/src/abseil-cpp/absl/base/internal/sysinfo.cc
Line  | Count  | Source  | 
1  |  | // Copyright 2017 The Abseil Authors.  | 
2  |  | //  | 
3  |  | // Licensed under the Apache License, Version 2.0 (the "License");  | 
4  |  | // you may not use this file except in compliance with the License.  | 
5  |  | // You may obtain a copy of the License at  | 
6  |  | //  | 
7  |  | //      https://www.apache.org/licenses/LICENSE-2.0  | 
8  |  | //  | 
9  |  | // Unless required by applicable law or agreed to in writing, software  | 
10  |  | // distributed under the License is distributed on an "AS IS" BASIS,  | 
11  |  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
12  |  | // See the License for the specific language governing permissions and  | 
13  |  | // limitations under the License.  | 
14  |  |  | 
15  |  | #include "absl/base/internal/sysinfo.h"  | 
16  |  |  | 
17  |  | #include "absl/base/attributes.h"  | 
18  |  |  | 
19  |  | #ifdef _WIN32  | 
20  |  | #include <windows.h>  | 
21  |  | #else  | 
22  |  | #include <fcntl.h>  | 
23  |  | #include <pthread.h>  | 
24  |  | #include <sys/stat.h>  | 
25  |  | #include <sys/types.h>  | 
26  |  | #include <unistd.h>  | 
27  |  | #endif  | 
28  |  |  | 
29  |  | #ifdef __linux__  | 
30  |  | #include <sys/syscall.h>  | 
31  |  | #endif  | 
32  |  |  | 
33  |  | #if defined(__APPLE__) || defined(__FreeBSD__)  | 
34  |  | #include <sys/sysctl.h>  | 
35  |  | #endif  | 
36  |  |  | 
37  |  | #ifdef __FreeBSD__  | 
38  |  | #include <pthread_np.h>  | 
39  |  | #endif  | 
40  |  |  | 
41  |  | #ifdef __NetBSD__  | 
42  |  | #include <lwp.h>  | 
43  |  | #endif  | 
44  |  |  | 
45  |  | #if defined(__myriad2__)  | 
46  |  | #include <rtems.h>  | 
47  |  | #endif  | 
48  |  |  | 
49  |  | #if defined(__Fuchsia__)  | 
50  |  | #include <zircon/process.h>  | 
51  |  | #endif  | 
52  |  |  | 
53  |  | #include <string.h>  | 
54  |  |  | 
55  |  | #include <cassert>  | 
56  |  | #include <cerrno>  | 
57  |  | #include <cstdint>  | 
58  |  | #include <cstdio>  | 
59  |  | #include <cstdlib>  | 
60  |  | #include <ctime>  | 
61  |  | #include <limits>  | 
62  |  | #include <thread>  // NOLINT(build/c++11)  | 
63  |  | #include <utility>  | 
64  |  | #include <vector>  | 
65  |  |  | 
66  |  | #include "absl/base/call_once.h"  | 
67  |  | #include "absl/base/config.h"  | 
68  |  | #include "absl/base/internal/raw_logging.h"  | 
69  |  | #include "absl/base/internal/spinlock.h"  | 
70  |  | #include "absl/base/internal/unscaledcycleclock.h"  | 
71  |  | #include "absl/base/thread_annotations.h"  | 
72  |  |  | 
73  |  | namespace absl { | 
74  |  | ABSL_NAMESPACE_BEGIN  | 
75  |  | namespace base_internal { | 
76  |  |  | 
77  |  | namespace { | 
78  |  |  | 
79  |  | #if defined(_WIN32)  | 
80  |  |  | 
81  |  | // Returns number of bits set in `bitMask`  | 
82  |  | DWORD Win32CountSetBits(ULONG_PTR bitMask) { | 
83  |  |   for (DWORD bitSetCount = 0; ; ++bitSetCount) { | 
84  |  |     if (bitMask == 0) return bitSetCount;  | 
85  |  |     bitMask &= bitMask - 1;  | 
86  |  |   }  | 
87  |  | }  | 
88  |  |  | 
89  |  | // Returns the number of logical CPUs using GetLogicalProcessorInformation(), or  | 
90  |  | // 0 if the number of processors is not available or can not be computed.  | 
91  |  | // https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getlogicalprocessorinformation  | 
92  |  | int Win32NumCPUs() { | 
93  |  | #pragma comment(lib, "kernel32.lib")  | 
94  |  |   using Info = SYSTEM_LOGICAL_PROCESSOR_INFORMATION;  | 
95  |  |  | 
96  |  |   DWORD info_size = sizeof(Info);  | 
97  |  |   Info* info(static_cast<Info*>(malloc(info_size)));  | 
98  |  |   if (info == nullptr) return 0;  | 
99  |  |  | 
100  |  |   bool success = GetLogicalProcessorInformation(info, &info_size);  | 
101  |  |   if (!success && GetLastError() == ERROR_INSUFFICIENT_BUFFER) { | 
102  |  |     free(info);  | 
103  |  |     info = static_cast<Info*>(malloc(info_size));  | 
104  |  |     if (info == nullptr) return 0;  | 
105  |  |     success = GetLogicalProcessorInformation(info, &info_size);  | 
106  |  |   }  | 
107  |  |  | 
108  |  |   DWORD logicalProcessorCount = 0;  | 
109  |  |   if (success) { | 
110  |  |     Info* ptr = info;  | 
111  |  |     DWORD byteOffset = 0;  | 
112  |  |     while (byteOffset + sizeof(Info) <= info_size) { | 
113  |  |       switch (ptr->Relationship) { | 
114  |  |         case RelationProcessorCore:  | 
115  |  |           logicalProcessorCount += Win32CountSetBits(ptr->ProcessorMask);  | 
116  |  |           break;  | 
117  |  |  | 
118  |  |         case RelationNumaNode:  | 
119  |  |         case RelationCache:  | 
120  |  |         case RelationProcessorPackage:  | 
121  |  |           // Ignore other entries  | 
122  |  |           break;  | 
123  |  |  | 
124  |  |         default:  | 
125  |  |           // Ignore unknown entries  | 
126  |  |           break;  | 
127  |  |       }  | 
128  |  |       byteOffset += sizeof(Info);  | 
129  |  |       ptr++;  | 
130  |  |     }  | 
131  |  |   }  | 
132  |  |   free(info);  | 
133  |  |   return static_cast<int>(logicalProcessorCount);  | 
134  |  | }  | 
135  |  |  | 
136  |  | #endif  | 
137  |  |  | 
138  |  | }  // namespace  | 
139  |  |  | 
140  | 0  | static int GetNumCPUs() { | 
141  |  | #if defined(__myriad2__)  | 
142  |  |   return 1;  | 
143  |  | #elif defined(_WIN32)  | 
144  |  |   const int hardware_concurrency = Win32NumCPUs();  | 
145  |  |   return hardware_concurrency ? hardware_concurrency : 1;  | 
146  |  | #elif defined(_AIX)  | 
147  |  |   return sysconf(_SC_NPROCESSORS_ONLN);  | 
148  |  | #else  | 
149  |  |   // Other possibilities:  | 
150  |  |   //  - Read /sys/devices/system/cpu/online and use cpumask_parse()  | 
151  |  |   //  - sysconf(_SC_NPROCESSORS_ONLN)  | 
152  | 0  |   return static_cast<int>(std::thread::hardware_concurrency());  | 
153  | 0  | #endif  | 
154  | 0  | }  | 
155  |  |  | 
156  |  | #if defined(_WIN32)  | 
157  |  |  | 
158  |  | static double GetNominalCPUFrequency() { | 
159  |  | #if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && \  | 
160  |  |     !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)  | 
161  |  |   // UWP apps don't have access to the registry and currently don't provide an  | 
162  |  |   // API informing about CPU nominal frequency.  | 
163  |  |   return 1.0;  | 
164  |  | #else  | 
165  |  | #pragma comment(lib, "advapi32.lib")  // For Reg* functions.  | 
166  |  |   HKEY key;  | 
167  |  |   // Use the Reg* functions rather than the SH functions because shlwapi.dll  | 
168  |  |   // pulls in gdi32.dll which makes process destruction much more costly.  | 
169  |  |   if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,  | 
170  |  |                     "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,  | 
171  |  |                     KEY_READ, &key) == ERROR_SUCCESS) { | 
172  |  |     DWORD type = 0;  | 
173  |  |     DWORD data = 0;  | 
174  |  |     DWORD data_size = sizeof(data);  | 
175  |  |     auto result = RegQueryValueExA(key, "~MHz", nullptr, &type,  | 
176  |  |                                    reinterpret_cast<LPBYTE>(&data), &data_size);  | 
177  |  |     RegCloseKey(key);  | 
178  |  |     if (result == ERROR_SUCCESS && type == REG_DWORD &&  | 
179  |  |         data_size == sizeof(data)) { | 
180  |  |       return data * 1e6;  // Value is MHz.  | 
181  |  |     }  | 
182  |  |   }  | 
183  |  |   return 1.0;  | 
184  |  | #endif  // WINAPI_PARTITION_APP && !WINAPI_PARTITION_DESKTOP  | 
185  |  | }  | 
186  |  |  | 
187  |  | #elif defined(CTL_HW) && defined(HW_CPU_FREQ)  | 
188  |  |  | 
189  |  | static double GetNominalCPUFrequency() { | 
190  |  |   unsigned freq;  | 
191  |  |   size_t size = sizeof(freq);  | 
192  |  |   int mib[2] = {CTL_HW, HW_CPU_FREQ}; | 
193  |  |   if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) { | 
194  |  |     return static_cast<double>(freq);  | 
195  |  |   }  | 
196  |  |   return 1.0;  | 
197  |  | }  | 
198  |  |  | 
199  |  | #else  | 
200  |  |  | 
201  |  | // Helper function for reading a long from a file. Returns true if successful  | 
202  |  | // and the memory location pointed to by value is set to the value read.  | 
203  | 0  | static bool ReadLongFromFile(const char *file, long *value) { | 
204  | 0  |   bool ret = false;  | 
205  | 0  | #if defined(_POSIX_C_SOURCE)  | 
206  | 0  |   const int file_mode = (O_RDONLY | O_CLOEXEC);  | 
207  |  | #else  | 
208  |  |   const int file_mode = O_RDONLY;  | 
209  |  | #endif  | 
210  |  | 
  | 
211  | 0  |   int fd = open(file, file_mode);  | 
212  | 0  |   if (fd != -1) { | 
213  | 0  |     char line[1024];  | 
214  | 0  |     char *err;  | 
215  | 0  |     memset(line, '\0', sizeof(line));  | 
216  | 0  |     ssize_t len;  | 
217  | 0  |     do { | 
218  | 0  |       len = read(fd, line, sizeof(line) - 1);  | 
219  | 0  |     } while (len < 0 && errno == EINTR);  | 
220  | 0  |     if (len <= 0) { | 
221  | 0  |       ret = false;  | 
222  | 0  |     } else { | 
223  | 0  |       const long temp_value = strtol(line, &err, 10);  | 
224  | 0  |       if (line[0] != '\0' && (*err == '\n' || *err == '\0')) { | 
225  | 0  |         *value = temp_value;  | 
226  | 0  |         ret = true;  | 
227  | 0  |       }  | 
228  | 0  |     }  | 
229  | 0  |     close(fd);  | 
230  | 0  |   }  | 
231  | 0  |   return ret;  | 
232  | 0  | }  | 
233  |  |  | 
234  |  | #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)  | 
235  |  |  | 
236  |  | // Reads a monotonic time source and returns a value in  | 
237  |  | // nanoseconds. The returned value uses an arbitrary epoch, not the  | 
238  |  | // Unix epoch.  | 
239  | 0  | static int64_t ReadMonotonicClockNanos() { | 
240  | 0  |   struct timespec t;  | 
241  | 0  | #ifdef CLOCK_MONOTONIC_RAW  | 
242  | 0  |   int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t);  | 
243  |  | #else  | 
244  |  |   int rc = clock_gettime(CLOCK_MONOTONIC, &t);  | 
245  |  | #endif  | 
246  | 0  |   if (rc != 0) { | 
247  | 0  |     ABSL_INTERNAL_LOG(  | 
248  | 0  |         FATAL, "clock_gettime() failed: (" + std::to_string(errno) + ")"); | 
249  | 0  |   }  | 
250  | 0  |   return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec; | 
251  | 0  | }  | 
252  |  |  | 
253  |  | class UnscaledCycleClockWrapperForInitializeFrequency { | 
254  |  |  public:  | 
255  | 0  |   static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); } | 
256  |  | };  | 
257  |  |  | 
258  |  | struct TimeTscPair { | 
259  |  |   int64_t time;  // From ReadMonotonicClockNanos().  | 
260  |  |   int64_t tsc;   // From UnscaledCycleClock::Now().  | 
261  |  | };  | 
262  |  |  | 
263  |  | // Returns a pair of values (monotonic kernel time, TSC ticks) that  | 
264  |  | // approximately correspond to each other.  This is accomplished by  | 
265  |  | // doing several reads and picking the reading with the lowest  | 
266  |  | // latency.  This approach is used to minimize the probability that  | 
267  |  | // our thread was preempted between clock reads.  | 
268  | 0  | static TimeTscPair GetTimeTscPair() { | 
269  | 0  |   int64_t best_latency = std::numeric_limits<int64_t>::max();  | 
270  | 0  |   TimeTscPair best;  | 
271  | 0  |   for (int i = 0; i < 10; ++i) { | 
272  | 0  |     int64_t t0 = ReadMonotonicClockNanos();  | 
273  | 0  |     int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now();  | 
274  | 0  |     int64_t t1 = ReadMonotonicClockNanos();  | 
275  | 0  |     int64_t latency = t1 - t0;  | 
276  | 0  |     if (latency < best_latency) { | 
277  | 0  |       best_latency = latency;  | 
278  | 0  |       best.time = t0;  | 
279  | 0  |       best.tsc = tsc;  | 
280  | 0  |     }  | 
281  | 0  |   }  | 
282  | 0  |   return best;  | 
283  | 0  | }  | 
284  |  |  | 
285  |  | // Measures and returns the TSC frequency by taking a pair of  | 
286  |  | // measurements approximately `sleep_nanoseconds` apart.  | 
287  | 0  | static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) { | 
288  | 0  |   auto t0 = GetTimeTscPair();  | 
289  | 0  |   struct timespec ts;  | 
290  | 0  |   ts.tv_sec = 0;  | 
291  | 0  |   ts.tv_nsec = sleep_nanoseconds;  | 
292  | 0  |   while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {} | 
293  | 0  |   auto t1 = GetTimeTscPair();  | 
294  | 0  |   double elapsed_ticks = t1.tsc - t0.tsc;  | 
295  | 0  |   double elapsed_time = (t1.time - t0.time) * 1e-9;  | 
296  | 0  |   return elapsed_ticks / elapsed_time;  | 
297  | 0  | }  | 
298  |  |  | 
299  |  | // Measures and returns the TSC frequency by calling  | 
300  |  | // MeasureTscFrequencyWithSleep(), doubling the sleep interval until the  | 
301  |  | // frequency measurement stabilizes.  | 
302  | 0  | static double MeasureTscFrequency() { | 
303  | 0  |   double last_measurement = -1.0;  | 
304  | 0  |   int sleep_nanoseconds = 1000000;  // 1 millisecond.  | 
305  | 0  |   for (int i = 0; i < 8; ++i) { | 
306  | 0  |     double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds);  | 
307  | 0  |     if (measurement * 0.99 < last_measurement &&  | 
308  | 0  |         last_measurement < measurement * 1.01) { | 
309  |  |       // Use the current measurement if it is within 1% of the  | 
310  |  |       // previous measurement.  | 
311  | 0  |       return measurement;  | 
312  | 0  |     }  | 
313  | 0  |     last_measurement = measurement;  | 
314  | 0  |     sleep_nanoseconds *= 2;  | 
315  | 0  |   }  | 
316  | 0  |   return last_measurement;  | 
317  | 0  | }  | 
318  |  |  | 
319  |  | #endif  // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY  | 
320  |  |  | 
321  | 0  | static double GetNominalCPUFrequency() { | 
322  | 0  |   long freq = 0;  | 
323  |  |  | 
324  |  |   // Google's production kernel has a patch to export the TSC  | 
325  |  |   // frequency through sysfs. If the kernel is exporting the TSC  | 
326  |  |   // frequency use that. There are issues where cpuinfo_max_freq  | 
327  |  |   // cannot be relied on because the BIOS may be exporting an invalid  | 
328  |  |   // p-state (on x86) or p-states may be used to put the processor in  | 
329  |  |   // a new mode (turbo mode). Essentially, those frequencies cannot  | 
330  |  |   // always be relied upon. The same reasons apply to /proc/cpuinfo as  | 
331  |  |   // well.  | 
332  | 0  |   if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) { | 
333  | 0  |     return freq * 1e3;  // Value is kHz.  | 
334  | 0  |   }  | 
335  |  |  | 
336  | 0  | #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)  | 
337  |  |   // On these platforms, the TSC frequency is the nominal CPU  | 
338  |  |   // frequency.  But without having the kernel export it directly  | 
339  |  |   // though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no  | 
340  |  |   // other way to reliably get the TSC frequency, so we have to  | 
341  |  |   // measure it ourselves.  Some CPUs abuse cpuinfo_max_freq by  | 
342  |  |   // exporting "fake" frequencies for implementing new features. For  | 
343  |  |   // example, Intel's turbo mode is enabled by exposing a p-state  | 
344  |  |   // value with a higher frequency than that of the real TSC  | 
345  |  |   // rate. Because of this, we prefer to measure the TSC rate  | 
346  |  |   // ourselves on i386 and x86-64.  | 
347  | 0  |   return MeasureTscFrequency();  | 
348  |  | #else  | 
349  |  |  | 
350  |  |   // If CPU scaling is in effect, we want to use the *maximum*  | 
351  |  |   // frequency, not whatever CPU speed some random processor happens  | 
352  |  |   // to be using now.  | 
353  |  |   if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", | 
354  |  |                        &freq)) { | 
355  |  |     return freq * 1e3;  // Value is kHz.  | 
356  |  |   }  | 
357  |  |  | 
358  |  |   return 1.0;  | 
359  |  | #endif  // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY  | 
360  | 0  | }  | 
361  |  |  | 
362  |  | #endif  | 
363  |  |  | 
364  |  | ABSL_CONST_INIT static once_flag init_num_cpus_once;  | 
365  |  | ABSL_CONST_INIT static int num_cpus = 0;  | 
366  |  |  | 
367  |  | // NumCPUs() may be called before main() and before malloc is properly  | 
368  |  | // initialized, therefore this must not allocate memory.  | 
369  | 0  | int NumCPUs() { | 
370  | 0  |   base_internal::LowLevelCallOnce(  | 
371  | 0  |       &init_num_cpus_once, []() { num_cpus = GetNumCPUs(); }); | 
372  | 0  |   return num_cpus;  | 
373  | 0  | }  | 
374  |  |  | 
375  |  | // A default frequency of 0.0 might be dangerous if it is used in division.  | 
376  |  | ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once;  | 
377  |  | ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0;  | 
378  |  |  | 
379  |  | // NominalCPUFrequency() may be called before main() and before malloc is  | 
380  |  | // properly initialized, therefore this must not allocate memory.  | 
381  | 0  | double NominalCPUFrequency() { | 
382  | 0  |   base_internal::LowLevelCallOnce(  | 
383  | 0  |       &init_nominal_cpu_frequency_once,  | 
384  | 0  |       []() { nominal_cpu_frequency = GetNominalCPUFrequency(); }); | 
385  | 0  |   return nominal_cpu_frequency;  | 
386  | 0  | }  | 
387  |  |  | 
388  |  | #if defined(_WIN32)  | 
389  |  |  | 
390  |  | pid_t GetTID() { | 
391  |  |   return pid_t{GetCurrentThreadId()}; | 
392  |  | }  | 
393  |  |  | 
394  |  | #elif defined(__linux__)  | 
395  |  |  | 
396  |  | #ifndef SYS_gettid  | 
397  |  | #define SYS_gettid __NR_gettid  | 
398  |  | #endif  | 
399  |  |  | 
400  | 1  | pid_t GetTID() { | 
401  | 1  |   return static_cast<pid_t>(syscall(SYS_gettid));  | 
402  | 1  | }  | 
403  |  |  | 
404  |  | #elif defined(__akaros__)  | 
405  |  |  | 
406  |  | pid_t GetTID() { | 
407  |  |   // Akaros has a concept of "vcore context", which is the state the program  | 
408  |  |   // is forced into when we need to make a user-level scheduling decision, or  | 
409  |  |   // run a signal handler.  This is analogous to the interrupt context that a  | 
410  |  |   // CPU might enter if it encounters some kind of exception.  | 
411  |  |   //  | 
412  |  |   // There is no current thread context in vcore context, but we need to give  | 
413  |  |   // a reasonable answer if asked for a thread ID (e.g., in a signal handler).  | 
414  |  |   // Thread 0 always exists, so if we are in vcore context, we return that.  | 
415  |  |   //  | 
416  |  |   // Otherwise, we know (since we are using pthreads) that the uthread struct  | 
417  |  |   // current_uthread is pointing to is the first element of a  | 
418  |  |   // struct pthread_tcb, so we extract and return the thread ID from that.  | 
419  |  |   //  | 
420  |  |   // TODO(dcross): Akaros anticipates moving the thread ID to the uthread  | 
421  |  |   // structure at some point. We should modify this code to remove the cast  | 
422  |  |   // when that happens.  | 
423  |  |   if (in_vcore_context())  | 
424  |  |     return 0;  | 
425  |  |   return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id;  | 
426  |  | }  | 
427  |  |  | 
428  |  | #elif defined(__myriad2__)  | 
429  |  |  | 
430  |  | pid_t GetTID() { | 
431  |  |   uint32_t tid;  | 
432  |  |   rtems_task_ident(RTEMS_SELF, 0, &tid);  | 
433  |  |   return tid;  | 
434  |  | }  | 
435  |  |  | 
436  |  | #elif defined(__APPLE__)  | 
437  |  |  | 
438  |  | pid_t GetTID() { | 
439  |  |   uint64_t tid;  | 
440  |  |   // `nullptr` here implies this thread.  This only fails if the specified  | 
441  |  |   // thread is invalid or the pointer-to-tid is null, so we needn't worry about  | 
442  |  |   // it.  | 
443  |  |   pthread_threadid_np(nullptr, &tid);  | 
444  |  |   return static_cast<pid_t>(tid);  | 
445  |  | }  | 
446  |  |  | 
447  |  | #elif defined(__FreeBSD__)  | 
448  |  |  | 
449  |  | pid_t GetTID() { return static_cast<pid_t>(pthread_getthreadid_np()); } | 
450  |  |  | 
451  |  | #elif defined(__OpenBSD__)  | 
452  |  |  | 
453  |  | pid_t GetTID() { return getthrid(); } | 
454  |  |  | 
455  |  | #elif defined(__NetBSD__)  | 
456  |  |  | 
457  |  | pid_t GetTID() { return static_cast<pid_t>(_lwp_self()); } | 
458  |  |  | 
459  |  | #elif defined(__Fuchsia__)  | 
460  |  |  | 
461  |  | pid_t GetTID() { | 
462  |  |   // Use our thread handle as the TID, which should be unique within this  | 
463  |  |   // process (but may not be globally unique). The handle value was chosen over  | 
464  |  |   // a kernel object ID (KOID) because zx_handle_t (32-bits) can be cast to a  | 
465  |  |   // pid_t type without loss of precision, but a zx_koid_t (64-bits) cannot.  | 
466  |  |   return static_cast<pid_t>(zx_thread_self());  | 
467  |  | }  | 
468  |  |  | 
469  |  | #else  | 
470  |  |  | 
471  |  | // Fallback implementation of `GetTID` using `pthread_self`.  | 
472  |  | pid_t GetTID() { | 
473  |  |   // `pthread_t` need not be arithmetic per POSIX; platforms where it isn't  | 
474  |  |   // should be handled above.  | 
475  |  |   return static_cast<pid_t>(pthread_self());  | 
476  |  | }  | 
477  |  |  | 
478  |  | #endif  | 
479  |  |  | 
480  |  | // GetCachedTID() caches the thread ID in thread-local storage (which is a  | 
481  |  | // userspace construct) to avoid unnecessary system calls. Without this caching,  | 
482  |  | // it can take roughly 98ns, while it takes roughly 1ns with this caching.  | 
483  | 4.12M  | pid_t GetCachedTID() { | 
484  | 4.12M  | #ifdef ABSL_HAVE_THREAD_LOCAL  | 
485  | 4.12M  |   static thread_local pid_t thread_id = GetTID();  | 
486  | 4.12M  |   return thread_id;  | 
487  |  | #else  | 
488  |  |   return GetTID();  | 
489  |  | #endif  // ABSL_HAVE_THREAD_LOCAL  | 
490  | 4.12M  | }  | 
491  |  |  | 
492  |  | }  // namespace base_internal  | 
493  |  | ABSL_NAMESPACE_END  | 
494  |  | }  // namespace absl  |