/src/s2geometry/src/s2/s1interval.cc
Line | Count | Source |
1 | | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS-IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | // |
15 | | |
16 | | // Author: ericv@google.com (Eric Veach) |
17 | | |
18 | | #include "s2/s1interval.h" |
19 | | |
20 | | #include <algorithm> |
21 | | #include <cfloat> |
22 | | #include <cmath> |
23 | | |
24 | | #include "absl/log/absl_check.h" |
25 | | |
26 | | using std::fabs; |
27 | | using std::max; |
28 | | |
29 | 0 | S1Interval S1Interval::FromPoint(double p) { |
30 | 0 | if (p == -M_PI) p = M_PI; |
31 | 0 | return S1Interval(p, p, ARGS_CHECKED); |
32 | 0 | } |
33 | | |
34 | 0 | double S1Interval::GetCenter() const { |
35 | 0 | double center = 0.5 * (lo() + hi()); |
36 | 0 | if (!is_inverted()) return center; |
37 | | // Return the center in the range (-Pi, Pi]. |
38 | 0 | return (center <= 0) ? (center + M_PI) : (center - M_PI); |
39 | 0 | } |
40 | | |
41 | 0 | double S1Interval::GetLength() const { |
42 | 0 | double length = hi() - lo(); |
43 | 0 | if (length >= 0) return length; |
44 | 0 | length += 2 * M_PI; |
45 | | // Empty intervals have a negative length. |
46 | 0 | return (length > 0) ? length : -1; |
47 | 0 | } |
48 | | |
49 | 0 | S1Interval S1Interval::Complement() const { |
50 | 0 | if (lo() == hi()) return Full(); // Singleton. |
51 | 0 | return S1Interval(hi(), lo(), ARGS_CHECKED); // Handles empty and full. |
52 | 0 | } |
53 | | |
54 | 0 | double S1Interval::GetComplementCenter() const { |
55 | 0 | if (lo() != hi()) { |
56 | 0 | return Complement().GetCenter(); |
57 | 0 | } else { // Singleton. |
58 | 0 | return (hi() <= 0) ? (hi() + M_PI) : (hi() - M_PI); |
59 | 0 | } |
60 | 0 | } |
61 | | |
62 | 0 | bool S1Interval::FastContains(double p) const { |
63 | 0 | if (is_inverted()) { |
64 | 0 | return (p >= lo() || p <= hi()) && !is_empty(); |
65 | 0 | } else { |
66 | 0 | return p >= lo() && p <= hi(); |
67 | 0 | } |
68 | 0 | } |
69 | | |
70 | 0 | bool S1Interval::Contains(double p) const { |
71 | | // Works for empty, full, and singleton intervals. |
72 | 0 | ABSL_DCHECK_LE(fabs(p), M_PI); |
73 | 0 | if (p == -M_PI) p = M_PI; |
74 | 0 | return FastContains(p); |
75 | 0 | } |
76 | | |
77 | 0 | bool S1Interval::InteriorContains(double p) const { |
78 | | // Works for empty, full, and singleton intervals. |
79 | 0 | ABSL_DCHECK_LE(fabs(p), M_PI); |
80 | 0 | if (p == -M_PI) p = M_PI; |
81 | |
|
82 | 0 | if (is_inverted()) { |
83 | 0 | return p > lo() || p < hi(); |
84 | 0 | } else { |
85 | 0 | return (p > lo() && p < hi()) || is_full(); |
86 | 0 | } |
87 | 0 | } |
88 | | |
89 | 0 | bool S1Interval::Contains(const S1Interval& y) const { |
90 | | // It might be helpful to compare the structure of these tests to |
91 | | // the simpler Contains(double) method above. |
92 | |
|
93 | 0 | if (is_inverted()) { |
94 | 0 | if (y.is_inverted()) return y.lo() >= lo() && y.hi() <= hi(); |
95 | 0 | return (y.lo() >= lo() || y.hi() <= hi()) && !is_empty(); |
96 | 0 | } else { |
97 | 0 | if (y.is_inverted()) return is_full() || y.is_empty(); |
98 | 0 | return y.lo() >= lo() && y.hi() <= hi(); |
99 | 0 | } |
100 | 0 | } |
101 | | |
102 | 0 | bool S1Interval::InteriorContains(const S1Interval& y) const { |
103 | 0 | if (is_inverted()) { |
104 | 0 | if (!y.is_inverted()) return y.lo() > lo() || y.hi() < hi(); |
105 | 0 | return (y.lo() > lo() && y.hi() < hi()) || y.is_empty(); |
106 | 0 | } else { |
107 | 0 | if (y.is_inverted()) return is_full() || y.is_empty(); |
108 | 0 | return (y.lo() > lo() && y.hi() < hi()) || is_full(); |
109 | 0 | } |
110 | 0 | } |
111 | | |
112 | 0 | bool S1Interval::Intersects(const S1Interval& y) const { |
113 | 0 | if (is_empty() || y.is_empty()) return false; |
114 | 0 | if (is_inverted()) { |
115 | | // Every non-empty inverted interval contains Pi. |
116 | 0 | return y.is_inverted() || y.lo() <= hi() || y.hi() >= lo(); |
117 | 0 | } else { |
118 | 0 | if (y.is_inverted()) return y.lo() <= hi() || y.hi() >= lo(); |
119 | 0 | return y.lo() <= hi() && y.hi() >= lo(); |
120 | 0 | } |
121 | 0 | } |
122 | | |
123 | 0 | bool S1Interval::InteriorIntersects(const S1Interval& y) const { |
124 | 0 | if (is_empty() || y.is_empty() || lo() == hi()) return false; |
125 | 0 | if (is_inverted()) { |
126 | 0 | return y.is_inverted() || y.lo() < hi() || y.hi() > lo(); |
127 | 0 | } else { |
128 | 0 | if (y.is_inverted()) return y.lo() < hi() || y.hi() > lo(); |
129 | 0 | return (y.lo() < hi() && y.hi() > lo()) || is_full(); |
130 | 0 | } |
131 | 0 | } |
132 | | |
133 | 0 | inline static double PositiveDistance(double a, double b) { |
134 | | // Compute the distance from "a" to "b" in the range [0, 2*Pi). |
135 | | // This is equivalent to (remainder(b - a - M_PI, 2 * M_PI) + M_PI), |
136 | | // except that it is more numerically stable (it does not lose |
137 | | // precision for very small positive distances). |
138 | 0 | double d = b - a; |
139 | 0 | if (d >= 0) return d; |
140 | | // We want to ensure that if b == Pi and a == (-Pi + eps), |
141 | | // the return result is approximately 2*Pi and not zero. |
142 | 0 | return (b + M_PI) - (a - M_PI); |
143 | 0 | } |
144 | | |
145 | 0 | double S1Interval::GetDirectedHausdorffDistance(const S1Interval& y) const { |
146 | 0 | if (y.Contains(*this)) return 0.0; // this includes the case *this is empty |
147 | 0 | if (y.is_empty()) return M_PI; // maximum possible distance on S1 |
148 | | |
149 | 0 | double y_complement_center = y.GetComplementCenter(); |
150 | 0 | if (Contains(y_complement_center)) { |
151 | 0 | return PositiveDistance(y.hi(), y_complement_center); |
152 | 0 | } else { |
153 | | // The Hausdorff distance is realized by either two hi() endpoints or two |
154 | | // lo() endpoints, whichever is farther apart. |
155 | 0 | double hi_hi = S1Interval(y.hi(), y_complement_center).Contains(hi()) ? |
156 | 0 | PositiveDistance(y.hi(), hi()) : 0; |
157 | 0 | double lo_lo = S1Interval(y_complement_center, y.lo()).Contains(lo()) ? |
158 | 0 | PositiveDistance(lo(), y.lo()) : 0; |
159 | 0 | ABSL_DCHECK(hi_hi > 0 || lo_lo > 0); |
160 | 0 | return max(hi_hi, lo_lo); |
161 | 0 | } |
162 | 0 | } |
163 | | |
164 | 0 | void S1Interval::AddPoint(double p) { |
165 | 0 | ABSL_DCHECK_LE(fabs(p), M_PI); |
166 | 0 | if (p == -M_PI) p = M_PI; |
167 | |
|
168 | 0 | if (FastContains(p)) return; |
169 | 0 | if (is_empty()) { |
170 | 0 | set_hi(p); |
171 | 0 | set_lo(p); |
172 | 0 | } else { |
173 | | // Compute distance from p to each endpoint. |
174 | 0 | double dlo = PositiveDistance(p, lo()); |
175 | 0 | double dhi = PositiveDistance(hi(), p); |
176 | 0 | if (dlo < dhi) { |
177 | 0 | set_lo(p); |
178 | 0 | } else { |
179 | 0 | set_hi(p); |
180 | 0 | } |
181 | | // Adding a point can never turn a non-full interval into a full one. |
182 | 0 | } |
183 | 0 | } |
184 | | |
185 | 0 | double S1Interval::Project(double p) const { |
186 | 0 | ABSL_DCHECK(!is_empty()); |
187 | 0 | ABSL_DCHECK_LE(fabs(p), M_PI); |
188 | 0 | if (p == -M_PI) p = M_PI; |
189 | 0 | if (FastContains(p)) return p; |
190 | | // Compute distance from p to each endpoint. |
191 | 0 | double dlo = PositiveDistance(p, lo()); |
192 | 0 | double dhi = PositiveDistance(hi(), p); |
193 | 0 | return (dlo < dhi) ? lo() : hi(); |
194 | 0 | } |
195 | | |
196 | 0 | S1Interval S1Interval::FromPointPair(double p1, double p2) { |
197 | 0 | ABSL_DCHECK_LE(fabs(p1), M_PI); |
198 | 0 | ABSL_DCHECK_LE(fabs(p2), M_PI); |
199 | 0 | if (p1 == -M_PI) p1 = M_PI; |
200 | 0 | if (p2 == -M_PI) p2 = M_PI; |
201 | 0 | if (PositiveDistance(p1, p2) <= M_PI) { |
202 | 0 | return S1Interval(p1, p2, ARGS_CHECKED); |
203 | 0 | } else { |
204 | 0 | return S1Interval(p2, p1, ARGS_CHECKED); |
205 | 0 | } |
206 | 0 | } |
207 | | |
208 | 0 | S1Interval S1Interval::Expanded(double margin) const { |
209 | 0 | if (margin >= 0) { |
210 | 0 | if (is_empty()) return *this; |
211 | | // Check whether this interval will be full after expansion, allowing |
212 | | // for a 1-bit rounding error when computing each endpoint. |
213 | 0 | if (GetLength() + 2 * margin + 2 * DBL_EPSILON >= 2 * M_PI) return Full(); |
214 | 0 | } else { |
215 | 0 | if (is_full()) return *this; |
216 | | // Check whether this interval will be empty after expansion, allowing |
217 | | // for a 1-bit rounding error when computing each endpoint. |
218 | 0 | if (GetLength() + 2 * margin - 2 * DBL_EPSILON <= 0) return Empty(); |
219 | 0 | } |
220 | 0 | S1Interval result(remainder(lo() - margin, 2*M_PI), |
221 | 0 | remainder(hi() + margin, 2*M_PI)); |
222 | 0 | if (result.lo() <= -M_PI) result.set_lo(M_PI); |
223 | 0 | return result; |
224 | 0 | } |
225 | | |
226 | 0 | S1Interval S1Interval::Union(const S1Interval& y) const { |
227 | | // The y.is_full() case is handled correctly in all cases by the code |
228 | | // below, but can follow three separate code paths depending on whether |
229 | | // this interval is inverted, is non-inverted but contains Pi, or neither. |
230 | |
|
231 | 0 | if (y.is_empty()) return *this; |
232 | 0 | if (FastContains(y.lo())) { |
233 | 0 | if (FastContains(y.hi())) { |
234 | | // Either this interval contains y, or the union of the two |
235 | | // intervals is the Full() interval. |
236 | 0 | if (Contains(y)) return *this; // is_full() code path |
237 | 0 | return Full(); |
238 | 0 | } |
239 | 0 | return S1Interval(lo(), y.hi(), ARGS_CHECKED); |
240 | 0 | } |
241 | 0 | if (FastContains(y.hi())) return S1Interval(y.lo(), hi(), ARGS_CHECKED); |
242 | | |
243 | | // This interval contains neither endpoint of y. This means that either y |
244 | | // contains all of this interval, or the two intervals are disjoint. |
245 | 0 | if (is_empty() || y.FastContains(lo())) return y; |
246 | | |
247 | | // Check which pair of endpoints are closer together. |
248 | 0 | double dlo = PositiveDistance(y.hi(), lo()); |
249 | 0 | double dhi = PositiveDistance(hi(), y.lo()); |
250 | 0 | if (dlo < dhi) { |
251 | 0 | return S1Interval(y.lo(), hi(), ARGS_CHECKED); |
252 | 0 | } else { |
253 | 0 | return S1Interval(lo(), y.hi(), ARGS_CHECKED); |
254 | 0 | } |
255 | 0 | } |
256 | | |
257 | 0 | S1Interval S1Interval::Intersection(const S1Interval& y) const { |
258 | | // The y.is_full() case is handled correctly in all cases by the code |
259 | | // below, but can follow three separate code paths depending on whether |
260 | | // this interval is inverted, is non-inverted but contains Pi, or neither. |
261 | |
|
262 | 0 | if (y.is_empty()) return Empty(); |
263 | 0 | if (FastContains(y.lo())) { |
264 | 0 | if (FastContains(y.hi())) { |
265 | | // Either this interval contains y, or the region of intersection |
266 | | // consists of two disjoint subintervals. In either case, we want |
267 | | // to return the shorter of the two original intervals. |
268 | 0 | if (y.GetLength() < GetLength()) return y; // is_full() code path |
269 | 0 | return *this; |
270 | 0 | } |
271 | 0 | return S1Interval(y.lo(), hi(), ARGS_CHECKED); |
272 | 0 | } |
273 | 0 | if (FastContains(y.hi())) return S1Interval(lo(), y.hi(), ARGS_CHECKED); |
274 | | |
275 | | // This interval contains neither endpoint of y. This means that either y |
276 | | // contains all of this interval, or the two intervals are disjoint. |
277 | | |
278 | 0 | if (y.FastContains(lo())) return *this; // is_empty() okay here |
279 | 0 | ABSL_DCHECK(!Intersects(y)); |
280 | 0 | return Empty(); |
281 | 0 | } |
282 | | |
283 | 0 | bool S1Interval::ApproxEquals(const S1Interval& y, double max_error) const { |
284 | | // Full and empty intervals require special cases because the "endpoints" |
285 | | // are considered to be positioned arbitrarily. |
286 | 0 | if (is_empty()) return y.GetLength() <= 2 * max_error; |
287 | 0 | if (y.is_empty()) return GetLength() <= 2 * max_error; |
288 | 0 | if (is_full()) return y.GetLength() >= 2 * (M_PI - max_error); |
289 | 0 | if (y.is_full()) return GetLength() >= 2 * (M_PI - max_error); |
290 | | |
291 | | // The purpose of the last test below is to verify that moving the endpoints |
292 | | // does not invert the interval, e.g. [-1e20, 1e20] vs. [1e20, -1e20]. |
293 | 0 | return (fabs(remainder(y.lo() - lo(), 2 * M_PI)) <= max_error && |
294 | 0 | fabs(remainder(y.hi() - hi(), 2 * M_PI)) <= max_error && |
295 | 0 | fabs(GetLength() - y.GetLength()) <= 2 * max_error); |
296 | 0 | } |