Coverage Report

Created: 2023-09-25 06:27

/src/abseil-cpp/absl/time/clock.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2017 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#include "absl/time/clock.h"
16
17
#include "absl/base/attributes.h"
18
#include "absl/base/optimization.h"
19
20
#ifdef _WIN32
21
#include <windows.h>
22
#endif
23
24
#include <algorithm>
25
#include <atomic>
26
#include <cerrno>
27
#include <cstdint>
28
#include <ctime>
29
#include <limits>
30
31
#include "absl/base/internal/spinlock.h"
32
#include "absl/base/internal/unscaledcycleclock.h"
33
#include "absl/base/macros.h"
34
#include "absl/base/port.h"
35
#include "absl/base/thread_annotations.h"
36
37
namespace absl {
38
ABSL_NAMESPACE_BEGIN
39
3.24M
Time Now() {
40
  // TODO(bww): Get a timespec instead so we don't have to divide.
41
3.24M
  int64_t n = absl::GetCurrentTimeNanos();
42
3.24M
  if (n >= 0) {
43
3.24M
    return time_internal::FromUnixDuration(
44
3.24M
        time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4));
45
3.24M
  }
46
0
  return time_internal::FromUnixDuration(absl::Nanoseconds(n));
47
3.24M
}
48
ABSL_NAMESPACE_END
49
}  // namespace absl
50
51
// Decide if we should use the fast GetCurrentTimeNanos() algorithm based on the
52
// cyclecounter, otherwise just get the time directly from the OS on every call.
53
// By default, the fast algorithm based on the cyclecount is disabled because in
54
// certain situations, for example, if the OS enters a "sleep" mode, it may
55
// produce incorrect values immediately upon waking.
56
// This can be chosen at compile-time via
57
// -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1]
58
#ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
59
#define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0
60
#endif
61
62
#if defined(__APPLE__) || defined(_WIN32)
63
#include "absl/time/internal/get_current_time_chrono.inc"
64
#else
65
#include "absl/time/internal/get_current_time_posix.inc"
66
#endif
67
68
// Allows override by test.
69
#ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM
70
#define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \
71
3.24M
  ::absl::time_internal::GetCurrentTimeNanosFromSystem()
72
#endif
73
74
#if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
75
namespace absl {
76
ABSL_NAMESPACE_BEGIN
77
3.24M
int64_t GetCurrentTimeNanos() { return GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); }
78
ABSL_NAMESPACE_END
79
}  // namespace absl
80
#else  // Use the cyclecounter-based implementation below.
81
82
// Allows override by test.
83
#ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW
84
#define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \
85
  ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now()
86
#endif
87
88
namespace absl {
89
ABSL_NAMESPACE_BEGIN
90
namespace time_internal {
91
// This is a friend wrapper around UnscaledCycleClock::Now()
92
// (needed to access UnscaledCycleClock).
93
class UnscaledCycleClockWrapperForGetCurrentTime {
94
 public:
95
  static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
96
};
97
}  // namespace time_internal
98
99
// uint64_t is used in this module to provide an extra bit in multiplications
100
101
// ---------------------------------------------------------------------
102
// An implementation of reader-write locks that use no atomic ops in the read
103
// case.  This is a generalization of Lamport's method for reading a multiword
104
// clock.  Increment a word on each write acquisition, using the low-order bit
105
// as a spinlock; the word is the high word of the "clock".  Readers read the
106
// high word, then all other data, then the high word again, and repeat the
107
// read if the reads of the high words yields different answers, or an odd
108
// value (either case suggests possible interference from a writer).
109
// Here we use a spinlock to ensure only one writer at a time, rather than
110
// spinning on the bottom bit of the word to benefit from SpinLock
111
// spin-delay tuning.
112
113
// Acquire seqlock (*seq) and return the value to be written to unlock.
114
static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) {
115
  uint64_t x = seq->fetch_add(1, std::memory_order_relaxed);
116
117
  // We put a release fence between update to *seq and writes to shared data.
118
  // Thus all stores to shared data are effectively release operations and
119
  // update to *seq above cannot be re-ordered past any of them.  Note that
120
  // this barrier is not for the fetch_add above.  A release barrier for the
121
  // fetch_add would be before it, not after.
122
  std::atomic_thread_fence(std::memory_order_release);
123
124
  return x + 2;   // original word plus 2
125
}
126
127
// Release seqlock (*seq) by writing x to it---a value previously returned by
128
// SeqAcquire.
129
static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) {
130
  // The unlock store to *seq must have release ordering so that all
131
  // updates to shared data must finish before this store.
132
  seq->store(x, std::memory_order_release);  // release lock for readers
133
}
134
135
// ---------------------------------------------------------------------
136
137
// "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond.
138
enum { kScale = 30 };
139
140
// The minimum interval between samples of the time base.
141
// We pick enough time to amortize the cost of the sample,
142
// to get a reasonably accurate cycle counter rate reading,
143
// and not so much that calculations will overflow 64-bits.
144
static const uint64_t kMinNSBetweenSamples = 2000 << 20;
145
146
// We require that kMinNSBetweenSamples shifted by kScale
147
// have at least a bit left over for 64-bit calculations.
148
static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) ==
149
               kMinNSBetweenSamples,
150
               "cannot represent kMaxBetweenSamplesNSScaled");
151
152
// data from a sample of the kernel's time value
153
struct TimeSampleAtomic {
154
  std::atomic<uint64_t> raw_ns{0};              // raw kernel time
155
  std::atomic<uint64_t> base_ns{0};             // our estimate of time
156
  std::atomic<uint64_t> base_cycles{0};         // cycle counter reading
157
  std::atomic<uint64_t> nsscaled_per_cycle{0};  // cycle period
158
  // cycles before we'll sample again (a scaled reciprocal of the period,
159
  // to avoid a division on the fast path).
160
  std::atomic<uint64_t> min_cycles_per_sample{0};
161
};
162
// Same again, but with non-atomic types
163
struct TimeSample {
164
  uint64_t raw_ns = 0;                 // raw kernel time
165
  uint64_t base_ns = 0;                // our estimate of time
166
  uint64_t base_cycles = 0;            // cycle counter reading
167
  uint64_t nsscaled_per_cycle = 0;     // cycle period
168
  uint64_t min_cycles_per_sample = 0;  // approx cycles before next sample
169
};
170
171
struct ABSL_CACHELINE_ALIGNED TimeState {
172
  std::atomic<uint64_t> seq{0};
173
  TimeSampleAtomic last_sample;  // the last sample; under seq
174
175
  // The following counters are used only by the test code.
176
  int64_t stats_initializations{0};
177
  int64_t stats_reinitializations{0};
178
  int64_t stats_calibrations{0};
179
  int64_t stats_slow_paths{0};
180
  int64_t stats_fast_slow_paths{0};
181
182
  uint64_t last_now_cycles ABSL_GUARDED_BY(lock){0};
183
184
  // Used by GetCurrentTimeNanosFromKernel().
185
  // We try to read clock values at about the same time as the kernel clock.
186
  // This value gets adjusted up or down as estimate of how long that should
187
  // take, so we can reject attempts that take unusually long.
188
  std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000};
189
  // Number of times in a row we've seen a kernel time call take substantially
190
  // less than approx_syscall_time_in_cycles.
191
  std::atomic<uint32_t> kernel_time_seen_smaller{0};
192
193
  // A reader-writer lock protecting the static locations below.
194
  // See SeqAcquire() and SeqRelease() above.
195
  absl::base_internal::SpinLock lock{absl::kConstInit,
196
                                     base_internal::SCHEDULE_KERNEL_ONLY};
197
};
198
ABSL_CONST_INIT static TimeState time_state;
199
200
// Return the time in ns as told by the kernel interface.  Place in *cycleclock
201
// the value of the cycleclock at about the time of the syscall.
202
// This call represents the time base that this module synchronizes to.
203
// Ensures that *cycleclock does not step back by up to (1 << 16) from
204
// last_cycleclock, to discard small backward counter steps.  (Larger steps are
205
// assumed to be complete resyncs, which shouldn't happen.  If they do, a full
206
// reinitialization of the outer algorithm should occur.)
207
static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,
208
                                             uint64_t *cycleclock)
209
    ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
210
  uint64_t local_approx_syscall_time_in_cycles =  // local copy
211
      time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed);
212
213
  int64_t current_time_nanos_from_system;
214
  uint64_t before_cycles;
215
  uint64_t after_cycles;
216
  uint64_t elapsed_cycles;
217
  int loops = 0;
218
  do {
219
    before_cycles =
220
        static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
221
    current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM();
222
    after_cycles =
223
        static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
224
    // elapsed_cycles is unsigned, so is large on overflow
225
    elapsed_cycles = after_cycles - before_cycles;
226
    if (elapsed_cycles >= local_approx_syscall_time_in_cycles &&
227
        ++loops == 20) {  // clock changed frequencies?  Back off.
228
      loops = 0;
229
      if (local_approx_syscall_time_in_cycles < 1000 * 1000) {
230
        local_approx_syscall_time_in_cycles =
231
            (local_approx_syscall_time_in_cycles + 1) << 1;
232
      }
233
      time_state.approx_syscall_time_in_cycles.store(
234
          local_approx_syscall_time_in_cycles, std::memory_order_relaxed);
235
    }
236
  } while (elapsed_cycles >= local_approx_syscall_time_in_cycles ||
237
           last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16));
238
239
  // Adjust approx_syscall_time_in_cycles to be within a factor of 2
240
  // of the typical time to execute one iteration of the loop above.
241
  if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) {
242
    // measured time is no smaller than half current approximation
243
    time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
244
  } else if (time_state.kernel_time_seen_smaller.fetch_add(
245
                 1, std::memory_order_relaxed) >= 3) {
246
    // smaller delays several times in a row; reduce approximation by 12.5%
247
    const uint64_t new_approximation =
248
        local_approx_syscall_time_in_cycles -
249
        (local_approx_syscall_time_in_cycles >> 3);
250
    time_state.approx_syscall_time_in_cycles.store(new_approximation,
251
                                                   std::memory_order_relaxed);
252
    time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
253
  }
254
255
  *cycleclock = after_cycles;
256
  return current_time_nanos_from_system;
257
}
258
259
static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD;
260
261
// Read the contents of *atomic into *sample.
262
// Each field is read atomically, but to maintain atomicity between fields,
263
// the access must be done under a lock.
264
static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic,
265
                                 struct TimeSample *sample) {
266
  sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed);
267
  sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed);
268
  sample->nsscaled_per_cycle =
269
      atomic->nsscaled_per_cycle.load(std::memory_order_relaxed);
270
  sample->min_cycles_per_sample =
271
      atomic->min_cycles_per_sample.load(std::memory_order_relaxed);
272
  sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed);
273
}
274
275
// Public routine.
276
// Algorithm:  We wish to compute real time from a cycle counter.  In normal
277
// operation, we construct a piecewise linear approximation to the kernel time
278
// source, using the cycle counter value.  The start of each line segment is at
279
// the same point as the end of the last, but may have a different slope (that
280
// is, a different idea of the cycle counter frequency).  Every couple of
281
// seconds, the kernel time source is sampled and compared with the current
282
// approximation.  A new slope is chosen that, if followed for another couple
283
// of seconds, will correct the error at the current position.  The information
284
// for a sample is in the "last_sample" struct.  The linear approximation is
285
//   estimated_time = last_sample.base_ns +
286
//     last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles)
287
// (ns_per_cycle is actually stored in different units and scaled, to avoid
288
// overflow).  The base_ns of the next linear approximation is the
289
// estimated_time using the last approximation; the base_cycles is the cycle
290
// counter value at that time; the ns_per_cycle is the number of ns per cycle
291
// measured since the last sample, but adjusted so that most of the difference
292
// between the estimated_time and the kernel time will be corrected by the
293
// estimated time to the next sample.  In normal operation, this algorithm
294
// relies on:
295
// - the cycle counter and kernel time rates not changing a lot in a few
296
//   seconds.
297
// - the client calling into the code often compared to a couple of seconds, so
298
//   the time to the next correction can be estimated.
299
// Any time ns_per_cycle is not known, a major error is detected, or the
300
// assumption about frequent calls is violated, the implementation returns the
301
// kernel time.  It records sufficient data that a linear approximation can
302
// resume a little later.
303
304
int64_t GetCurrentTimeNanos() {
305
  // read the data from the "last_sample" struct (but don't need raw_ns yet)
306
  // The reads of "seq" and test of the values emulate a reader lock.
307
  uint64_t base_ns;
308
  uint64_t base_cycles;
309
  uint64_t nsscaled_per_cycle;
310
  uint64_t min_cycles_per_sample;
311
  uint64_t seq_read0;
312
  uint64_t seq_read1;
313
314
  // If we have enough information to interpolate, the value returned will be
315
  // derived from this cycleclock-derived time estimate.  On some platforms
316
  // (POWER) the function to retrieve this value has enough complexity to
317
  // contribute to register pressure - reading it early before initializing
318
  // the other pieces of the calculation minimizes spill/restore instructions,
319
  // minimizing icache cost.
320
  uint64_t now_cycles =
321
      static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW());
322
323
  // Acquire pairs with the barrier in SeqRelease - if this load sees that
324
  // store, the shared-data reads necessarily see that SeqRelease's updates
325
  // to the same shared data.
326
  seq_read0 = time_state.seq.load(std::memory_order_acquire);
327
328
  base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed);
329
  base_cycles =
330
      time_state.last_sample.base_cycles.load(std::memory_order_relaxed);
331
  nsscaled_per_cycle =
332
      time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed);
333
  min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load(
334
      std::memory_order_relaxed);
335
336
  // This acquire fence pairs with the release fence in SeqAcquire.  Since it
337
  // is sequenced between reads of shared data and seq_read1, the reads of
338
  // shared data are effectively acquiring.
339
  std::atomic_thread_fence(std::memory_order_acquire);
340
341
  // The shared-data reads are effectively acquire ordered, and the
342
  // shared-data writes are effectively release ordered. Therefore if our
343
  // shared-data reads see any of a particular update's shared-data writes,
344
  // seq_read1 is guaranteed to see that update's SeqAcquire.
345
  seq_read1 = time_state.seq.load(std::memory_order_relaxed);
346
347
  // Fast path.  Return if min_cycles_per_sample has not yet elapsed since the
348
  // last sample, and we read a consistent sample.  The fast path activates
349
  // only when min_cycles_per_sample is non-zero, which happens when we get an
350
  // estimate for the cycle time.  The predicate will fail if now_cycles <
351
  // base_cycles, or if some other thread is in the slow path.
352
  //
353
  // Since we now read now_cycles before base_ns, it is possible for now_cycles
354
  // to be less than base_cycles (if we were interrupted between those loads and
355
  // last_sample was updated). This is harmless, because delta_cycles will wrap
356
  // and report a time much much bigger than min_cycles_per_sample. In that case
357
  // we will take the slow path.
358
  uint64_t delta_cycles;
359
  if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 &&
360
      (delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) {
361
    return static_cast<int64_t>(
362
        base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale));
363
  }
364
  return GetCurrentTimeNanosSlowPath();
365
}
366
367
// Return (a << kScale)/b.
368
// Zero is returned if b==0.   Scaling is performed internally to
369
// preserve precision without overflow.
370
static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) {
371
  // Find maximum safe_shift so that
372
  //  0 <= safe_shift <= kScale  and  (a << safe_shift) does not overflow.
373
  int safe_shift = kScale;
374
  while (((a << safe_shift) >> safe_shift) != a) {
375
    safe_shift--;
376
  }
377
  uint64_t scaled_b = b >> (kScale - safe_shift);
378
  uint64_t quotient = 0;
379
  if (scaled_b != 0) {
380
    quotient = (a << safe_shift) / scaled_b;
381
  }
382
  return quotient;
383
}
384
385
static uint64_t UpdateLastSample(
386
    uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles,
387
    const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD;
388
389
// The slow path of GetCurrentTimeNanos().  This is taken while gathering
390
// initial samples, when enough time has elapsed since the last sample, and if
391
// any other thread is writing to last_sample.
392
//
393
// Manually mark this 'noinline' to minimize stack frame size of the fast
394
// path.  Without this, sometimes a compiler may inline this big block of code
395
// into the fast path.  That causes lots of register spills and reloads that
396
// are unnecessary unless the slow path is taken.
397
//
398
// TODO(absl-team): Remove this attribute when our compiler is smart enough
399
// to do the right thing.
400
ABSL_ATTRIBUTE_NOINLINE
401
static int64_t GetCurrentTimeNanosSlowPath()
402
    ABSL_LOCKS_EXCLUDED(time_state.lock) {
403
  // Serialize access to slow-path.  Fast-path readers are not blocked yet, and
404
  // code below must not modify last_sample until the seqlock is acquired.
405
  time_state.lock.Lock();
406
407
  // Sample the kernel time base.  This is the definition of
408
  // "now" if we take the slow path.
409
  uint64_t now_cycles;
410
  uint64_t now_ns = static_cast<uint64_t>(
411
      GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles));
412
  time_state.last_now_cycles = now_cycles;
413
414
  uint64_t estimated_base_ns;
415
416
  // ----------
417
  // Read the "last_sample" values again; this time holding the write lock.
418
  struct TimeSample sample;
419
  ReadTimeSampleAtomic(&time_state.last_sample, &sample);
420
421
  // ----------
422
  // Try running the fast path again; another thread may have updated the
423
  // sample between our run of the fast path and the sample we just read.
424
  uint64_t delta_cycles = now_cycles - sample.base_cycles;
425
  if (delta_cycles < sample.min_cycles_per_sample) {
426
    // Another thread updated the sample.  This path does not take the seqlock
427
    // so that blocked readers can make progress without blocking new readers.
428
    estimated_base_ns = sample.base_ns +
429
        ((delta_cycles * sample.nsscaled_per_cycle) >> kScale);
430
    time_state.stats_fast_slow_paths++;
431
  } else {
432
    estimated_base_ns =
433
        UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample);
434
  }
435
436
  time_state.lock.Unlock();
437
438
  return static_cast<int64_t>(estimated_base_ns);
439
}
440
441
// Main part of the algorithm.  Locks out readers, updates the approximation
442
// using the new sample from the kernel, and stores the result in last_sample
443
// for readers.  Returns the new estimated time.
444
static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns,
445
                                 uint64_t delta_cycles,
446
                                 const struct TimeSample *sample)
447
    ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
448
  uint64_t estimated_base_ns = now_ns;
449
  uint64_t lock_value =
450
      SeqAcquire(&time_state.seq);  // acquire seqlock to block readers
451
452
  // The 5s in the next if-statement limits the time for which we will trust
453
  // the cycle counter and our last sample to give a reasonable result.
454
  // Errors in the rate of the source clock can be multiplied by the ratio
455
  // between this limit and kMinNSBetweenSamples.
456
  if (sample->raw_ns == 0 ||  // no recent sample, or clock went backwards
457
      sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns ||
458
      now_ns < sample->raw_ns || now_cycles < sample->base_cycles) {
459
    // record this sample, and forget any previously known slope.
460
    time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
461
    time_state.last_sample.base_ns.store(estimated_base_ns,
462
                                         std::memory_order_relaxed);
463
    time_state.last_sample.base_cycles.store(now_cycles,
464
                                             std::memory_order_relaxed);
465
    time_state.last_sample.nsscaled_per_cycle.store(0,
466
                                                    std::memory_order_relaxed);
467
    time_state.last_sample.min_cycles_per_sample.store(
468
        0, std::memory_order_relaxed);
469
    time_state.stats_initializations++;
470
  } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns &&
471
             sample->base_cycles + 50 < now_cycles) {
472
    // Enough time has passed to compute the cycle time.
473
    if (sample->nsscaled_per_cycle != 0) {  // Have a cycle time estimate.
474
      // Compute time from counter reading, but avoiding overflow
475
      // delta_cycles may be larger than on the fast path.
476
      uint64_t estimated_scaled_ns;
477
      int s = -1;
478
      do {
479
        s++;
480
        estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle;
481
      } while (estimated_scaled_ns / sample->nsscaled_per_cycle !=
482
               (delta_cycles >> s));
483
      estimated_base_ns = sample->base_ns +
484
                          (estimated_scaled_ns >> (kScale - s));
485
    }
486
487
    // Compute the assumed cycle time kMinNSBetweenSamples ns into the future
488
    // assuming the cycle counter rate stays the same as the last interval.
489
    uint64_t ns = now_ns - sample->raw_ns;
490
    uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles);
491
492
    uint64_t assumed_next_sample_delta_cycles =
493
        SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle);
494
495
    // Estimate low by this much.
496
    int64_t diff_ns = static_cast<int64_t>(now_ns - estimated_base_ns);
497
498
    // We want to set nsscaled_per_cycle so that our estimate of the ns time
499
    // at the assumed cycle time is the assumed ns time.
500
    // That is, we want to set nsscaled_per_cycle so:
501
    //  kMinNSBetweenSamples + diff_ns  ==
502
    //  (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
503
    // But we wish to damp oscillations, so instead correct only most
504
    // of our current error, by solving:
505
    //  kMinNSBetweenSamples + diff_ns - (diff_ns / 16) ==
506
    //  (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
507
    ns = static_cast<uint64_t>(static_cast<int64_t>(kMinNSBetweenSamples) +
508
                               diff_ns - (diff_ns / 16));
509
    uint64_t new_nsscaled_per_cycle =
510
        SafeDivideAndScale(ns, assumed_next_sample_delta_cycles);
511
    if (new_nsscaled_per_cycle != 0 &&
512
        diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) {
513
      // record the cycle time measurement
514
      time_state.last_sample.nsscaled_per_cycle.store(
515
          new_nsscaled_per_cycle, std::memory_order_relaxed);
516
      uint64_t new_min_cycles_per_sample =
517
          SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle);
518
      time_state.last_sample.min_cycles_per_sample.store(
519
          new_min_cycles_per_sample, std::memory_order_relaxed);
520
      time_state.stats_calibrations++;
521
    } else {  // something went wrong; forget the slope
522
      time_state.last_sample.nsscaled_per_cycle.store(
523
          0, std::memory_order_relaxed);
524
      time_state.last_sample.min_cycles_per_sample.store(
525
          0, std::memory_order_relaxed);
526
      estimated_base_ns = now_ns;
527
      time_state.stats_reinitializations++;
528
    }
529
    time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
530
    time_state.last_sample.base_ns.store(estimated_base_ns,
531
                                         std::memory_order_relaxed);
532
    time_state.last_sample.base_cycles.store(now_cycles,
533
                                             std::memory_order_relaxed);
534
  } else {
535
    // have a sample, but no slope; waiting for enough time for a calibration
536
    time_state.stats_slow_paths++;
537
  }
538
539
  SeqRelease(&time_state.seq, lock_value);  // release the readers
540
541
  return estimated_base_ns;
542
}
543
ABSL_NAMESPACE_END
544
}  // namespace absl
545
#endif  // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
546
547
namespace absl {
548
ABSL_NAMESPACE_BEGIN
549
namespace {
550
551
// Returns the maximum duration that SleepOnce() can sleep for.
552
0
constexpr absl::Duration MaxSleep() {
553
#ifdef _WIN32
554
  // Windows Sleep() takes unsigned long argument in milliseconds.
555
  return absl::Milliseconds(
556
      std::numeric_limits<unsigned long>::max());  // NOLINT(runtime/int)
557
#else
558
0
  return absl::Seconds(std::numeric_limits<time_t>::max());
559
0
#endif
560
0
}
561
562
// Sleeps for the given duration.
563
// REQUIRES: to_sleep <= MaxSleep().
564
0
void SleepOnce(absl::Duration to_sleep) {
565
#ifdef _WIN32
566
  Sleep(static_cast<DWORD>(to_sleep / absl::Milliseconds(1)));
567
#else
568
0
  struct timespec sleep_time = absl::ToTimespec(to_sleep);
569
0
  while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {
570
    // Ignore signals and wait for the full interval to elapse.
571
0
  }
572
0
#endif
573
0
}
574
575
}  // namespace
576
ABSL_NAMESPACE_END
577
}  // namespace absl
578
579
extern "C" {
580
581
ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)(
582
0
    absl::Duration duration) {
583
0
  while (duration > absl::ZeroDuration()) {
584
0
    absl::Duration to_sleep = std::min(duration, absl::MaxSleep());
585
0
    absl::SleepOnce(to_sleep);
586
0
    duration -= to_sleep;
587
0
  }
588
0
}
589
590
}  // extern "C"