/src/s2geometry/src/s2/s2latlng_rect.cc
Line  | Count  | Source  | 
1  |  | // Copyright 2005 Google Inc. All Rights Reserved.  | 
2  |  | //  | 
3  |  | // Licensed under the Apache License, Version 2.0 (the "License");  | 
4  |  | // you may not use this file except in compliance with the License.  | 
5  |  | // You may obtain a copy of the License at  | 
6  |  | //  | 
7  |  | //     http://www.apache.org/licenses/LICENSE-2.0  | 
8  |  | //  | 
9  |  | // Unless required by applicable law or agreed to in writing, software  | 
10  |  | // distributed under the License is distributed on an "AS-IS" BASIS,  | 
11  |  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
12  |  | // See the License for the specific language governing permissions and  | 
13  |  | // limitations under the License.  | 
14  |  | //  | 
15  |  |  | 
16  |  | // Author: ericv@google.com (Eric Veach)  | 
17  |  |  | 
18  |  | #include "s2/s2latlng_rect.h"  | 
19  |  |  | 
20  |  | #include <algorithm>  | 
21  |  | #include <cfloat>  | 
22  |  | #include <cmath>  | 
23  |  | #include <ostream>  | 
24  |  |  | 
25  |  | #include "absl/flags/flag.h"  | 
26  |  | #include "absl/log/absl_check.h"  | 
27  |  | #include "absl/log/absl_log.h"  | 
28  |  | #include "s2/util/coding/coder.h"  | 
29  |  | #include "s2/r1interval.h"  | 
30  |  | #include "s2/s1angle.h"  | 
31  |  | #include "s2/s1chord_angle.h"  | 
32  |  | #include "s2/s1interval.h"  | 
33  |  | #include "s2/s2cap.h"  | 
34  |  | #include "s2/s2cell.h"  | 
35  |  | #include "s2/s2debug.h"  | 
36  |  | #include "s2/s2edge_crossings.h"  | 
37  |  | #include "s2/s2edge_distances.h"  | 
38  |  | #include "s2/s2latlng.h"  | 
39  |  | #include "s2/s2point.h"  | 
40  |  | #include "s2/s2pointutil.h"  | 
41  |  |  | 
42  |  | using std::fabs;  | 
43  |  | using std::max;  | 
44  |  | using std::min;  | 
45  |  | using std::vector;  | 
46  |  |  | 
47  |  | static const unsigned char kCurrentLosslessEncodingVersionNumber = 1;  | 
48  |  |  | 
49  |  | S2LatLngRect S2LatLngRect::FromCenterSize(const S2LatLng& center,  | 
50  | 0  |                                           const S2LatLng& size) { | 
51  | 0  |   return FromPoint(center).Expanded(0.5 * size);  | 
52  | 0  | }  | 
53  |  |  | 
54  | 0  | S2LatLngRect S2LatLngRect::FromPoint(const S2LatLng& p) { | 
55  | 0  |   ABSL_DLOG_IF(ERROR, !p.is_valid())  | 
56  | 0  |       << "Invalid S2LatLng in S2LatLngRect::GetDistance: " << p;  | 
57  |  | 
  | 
58  | 0  |   return S2LatLngRect(p, p);  | 
59  | 0  | }  | 
60  |  |  | 
61  |  | S2LatLngRect S2LatLngRect::FromPointPair(const S2LatLng& p1,  | 
62  | 0  |                                          const S2LatLng& p2) { | 
63  | 0  |   ABSL_DLOG_IF(ERROR, !p1.is_valid())  | 
64  | 0  |       << "Invalid S2LatLng in S2LatLngRect::FromPointPair: " << p1;  | 
65  | 0  |   ABSL_DLOG_IF(ERROR, !p2.is_valid())  | 
66  | 0  |       << "Invalid S2LatLng in S2LatLngRect::FromPointPair: " << p2;  | 
67  |  | 
  | 
68  | 0  |   return S2LatLngRect(R1Interval::FromPointPair(p1.lat().radians(),  | 
69  | 0  |                                                 p2.lat().radians()),  | 
70  | 0  |                       S1Interval::FromPointPair(p1.lng().radians(),  | 
71  | 0  |                                                 p2.lng().radians()));  | 
72  | 0  | }  | 
73  |  |  | 
74  | 0  | S2LatLngRect* S2LatLngRect::Clone() const { | 
75  | 0  |   return new S2LatLngRect(*this);  | 
76  | 0  | }  | 
77  |  |  | 
78  | 0  | S2LatLng S2LatLngRect::GetVertex(int k) const { | 
79  |  |   // Twiddle bits to return the points in CCW order (lower left, lower right,  | 
80  |  |   // upper right, upper left).  | 
81  | 0  |   int i = (k >> 1) & 1;  | 
82  | 0  |   return S2LatLng::FromRadians(lat_[i], lng_[i ^ (k & 1)]);  | 
83  | 0  | }  | 
84  |  |  | 
85  | 0  | S2LatLng S2LatLngRect::GetCenter() const { | 
86  | 0  |   return S2LatLng::FromRadians(lat_.GetCenter(), lng_.GetCenter());  | 
87  | 0  | }  | 
88  |  |  | 
89  | 0  | S2LatLng S2LatLngRect::GetSize() const { | 
90  | 0  |   return S2LatLng::FromRadians(lat_.GetLength(), lng_.GetLength());  | 
91  | 0  | }  | 
92  |  |  | 
93  | 0  | double S2LatLngRect::Area() const { | 
94  | 0  |   if (is_empty()) return 0.0;  | 
95  |  |   // This is the size difference of the two spherical caps, multiplied by  | 
96  |  |   // the longitude ratio.  | 
97  | 0  |   return lng().GetLength() * (sin(lat_hi()) - sin(lat_lo()));  | 
98  | 0  | }  | 
99  |  |  | 
100  | 0  | S2Point S2LatLngRect::GetCentroid() const { | 
101  |  |   // When a sphere is divided into slices of constant thickness by a set of  | 
102  |  |   // parallel planes, all slices have the same surface area.  This implies  | 
103  |  |   // that the z-component of the centroid is simply the midpoint of the  | 
104  |  |   // z-interval spanned by the S2LatLngRect.  | 
105  |  |   //  | 
106  |  |   // Similarly, it is easy to see that the (x,y) of the centroid lies in the  | 
107  |  |   // plane through the midpoint of the rectangle's longitude interval.  We  | 
108  |  |   // only need to determine the distance "d" of this point from the z-axis.  | 
109  |  |   //  | 
110  |  |   // Let's restrict our attention to a particular z-value.  In this z-plane,  | 
111  |  |   // the S2LatLngRect is a circular arc.  The centroid of this arc lies on a  | 
112  |  |   // radial line through the midpoint of the arc, and at a distance from the  | 
113  |  |   // z-axis of  | 
114  |  |   //  | 
115  |  |   //     r * (sin(alpha) / alpha)  | 
116  |  |   //  | 
117  |  |   // where r = sqrt(1-z^2) is the radius of the arc, and "alpha" is half of  | 
118  |  |   // the arc length (i.e., the arc covers longitudes [-alpha, alpha]).  | 
119  |  |   //  | 
120  |  |   // To find the centroid distance from the z-axis for the entire rectangle,  | 
121  |  |   // we just need to integrate over the z-interval.  This gives  | 
122  |  |   //  | 
123  |  |   //    d = Integrate[sqrt(1-z^2)*sin(alpha)/alpha, z1..z2] / (z2 - z1)  | 
124  |  |   //  | 
125  |  |   // where [z1, z2] is the range of z-values covered by the rectangle.  This  | 
126  |  |   // simplifies to  | 
127  |  |   //  | 
128  |  |   //    d = sin(alpha)/(2*alpha*(z2-z1))*(z2*r2 - z1*r1 + theta2 - theta1)  | 
129  |  |   //  | 
130  |  |   // where [theta1, theta2] is the latitude interval, z1=sin(theta1),  | 
131  |  |   // z2=sin(theta2), r1=cos(theta1), and r2=cos(theta2).  | 
132  |  |   //  | 
133  |  |   // Finally, we want to return not the centroid itself, but the centroid  | 
134  |  |   // scaled by the area of the rectangle.  The area of the rectangle is  | 
135  |  |   //  | 
136  |  |   //    A = 2 * alpha * (z2 - z1)  | 
137  |  |   //  | 
138  |  |   // which fortunately appears in the denominator of "d".  | 
139  |  | 
  | 
140  | 0  |   if (is_empty()) return S2Point();  | 
141  | 0  |   const S1Angle::SinCosPair lo = lat_lo().SinCos();  | 
142  | 0  |   const double z1 = lo.sin;  | 
143  | 0  |   const double r1 = lo.cos;  | 
144  | 0  |   const S1Angle::SinCosPair hi = lat_hi().SinCos();  | 
145  | 0  |   const double z2 = hi.sin;  | 
146  | 0  |   const double r2 = hi.cos;  | 
147  | 0  |   const double alpha = 0.5 * lng_.GetLength();  | 
148  | 0  |   const double r = sin(alpha) * (r2 * z2 - r1 * z1 + lat_.GetLength());  | 
149  | 0  |   const S1Angle lng = S1Angle::Radians(lng_.GetCenter());  | 
150  | 0  |   const double z = alpha * (z2 + z1) * (z2 - z1);  // scaled by the area  | 
151  | 0  |   const S1Angle::SinCosPair center = lng.SinCos();  | 
152  | 0  |   return S2Point(r * center.cos, r * center.sin, z);  | 
153  | 0  | }  | 
154  |  |  | 
155  | 0  | bool S2LatLngRect::Contains(const S2LatLng& ll) const { | 
156  | 0  |   ABSL_DLOG_IF(ERROR, !ll.is_valid())  | 
157  | 0  |       << "Invalid S2LatLng in S2LatLngRect::Contains: " << ll;  | 
158  |  | 
  | 
159  | 0  |   return (lat_.Contains(ll.lat().radians()) &&  | 
160  | 0  |           lng_.Contains(ll.lng().radians()));  | 
161  | 0  | }  | 
162  |  |  | 
163  | 0  | bool S2LatLngRect::InteriorContains(const S2Point& p) const { | 
164  | 0  |   return InteriorContains(S2LatLng(p));  | 
165  | 0  | }  | 
166  |  |  | 
167  | 0  | bool S2LatLngRect::InteriorContains(const S2LatLng& ll) const { | 
168  | 0  |   ABSL_DLOG_IF(ERROR, !ll.is_valid())  | 
169  | 0  |       << "Invalid S2LatLng in S2LatLngRect::InteriorContains: " << ll;  | 
170  |  | 
  | 
171  | 0  |   return (lat_.InteriorContains(ll.lat().radians()) &&  | 
172  | 0  |           lng_.InteriorContains(ll.lng().radians()));  | 
173  | 0  | }  | 
174  |  |  | 
175  | 0  | bool S2LatLngRect::Contains(const S2LatLngRect& other) const { | 
176  | 0  |   return lat_.Contains(other.lat_) && lng_.Contains(other.lng_);  | 
177  | 0  | }  | 
178  |  |  | 
179  | 0  | bool S2LatLngRect::InteriorContains(const S2LatLngRect& other) const { | 
180  | 0  |   return (lat_.InteriorContains(other.lat_) &&  | 
181  | 0  |           lng_.InteriorContains(other.lng_));  | 
182  | 0  | }  | 
183  |  |  | 
184  | 0  | bool S2LatLngRect::Intersects(const S2LatLngRect& other) const { | 
185  | 0  |   return lat_.Intersects(other.lat_) && lng_.Intersects(other.lng_);  | 
186  | 0  | }  | 
187  |  |  | 
188  | 0  | bool S2LatLngRect::InteriorIntersects(const S2LatLngRect& other) const { | 
189  | 0  |   return (lat_.InteriorIntersects(other.lat_) &&  | 
190  | 0  |           lng_.InteriorIntersects(other.lng_));  | 
191  | 0  | }  | 
192  |  |  | 
193  |  | bool S2LatLngRect::BoundaryIntersects(const S2Point& v0,  | 
194  | 0  |                                       const S2Point& v1) const { | 
195  | 0  |   if (is_empty()) return false;  | 
196  | 0  |   if (!lng_.is_full()) { | 
197  | 0  |     if (IntersectsLngEdge(v0, v1, lat_, lng_.lo())) return true;  | 
198  | 0  |     if (IntersectsLngEdge(v0, v1, lat_, lng_.hi())) return true;  | 
199  | 0  |   }  | 
200  | 0  |   if (lat_.lo() != -M_PI_2 && IntersectsLatEdge(v0, v1, lat_.lo(), lng_)) { | 
201  | 0  |     return true;  | 
202  | 0  |   }  | 
203  | 0  |   if (lat_.hi() != M_PI_2 && IntersectsLatEdge(v0, v1, lat_.hi(), lng_)) { | 
204  | 0  |     return true;  | 
205  | 0  |   }  | 
206  | 0  |   return false;  | 
207  | 0  | }  | 
208  |  |  | 
209  | 0  | void S2LatLngRect::AddPoint(const S2Point& p) { | 
210  | 0  |   AddPoint(S2LatLng(p));  | 
211  | 0  | }  | 
212  |  |  | 
213  | 0  | void S2LatLngRect::AddPoint(const S2LatLng& ll) { | 
214  | 0  |   ABSL_DLOG_IF(ERROR, !ll.is_valid())  | 
215  | 0  |       << "Invalid S2LatLng in S2LatLngRect::AddPoint: " << ll;  | 
216  |  | 
  | 
217  | 0  |   lat_.AddPoint(ll.lat().radians());  | 
218  | 0  |   lng_.AddPoint(ll.lng().radians());  | 
219  | 0  | }  | 
220  |  |  | 
221  | 0  | S2LatLngRect S2LatLngRect::Expanded(const S2LatLng& margin) const { | 
222  | 0  |   R1Interval lat = lat_.Expanded(margin.lat().radians());  | 
223  | 0  |   S1Interval lng = lng_.Expanded(margin.lng().radians());  | 
224  | 0  |   if (lat.is_empty() || lng.is_empty()) return Empty();  | 
225  | 0  |   return S2LatLngRect(lat.Intersection(FullLat()), lng);  | 
226  | 0  | }  | 
227  |  |  | 
228  | 0  | S2LatLngRect S2LatLngRect::PolarClosure() const { | 
229  | 0  |   if (lat_.lo() == -M_PI_2 || lat_.hi() == M_PI_2) { | 
230  | 0  |     return S2LatLngRect(lat_, S1Interval::Full());  | 
231  | 0  |   }  | 
232  | 0  |   return *this;  | 
233  | 0  | }  | 
234  |  |  | 
235  | 0  | S2LatLngRect S2LatLngRect::Union(const S2LatLngRect& other) const { | 
236  | 0  |   return S2LatLngRect(lat_.Union(other.lat_),  | 
237  | 0  |                       lng_.Union(other.lng_));  | 
238  | 0  | }  | 
239  |  |  | 
240  | 0  | S2LatLngRect S2LatLngRect::Intersection(const S2LatLngRect& other) const { | 
241  | 0  |   R1Interval lat = lat_.Intersection(other.lat_);  | 
242  | 0  |   S1Interval lng = lng_.Intersection(other.lng_);  | 
243  | 0  |   if (lat.is_empty() || lng.is_empty()) { | 
244  |  |     // The lat/lng ranges must either be both empty or both non-empty.  | 
245  | 0  |     return Empty();  | 
246  | 0  |   }  | 
247  | 0  |   return S2LatLngRect(lat, lng);  | 
248  | 0  | }  | 
249  |  |  | 
250  | 0  | S2LatLngRect S2LatLngRect::ExpandedByDistance(S1Angle distance) const { | 
251  | 0  |   if (distance >= S1Angle::Zero()) { | 
252  |  |     // The most straightforward approach is to build a cap centered on each  | 
253  |  |     // vertex and take the union of all the bounding rectangles (including the  | 
254  |  |     // original rectangle; this is necessary for very large rectangles).  | 
255  |  |  | 
256  |  |     // TODO(ericv): Update this code to use an algorithm like the one below.  | 
257  | 0  |     S1ChordAngle radius(distance);  | 
258  | 0  |     S2LatLngRect r = *this;  | 
259  | 0  |     for (int k = 0; k < 4; ++k) { | 
260  | 0  |       r = r.Union(S2Cap(GetVertex(k).ToPoint(), radius).GetRectBound());  | 
261  | 0  |     }  | 
262  | 0  |     return r;  | 
263  | 0  |   } else { | 
264  |  |     // Shrink the latitude interval unless the latitude interval contains a pole  | 
265  |  |     // and the longitude interval is full, in which case the rectangle has no  | 
266  |  |     // boundary at that pole.  | 
267  | 0  |     R1Interval lat_result(  | 
268  | 0  |         lat().lo() <= FullLat().lo() && lng().is_full() ?  | 
269  | 0  |             FullLat().lo() : lat().lo() - distance.radians(),  | 
270  | 0  |         lat().hi() >= FullLat().hi() && lng().is_full() ?  | 
271  | 0  |             FullLat().hi() : lat().hi() + distance.radians());  | 
272  | 0  |     if (lat_result.is_empty()) { | 
273  | 0  |       return S2LatLngRect::Empty();  | 
274  | 0  |     }  | 
275  |  |  | 
276  |  |     // Maximum absolute value of a latitude in lat_result. At this latitude,  | 
277  |  |     // the cap occupies the largest longitude interval.  | 
278  | 0  |     double max_abs_lat = max(-lat_result.lo(), lat_result.hi());  | 
279  |  |  | 
280  |  |     // Compute the largest longitude interval that the cap occupies. We use the  | 
281  |  |     // law of sines for spherical triangles. For the details, see the comment in  | 
282  |  |     // S2Cap::GetRectBound().  | 
283  |  |     //  | 
284  |  |     // When sin_a >= sin_c, the cap covers all the latitude.  | 
285  | 0  |     double sin_a = sin(-distance.radians());  | 
286  | 0  |     double sin_c = cos(max_abs_lat);  | 
287  | 0  |     double max_lng_margin = sin_a < sin_c ? asin(sin_a / sin_c) : M_PI_2;  | 
288  |  | 
  | 
289  | 0  |     S1Interval lng_result = lng().Expanded(-max_lng_margin);  | 
290  | 0  |     if (lng_result.is_empty()) { | 
291  | 0  |       return S2LatLngRect::Empty();  | 
292  | 0  |     }  | 
293  | 0  |     return S2LatLngRect(lat_result, lng_result);  | 
294  | 0  |   }  | 
295  | 0  | }  | 
296  |  |  | 
297  | 0  | S2Cap S2LatLngRect::GetCapBound() const { | 
298  |  |   // We consider two possible bounding caps, one whose axis passes  | 
299  |  |   // through the center of the lat-long rectangle and one whose axis  | 
300  |  |   // is the north or south pole.  We return the smaller of the two caps.  | 
301  |  | 
  | 
302  | 0  |   if (is_empty()) return S2Cap::Empty();  | 
303  |  |  | 
304  | 0  |   double pole_z, pole_angle;  | 
305  | 0  |   if (lat_.lo() + lat_.hi() < 0) { | 
306  |  |     // South pole axis yields smaller cap.  | 
307  | 0  |     pole_z = -1;  | 
308  | 0  |     pole_angle = M_PI_2 + lat_.hi();  | 
309  | 0  |   } else { | 
310  | 0  |     pole_z = 1;  | 
311  | 0  |     pole_angle = M_PI_2 - lat_.lo();  | 
312  | 0  |   }  | 
313  |  |   // Ensure that the bounding cap is conservative taking into account errors  | 
314  |  |   // in the arithmetic above and the S1Angle/S1ChordAngle conversion.  | 
315  | 0  |   S2Cap pole_cap(S2Point(0, 0, pole_z),  | 
316  | 0  |                  S1Angle::Radians((1 + 2 * DBL_EPSILON) * pole_angle));  | 
317  |  |  | 
318  |  |   // For bounding rectangles that span 180 degrees or less in longitude, the  | 
319  |  |   // maximum cap size is achieved at one of the rectangle vertices.  For  | 
320  |  |   // rectangles that are larger than 180 degrees, we punt and always return a  | 
321  |  |   // bounding cap centered at one of the two poles.  | 
322  | 0  |   if (lng_.GetLength() < 2 * M_PI) { | 
323  | 0  |     S2Cap mid_cap(GetCenter().ToPoint(), S1Angle::Zero());  | 
324  | 0  |     for (int k = 0; k < 4; ++k) { | 
325  | 0  |       mid_cap.AddPoint(GetVertex(k).ToPoint());  | 
326  | 0  |     }  | 
327  | 0  |     if (mid_cap.height() < pole_cap.height())  | 
328  | 0  |       return mid_cap;  | 
329  | 0  |   }  | 
330  | 0  |   return pole_cap;  | 
331  | 0  | }  | 
332  |  |  | 
333  | 0  | S2LatLngRect S2LatLngRect::GetRectBound() const { | 
334  | 0  |   return *this;  | 
335  | 0  | }  | 
336  |  |  | 
337  | 0  | void S2LatLngRect::GetCellUnionBound(vector<S2CellId>* cell_ids) const { | 
338  |  |   // TODO(user): Is there a tighter bound?  | 
339  | 0  |   GetCapBound().GetCellUnionBound(cell_ids);  | 
340  | 0  | }  | 
341  |  |  | 
342  | 0  | bool S2LatLngRect::Contains(const S2Cell& cell) const { | 
343  |  |   // A latitude-longitude rectangle contains a cell if and only if it contains  | 
344  |  |   // the cell's bounding rectangle.  This test is exact from a mathematical  | 
345  |  |   // point of view, assuming that the bounds returned by S2Cell::GetRectBound()  | 
346  |  |   // are tight.  However, note that there can be a loss of precision when  | 
347  |  |   // converting between representations -- for example, if an S2Cell is  | 
348  |  |   // converted to a polygon, the polygon's bounding rectangle may not contain  | 
349  |  |   // the cell's bounding rectangle.  This has some slightly unexpected side  | 
350  |  |   // effects; for instance, if one creates an S2Polygon from an S2Cell, the  | 
351  |  |   // polygon will contain the cell, but the polygon's bounding box will not.  | 
352  | 0  |   return Contains(cell.GetRectBound());  | 
353  | 0  | }  | 
354  |  |  | 
355  | 0  | bool S2LatLngRect::MayIntersect(const S2Cell& cell) const { | 
356  |  |   // This test is cheap but is NOT exact (see s2latlng_rect.h).  | 
357  | 0  |   return Intersects(cell.GetRectBound());  | 
358  | 0  | }  | 
359  |  |  | 
360  | 0  | void S2LatLngRect::Encode(Encoder* encoder) const { | 
361  | 0  |   encoder->Ensure(40);  // sufficient  | 
362  |  | 
  | 
363  | 0  |   encoder->put8(kCurrentLosslessEncodingVersionNumber);  | 
364  | 0  |   encoder->putdouble(lat_.lo());  | 
365  | 0  |   encoder->putdouble(lat_.hi());  | 
366  | 0  |   encoder->putdouble(lng_.lo());  | 
367  | 0  |   encoder->putdouble(lng_.hi());  | 
368  |  | 
  | 
369  | 0  |   ABSL_DCHECK_GE(encoder->avail(), 0);  | 
370  | 0  | }  | 
371  |  |  | 
372  | 0  | bool S2LatLngRect::Decode(Decoder* decoder) { | 
373  | 0  |   if (decoder->avail() < sizeof(unsigned char) + 4 * sizeof(double))  | 
374  | 0  |     return false;  | 
375  | 0  |   unsigned char version = decoder->get8();  | 
376  | 0  |   if (version > kCurrentLosslessEncodingVersionNumber) return false;  | 
377  |  |  | 
378  | 0  |   double lat_lo = decoder->getdouble();  | 
379  | 0  |   double lat_hi = decoder->getdouble();  | 
380  | 0  |   lat_ = R1Interval(lat_lo, lat_hi);  | 
381  | 0  |   double lng_lo = decoder->getdouble();  | 
382  | 0  |   double lng_hi = decoder->getdouble();  | 
383  | 0  |   lng_ = S1Interval(lng_lo, lng_hi);  | 
384  |  | 
  | 
385  | 0  |   if (!is_valid()) { | 
386  | 0  |     ABSL_DLOG_IF(ERROR, absl::GetFlag(FLAGS_s2debug))  | 
387  | 0  |         << "Invalid result in S2LatLngRect::Decode: " << *this;  | 
388  | 0  |     return false;  | 
389  | 0  |   }  | 
390  |  |  | 
391  | 0  |   return true;  | 
392  | 0  | }  | 
393  |  |  | 
394  |  | bool S2LatLngRect::IntersectsLngEdge(const S2Point& a, const S2Point& b,  | 
395  | 0  |                                      const R1Interval& lat, double lng) { | 
396  |  |   // Return true if the segment AB intersects the given edge of constant  | 
397  |  |   // longitude.  The nice thing about edges of constant longitude is that  | 
398  |  |   // they are straight lines on the sphere (geodesics).  | 
399  |  | 
  | 
400  | 0  |   return S2::CrossingSign(  | 
401  | 0  |       a, b, S2LatLng::FromRadians(lat.lo(), lng).ToPoint(),  | 
402  | 0  |       S2LatLng::FromRadians(lat.hi(), lng).ToPoint()) > 0;  | 
403  | 0  | }  | 
404  |  |  | 
405  |  | bool S2LatLngRect::IntersectsLatEdge(const S2Point& a, const S2Point& b,  | 
406  | 0  |                                      double lat, const S1Interval& lng) { | 
407  |  |   // Return true if the segment AB intersects the given edge of constant  | 
408  |  |   // latitude.  Unfortunately, lines of constant latitude are curves on  | 
409  |  |   // the sphere.  They can intersect a straight edge in 0, 1, or 2 points.  | 
410  | 0  |   ABSL_DCHECK(S2::IsUnitLength(a));  | 
411  | 0  |   ABSL_DCHECK(S2::IsUnitLength(b));  | 
412  |  |  | 
413  |  |   // First, compute the normal to the plane AB that points vaguely north.  | 
414  | 0  |   Vector3_d z = S2::RobustCrossProd(a, b).Normalize();  | 
415  | 0  |   if (z[2] < 0) z = -z;  | 
416  |  |  | 
417  |  |   // Extend this to an orthonormal frame (x,y,z) where x is the direction  | 
418  |  |   // where the great circle through AB achieves its maximum latitude.  | 
419  | 0  |   Vector3_d y = S2::RobustCrossProd(z, S2Point(0, 0, 1)).Normalize();  | 
420  | 0  |   Vector3_d x = y.CrossProd(z);  | 
421  | 0  |   ABSL_DCHECK(S2::IsUnitLength(x));  | 
422  | 0  |   ABSL_DCHECK_GE(x[2], 0);  | 
423  |  |  | 
424  |  |   // Compute the angle "theta" from the x-axis (in the x-y plane defined  | 
425  |  |   // above) where the great circle intersects the given line of latitude.  | 
426  | 0  |   double sin_lat = sin(lat);  | 
427  | 0  |   if (fabs(sin_lat) >= x[2]) { | 
428  | 0  |     return false;  // The great circle does not reach the given latitude.  | 
429  | 0  |   }  | 
430  | 0  |   ABSL_DCHECK_GT(x[2], 0);  | 
431  | 0  |   double cos_theta = sin_lat / x[2];  | 
432  | 0  |   double sin_theta = sqrt(1 - cos_theta * cos_theta);  | 
433  | 0  |   double theta = atan2(sin_theta, cos_theta);  | 
434  |  |  | 
435  |  |   // The candidate intersection points are located +/- theta in the x-y  | 
436  |  |   // plane.  For an intersection to be valid, we need to check that the  | 
437  |  |   // intersection point is contained in the interior of the edge AB and  | 
438  |  |   // also that it is contained within the given longitude interval "lng".  | 
439  |  |  | 
440  |  |   // Compute the range of theta values spanned by the edge AB.  | 
441  | 0  |   S1Interval ab_theta = S1Interval::FromPointPair(  | 
442  | 0  |       atan2(a.DotProd(y), a.DotProd(x)),  | 
443  | 0  |       atan2(b.DotProd(y), b.DotProd(x)));  | 
444  |  | 
  | 
445  | 0  |   if (ab_theta.Contains(theta)) { | 
446  |  |     // Check if the intersection point is also in the given "lng" interval.  | 
447  | 0  |     S2Point isect = x * cos_theta + y * sin_theta;  | 
448  | 0  |     if (lng.Contains(atan2(isect[1], isect[0]))) return true;  | 
449  | 0  |   }  | 
450  | 0  |   if (ab_theta.Contains(-theta)) { | 
451  |  |     // Check if the intersection point is also in the given "lng" interval.  | 
452  | 0  |     S2Point isect = x * cos_theta - y * sin_theta;  | 
453  | 0  |     if (lng.Contains(atan2(isect[1], isect[0]))) return true;  | 
454  | 0  |   }  | 
455  | 0  |   return false;  | 
456  | 0  | }  | 
457  |  |  | 
458  | 0  | bool S2LatLngRect::Intersects(const S2Cell& cell) const { | 
459  |  |   // First we eliminate the cases where one region completely contains the  | 
460  |  |   // other.  Once these are disposed of, then the regions will intersect  | 
461  |  |   // if and only if their boundaries intersect.  | 
462  |  | 
  | 
463  | 0  |   if (is_empty()) return false;  | 
464  | 0  |   if (Contains(cell.GetCenterRaw())) return true;  | 
465  | 0  |   if (cell.Contains(GetCenter().ToPoint())) return true;  | 
466  |  |  | 
467  |  |   // Quick rejection test (not required for correctness).  | 
468  | 0  |   if (!Intersects(cell.GetRectBound())) return false;  | 
469  |  |  | 
470  |  |   // Precompute the cell vertices as points and latitude-longitudes.  We also  | 
471  |  |   // check whether the S2Cell contains any corner of the rectangle, or  | 
472  |  |   // vice-versa, since the edge-crossing tests only check the edge interiors.  | 
473  |  |  | 
474  | 0  |   S2Point cell_v[4];  | 
475  | 0  |   S2LatLng cell_ll[4];  | 
476  | 0  |   for (int i = 0; i < 4; ++i) { | 
477  | 0  |     cell_v[i] = cell.GetVertex(i);  // Must be normalized.  | 
478  | 0  |     cell_ll[i] = S2LatLng(cell_v[i]);  | 
479  | 0  |     if (Contains(cell_ll[i])) return true;  | 
480  | 0  |     if (cell.Contains(GetVertex(i).ToPoint())) return true;  | 
481  | 0  |   }  | 
482  |  |  | 
483  |  |   // Now check whether the boundaries intersect.  Unfortunately, a  | 
484  |  |   // latitude-longitude rectangle does not have straight edges -- two edges  | 
485  |  |   // are curved, and at least one of them is concave.  | 
486  |  |  | 
487  | 0  |   for (int i = 0; i < 4; ++i) { | 
488  | 0  |     S1Interval edge_lng = S1Interval::FromPointPair(  | 
489  | 0  |         cell_ll[i].lng().radians(), cell_ll[(i+1)&3].lng().radians());  | 
490  | 0  |     if (!lng_.Intersects(edge_lng)) continue;  | 
491  |  |  | 
492  | 0  |     const S2Point& a = cell_v[i];  | 
493  | 0  |     const S2Point& b = cell_v[(i+1)&3];  | 
494  | 0  |     if (edge_lng.Contains(lng_.lo())) { | 
495  | 0  |       if (IntersectsLngEdge(a, b, lat_, lng_.lo())) return true;  | 
496  | 0  |     }  | 
497  | 0  |     if (edge_lng.Contains(lng_.hi())) { | 
498  | 0  |       if (IntersectsLngEdge(a, b, lat_, lng_.hi())) return true;  | 
499  | 0  |     }  | 
500  | 0  |     if (IntersectsLatEdge(a, b, lat_.lo(), lng_)) return true;  | 
501  | 0  |     if (IntersectsLatEdge(a, b, lat_.hi(), lng_)) return true;  | 
502  | 0  |   }  | 
503  | 0  |   return false;  | 
504  | 0  | }  | 
505  |  |  | 
506  | 0  | S1Angle S2LatLngRect::GetDistance(const S2LatLngRect& other) const { | 
507  | 0  |   const S2LatLngRect& a = *this;  | 
508  | 0  |   const S2LatLngRect& b = other;  | 
509  | 0  |   ABSL_DCHECK(!a.is_empty());  | 
510  | 0  |   ABSL_DCHECK(!b.is_empty());  | 
511  |  |  | 
512  |  |   // First, handle the trivial cases where the longitude intervals overlap.  | 
513  | 0  |   if (a.lng().Intersects(b.lng())) { | 
514  | 0  |     if (a.lat().Intersects(b.lat()))  | 
515  | 0  |       return S1Angle::Radians(0);  // Intersection between a and b.  | 
516  |  |  | 
517  |  |     // We found an overlap in the longitude interval, but not in the latitude  | 
518  |  |     // interval. This means the shortest path travels along some line of  | 
519  |  |     // longitude connecting the high-latitude of the lower rect with the  | 
520  |  |     // low-latitude of the higher rect.  | 
521  | 0  |     S1Angle lo, hi;  | 
522  | 0  |     if (a.lat().lo() > b.lat().hi()) { | 
523  | 0  |       lo = b.lat_hi();  | 
524  | 0  |       hi = a.lat_lo();  | 
525  | 0  |     } else { | 
526  | 0  |       lo = a.lat_hi();  | 
527  | 0  |       hi = b.lat_lo();  | 
528  | 0  |     }  | 
529  | 0  |     return hi - lo;  | 
530  | 0  |   }  | 
531  |  |  | 
532  |  |   // The longitude intervals don't overlap. In this case, the closest points  | 
533  |  |   // occur somewhere on the pair of longitudinal edges which are nearest in  | 
534  |  |   // longitude-space.  | 
535  | 0  |   S1Angle a_lng, b_lng;  | 
536  | 0  |   S1Interval lo_hi = S1Interval::FromPointPair(a.lng().lo(), b.lng().hi());  | 
537  | 0  |   S1Interval hi_lo = S1Interval::FromPointPair(a.lng().hi(), b.lng().lo());  | 
538  | 0  |   if (lo_hi.GetLength() < hi_lo.GetLength()) { | 
539  | 0  |     a_lng = a.lng_lo();  | 
540  | 0  |     b_lng = b.lng_hi();  | 
541  | 0  |   } else { | 
542  | 0  |     a_lng = a.lng_hi();  | 
543  | 0  |     b_lng = b.lng_lo();  | 
544  | 0  |   }  | 
545  |  |  | 
546  |  |   // The shortest distance between the two longitudinal segments will include at  | 
547  |  |   // least one segment endpoint. We could probably narrow this down further to a  | 
548  |  |   // single point-edge distance by comparing the relative latitudes of the  | 
549  |  |   // endpoints, but for the sake of clarity, we'll do all four point-edge  | 
550  |  |   // distance tests.  | 
551  | 0  |   S2Point a_lo = S2LatLng(a.lat_lo(), a_lng).ToPoint();  | 
552  | 0  |   S2Point a_hi = S2LatLng(a.lat_hi(), a_lng).ToPoint();  | 
553  | 0  |   S2Point b_lo = S2LatLng(b.lat_lo(), b_lng).ToPoint();  | 
554  | 0  |   S2Point b_hi = S2LatLng(b.lat_hi(), b_lng).ToPoint();  | 
555  | 0  |   return min(S2::GetDistance(a_lo, b_lo, b_hi),  | 
556  | 0  |          min(S2::GetDistance(a_hi, b_lo, b_hi),  | 
557  | 0  |          min(S2::GetDistance(b_lo, a_lo, a_hi),  | 
558  | 0  |              S2::GetDistance(b_hi, a_lo, a_hi))));  | 
559  | 0  | }  | 
560  |  |  | 
561  | 0  | S1Angle S2LatLngRect::GetDistance(const S2LatLng& p) const { | 
562  |  |   // The algorithm here is the same as in GetDistance(S2LatLngRect), only  | 
563  |  |   // with simplified calculations.  | 
564  | 0  |   const S2LatLngRect& a = *this;  | 
565  | 0  |   ABSL_DLOG_IF(ERROR, a.is_empty())  | 
566  | 0  |       << "Empty S2LatLngRect in S2LatLngRect::GetDistance: " << a;  | 
567  | 0  |   ABSL_DLOG_IF(ERROR, !p.is_valid())  | 
568  | 0  |       << "Invalid S2LatLng in S2LatLngRect::GetDistance: " << p;  | 
569  |  | 
  | 
570  | 0  |   if (a.lng().Contains(p.lng().radians())) { | 
571  | 0  |     return S1Angle::Radians(max(0.0, max(p.lat().radians() - a.lat().hi(),  | 
572  | 0  |                                          a.lat().lo() - p.lat().radians())));  | 
573  | 0  |   }  | 
574  |  |  | 
575  | 0  |   S1Interval interval(a.lng().hi(), a.lng().GetComplementCenter());  | 
576  | 0  |   double a_lng;  | 
577  | 0  |   if (interval.Contains(p.lng().radians())) { | 
578  | 0  |     a_lng = a.lng().hi();  | 
579  | 0  |   } else { | 
580  | 0  |     a_lng = a.lng().lo();  | 
581  | 0  |   }  | 
582  | 0  |   S2Point lo = S2LatLng::FromRadians(a.lat().lo(), a_lng).ToPoint();  | 
583  | 0  |   S2Point hi = S2LatLng::FromRadians(a.lat().hi(), a_lng).ToPoint();  | 
584  | 0  |   return S2::GetDistance(p.ToPoint(), lo, hi);  | 
585  | 0  | }  | 
586  |  |  | 
587  | 0  | S1Angle S2LatLngRect::GetHausdorffDistance(const S2LatLngRect& other) const { | 
588  | 0  |   return max(GetDirectedHausdorffDistance(other),  | 
589  | 0  |              other.GetDirectedHausdorffDistance(*this));  | 
590  | 0  | }  | 
591  |  |  | 
592  |  | S1Angle S2LatLngRect::GetDirectedHausdorffDistance(  | 
593  | 0  |     const S2LatLngRect& other) const { | 
594  | 0  |   if (is_empty()) { | 
595  | 0  |     return S1Angle::Radians(0);  | 
596  | 0  |   }  | 
597  | 0  |   if (other.is_empty()) { | 
598  | 0  |     return S1Angle::Radians(M_PI);  // maximum possible distance on S2  | 
599  | 0  |   }  | 
600  |  |  | 
601  | 0  |   double lng_distance = lng().GetDirectedHausdorffDistance(other.lng());  | 
602  | 0  |   ABSL_DCHECK_GE(lng_distance, 0);  | 
603  | 0  |   return GetDirectedHausdorffDistance(lng_distance, lat(), other.lat());  | 
604  | 0  | }  | 
605  |  |  | 
606  |  | // Return the directed Hausdorff distance from one longitudinal edge spanning  | 
607  |  | // latitude range 'a_lat' to the other longitudinal edge spanning latitude  | 
608  |  | // range 'b_lat', with their longitudinal difference given by 'lng_diff'.  | 
609  |  | S1Angle S2LatLngRect::GetDirectedHausdorffDistance(  | 
610  | 0  |     double lng_diff, const R1Interval& a, const R1Interval& b) { | 
611  |  |   // By symmetry, we can assume a's longitude is 0 and b's longitude is  | 
612  |  |   // lng_diff. Call b's two endpoints b_lo and b_hi. Let H be the hemisphere  | 
613  |  |   // containing a and delimited by the longitude line of b. The Voronoi diagram  | 
614  |  |   // of b on H has three edges (portions of great circles) all orthogonal to b  | 
615  |  |   // and meeting at b_lo cross b_hi.  | 
616  |  |   // E1: (b_lo, b_lo cross b_hi)  | 
617  |  |   // E2: (b_hi, b_lo cross b_hi)  | 
618  |  |   // E3: (-b_mid, b_lo cross b_hi), where b_mid is the midpoint of b  | 
619  |  |   //  | 
620  |  |   // They subdivide H into three Voronoi regions. Depending on how longitude 0  | 
621  |  |   // (which contains edge a) intersects these regions, we distinguish two cases:  | 
622  |  |   // Case 1: it intersects three regions. This occurs when lng_diff <= M_PI_2.  | 
623  |  |   // Case 2: it intersects only two regions. This occurs when lng_diff > M_PI_2.  | 
624  |  |   //  | 
625  |  |   // In the first case, the directed Hausdorff distance to edge b can only be  | 
626  |  |   // realized by the following points on a:  | 
627  |  |   // A1: two endpoints of a.  | 
628  |  |   // A2: intersection of a with the equator, if b also intersects the equator.  | 
629  |  |   //  | 
630  |  |   // In the second case, the directed Hausdorff distance to edge b can only be  | 
631  |  |   // realized by the following points on a:  | 
632  |  |   // B1: two endpoints of a.  | 
633  |  |   // B2: intersection of a with E3  | 
634  |  |   // B3: farthest point from b_lo to the interior of D, and farthest point from  | 
635  |  |   //     b_hi to the interior of U, if any, where D (resp. U) is the portion  | 
636  |  |   //     of edge a below (resp. above) the intersection point from B2.  | 
637  |  | 
  | 
638  | 0  |   ABSL_DCHECK_GE(lng_diff, 0);  | 
639  | 0  |   ABSL_DCHECK_LE(lng_diff, M_PI);  | 
640  |  | 
  | 
641  | 0  |   if (lng_diff == 0) { | 
642  | 0  |     return S1Angle::Radians(a.GetDirectedHausdorffDistance(b));  | 
643  | 0  |   }  | 
644  |  |  | 
645  |  |   // Assumed longitude of b.  | 
646  | 0  |   double b_lng = lng_diff;  | 
647  |  |   // Two endpoints of b.  | 
648  | 0  |   S2Point b_lo = S2LatLng::FromRadians(b.lo(), b_lng).ToPoint();  | 
649  | 0  |   S2Point b_hi = S2LatLng::FromRadians(b.hi(), b_lng).ToPoint();  | 
650  |  |  | 
651  |  |   // Handling of each case outlined at the top of the function starts here.  | 
652  |  |   // This is initialized a few lines below.  | 
653  | 0  |   S1Angle max_distance;  | 
654  |  |  | 
655  |  |   // Cases A1 and B1.  | 
656  | 0  |   S2Point a_lo = S2LatLng::FromRadians(a.lo(), 0).ToPoint();  | 
657  | 0  |   S2Point a_hi = S2LatLng::FromRadians(a.hi(), 0).ToPoint();  | 
658  | 0  |   max_distance = S2::GetDistance(a_lo, b_lo, b_hi);  | 
659  | 0  |   max_distance = max(  | 
660  | 0  |       max_distance, S2::GetDistance(a_hi, b_lo, b_hi));  | 
661  |  | 
  | 
662  | 0  |   if (lng_diff <= M_PI_2) { | 
663  |  |     // Case A2.  | 
664  | 0  |     if (a.Contains(0) && b.Contains(0)) { | 
665  | 0  |       max_distance = max(max_distance, S1Angle::Radians(lng_diff));  | 
666  | 0  |     }  | 
667  | 0  |   } else { | 
668  |  |     // Case B2.  | 
669  | 0  |     const S2Point& p = GetBisectorIntersection(b, b_lng);  | 
670  | 0  |     double p_lat = S2LatLng::Latitude(p).radians();  | 
671  | 0  |     if (a.Contains(p_lat)) { | 
672  | 0  |       max_distance = max(max_distance, S1Angle(p, b_lo));  | 
673  | 0  |     }  | 
674  |  |  | 
675  |  |     // Case B3.  | 
676  | 0  |     if (p_lat > a.lo()) { | 
677  | 0  |       max_distance = max(max_distance, GetInteriorMaxDistance(  | 
678  | 0  |           R1Interval(a.lo(), min(p_lat, a.hi())), b_lo));  | 
679  | 0  |     }  | 
680  | 0  |     if (p_lat < a.hi()) { | 
681  | 0  |       max_distance = max(max_distance, GetInteriorMaxDistance(  | 
682  | 0  |           R1Interval(max(p_lat, a.lo()), a.hi()), b_hi));  | 
683  | 0  |     }  | 
684  | 0  |   }  | 
685  |  | 
  | 
686  | 0  |   return max_distance;  | 
687  | 0  | }  | 
688  |  |  | 
689  |  | // Return the intersection of longitude 0 with the bisector of an edge  | 
690  |  | // on longitude 'lng' and spanning latitude range 'lat'.  | 
691  |  | S2Point S2LatLngRect::GetBisectorIntersection(const R1Interval& lat,  | 
692  | 0  |                                               double lng) { | 
693  | 0  |   lng = fabs(lng);  | 
694  | 0  |   double lat_center = lat.GetCenter();  | 
695  |  |   // A vector orthogonal to the bisector of the given longitudinal edge.  | 
696  | 0  |   S2LatLng ortho_bisector;  | 
697  | 0  |   if (lat_center >= 0) { | 
698  | 0  |     ortho_bisector = S2LatLng::FromRadians(lat_center - M_PI_2, lng);  | 
699  | 0  |   } else { | 
700  | 0  |     ortho_bisector = S2LatLng::FromRadians(-lat_center - M_PI_2, lng - M_PI);  | 
701  | 0  |   }  | 
702  |  |   // A vector orthogonal to longitude 0.  | 
703  | 0  |   static const S2Point ortho_lng = S2Point(0, -1, 0);  | 
704  | 0  |   return S2::RobustCrossProd(ortho_lng, ortho_bisector.ToPoint());  | 
705  | 0  | }  | 
706  |  |  | 
707  |  | // Return max distance from a point b to the segment spanning latitude range  | 
708  |  | // a_lat on longitude 0, if the max occurs in the interior of a_lat. Otherwise  | 
709  |  | // return -1.  | 
710  |  | S1Angle S2LatLngRect::GetInteriorMaxDistance(const R1Interval& a_lat,  | 
711  | 0  |                                              const S2Point& b) { | 
712  |  |   // Longitude 0 is in the y=0 plane. b.x() >= 0 implies that the maximum  | 
713  |  |   // does not occur in the interior of a_lat.  | 
714  | 0  |   if (a_lat.is_empty() || b.x() >= 0) return S1Angle::Radians(-1);  | 
715  |  |  | 
716  |  |   // Project b to the y=0 plane. The antipodal of the normalized projection is  | 
717  |  |   // the point at which the maximum distance from b occurs, if it is contained  | 
718  |  |   // in a_lat.  | 
719  | 0  |   S2Point intersection_point = S2Point(-b.x(), 0, -b.z()).Normalize();  | 
720  | 0  |   if (a_lat.InteriorContains(  | 
721  | 0  |       S2LatLng::Latitude(intersection_point).radians())) { | 
722  | 0  |     return S1Angle(b, intersection_point);  | 
723  | 0  |   } else { | 
724  | 0  |     return S1Angle::Radians(-1);  | 
725  | 0  |   }  | 
726  | 0  | }  | 
727  |  |  | 
728  | 0  | bool S2LatLngRect::Contains(const S2Point& p) const { | 
729  | 0  |   return Contains(S2LatLng(p));  | 
730  | 0  | }  | 
731  |  |  | 
732  |  | bool S2LatLngRect::ApproxEquals(const S2LatLngRect& other,  | 
733  | 0  |                                 S1Angle max_error) const { | 
734  | 0  |   return (lat_.ApproxEquals(other.lat_, max_error.radians()) &&  | 
735  | 0  |           lng_.ApproxEquals(other.lng_, max_error.radians()));  | 
736  | 0  | }  | 
737  |  |  | 
738  |  | bool S2LatLngRect::ApproxEquals(const S2LatLngRect& other,  | 
739  | 0  |                                 const S2LatLng& max_error) const { | 
740  | 0  |   return (lat_.ApproxEquals(other.lat_, max_error.lat().radians()) &&  | 
741  | 0  |           lng_.ApproxEquals(other.lng_, max_error.lng().radians()));  | 
742  | 0  | }  | 
743  |  |  | 
744  | 0  | std::ostream& operator<<(std::ostream& os, const S2LatLngRect& r) { | 
745  | 0  |   return os << "[Lo" << r.lo() << ", Hi" << r.hi() << "]";  | 
746  | 0  | }  |