552
// -----------------------------------------------------------------------------
553
// Mutex RAII Wrappers
554
// -----------------------------------------------------------------------------
555
556
// MutexLock
557
//
558
// `MutexLock` is a helper class, which acquires and releases a `Mutex` via
559
// RAII.
560
//
561
// Example:
562
//
563
// Class Foo {
564
//  public:
565
//   Foo::Bar* Baz() {
566
//     MutexLock lock(&mu_);
567
//     ...
568
//     return bar;
569
//   }
570
//
571
// private:
572
//   Mutex mu_;
573
// };
574
class ABSL_SCOPED_LOCKABLE MutexLock {
575
 public:
576
  // Constructors
577
578
  // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
579
  // guaranteed to be locked when this object is constructed. Requires that
580
  // `mu` be dereferenceable.
581
40
  explicit MutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
582
40
    this->mu_->Lock();
583
40
  }
584
585
  // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
586
  // the above, the condition given by `cond` is also guaranteed to hold when
587
  // this object is constructed.
588
  explicit MutexLock(Mutex* mu, const Condition& cond)
589
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
590
0
      : mu_(mu) {
591
0
    this->mu_->LockWhen(cond);
592
0
  }
593
594
  MutexLock(const MutexLock&) = delete;  // NOLINT(runtime/mutex)
595
  MutexLock(MutexLock&&) = delete;       // NOLINT(runtime/mutex)
596
  MutexLock& operator=(const MutexLock&) = delete;
597
  MutexLock& operator=(MutexLock&&) = delete;
598
599
40
  ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
600
601
 private:
602
  Mutex* const mu_;
603
};
604
605
// ReaderMutexLock
606
//
607
// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
608
// releases a shared lock on a `Mutex` via RAII.
609
class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
610
 public:
611
3.24M
  explicit ReaderMutexLock(Mutex* mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
612
3.24M
    mu->ReaderLock();
613
3.24M
  }
614
615
  explicit ReaderMutexLock(Mutex* mu, const Condition& cond)
616
      ABSL_SHARED_LOCK_FUNCTION(mu)
617
0
      : mu_(mu) {
618
0
    mu->ReaderLockWhen(cond);
619
0
  }
620
621
  ReaderMutexLock(const ReaderMutexLock&) = delete;
622
  ReaderMutexLock(ReaderMutexLock&&) = delete;
623
  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
624
  ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
625
626
3.24M
  ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
627
628
 private:
629
  Mutex* const mu_;
630
};
631
632
// WriterMutexLock
633
//
634
// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
635
// releases a write (exclusive) lock on a `Mutex` via RAII.
636
class ABSL_SCOPED_LOCKABLE WriterMutexLock {
637
 public:
638
  explicit WriterMutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
639
1
      : mu_(mu) {
640
1
    mu->WriterLock();
641
1
  }
642
643
  explicit WriterMutexLock(Mutex* mu, const Condition& cond)
644
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
645
0
      : mu_(mu) {
646
0
    mu->WriterLockWhen(cond);
647
0
  }
648
649
  WriterMutexLock(const WriterMutexLock&) = delete;
650
  WriterMutexLock(WriterMutexLock&&) = delete;
651
  WriterMutexLock& operator=(const WriterMutexLock&) = delete;
652
  WriterMutexLock& operator=(WriterMutexLock&&) = delete;
653
654
1
  ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
655
656
 private:
657
  Mutex* const mu_;
658
};
659
660
// -----------------------------------------------------------------------------
661
// Condition
662
// -----------------------------------------------------------------------------
663
//
664
// `Mutex` contains a number of member functions which take a `Condition` as an
665
// argument; clients can wait for conditions to become `true` before attempting
666
// to acquire the mutex. These sections are known as "condition critical"
667
// sections. To use a `Condition`, you simply need to construct it, and use
668
// within an appropriate `Mutex` member function; everything else in the
669
// `Condition` class is an implementation detail.
670
//
671
// A `Condition` is specified as a function pointer which returns a boolean.
672
// `Condition` functions should be pure functions -- their results should depend
673
// only on passed arguments, should not consult any external state (such as
674
// clocks), and should have no side-effects, aside from debug logging. Any
675
// objects that the function may access should be limited to those which are
676
// constant while the mutex is blocked on the condition (e.g. a stack variable),
677
// or objects of state protected explicitly by the mutex.
678
//
679
// No matter which construction is used for `Condition`, the underlying
680
// function pointer / functor / callable must not throw any
681
// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
682
// the face of a throwing `Condition`. (When Abseil is allowed to depend
683
// on C++17, these function pointers will be explicitly marked
684
// `noexcept`; until then this requirement cannot be enforced in the
685
// type system.)
686
//
687
// Note: to use a `Condition`, you need only construct it and pass it to a
688
// suitable `Mutex' member function, such as `Mutex::Await()`, or to the
689
// constructor of one of the scope guard classes.
690
//
691
// Example using LockWhen/Unlock:
692
//
693
//   // assume count_ is not internal reference count
694
//   int count_ ABSL_GUARDED_BY(mu_);
695
//   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
696
//
697
//   mu_.LockWhen(count_is_zero);
698
//   // ...
699
//   mu_.Unlock();
700
//
701
// Example using a scope guard:
702
//
703
//   {
704
//     MutexLock lock(&mu_, count_is_zero);
705
//     // ...
706
//   }
707
//
708
// When multiple threads are waiting on exactly the same condition, make sure
709
// that they are constructed with the same parameters (same pointer to function
710
// + arg, or same pointer to object + method), so that the mutex implementation
711
// can avoid redundantly evaluating the same condition for each thread.
712
class Condition {
713
 public:
714
  // A Condition that returns the result of "(*func)(arg)"
715
  Condition(bool (*func)(void*), void* arg);
716
717
  // Templated version for people who are averse to casts.
718
  //
719
  // To use a lambda, prepend it with unary plus, which converts the lambda
720
  // into a function pointer:
721
  //     Condition(+[](T* t) { return ...; }, arg).
722
  //
723
  // Note: lambdas in this case must contain no bound variables.
724
  //
725
  // See class comment for performance advice.
726
  template <typename T>
727
  Condition(bool (*func)(T*), T* arg);
728
729
  // Same as above, but allows for cases where `arg` comes from a pointer that
730
  // is convertible to the function parameter type `T*` but not an exact match.
731
  //
732
  // For example, the argument might be `X*` but the function takes `const X*`,
733
  // or the argument might be `Derived*` while the function takes `Base*`, and
734
  // so on for cases where the argument pointer can be implicitly converted.
735
  //
736
  // Implementation notes: This constructor overload is required in addition to
737
  // the one above to allow deduction of `T` from `arg` for cases such as where
738
  // a function template is passed as `func`. Also, the dummy `typename = void`
739
  // template parameter exists just to work around a MSVC mangling bug.
740
  template <typename T, typename = void>
741
  Condition(bool (*func)(T*), typename absl::internal::identity<T>::type* arg);
742
743
  // Templated version for invoking a method that returns a `bool`.
744
  //
745
  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
746
  // `object->Method()`.
747
  //
748
  // Implementation Note: `absl::internal::identity` is used to allow methods to
749
  // come from base classes. A simpler signature like
750
  // `Condition(T*, bool (T::*)())` does not suffice.
751
  template <typename T>
752
  Condition(T* object, bool (absl::internal::identity<T>::type::*method)());
753
754
  // Same as above, for const members
755
  template <typename T>
756
  Condition(const T* object,
757
            bool (absl::internal::identity<T>::type::*method)() const);
758
759
  // A Condition that returns the value of `*cond`
760
  explicit Condition(const bool* cond);
761
762
  // Templated version for invoking a functor that returns a `bool`.
763
  // This approach accepts pointers to non-mutable lambdas, `std::function`,
764
  // the result of` std::bind` and user-defined functors that define
765
  // `bool F::operator()() const`.
766
  //
767
  // Example:
768
  //
769
  //   auto reached = [this, current]() {
770
  //     mu_.AssertReaderHeld();                // For annotalysis.
771
  //     return processed_ >= current;
772
  //   };
773
  //   mu_.Await(Condition(&reached));
774
  //
775
  // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
776
  // the lambda as it may be called when the mutex is being unlocked from a
777
  // scope holding only a reader lock, which will make the assertion not
778
  // fulfilled and crash the binary.
779
780
  // See class comment for performance advice. In particular, if there
781
  // might be more than one waiter for the same condition, make sure
782
  // that all waiters construct the condition with the same pointers.
783
784
  // Implementation note: The second template parameter ensures that this
785
  // constructor doesn't participate in overload resolution if T doesn't have
786
  // `bool operator() const`.
787
  template <typename T, typename E = decltype(static_cast<bool (T::*)() const>(
788
                            &T::operator()))>
789
  explicit Condition(const T* obj)
790
      : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
791
792
  // A Condition that always returns `true`.
793
  // kTrue is only useful in a narrow set of circumstances, mostly when
794
  // it's passed conditionally. For example:
795
  //
796
  //   mu.LockWhen(some_flag ? kTrue : SomeOtherCondition);
797
  //
798
  // Note: {LockWhen,Await}With{Deadline,Timeout} methods with kTrue condition
799
  // don't return immediately when the timeout happens, they still block until
800
  // the Mutex becomes available. The return value of these methods does
801
  // not indicate if the timeout was reached; rather it indicates whether or
802
  // not the condition is true.
803
  ABSL_CONST_INIT static const Condition kTrue;
804
805
  // Evaluates the condition.
806
  bool Eval() const;
807
808
  // Returns `true` if the two conditions are guaranteed to return the same
809
  // value if evaluated at the same time, `false` if the evaluation *may* return
810
  // different results.
811
  //
812
  // Two `Condition` values are guaranteed equal if both their `func` and `arg`
813
  // components are the same. A null pointer is equivalent to a `true`
814
  // condition.
815
  static bool GuaranteedEqual(const Condition* a, const Condition* b);
816
817
 private:
818
  // Sizing an allocation for a method pointer can be subtle. In the Itanium
819
  // specifications, a method pointer has a predictable, uniform size. On the
820
  // other hand, MSVC ABI, method pointer sizes vary based on the
821
  // inheritance of the class. Specifically, method pointers from classes with
822
  // multiple inheritance are bigger than those of classes with single
823
  // inheritance. Other variations also exist.
824
825
#ifndef _MSC_VER
826
  // Allocation for a function pointer or method pointer.
827
  // The {0} initializer ensures that all unused bytes of this buffer are
828
  // always zeroed out.  This is necessary, because GuaranteedEqual() compares
829
  // all of the bytes, unaware of which bytes are relevant to a given `eval_`.
830
  using MethodPtr = bool (Condition::*)();
831
  char callback_[sizeof(MethodPtr)] = {0};
832
#else
833
  // It is well known that the larget MSVC pointer-to-member is 24 bytes. This
834
  // may be the largest known pointer-to-member of any platform. For this
835
  // reason we will allocate 24 bytes for MSVC platform toolchains.
836
  char callback_[24] = {0};
837
#endif
838
839
  // Function with which to evaluate callbacks and/or arguments.
840
  bool (*eval_)(const Condition*) = nullptr;
841
842
  // Either an argument for a function call or an object for a method call.
843
  void* arg_ = nullptr;
844
845
  // Various functions eval_ can point to:
846
  static bool CallVoidPtrFunction(const Condition*);
847
  template <typename T>
848
  static bool CastAndCallFunction(const Condition* c);
849
  template <typename T>
850
  static bool CastAndCallMethod(const Condition* c);
851
852
  // Helper methods for storing, validating, and reading callback arguments.
853
  template <typename T>
854
0
  inline void StoreCallback(T callback) {
855
0
    static_assert(
856
0
        sizeof(callback) <= sizeof(callback_),
857
0
        "An overlarge pointer was passed as a callback to Condition.");
858
0
    std::memcpy(callback_, &callback, sizeof(callback));
859
0
  }
Unexecuted instantiation: void absl::Condition::StoreCallback<bool (*)(absl::SynchEvent*)>(bool (*)(absl::SynchEvent*))
Unexecuted instantiation: void absl::Condition::StoreCallback<bool (*)(void*)>(bool (*)(void*))
860
861
  template <typename T>
862
0
  inline void ReadCallback(T* callback) const {
863
0
    std::memcpy(callback, callback_, sizeof(*callback));
864
0
  }
865
866
0
  static bool AlwaysTrue(const Condition*) { return true; }
867
868
  // Used only to create kTrue.
869
0
  constexpr Condition() : eval_(AlwaysTrue), arg_(nullptr) {}
870
};
871
872
// -----------------------------------------------------------------------------
873
// CondVar
874
// -----------------------------------------------------------------------------
875
//
876
// A condition variable, reflecting state evaluated separately outside of the
877
// `Mutex` object, which can be signaled to wake callers.
878
// This class is not normally needed; use `Mutex` member functions such as
879
// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
880
// with many threads and many conditions, `CondVar` may be faster.
881
//
882
// The implementation may deliver signals to any condition variable at
883
// any time, even when no call to `Signal()` or `SignalAll()` is made; as a
884
// result, upon being awoken, you must check the logical condition you have
885
// been waiting upon.
886
//
887
// Examples:
888
//
889
// Usage for a thread waiting for some condition C protected by mutex mu:
890
//       mu.Lock();
891
//       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
892
//       //  C holds; process data
893
//       mu.Unlock();
894
//
895
// Usage to wake T is:
896
//       mu.Lock();
897
//       // process data, possibly establishing C
898
//       if (C) { cv->Signal(); }
899
//       mu.Unlock();
900
//
901
// If C may be useful to more than one waiter, use `SignalAll()` instead of
902
// `Signal()`.
903
//
904
// With this implementation it is efficient to use `Signal()/SignalAll()` inside
905
// the locked region; this usage can make reasoning about your program easier.
906
//
907
class CondVar {
908
 public:
909
  // A `CondVar` allocated on the heap or on the stack can use the this
910
  // constructor.
911
  CondVar();
912
  ~CondVar();
913
914
  // CondVar::Wait()
915
  //
916
  // Atomically releases a `Mutex` and blocks on this condition variable.
917
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
918
  // spurious wakeup), then reacquires the `Mutex` and returns.
919
  //
920
  // Requires and ensures that the current thread holds the `Mutex`.
921
0
  void Wait(Mutex* mu) {
922
0
    WaitCommon(mu, synchronization_internal::KernelTimeout::Never());
923
0
  }
924
925
  // CondVar::WaitWithTimeout()
926
  //
927
  // Atomically releases a `Mutex` and blocks on this condition variable.
928
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
929
  // spurious wakeup), or until the timeout has expired, then reacquires
930
  // the `Mutex` and returns.
931
  //
932
  // Returns true if the timeout has expired without this `CondVar`
933
  // being signalled in any manner. If both the timeout has expired
934
  // and this `CondVar` has been signalled, the implementation is free
935
  // to return `true` or `false`.
936
  //
937
  // Requires and ensures that the current thread holds the `Mutex`.
938
0
  bool WaitWithTimeout(Mutex* mu, absl::Duration timeout) {
939
0
    return WaitCommon(mu, synchronization_internal::KernelTimeout(timeout));
940
0
  }
941
942
  // CondVar::WaitWithDeadline()
943
  //
944
  // Atomically releases a `Mutex` and blocks on this condition variable.
945
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
946
  // spurious wakeup), or until the deadline has passed, then reacquires
947
  // the `Mutex` and returns.
948
  //
949
  // Deadlines in the past are equivalent to an immediate deadline.
950
  //
951
  // Returns true if the deadline has passed without this `CondVar`
952
  // being signalled in any manner. If both the deadline has passed
953
  // and this `CondVar` has been signalled, the implementation is free
954
  // to return `true` or `false`.
955
  //
956
  // Requires and ensures that the current thread holds the `Mutex`.
957
0
  bool WaitWithDeadline(Mutex* mu, absl::Time deadline) {
958
0
    return WaitCommon(mu, synchronization_internal::KernelTimeout(deadline));
959
0
  }
960
961
  // CondVar::Signal()
962
  //
963
  // Signal this `CondVar`; wake at least one waiter if one exists.
964
  void Signal();
965
966
  // CondVar::SignalAll()
967
  //
968
  // Signal this `CondVar`; wake all waiters.
969
  void SignalAll();
970
971
  // CondVar::EnableDebugLog()
972
  //
973
  // Causes all subsequent uses of this `CondVar` to be logged via
974
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
975
  // Note: this method substantially reduces `CondVar` performance.
976
  void EnableDebugLog(const char* name);
977
978
 private:
979
  bool WaitCommon(Mutex* mutex, synchronization_internal::KernelTimeout t);
980
  void Remove(base_internal::PerThreadSynch* s);
981
  std::atomic<intptr_t> cv_;  // Condition variable state.
982
  CondVar(const CondVar&) = delete;
983
  CondVar& operator=(const CondVar&) = delete;
984
};
985
986
// Variants of MutexLock.
987
//
988
// If you find yourself using one of these, consider instead using
989
// Mutex::Unlock() and/or if-statements for clarity.
990
991
// MutexLockMaybe
992
//
993
// MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
994
class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
995
 public:
996
  explicit MutexLockMaybe(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
997
0
      : mu_(mu) {
998
0
    if (this->mu_ != nullptr) {
999
0
      this->mu_->Lock();
1000
0
    }
1001
0
  }
1002
1003
  explicit MutexLockMaybe(Mutex* mu, const Condition& cond)
1004
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1005
0
      : mu_(mu) {
1006
0
    if (this->mu_ != nullptr) {
1007
0
      this->mu_->LockWhen(cond);
1008
0
    }
1009
0
  }
1010
1011
0
  ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
1012
0
    if (this->mu_ != nullptr) {
1013
0
      this->mu_->Unlock();
1014
0
    }
1015
0
  }
1016
1017
 private:
1018
  Mutex* const mu_;
1019
  MutexLockMaybe(const MutexLockMaybe&) = delete;
1020
  MutexLockMaybe(MutexLockMaybe&&) = delete;
1021
  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
1022
  MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
1023
};
1024
1025
// ReleasableMutexLock
1026
//
1027
// ReleasableMutexLock is like MutexLock, but permits `Release()` of its
1028
// mutex before destruction. `Release()` may be called at most once.
1029
class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
1030
 public:
1031
  explicit ReleasableMutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1032
0
      : mu_(mu) {
1033
0
    this->mu_->Lock();
1034
0
  }
1035
1036
  explicit ReleasableMutexLock(Mutex* mu, const Condition& cond)
1037
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
1038
0
      : mu_(mu) {
1039
0
    this->mu_->LockWhen(cond);
1040
0
  }
1041
1042
0
  ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
1043
0
    if (this->mu_ != nullptr) {
1044
0
      this->mu_->Unlock();
1045
0
    }
1046
0
  }
1047
1048
  void Release() ABSL_UNLOCK_FUNCTION();
1049
1050
 private:
1051
  Mutex* mu_;
1052
  ReleasableMutexLock(const ReleasableMutexLock&) = delete;
1053
  ReleasableMutexLock(ReleasableMutexLock&&) = delete;
1054
  ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
1055
  ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
1056
};
1057
1058
4
inline Mutex::Mutex() : mu_(0) {
1059
4
  ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
1060
4
}
1061
1062
inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
1063
1064
inline CondVar::CondVar() : cv_(0) {}
1065
1066
// static
1067
template <typename T>
1068
bool Condition::CastAndCallMethod(const Condition* c) {
1069
  T* object = static_cast<T*>(c->arg_);
1070
  bool (T::*method_pointer)();
1071
  c->ReadCallback(&method_pointer);
1072
  return (object->*method_pointer)();
1073
}
1074
1075
// static
1076
template <typename T>
1077
0
bool Condition::CastAndCallFunction(const Condition* c) {
1078
0
  bool (*function)(T*);
1079
0
  c->ReadCallback(&function);
1080
0
  T* argument = static_cast<T*>(c->arg_);
1081
0
  return (*function)(argument);
1082
0
}
1083
1084
template <typename T>
1085
inline Condition::Condition(bool (*func)(T*), T* arg)
1086
    : eval_(&CastAndCallFunction<T>),
1087
0
      arg_(const_cast<void*>(static_cast<const void*>(arg))) {
1088
0
  static_assert(sizeof(&func) <= sizeof(callback_),
1089
0
                "An overlarge function pointer was passed to Condition.");
1090
0
  StoreCallback(func);
1091
0
}
1092
1093
template <typename T, typename>
1094
inline Condition::Condition(bool (*func)(T*),
1095
                            typename absl::internal::identity<T>::type* arg)
1096
    // Just delegate to the overload above.
1097
    : Condition(func, arg) {}
1098
1099
template <typename T>
1100
inline Condition::Condition(T* object,
1101
                            bool (absl::internal::identity<T>::type::*method)())
1102
    : eval_(&CastAndCallMethod<T>), arg_(object) {
1103
  static_assert(sizeof(&method) <= sizeof(callback_),
1104
                "An overlarge method pointer was passed to Condition.");
1105
  StoreCallback(method);
1106
}
1107
1108
template <typename T>
1109
inline Condition::Condition(const T* object,
1110
                            bool (absl::internal::identity<T>::type::*method)()
1111
                                const)
1112
    : eval_(&CastAndCallMethod<T>),
1113
      arg_(reinterpret_cast<void*>(const_cast<T*>(object))) {
1114
  StoreCallback(method);
1115
}
1116
1117
// Register hooks for profiling support.
1118
//
1119
// The function pointer registered here will be called whenever a mutex is
1120
// contended.  The callback is given the cycles for which waiting happened (as
1121
// measured by //absl/base/internal/cycleclock.h, and which may not
1122
// be real "cycle" counts.)
1123
//
1124
// There is no ordering guarantee between when the hook is registered and when
1125
// callbacks will begin.  Only a single profiler can be installed in a running
1126
// binary; if this function is called a second time with a different function
1127
// pointer, the value is ignored (and will cause an assertion failure in debug
1128
// mode.)
1129
void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));
1130
1131
// Register a hook for Mutex tracing.
1132
//
1133
// The function pointer registered here will be called whenever a mutex is
1134
// contended.  The callback is given an opaque handle to the contended mutex,
1135
// an event name, and the number of wait cycles (as measured by
1136
// //absl/base/internal/cycleclock.h, and which may not be real
1137
// "cycle" counts.)
1138
//
1139
// The only event name currently sent is "slow release".
1140
//
1141
// This has the same ordering and single-use limitations as
1142
// RegisterMutexProfiler() above.
1143
void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj,
1144
                                    int64_t wait_cycles));
1145
1146
// Register a hook for CondVar tracing.
1147
//
1148
// The function pointer registered here will be called here on various CondVar
1149
// events.  The callback is given an opaque handle to the CondVar object and
1150
// a string identifying the event.  This is thread-safe, but only a single
1151
// tracer can be registered.
1152
//
1153
// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1154
// "SignalAll wakeup".
1155
//
1156
// This has the same ordering and single-use limitations as
1157
// RegisterMutexProfiler() above.
1158
void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv));
1159
1160
// EnableMutexInvariantDebugging()
1161
//
1162
// Enable or disable global support for Mutex invariant debugging.  If enabled,
1163
// then invariant predicates can be registered per-Mutex for debug checking.
1164
// See Mutex::EnableInvariantDebugging().
1165
void EnableMutexInvariantDebugging(bool enabled);
1166
1167
// When in debug mode, and when the feature has been enabled globally, the
1168
// implementation will keep track of lock ordering and complain (or optionally
1169
// crash) if a cycle is detected in the acquired-before graph.
1170
1171
// Possible modes of operation for the deadlock detector in debug mode.
1172
enum class OnDeadlockCycle {
1173
  kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1174
  kReport,  // Report lock cycles to stderr when detected
1175
  kAbort,   // Report lock cycles to stderr when detected, then abort
1176
};
1177
1178
// SetMutexDeadlockDetectionMode()
1179
//
1180
// Enable or disable global support for detection of potential deadlocks
1181
// due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1182
// lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1183
// will be maintained internally, and detected cycles will be reported in
1184
// the manner chosen here.
1185
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1186
1187
ABSL_NAMESPACE_END
1188
}  // namespace absl
1189
1190
// In some build configurations we pass --detect-odr-violations to the
1191
// gold linker.  This causes it to flag weak symbol overrides as ODR
1192
// violations.  Because ODR only applies to C++ and not C,
1193
// --detect-odr-violations ignores symbols not mangled with C++ names.
1194
// By changing our extension points to be extern "C", we dodge this
1195
// check.
1196
extern "C" {
1197
void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
1198
}  // extern "C"
1199
1200
#endif  // ABSL_SYNCHRONIZATION_MUTEX_H_