/src/abseil-cpp/absl/profiling/internal/exponential_biased.h
Line  | Count  | Source  | 
1  |  | // Copyright 2019 The Abseil Authors.  | 
2  |  | //  | 
3  |  | // Licensed under the Apache License, Version 2.0 (the "License");  | 
4  |  | // you may not use this file except in compliance with the License.  | 
5  |  | // You may obtain a copy of the License at  | 
6  |  | //  | 
7  |  | //     https://www.apache.org/licenses/LICENSE-2.0  | 
8  |  | //  | 
9  |  | // Unless required by applicable law or agreed to in writing, software  | 
10  |  | // distributed under the License is distributed on an "AS IS" BASIS,  | 
11  |  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
12  |  | // See the License for the specific language governing permissions and  | 
13  |  | // limitations under the License.  | 
14  |  |  | 
15  |  | #ifndef ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_  | 
16  |  | #define ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_  | 
17  |  |  | 
18  |  | #include <stdint.h>  | 
19  |  |  | 
20  |  | #include "absl/base/config.h"  | 
21  |  | #include "absl/base/macros.h"  | 
22  |  |  | 
23  |  | namespace absl { | 
24  |  | ABSL_NAMESPACE_BEGIN  | 
25  |  | namespace profiling_internal { | 
26  |  |  | 
27  |  | // ExponentialBiased provides a small and fast random number generator for a  | 
28  |  | // rounded exponential distribution. This generator manages very little state,  | 
29  |  | // and imposes no synchronization overhead. This makes it useful in specialized  | 
30  |  | // scenarios requiring minimum overhead, such as stride based periodic sampling.  | 
31  |  | //  | 
32  |  | // ExponentialBiased provides two closely related functions, GetSkipCount() and  | 
33  |  | // GetStride(), both returning a rounded integer defining a number of events  | 
34  |  | // required before some event with a given mean probability occurs.  | 
35  |  | //  | 
36  |  | // The distribution is useful to generate a random wait time or some periodic  | 
37  |  | // event with a given mean probability. For example, if an action is supposed to  | 
38  |  | // happen on average once every 'N' events, then we can get a random 'stride'  | 
39  |  | // counting down how long before the event to happen. For example, if we'd want  | 
40  |  | // to sample one in every 1000 'Frobber' calls, our code could look like this:  | 
41  |  | //  | 
42  |  | //   Frobber::Frobber() { | 
43  |  | //     stride_ = exponential_biased_.GetStride(1000);  | 
44  |  | //   }  | 
45  |  | //  | 
46  |  | //   void Frobber::Frob(int arg) { | 
47  |  | //     if (--stride == 0) { | 
48  |  | //       SampleFrob(arg);  | 
49  |  | //       stride_ = exponential_biased_.GetStride(1000);  | 
50  |  | //     }  | 
51  |  | //     ...  | 
52  |  | //   }  | 
53  |  | //  | 
54  |  | // The rounding of the return value creates a bias, especially for smaller means  | 
55  |  | // where the distribution of the fraction is not evenly distributed. We correct  | 
56  |  | // this bias by tracking the fraction we rounded up or down on each iteration,  | 
57  |  | // effectively tracking the distance between the cumulative value, and the  | 
58  |  | // rounded cumulative value. For example, given a mean of 2:  | 
59  |  | //  | 
60  |  | //   raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923  | 
61  |  | //   raw = 0.14624, cumulative = 1.77701, rounded = 2, bias =  0.14624  | 
62  |  | //   raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805  | 
63  |  | //   raw = 0.24206, cumulative = 6.95101, rounded = 7, bias =  0.24206  | 
64  |  | //   etc...  | 
65  |  | //  | 
66  |  | // Adjusting with rounding bias is relatively trivial:  | 
67  |  | //  | 
68  |  | //    double value = bias_ + exponential_distribution(mean)();  | 
69  |  | //    double rounded_value = std::rint(value);  | 
70  |  | //    bias_ = value - rounded_value;  | 
71  |  | //    return rounded_value;  | 
72  |  | //  | 
73  |  | // This class is thread-compatible.  | 
74  |  | class ExponentialBiased { | 
75  |  |  public:  | 
76  |  |   // The number of bits set by NextRandom.  | 
77  |  |   static constexpr int kPrngNumBits = 48;  | 
78  |  |  | 
79  |  |   // `GetSkipCount()` returns the number of events to skip before some chosen  | 
80  |  |   // event happens. For example, randomly tossing a coin, we will on average  | 
81  |  |   // throw heads once before we get tails. We can simulate random coin tosses  | 
82  |  |   // using GetSkipCount() as:  | 
83  |  |   //  | 
84  |  |   //   ExponentialBiased eb;  | 
85  |  |   //   for (...) { | 
86  |  |   //     int number_of_heads_before_tail = eb.GetSkipCount(1);  | 
87  |  |   //     for (int flips = 0; flips < number_of_heads_before_tail; ++flips) { | 
88  |  |   //       printf("head..."); | 
89  |  |   //     }  | 
90  |  |   //     printf("tail\n"); | 
91  |  |   //   }  | 
92  |  |   //  | 
93  |  |   int64_t GetSkipCount(int64_t mean);  | 
94  |  |  | 
95  |  |   // GetStride() returns the number of events required for a specific event to  | 
96  |  |   // happen. See the class comments for a usage example. `GetStride()` is  | 
97  |  |   // equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or  | 
98  |  |   // `GetSkipCount()` depends mostly on what best fits the use case.  | 
99  |  |   int64_t GetStride(int64_t mean);  | 
100  |  |  | 
101  |  |   // Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1]  | 
102  |  |   //  | 
103  |  |   // This is public to enable testing.  | 
104  |  |   static uint64_t NextRandom(uint64_t rnd);  | 
105  |  |  | 
106  |  |  private:  | 
107  |  |   void Initialize();  | 
108  |  |  | 
109  |  |   uint64_t rng_{0}; | 
110  |  |   double bias_{0}; | 
111  |  |   bool initialized_{false}; | 
112  |  | };  | 
113  |  |  | 
114  |  | // Returns the next prng value.  | 
115  |  | // pRNG is: aX+b mod c with a = 0x5DEECE66D, b =  0xB, c = 1<<48  | 
116  |  | // This is the lrand64 generator.  | 
117  | 0  | inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) { | 
118  | 0  |   const uint64_t prng_mult = uint64_t{0x5DEECE66D}; | 
119  | 0  |   const uint64_t prng_add = 0xB;  | 
120  | 0  |   const uint64_t prng_mod_power = 48;  | 
121  | 0  |   const uint64_t prng_mod_mask =  | 
122  | 0  |       ~((~static_cast<uint64_t>(0)) << prng_mod_power);  | 
123  | 0  |   return (prng_mult * rnd + prng_add) & prng_mod_mask;  | 
124  | 0  | }  | 
125  |  |  | 
126  |  | }  // namespace profiling_internal  | 
127  |  | ABSL_NAMESPACE_END  | 
128  |  | }  // namespace absl  | 
129  |  |  | 
130  |  | #endif  // ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_  |