/src/abseil-cpp/absl/memory/memory.h
Line  | Count  | Source  | 
1  |  | // Copyright 2017 The Abseil Authors.  | 
2  |  | //  | 
3  |  | // Licensed under the Apache License, Version 2.0 (the "License");  | 
4  |  | // you may not use this file except in compliance with the License.  | 
5  |  | // You may obtain a copy of the License at  | 
6  |  | //  | 
7  |  | //      https://www.apache.org/licenses/LICENSE-2.0  | 
8  |  | //  | 
9  |  | // Unless required by applicable law or agreed to in writing, software  | 
10  |  | // distributed under the License is distributed on an "AS IS" BASIS,  | 
11  |  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
12  |  | // See the License for the specific language governing permissions and  | 
13  |  | // limitations under the License.  | 
14  |  | //  | 
15  |  | // -----------------------------------------------------------------------------  | 
16  |  | // File: memory.h  | 
17  |  | // -----------------------------------------------------------------------------  | 
18  |  | //  | 
19  |  | // This header file contains utility functions for managing the creation and  | 
20  |  | // conversion of smart pointers. This file is an extension to the C++  | 
21  |  | // standard <memory> library header file.  | 
22  |  |  | 
23  |  | #ifndef ABSL_MEMORY_MEMORY_H_  | 
24  |  | #define ABSL_MEMORY_MEMORY_H_  | 
25  |  |  | 
26  |  | #include <cstddef>  | 
27  |  | #include <limits>  | 
28  |  | #include <memory>  | 
29  |  | #include <new>  | 
30  |  | #include <type_traits>  | 
31  |  | #include <utility>  | 
32  |  |  | 
33  |  | #include "absl/base/macros.h"  | 
34  |  | #include "absl/meta/type_traits.h"  | 
35  |  |  | 
36  |  | namespace absl { | 
37  |  | ABSL_NAMESPACE_BEGIN  | 
38  |  |  | 
39  |  | // -----------------------------------------------------------------------------  | 
40  |  | // Function Template: WrapUnique()  | 
41  |  | // -----------------------------------------------------------------------------  | 
42  |  | //  | 
43  |  | // Adopts ownership from a raw pointer and transfers it to the returned  | 
44  |  | // `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not*  | 
45  |  | // specify the template type `T` when calling `WrapUnique`.  | 
46  |  | //  | 
47  |  | // Example:  | 
48  |  | //   X* NewX(int, int);  | 
49  |  | //   auto x = WrapUnique(NewX(1, 2));  // 'x' is std::unique_ptr<X>.  | 
50  |  | //  | 
51  |  | // Do not call WrapUnique with an explicit type, as in  | 
52  |  | // `WrapUnique<X>(NewX(1, 2))`.  The purpose of WrapUnique is to automatically  | 
53  |  | // deduce the pointer type. If you wish to make the type explicit, just use  | 
54  |  | // `std::unique_ptr` directly.  | 
55  |  | //  | 
56  |  | //   auto x = std::unique_ptr<X>(NewX(1, 2));  | 
57  |  | //                  - or -  | 
58  |  | //   std::unique_ptr<X> x(NewX(1, 2));  | 
59  |  | //  | 
60  |  | // While `absl::WrapUnique` is useful for capturing the output of a raw  | 
61  |  | // pointer factory, prefer 'absl::make_unique<T>(args...)' over  | 
62  |  | // 'absl::WrapUnique(new T(args...))'.  | 
63  |  | //  | 
64  |  | //   auto x = WrapUnique(new X(1, 2));  // works, but nonideal.  | 
65  |  | //   auto x = make_unique<X>(1, 2);     // safer, standard, avoids raw 'new'.  | 
66  |  | //  | 
67  |  | // Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid  | 
68  |  | // expression. In particular, `absl::WrapUnique()` cannot wrap pointers to  | 
69  |  | // arrays, functions or void, and it must not be used to capture pointers  | 
70  |  | // obtained from array-new expressions (even though that would compile!).  | 
71  |  | template <typename T>  | 
72  |  | std::unique_ptr<T> WrapUnique(T* ptr) { | 
73  |  |   static_assert(!std::is_array<T>::value, "array types are unsupported");  | 
74  |  |   static_assert(std::is_object<T>::value, "non-object types are unsupported");  | 
75  |  |   return std::unique_ptr<T>(ptr);  | 
76  |  | }  | 
77  |  |  | 
78  |  | // -----------------------------------------------------------------------------  | 
79  |  | // Function Template: make_unique<T>()  | 
80  |  | // -----------------------------------------------------------------------------  | 
81  |  | //  | 
82  |  | // Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries  | 
83  |  | // during the construction process. `absl::make_unique<>` also avoids redundant  | 
84  |  | // type declarations, by avoiding the need to explicitly use the `new` operator.  | 
85  |  | //  | 
86  |  | // https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique  | 
87  |  | //  | 
88  |  | // For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic,  | 
89  |  | // see Herb Sutter's explanation on  | 
90  |  | // (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/].  | 
91  |  | // (In general, reviewers should treat `new T(a,b)` with scrutiny.)  | 
92  |  | //  | 
93  |  | // Historical note: Abseil once provided a C++11 compatible implementation of  | 
94  |  | // the C++14's `std::make_unique`. Now that C++11 support has been sunsetted,  | 
95  |  | // `absl::make_unique` simply uses the STL-provided implementation. New code  | 
96  |  | // should use `std::make_unique`.  | 
97  |  | using std::make_unique;  | 
98  |  |  | 
99  |  | // -----------------------------------------------------------------------------  | 
100  |  | // Function Template: RawPtr()  | 
101  |  | // -----------------------------------------------------------------------------  | 
102  |  | //  | 
103  |  | // Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is  | 
104  |  | // useful within templates that need to handle a complement of raw pointers,  | 
105  |  | // `std::nullptr_t`, and smart pointers.  | 
106  |  | template <typename T>  | 
107  |  | auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) { | 
108  |  |   // ptr is a forwarding reference to support Ts with non-const operators.  | 
109  |  |   return (ptr != nullptr) ? std::addressof(*ptr) : nullptr;  | 
110  |  | }  | 
111  | 0  | inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; } | 
112  |  |  | 
113  |  | // -----------------------------------------------------------------------------  | 
114  |  | // Function Template: ShareUniquePtr()  | 
115  |  | // -----------------------------------------------------------------------------  | 
116  |  | //  | 
117  |  | // Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced  | 
118  |  | // type. Ownership (if any) of the held value is transferred to the returned  | 
119  |  | // shared pointer.  | 
120  |  | //  | 
121  |  | // Example:  | 
122  |  | //  | 
123  |  | //     auto up = absl::make_unique<int>(10);  | 
124  |  | //     auto sp = absl::ShareUniquePtr(std::move(up));  // shared_ptr<int>  | 
125  |  | //     CHECK_EQ(*sp, 10);  | 
126  |  | //     CHECK(up == nullptr);  | 
127  |  | //  | 
128  |  | // Note that this conversion is correct even when T is an array type, and more  | 
129  |  | // generally it works for *any* deleter of the `unique_ptr` (single-object  | 
130  |  | // deleter, array deleter, or any custom deleter), since the deleter is adopted  | 
131  |  | // by the shared pointer as well. The deleter is copied (unless it is a  | 
132  |  | // reference).  | 
133  |  | //  | 
134  |  | // Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a  | 
135  |  | // null shared pointer does not attempt to call the deleter.  | 
136  |  | template <typename T, typename D>  | 
137  |  | std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) { | 
138  |  |   return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>();  | 
139  |  | }  | 
140  |  |  | 
141  |  | // -----------------------------------------------------------------------------  | 
142  |  | // Function Template: WeakenPtr()  | 
143  |  | // -----------------------------------------------------------------------------  | 
144  |  | //  | 
145  |  | // Creates a weak pointer associated with a given shared pointer. The returned  | 
146  |  | // value is a `std::weak_ptr` of deduced type.  | 
147  |  | //  | 
148  |  | // Example:  | 
149  |  | //  | 
150  |  | //    auto sp = std::make_shared<int>(10);  | 
151  |  | //    auto wp = absl::WeakenPtr(sp);  | 
152  |  | //    CHECK_EQ(sp.get(), wp.lock().get());  | 
153  |  | //    sp.reset();  | 
154  |  | //    CHECK(wp.lock() == nullptr);  | 
155  |  | //  | 
156  |  | template <typename T>  | 
157  |  | std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) { | 
158  |  |   return std::weak_ptr<T>(ptr);  | 
159  |  | }  | 
160  |  |  | 
161  |  | // -----------------------------------------------------------------------------  | 
162  |  | // Class Template: pointer_traits  | 
163  |  | // -----------------------------------------------------------------------------  | 
164  |  | //  | 
165  |  | // Historical note: Abseil once provided an implementation of  | 
166  |  | // `std::pointer_traits` for platforms that had not yet provided it. Those  | 
167  |  | // platforms are no longer supported. New code should simply use  | 
168  |  | // `std::pointer_traits`.  | 
169  |  | using std::pointer_traits;  | 
170  |  |  | 
171  |  | // -----------------------------------------------------------------------------  | 
172  |  | // Class Template: allocator_traits  | 
173  |  | // -----------------------------------------------------------------------------  | 
174  |  | //  | 
175  |  | // Historical note: Abseil once provided an implementation of  | 
176  |  | // `std::allocator_traits` for platforms that had not yet provided it. Those  | 
177  |  | // platforms are no longer supported. New code should simply use  | 
178  |  | // `std::allocator_traits`.  | 
179  |  | using std::allocator_traits;  | 
180  |  |  | 
181  |  | namespace memory_internal { | 
182  |  |  | 
183  |  | // ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D.  | 
184  |  | template <template <typename> class Extract, typename Obj, typename Default,  | 
185  |  |           typename>  | 
186  |  | struct ExtractOr { | 
187  |  |   using type = Default;  | 
188  |  | };  | 
189  |  |  | 
190  |  | template <template <typename> class Extract, typename Obj, typename Default>  | 
191  |  | struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> { | 
192  |  |   using type = Extract<Obj>;  | 
193  |  | };  | 
194  |  |  | 
195  |  | template <template <typename> class Extract, typename Obj, typename Default>  | 
196  |  | using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type;  | 
197  |  |  | 
198  |  | // This template alias transforms Alloc::is_nothrow into a metafunction with  | 
199  |  | // Alloc as a parameter so it can be used with ExtractOrT<>.  | 
200  |  | template <typename Alloc>  | 
201  |  | using GetIsNothrow = typename Alloc::is_nothrow;  | 
202  |  |  | 
203  |  | }  // namespace memory_internal  | 
204  |  |  | 
205  |  | // ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to  | 
206  |  | // specify whether the default allocation function can throw or never throws.  | 
207  |  | // If the allocation function never throws, user should define it to a non-zero  | 
208  |  | // value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`).  | 
209  |  | // If the allocation function can throw, user should leave it undefined or  | 
210  |  | // define it to zero.  | 
211  |  | //  | 
212  |  | // allocator_is_nothrow<Alloc> is a traits class that derives from  | 
213  |  | // Alloc::is_nothrow if present, otherwise std::false_type. It's specialized  | 
214  |  | // for Alloc = std::allocator<T> for any type T according to the state of  | 
215  |  | // ABSL_ALLOCATOR_NOTHROW.  | 
216  |  | //  | 
217  |  | // default_allocator_is_nothrow is a class that derives from std::true_type  | 
218  |  | // when the default allocator (global operator new) never throws, and  | 
219  |  | // std::false_type when it can throw. It is a convenience shorthand for writing  | 
220  |  | // allocator_is_nothrow<std::allocator<T>> (T can be any type).  | 
221  |  | // NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from  | 
222  |  | // the same type for all T, because users should specialize neither  | 
223  |  | // allocator_is_nothrow nor std::allocator.  | 
224  |  | template <typename Alloc>  | 
225  |  | struct allocator_is_nothrow  | 
226  |  |     : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc,  | 
227  |  |                                   std::false_type> {}; | 
228  |  |  | 
229  |  | #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW  | 
230  |  | template <typename T>  | 
231  |  | struct allocator_is_nothrow<std::allocator<T>> : std::true_type {}; | 
232  |  | struct default_allocator_is_nothrow : std::true_type {}; | 
233  |  | #else  | 
234  |  | struct default_allocator_is_nothrow : std::false_type {}; | 
235  |  | #endif  | 
236  |  |  | 
237  |  | namespace memory_internal { | 
238  |  | template <typename Allocator, typename Iterator, typename... Args>  | 
239  |  | void ConstructRange(Allocator& alloc, Iterator first, Iterator last,  | 
240  | 0  |                     const Args&... args) { | 
241  | 0  |   for (Iterator cur = first; cur != last; ++cur) { | 
242  | 0  |     ABSL_INTERNAL_TRY { | 
243  | 0  |       std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),  | 
244  | 0  |                                                   args...);  | 
245  | 0  |     }  | 
246  | 0  |     ABSL_INTERNAL_CATCH_ANY { | 
247  | 0  |       while (cur != first) { | 
248  | 0  |         --cur;  | 
249  | 0  |         std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));  | 
250  | 0  |       }  | 
251  | 0  |       ABSL_INTERNAL_RETHROW;  | 
252  | 0  |     }  | 
253  | 0  |   }  | 
254  | 0  | }  | 
255  |  |  | 
256  |  | template <typename Allocator, typename Iterator, typename InputIterator>  | 
257  |  | void CopyRange(Allocator& alloc, Iterator destination, InputIterator first,  | 
258  |  |                InputIterator last) { | 
259  |  |   for (Iterator cur = destination; first != last;  | 
260  |  |        static_cast<void>(++cur), static_cast<void>(++first)) { | 
261  |  |     ABSL_INTERNAL_TRY { | 
262  |  |       std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur),  | 
263  |  |                                                   *first);  | 
264  |  |     }  | 
265  |  |     ABSL_INTERNAL_CATCH_ANY { | 
266  |  |       while (cur != destination) { | 
267  |  |         --cur;  | 
268  |  |         std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur));  | 
269  |  |       }  | 
270  |  |       ABSL_INTERNAL_RETHROW;  | 
271  |  |     }  | 
272  |  |   }  | 
273  |  | }  | 
274  |  | }  // namespace memory_internal  | 
275  |  | ABSL_NAMESPACE_END  | 
276  |  | }  // namespace absl  | 
277  |  |  | 
278  |  | #endif  // ABSL_MEMORY_MEMORY_H_  |