/src/abseil-cpp/absl/time/clock.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2017 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include "absl/time/clock.h" |
16 | | |
17 | | #include "absl/base/attributes.h" |
18 | | #include "absl/base/optimization.h" |
19 | | |
20 | | #ifdef _WIN32 |
21 | | #include <windows.h> |
22 | | #endif |
23 | | |
24 | | #include <algorithm> |
25 | | #include <atomic> |
26 | | #include <cerrno> |
27 | | #include <cstdint> |
28 | | #include <ctime> |
29 | | #include <limits> |
30 | | |
31 | | #include "absl/base/internal/spinlock.h" |
32 | | #include "absl/base/internal/unscaledcycleclock.h" |
33 | | #include "absl/base/macros.h" |
34 | | #include "absl/base/port.h" |
35 | | #include "absl/base/thread_annotations.h" |
36 | | |
37 | | namespace absl { |
38 | | ABSL_NAMESPACE_BEGIN |
39 | 3.24M | Time Now() { |
40 | | // TODO(bww): Get a timespec instead so we don't have to divide. |
41 | 3.24M | int64_t n = absl::GetCurrentTimeNanos(); |
42 | 3.24M | if (n >= 0) { |
43 | 3.24M | return time_internal::FromUnixDuration( |
44 | 3.24M | time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4)); |
45 | 3.24M | } |
46 | 0 | return time_internal::FromUnixDuration(absl::Nanoseconds(n)); |
47 | 3.24M | } |
48 | | ABSL_NAMESPACE_END |
49 | | } // namespace absl |
50 | | |
51 | | // Decide if we should use the fast GetCurrentTimeNanos() algorithm based on the |
52 | | // cyclecounter, otherwise just get the time directly from the OS on every call. |
53 | | // By default, the fast algorithm based on the cyclecount is disabled because in |
54 | | // certain situations, for example, if the OS enters a "sleep" mode, it may |
55 | | // produce incorrect values immediately upon waking. |
56 | | // This can be chosen at compile-time via |
57 | | // -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1] |
58 | | #ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS |
59 | | #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0 |
60 | | #endif |
61 | | |
62 | | #if defined(__APPLE__) || defined(_WIN32) |
63 | | #include "absl/time/internal/get_current_time_chrono.inc" |
64 | | #else |
65 | | #include "absl/time/internal/get_current_time_posix.inc" |
66 | | #endif |
67 | | |
68 | | // Allows override by test. |
69 | | #ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM |
70 | | #define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \ |
71 | 3.24M | ::absl::time_internal::GetCurrentTimeNanosFromSystem() |
72 | | #endif |
73 | | |
74 | | #if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS |
75 | | namespace absl { |
76 | | ABSL_NAMESPACE_BEGIN |
77 | 3.24M | int64_t GetCurrentTimeNanos() { return GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); } |
78 | | ABSL_NAMESPACE_END |
79 | | } // namespace absl |
80 | | #else // Use the cyclecounter-based implementation below. |
81 | | |
82 | | // Allows override by test. |
83 | | #ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW |
84 | | #define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \ |
85 | | ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now() |
86 | | #endif |
87 | | |
88 | | namespace absl { |
89 | | ABSL_NAMESPACE_BEGIN |
90 | | namespace time_internal { |
91 | | // This is a friend wrapper around UnscaledCycleClock::Now() |
92 | | // (needed to access UnscaledCycleClock). |
93 | | class UnscaledCycleClockWrapperForGetCurrentTime { |
94 | | public: |
95 | | static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); } |
96 | | }; |
97 | | } // namespace time_internal |
98 | | |
99 | | // uint64_t is used in this module to provide an extra bit in multiplications |
100 | | |
101 | | // --------------------------------------------------------------------- |
102 | | // An implementation of reader-write locks that use no atomic ops in the read |
103 | | // case. This is a generalization of Lamport's method for reading a multiword |
104 | | // clock. Increment a word on each write acquisition, using the low-order bit |
105 | | // as a spinlock; the word is the high word of the "clock". Readers read the |
106 | | // high word, then all other data, then the high word again, and repeat the |
107 | | // read if the reads of the high words yields different answers, or an odd |
108 | | // value (either case suggests possible interference from a writer). |
109 | | // Here we use a spinlock to ensure only one writer at a time, rather than |
110 | | // spinning on the bottom bit of the word to benefit from SpinLock |
111 | | // spin-delay tuning. |
112 | | |
113 | | // Acquire seqlock (*seq) and return the value to be written to unlock. |
114 | | static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) { |
115 | | uint64_t x = seq->fetch_add(1, std::memory_order_relaxed); |
116 | | |
117 | | // We put a release fence between update to *seq and writes to shared data. |
118 | | // Thus all stores to shared data are effectively release operations and |
119 | | // update to *seq above cannot be re-ordered past any of them. Note that |
120 | | // this barrier is not for the fetch_add above. A release barrier for the |
121 | | // fetch_add would be before it, not after. |
122 | | std::atomic_thread_fence(std::memory_order_release); |
123 | | |
124 | | return x + 2; // original word plus 2 |
125 | | } |
126 | | |
127 | | // Release seqlock (*seq) by writing x to it---a value previously returned by |
128 | | // SeqAcquire. |
129 | | static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) { |
130 | | // The unlock store to *seq must have release ordering so that all |
131 | | // updates to shared data must finish before this store. |
132 | | seq->store(x, std::memory_order_release); // release lock for readers |
133 | | } |
134 | | |
135 | | // --------------------------------------------------------------------- |
136 | | |
137 | | // "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond. |
138 | | enum { kScale = 30 }; |
139 | | |
140 | | // The minimum interval between samples of the time base. |
141 | | // We pick enough time to amortize the cost of the sample, |
142 | | // to get a reasonably accurate cycle counter rate reading, |
143 | | // and not so much that calculations will overflow 64-bits. |
144 | | static const uint64_t kMinNSBetweenSamples = 2000 << 20; |
145 | | |
146 | | // We require that kMinNSBetweenSamples shifted by kScale |
147 | | // have at least a bit left over for 64-bit calculations. |
148 | | static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) == |
149 | | kMinNSBetweenSamples, |
150 | | "cannot represent kMaxBetweenSamplesNSScaled"); |
151 | | |
152 | | // data from a sample of the kernel's time value |
153 | | struct TimeSampleAtomic { |
154 | | std::atomic<uint64_t> raw_ns{0}; // raw kernel time |
155 | | std::atomic<uint64_t> base_ns{0}; // our estimate of time |
156 | | std::atomic<uint64_t> base_cycles{0}; // cycle counter reading |
157 | | std::atomic<uint64_t> nsscaled_per_cycle{0}; // cycle period |
158 | | // cycles before we'll sample again (a scaled reciprocal of the period, |
159 | | // to avoid a division on the fast path). |
160 | | std::atomic<uint64_t> min_cycles_per_sample{0}; |
161 | | }; |
162 | | // Same again, but with non-atomic types |
163 | | struct TimeSample { |
164 | | uint64_t raw_ns = 0; // raw kernel time |
165 | | uint64_t base_ns = 0; // our estimate of time |
166 | | uint64_t base_cycles = 0; // cycle counter reading |
167 | | uint64_t nsscaled_per_cycle = 0; // cycle period |
168 | | uint64_t min_cycles_per_sample = 0; // approx cycles before next sample |
169 | | }; |
170 | | |
171 | | struct ABSL_CACHELINE_ALIGNED TimeState { |
172 | | std::atomic<uint64_t> seq{0}; |
173 | | TimeSampleAtomic last_sample; // the last sample; under seq |
174 | | |
175 | | // The following counters are used only by the test code. |
176 | | int64_t stats_initializations{0}; |
177 | | int64_t stats_reinitializations{0}; |
178 | | int64_t stats_calibrations{0}; |
179 | | int64_t stats_slow_paths{0}; |
180 | | int64_t stats_fast_slow_paths{0}; |
181 | | |
182 | | uint64_t last_now_cycles ABSL_GUARDED_BY(lock){0}; |
183 | | |
184 | | // Used by GetCurrentTimeNanosFromKernel(). |
185 | | // We try to read clock values at about the same time as the kernel clock. |
186 | | // This value gets adjusted up or down as estimate of how long that should |
187 | | // take, so we can reject attempts that take unusually long. |
188 | | std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000}; |
189 | | // Number of times in a row we've seen a kernel time call take substantially |
190 | | // less than approx_syscall_time_in_cycles. |
191 | | std::atomic<uint32_t> kernel_time_seen_smaller{0}; |
192 | | |
193 | | // A reader-writer lock protecting the static locations below. |
194 | | // See SeqAcquire() and SeqRelease() above. |
195 | | absl::base_internal::SpinLock lock{absl::kConstInit, |
196 | | base_internal::SCHEDULE_KERNEL_ONLY}; |
197 | | }; |
198 | | ABSL_CONST_INIT static TimeState time_state; |
199 | | |
200 | | // Return the time in ns as told by the kernel interface. Place in *cycleclock |
201 | | // the value of the cycleclock at about the time of the syscall. |
202 | | // This call represents the time base that this module synchronizes to. |
203 | | // Ensures that *cycleclock does not step back by up to (1 << 16) from |
204 | | // last_cycleclock, to discard small backward counter steps. (Larger steps are |
205 | | // assumed to be complete resyncs, which shouldn't happen. If they do, a full |
206 | | // reinitialization of the outer algorithm should occur.) |
207 | | static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock, |
208 | | uint64_t *cycleclock) |
209 | | ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) { |
210 | | uint64_t local_approx_syscall_time_in_cycles = // local copy |
211 | | time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed); |
212 | | |
213 | | int64_t current_time_nanos_from_system; |
214 | | uint64_t before_cycles; |
215 | | uint64_t after_cycles; |
216 | | uint64_t elapsed_cycles; |
217 | | int loops = 0; |
218 | | do { |
219 | | before_cycles = |
220 | | static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW()); |
221 | | current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); |
222 | | after_cycles = |
223 | | static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW()); |
224 | | // elapsed_cycles is unsigned, so is large on overflow |
225 | | elapsed_cycles = after_cycles - before_cycles; |
226 | | if (elapsed_cycles >= local_approx_syscall_time_in_cycles && |
227 | | ++loops == 20) { // clock changed frequencies? Back off. |
228 | | loops = 0; |
229 | | if (local_approx_syscall_time_in_cycles < 1000 * 1000) { |
230 | | local_approx_syscall_time_in_cycles = |
231 | | (local_approx_syscall_time_in_cycles + 1) << 1; |
232 | | } |
233 | | time_state.approx_syscall_time_in_cycles.store( |
234 | | local_approx_syscall_time_in_cycles, std::memory_order_relaxed); |
235 | | } |
236 | | } while (elapsed_cycles >= local_approx_syscall_time_in_cycles || |
237 | | last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16)); |
238 | | |
239 | | // Adjust approx_syscall_time_in_cycles to be within a factor of 2 |
240 | | // of the typical time to execute one iteration of the loop above. |
241 | | if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) { |
242 | | // measured time is no smaller than half current approximation |
243 | | time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed); |
244 | | } else if (time_state.kernel_time_seen_smaller.fetch_add( |
245 | | 1, std::memory_order_relaxed) >= 3) { |
246 | | // smaller delays several times in a row; reduce approximation by 12.5% |
247 | | const uint64_t new_approximation = |
248 | | local_approx_syscall_time_in_cycles - |
249 | | (local_approx_syscall_time_in_cycles >> 3); |
250 | | time_state.approx_syscall_time_in_cycles.store(new_approximation, |
251 | | std::memory_order_relaxed); |
252 | | time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed); |
253 | | } |
254 | | |
255 | | *cycleclock = after_cycles; |
256 | | return current_time_nanos_from_system; |
257 | | } |
258 | | |
259 | | static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD; |
260 | | |
261 | | // Read the contents of *atomic into *sample. |
262 | | // Each field is read atomically, but to maintain atomicity between fields, |
263 | | // the access must be done under a lock. |
264 | | static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic, |
265 | | struct TimeSample *sample) { |
266 | | sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed); |
267 | | sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed); |
268 | | sample->nsscaled_per_cycle = |
269 | | atomic->nsscaled_per_cycle.load(std::memory_order_relaxed); |
270 | | sample->min_cycles_per_sample = |
271 | | atomic->min_cycles_per_sample.load(std::memory_order_relaxed); |
272 | | sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed); |
273 | | } |
274 | | |
275 | | // Public routine. |
276 | | // Algorithm: We wish to compute real time from a cycle counter. In normal |
277 | | // operation, we construct a piecewise linear approximation to the kernel time |
278 | | // source, using the cycle counter value. The start of each line segment is at |
279 | | // the same point as the end of the last, but may have a different slope (that |
280 | | // is, a different idea of the cycle counter frequency). Every couple of |
281 | | // seconds, the kernel time source is sampled and compared with the current |
282 | | // approximation. A new slope is chosen that, if followed for another couple |
283 | | // of seconds, will correct the error at the current position. The information |
284 | | // for a sample is in the "last_sample" struct. The linear approximation is |
285 | | // estimated_time = last_sample.base_ns + |
286 | | // last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles) |
287 | | // (ns_per_cycle is actually stored in different units and scaled, to avoid |
288 | | // overflow). The base_ns of the next linear approximation is the |
289 | | // estimated_time using the last approximation; the base_cycles is the cycle |
290 | | // counter value at that time; the ns_per_cycle is the number of ns per cycle |
291 | | // measured since the last sample, but adjusted so that most of the difference |
292 | | // between the estimated_time and the kernel time will be corrected by the |
293 | | // estimated time to the next sample. In normal operation, this algorithm |
294 | | // relies on: |
295 | | // - the cycle counter and kernel time rates not changing a lot in a few |
296 | | // seconds. |
297 | | // - the client calling into the code often compared to a couple of seconds, so |
298 | | // the time to the next correction can be estimated. |
299 | | // Any time ns_per_cycle is not known, a major error is detected, or the |
300 | | // assumption about frequent calls is violated, the implementation returns the |
301 | | // kernel time. It records sufficient data that a linear approximation can |
302 | | // resume a little later. |
303 | | |
304 | | int64_t GetCurrentTimeNanos() { |
305 | | // read the data from the "last_sample" struct (but don't need raw_ns yet) |
306 | | // The reads of "seq" and test of the values emulate a reader lock. |
307 | | uint64_t base_ns; |
308 | | uint64_t base_cycles; |
309 | | uint64_t nsscaled_per_cycle; |
310 | | uint64_t min_cycles_per_sample; |
311 | | uint64_t seq_read0; |
312 | | uint64_t seq_read1; |
313 | | |
314 | | // If we have enough information to interpolate, the value returned will be |
315 | | // derived from this cycleclock-derived time estimate. On some platforms |
316 | | // (POWER) the function to retrieve this value has enough complexity to |
317 | | // contribute to register pressure - reading it early before initializing |
318 | | // the other pieces of the calculation minimizes spill/restore instructions, |
319 | | // minimizing icache cost. |
320 | | uint64_t now_cycles = |
321 | | static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW()); |
322 | | |
323 | | // Acquire pairs with the barrier in SeqRelease - if this load sees that |
324 | | // store, the shared-data reads necessarily see that SeqRelease's updates |
325 | | // to the same shared data. |
326 | | seq_read0 = time_state.seq.load(std::memory_order_acquire); |
327 | | |
328 | | base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed); |
329 | | base_cycles = |
330 | | time_state.last_sample.base_cycles.load(std::memory_order_relaxed); |
331 | | nsscaled_per_cycle = |
332 | | time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed); |
333 | | min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load( |
334 | | std::memory_order_relaxed); |
335 | | |
336 | | // This acquire fence pairs with the release fence in SeqAcquire. Since it |
337 | | // is sequenced between reads of shared data and seq_read1, the reads of |
338 | | // shared data are effectively acquiring. |
339 | | std::atomic_thread_fence(std::memory_order_acquire); |
340 | | |
341 | | // The shared-data reads are effectively acquire ordered, and the |
342 | | // shared-data writes are effectively release ordered. Therefore if our |
343 | | // shared-data reads see any of a particular update's shared-data writes, |
344 | | // seq_read1 is guaranteed to see that update's SeqAcquire. |
345 | | seq_read1 = time_state.seq.load(std::memory_order_relaxed); |
346 | | |
347 | | // Fast path. Return if min_cycles_per_sample has not yet elapsed since the |
348 | | // last sample, and we read a consistent sample. The fast path activates |
349 | | // only when min_cycles_per_sample is non-zero, which happens when we get an |
350 | | // estimate for the cycle time. The predicate will fail if now_cycles < |
351 | | // base_cycles, or if some other thread is in the slow path. |
352 | | // |
353 | | // Since we now read now_cycles before base_ns, it is possible for now_cycles |
354 | | // to be less than base_cycles (if we were interrupted between those loads and |
355 | | // last_sample was updated). This is harmless, because delta_cycles will wrap |
356 | | // and report a time much much bigger than min_cycles_per_sample. In that case |
357 | | // we will take the slow path. |
358 | | uint64_t delta_cycles; |
359 | | if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 && |
360 | | (delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) { |
361 | | return static_cast<int64_t>( |
362 | | base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale)); |
363 | | } |
364 | | return GetCurrentTimeNanosSlowPath(); |
365 | | } |
366 | | |
367 | | // Return (a << kScale)/b. |
368 | | // Zero is returned if b==0. Scaling is performed internally to |
369 | | // preserve precision without overflow. |
370 | | static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) { |
371 | | // Find maximum safe_shift so that |
372 | | // 0 <= safe_shift <= kScale and (a << safe_shift) does not overflow. |
373 | | int safe_shift = kScale; |
374 | | while (((a << safe_shift) >> safe_shift) != a) { |
375 | | safe_shift--; |
376 | | } |
377 | | uint64_t scaled_b = b >> (kScale - safe_shift); |
378 | | uint64_t quotient = 0; |
379 | | if (scaled_b != 0) { |
380 | | quotient = (a << safe_shift) / scaled_b; |
381 | | } |
382 | | return quotient; |
383 | | } |
384 | | |
385 | | static uint64_t UpdateLastSample( |
386 | | uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles, |
387 | | const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD; |
388 | | |
389 | | // The slow path of GetCurrentTimeNanos(). This is taken while gathering |
390 | | // initial samples, when enough time has elapsed since the last sample, and if |
391 | | // any other thread is writing to last_sample. |
392 | | // |
393 | | // Manually mark this 'noinline' to minimize stack frame size of the fast |
394 | | // path. Without this, sometimes a compiler may inline this big block of code |
395 | | // into the fast path. That causes lots of register spills and reloads that |
396 | | // are unnecessary unless the slow path is taken. |
397 | | // |
398 | | // TODO(absl-team): Remove this attribute when our compiler is smart enough |
399 | | // to do the right thing. |
400 | | ABSL_ATTRIBUTE_NOINLINE |
401 | | static int64_t GetCurrentTimeNanosSlowPath() |
402 | | ABSL_LOCKS_EXCLUDED(time_state.lock) { |
403 | | // Serialize access to slow-path. Fast-path readers are not blocked yet, and |
404 | | // code below must not modify last_sample until the seqlock is acquired. |
405 | | time_state.lock.Lock(); |
406 | | |
407 | | // Sample the kernel time base. This is the definition of |
408 | | // "now" if we take the slow path. |
409 | | uint64_t now_cycles; |
410 | | uint64_t now_ns = static_cast<uint64_t>( |
411 | | GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles)); |
412 | | time_state.last_now_cycles = now_cycles; |
413 | | |
414 | | uint64_t estimated_base_ns; |
415 | | |
416 | | // ---------- |
417 | | // Read the "last_sample" values again; this time holding the write lock. |
418 | | struct TimeSample sample; |
419 | | ReadTimeSampleAtomic(&time_state.last_sample, &sample); |
420 | | |
421 | | // ---------- |
422 | | // Try running the fast path again; another thread may have updated the |
423 | | // sample between our run of the fast path and the sample we just read. |
424 | | uint64_t delta_cycles = now_cycles - sample.base_cycles; |
425 | | if (delta_cycles < sample.min_cycles_per_sample) { |
426 | | // Another thread updated the sample. This path does not take the seqlock |
427 | | // so that blocked readers can make progress without blocking new readers. |
428 | | estimated_base_ns = sample.base_ns + |
429 | | ((delta_cycles * sample.nsscaled_per_cycle) >> kScale); |
430 | | time_state.stats_fast_slow_paths++; |
431 | | } else { |
432 | | estimated_base_ns = |
433 | | UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample); |
434 | | } |
435 | | |
436 | | time_state.lock.Unlock(); |
437 | | |
438 | | return static_cast<int64_t>(estimated_base_ns); |
439 | | } |
440 | | |
441 | | // Main part of the algorithm. Locks out readers, updates the approximation |
442 | | // using the new sample from the kernel, and stores the result in last_sample |
443 | | // for readers. Returns the new estimated time. |
444 | | static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns, |
445 | | uint64_t delta_cycles, |
446 | | const struct TimeSample *sample) |
447 | | ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) { |
448 | | uint64_t estimated_base_ns = now_ns; |
449 | | uint64_t lock_value = |
450 | | SeqAcquire(&time_state.seq); // acquire seqlock to block readers |
451 | | |
452 | | // The 5s in the next if-statement limits the time for which we will trust |
453 | | // the cycle counter and our last sample to give a reasonable result. |
454 | | // Errors in the rate of the source clock can be multiplied by the ratio |
455 | | // between this limit and kMinNSBetweenSamples. |
456 | | if (sample->raw_ns == 0 || // no recent sample, or clock went backwards |
457 | | sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns || |
458 | | now_ns < sample->raw_ns || now_cycles < sample->base_cycles) { |
459 | | // record this sample, and forget any previously known slope. |
460 | | time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed); |
461 | | time_state.last_sample.base_ns.store(estimated_base_ns, |
462 | | std::memory_order_relaxed); |
463 | | time_state.last_sample.base_cycles.store(now_cycles, |
464 | | std::memory_order_relaxed); |
465 | | time_state.last_sample.nsscaled_per_cycle.store(0, |
466 | | std::memory_order_relaxed); |
467 | | time_state.last_sample.min_cycles_per_sample.store( |
468 | | 0, std::memory_order_relaxed); |
469 | | time_state.stats_initializations++; |
470 | | } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns && |
471 | | sample->base_cycles + 50 < now_cycles) { |
472 | | // Enough time has passed to compute the cycle time. |
473 | | if (sample->nsscaled_per_cycle != 0) { // Have a cycle time estimate. |
474 | | // Compute time from counter reading, but avoiding overflow |
475 | | // delta_cycles may be larger than on the fast path. |
476 | | uint64_t estimated_scaled_ns; |
477 | | int s = -1; |
478 | | do { |
479 | | s++; |
480 | | estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle; |
481 | | } while (estimated_scaled_ns / sample->nsscaled_per_cycle != |
482 | | (delta_cycles >> s)); |
483 | | estimated_base_ns = sample->base_ns + |
484 | | (estimated_scaled_ns >> (kScale - s)); |
485 | | } |
486 | | |
487 | | // Compute the assumed cycle time kMinNSBetweenSamples ns into the future |
488 | | // assuming the cycle counter rate stays the same as the last interval. |
489 | | uint64_t ns = now_ns - sample->raw_ns; |
490 | | uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles); |
491 | | |
492 | | uint64_t assumed_next_sample_delta_cycles = |
493 | | SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle); |
494 | | |
495 | | // Estimate low by this much. |
496 | | int64_t diff_ns = static_cast<int64_t>(now_ns - estimated_base_ns); |
497 | | |
498 | | // We want to set nsscaled_per_cycle so that our estimate of the ns time |
499 | | // at the assumed cycle time is the assumed ns time. |
500 | | // That is, we want to set nsscaled_per_cycle so: |
501 | | // kMinNSBetweenSamples + diff_ns == |
502 | | // (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale |
503 | | // But we wish to damp oscillations, so instead correct only most |
504 | | // of our current error, by solving: |
505 | | // kMinNSBetweenSamples + diff_ns - (diff_ns / 16) == |
506 | | // (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale |
507 | | ns = static_cast<uint64_t>(static_cast<int64_t>(kMinNSBetweenSamples) + |
508 | | diff_ns - (diff_ns / 16)); |
509 | | uint64_t new_nsscaled_per_cycle = |
510 | | SafeDivideAndScale(ns, assumed_next_sample_delta_cycles); |
511 | | if (new_nsscaled_per_cycle != 0 && |
512 | | diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) { |
513 | | // record the cycle time measurement |
514 | | time_state.last_sample.nsscaled_per_cycle.store( |
515 | | new_nsscaled_per_cycle, std::memory_order_relaxed); |
516 | | uint64_t new_min_cycles_per_sample = |
517 | | SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle); |
518 | | time_state.last_sample.min_cycles_per_sample.store( |
519 | | new_min_cycles_per_sample, std::memory_order_relaxed); |
520 | | time_state.stats_calibrations++; |
521 | | } else { // something went wrong; forget the slope |
522 | | time_state.last_sample.nsscaled_per_cycle.store( |
523 | | 0, std::memory_order_relaxed); |
524 | | time_state.last_sample.min_cycles_per_sample.store( |
525 | | 0, std::memory_order_relaxed); |
526 | | estimated_base_ns = now_ns; |
527 | | time_state.stats_reinitializations++; |
528 | | } |
529 | | time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed); |
530 | | time_state.last_sample.base_ns.store(estimated_base_ns, |
531 | | std::memory_order_relaxed); |
532 | | time_state.last_sample.base_cycles.store(now_cycles, |
533 | | std::memory_order_relaxed); |
534 | | } else { |
535 | | // have a sample, but no slope; waiting for enough time for a calibration |
536 | | time_state.stats_slow_paths++; |
537 | | } |
538 | | |
539 | | SeqRelease(&time_state.seq, lock_value); // release the readers |
540 | | |
541 | | return estimated_base_ns; |
542 | | } |
543 | | ABSL_NAMESPACE_END |
544 | | } // namespace absl |
545 | | #endif // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS |
546 | | |
547 | | namespace absl { |
548 | | ABSL_NAMESPACE_BEGIN |
549 | | namespace { |
550 | | |
551 | | // Returns the maximum duration that SleepOnce() can sleep for. |
552 | 0 | constexpr absl::Duration MaxSleep() { |
553 | | #ifdef _WIN32 |
554 | | // Windows Sleep() takes unsigned long argument in milliseconds. |
555 | | return absl::Milliseconds( |
556 | | std::numeric_limits<unsigned long>::max()); // NOLINT(runtime/int) |
557 | | #else |
558 | 0 | return absl::Seconds(std::numeric_limits<time_t>::max()); |
559 | 0 | #endif |
560 | 0 | } |
561 | | |
562 | | // Sleeps for the given duration. |
563 | | // REQUIRES: to_sleep <= MaxSleep(). |
564 | 0 | void SleepOnce(absl::Duration to_sleep) { |
565 | | #ifdef _WIN32 |
566 | | Sleep(static_cast<DWORD>(to_sleep / absl::Milliseconds(1))); |
567 | | #else |
568 | 0 | struct timespec sleep_time = absl::ToTimespec(to_sleep); |
569 | 0 | while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) { |
570 | | // Ignore signals and wait for the full interval to elapse. |
571 | 0 | } |
572 | 0 | #endif |
573 | 0 | } |
574 | | |
575 | | } // namespace |
576 | | ABSL_NAMESPACE_END |
577 | | } // namespace absl |
578 | | |
579 | | extern "C" { |
580 | | |
581 | | ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)( |
582 | 0 | absl::Duration duration) { |
583 | 0 | while (duration > absl::ZeroDuration()) { |
584 | 0 | absl::Duration to_sleep = std::min(duration, absl::MaxSleep()); |
585 | 0 | absl::SleepOnce(to_sleep); |
586 | 0 | duration -= to_sleep; |
587 | 0 | } |
588 | 0 | } |
589 | | |
590 | | } // extern "C" |