/src/s2geometry/src/s2/s2builder_graph.cc
Line | Count | Source |
1 | | // Copyright 2016 Google Inc. All Rights Reserved. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS-IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | // |
15 | | |
16 | | // Author: ericv@google.com (Eric Veach) |
17 | | |
18 | | #include "s2/s2builder_graph.h" |
19 | | |
20 | | #include <algorithm> |
21 | | #include <array> |
22 | | #include <cstdint> |
23 | | #include <limits> |
24 | | #include <numeric> |
25 | | #include <utility> |
26 | | #include <vector> |
27 | | |
28 | | #include "absl/container/btree_map.h" |
29 | | #include "absl/log/absl_check.h" |
30 | | #include "absl/types/span.h" |
31 | | #include "s2/id_set_lexicon.h" |
32 | | #include "s2/s2builder.h" |
33 | | #include "s2/s2error.h" |
34 | | #include "s2/s2memory_tracker.h" |
35 | | #include "s2/s2point.h" |
36 | | #include "s2/s2predicates.h" |
37 | | |
38 | | using std::make_pair; |
39 | | using std::max; |
40 | | using std::min; |
41 | | using std::pair; |
42 | | using std::vector; |
43 | | |
44 | | using Graph = S2Builder::Graph; |
45 | | using GraphOptions = S2Builder::GraphOptions; |
46 | | using DegenerateEdges = GraphOptions::DegenerateEdges; |
47 | | using DuplicateEdges = GraphOptions::DuplicateEdges; |
48 | | using SiblingPairs = GraphOptions::SiblingPairs; |
49 | | |
50 | | Graph::Graph(const GraphOptions& options, |
51 | | const vector<S2Point>* vertices, |
52 | | const vector<Edge>* edges, |
53 | | const vector<InputEdgeIdSetId>* input_edge_id_set_ids, |
54 | | const IdSetLexicon* input_edge_id_set_lexicon, |
55 | | const vector<LabelSetId>* label_set_ids, |
56 | | const IdSetLexicon* label_set_lexicon, |
57 | | IsFullPolygonPredicate is_full_polygon_predicate) |
58 | 0 | : options_(options), num_vertices_(vertices->size()), vertices_(vertices), |
59 | 0 | edges_(edges), input_edge_id_set_ids_(input_edge_id_set_ids), |
60 | 0 | input_edge_id_set_lexicon_(input_edge_id_set_lexicon), |
61 | 0 | label_set_ids_(label_set_ids), |
62 | 0 | label_set_lexicon_(label_set_lexicon), |
63 | 0 | is_full_polygon_predicate_(std::move(is_full_polygon_predicate)) { |
64 | 0 | ABSL_DCHECK(std::is_sorted(edges->begin(), edges->end())); |
65 | 0 | ABSL_DCHECK_EQ(edges->size(), input_edge_id_set_ids->size()); |
66 | 0 | } |
67 | | |
68 | 0 | vector<Graph::EdgeId> Graph::GetInEdgeIds() const { |
69 | 0 | vector<EdgeId> in_edge_ids(num_edges()); |
70 | 0 | std::iota(in_edge_ids.begin(), in_edge_ids.end(), 0); |
71 | 0 | std::sort(in_edge_ids.begin(), in_edge_ids.end(), |
72 | 0 | [this](EdgeId ai, EdgeId bi) { |
73 | 0 | return StableLessThan(reverse(edge(ai)), reverse(edge(bi)), ai, bi); |
74 | 0 | }); |
75 | 0 | return in_edge_ids; |
76 | 0 | } |
77 | | |
78 | 0 | vector<Graph::EdgeId> Graph::GetSiblingMap() const { |
79 | 0 | vector<EdgeId> in_edge_ids = GetInEdgeIds(); |
80 | 0 | MakeSiblingMap(&in_edge_ids); |
81 | | // Validates the sibling map, and indirectly the edge ordering comparator, |
82 | | // which must break ties on equal edges correctly for the sibling map to be |
83 | | // created correctly. |
84 | 0 | for (EdgeId e = 0; e < num_edges(); ++e) { |
85 | 0 | ABSL_DCHECK(e == in_edge_ids[in_edge_ids[e]]); |
86 | 0 | } |
87 | 0 | return in_edge_ids; |
88 | 0 | } |
89 | | |
90 | 0 | void Graph::MakeSiblingMap(vector<Graph::EdgeId>* in_edge_ids) const { |
91 | 0 | ABSL_DCHECK(options_.sibling_pairs() == SiblingPairs::REQUIRE || |
92 | 0 | options_.sibling_pairs() == SiblingPairs::CREATE || |
93 | 0 | options_.edge_type() == EdgeType::UNDIRECTED); |
94 | 0 | for (EdgeId e = 0; e < num_edges(); ++e) { |
95 | 0 | ABSL_DCHECK(edge(e) == reverse(edge((*in_edge_ids)[e]))); |
96 | 0 | } |
97 | 0 | if (options_.edge_type() == EdgeType::DIRECTED) return; |
98 | 0 | if (options_.degenerate_edges() == DegenerateEdges::DISCARD) return; |
99 | | |
100 | 0 | for (EdgeId e = 0; e < num_edges(); ++e) { |
101 | 0 | VertexId v = edge(e).first; |
102 | 0 | if (edge(e).second == v) { |
103 | 0 | ABSL_DCHECK_LT(e + 1, num_edges()); |
104 | 0 | ABSL_DCHECK_EQ(edge(e + 1).first, v); |
105 | 0 | ABSL_DCHECK_EQ(edge(e + 1).second, v); |
106 | 0 | ABSL_DCHECK_EQ((*in_edge_ids)[e], e); |
107 | 0 | ABSL_DCHECK_EQ((*in_edge_ids)[e + 1], e + 1); |
108 | 0 | (*in_edge_ids)[e] = e + 1; |
109 | 0 | (*in_edge_ids)[e + 1] = e; |
110 | 0 | ++e; |
111 | 0 | } |
112 | 0 | } |
113 | 0 | } |
114 | | |
115 | 0 | void Graph::VertexOutMap::Init(const Graph& g) { |
116 | 0 | edges_ = &g.edges(); |
117 | 0 | edge_begins_.reserve(g.num_vertices() + 1); |
118 | 0 | EdgeId e = 0; |
119 | 0 | for (VertexId v = 0; v <= g.num_vertices(); ++v) { |
120 | 0 | while (e < g.num_edges() && g.edge(e).first < v) ++e; |
121 | 0 | edge_begins_.push_back(e); |
122 | 0 | } |
123 | 0 | } |
124 | | |
125 | 0 | void Graph::VertexInMap::Init(const Graph& g) { |
126 | 0 | in_edge_ids_ = g.GetInEdgeIds(); |
127 | 0 | in_edge_begins_.reserve(g.num_vertices() + 1); |
128 | 0 | EdgeId e = 0; |
129 | 0 | for (VertexId v = 0; v <= g.num_vertices(); ++v) { |
130 | 0 | while (e < g.num_edges() && g.edge(in_edge_ids_[e]).second < v) ++e; |
131 | 0 | in_edge_begins_.push_back(e); |
132 | 0 | } |
133 | 0 | } |
134 | | |
135 | 0 | void Graph::LabelFetcher::Init(const Graph& g, S2Builder::EdgeType edge_type) { |
136 | 0 | g_ = &g; |
137 | 0 | edge_type_ = edge_type; |
138 | 0 | if (edge_type == EdgeType::UNDIRECTED) sibling_map_ = g.GetSiblingMap(); |
139 | 0 | } |
140 | | |
141 | 0 | void Graph::LabelFetcher::Fetch(EdgeId e, vector<S2Builder::Label>* labels) { |
142 | 0 | labels->clear(); |
143 | 0 | for (InputEdgeId input_edge_id : g_->input_edge_ids(e)) { |
144 | 0 | for (Label label : g_->labels(input_edge_id)) { |
145 | 0 | labels->push_back(label); |
146 | 0 | } |
147 | 0 | } |
148 | 0 | if (edge_type_ == EdgeType::UNDIRECTED) { |
149 | 0 | for (InputEdgeId input_edge_id : g_->input_edge_ids(sibling_map_[e])) { |
150 | 0 | for (Label label : g_->labels(input_edge_id)) { |
151 | 0 | labels->push_back(label); |
152 | 0 | } |
153 | 0 | } |
154 | 0 | } |
155 | 0 | if (labels->size() > 1) { |
156 | 0 | std::sort(labels->begin(), labels->end()); |
157 | 0 | labels->erase(std::unique(labels->begin(), labels->end()), labels->end()); |
158 | 0 | } |
159 | 0 | } |
160 | | |
161 | 0 | S2Builder::InputEdgeId Graph::min_input_edge_id(EdgeId e) const { |
162 | 0 | IdSetLexicon::IdSet id_set = input_edge_ids(e); |
163 | 0 | return (id_set.size() == 0) ? kNoInputEdgeId : *id_set.begin(); |
164 | 0 | } |
165 | | |
166 | 0 | vector<S2Builder::InputEdgeId> Graph::GetMinInputEdgeIds() const { |
167 | 0 | vector<InputEdgeId> min_input_ids(num_edges()); |
168 | 0 | for (EdgeId e = 0; e < num_edges(); ++e) { |
169 | 0 | min_input_ids[e] = min_input_edge_id(e); |
170 | 0 | } |
171 | 0 | return min_input_ids; |
172 | 0 | } |
173 | | |
174 | | vector<Graph::EdgeId> Graph::GetInputEdgeOrder( |
175 | 0 | absl::Span<const InputEdgeId> input_ids) const { |
176 | 0 | vector<EdgeId> order(input_ids.size()); |
177 | 0 | std::iota(order.begin(), order.end(), 0); |
178 | 0 | std::sort(order.begin(), order.end(), [input_ids](EdgeId a, EdgeId b) { |
179 | | // Comparison function ensures sort is stable. |
180 | 0 | return make_pair(input_ids[a], a) < make_pair(input_ids[b], b); |
181 | 0 | }); |
182 | 0 | return order; |
183 | 0 | } |
184 | | |
185 | | // A struct for sorting the incoming and outgoing edges around a vertex "v0". |
186 | | struct VertexEdge { |
187 | | VertexEdge(bool _incoming, Graph::EdgeId _index, Graph::VertexId _endpoint, |
188 | | int32_t _rank) |
189 | 0 | : incoming(_incoming), index(_index), endpoint(_endpoint), rank(_rank) {} |
190 | | bool incoming; // Is this an incoming edge to "v0"? |
191 | | Graph::EdgeId index; // Index of this edge in "edges_" or "in_edge_ids" |
192 | | Graph::VertexId endpoint; // The other (not "v0") endpoint of this edge |
193 | | int32_t rank; // Secondary key for edges with the same endpoint |
194 | | }; |
195 | | |
196 | | // Given a set of duplicate outgoing edges (v0, v1) and a set of duplicate |
197 | | // incoming edges (v1, v0), this method assigns each edge an integer "rank" so |
198 | | // that the edges are sorted in a consistent order with respect to their |
199 | | // orderings around "v0" and "v1". Usually there is just one edge, in which |
200 | | // case this is easy. Sometimes there is one edge in each direction, in which |
201 | | // case the outgoing edge is always ordered before the incoming edge. |
202 | | // |
203 | | // In general, we allow any number of duplicate edges in each direction, in |
204 | | // which case outgoing edges are interleaved with incoming edges so as to |
205 | | // create as many degenerate (two-edge) loops as possible. In order to get a |
206 | | // consistent ordering around "v0" and "v1", we move forwards through the list |
207 | | // of outgoing edges and backwards through the list of incoming edges. If |
208 | | // there are more incoming edges, they go at the beginning of the ordering, |
209 | | // while if there are more outgoing edges then they go at the end. |
210 | | // |
211 | | // For example, suppose there are 2 edges "a,b" from "v0" to "v1", and 4 edges |
212 | | // "w,x,y,z" from "v1" to "v0". Using lower/upper case letters to represent |
213 | | // incoming/outgoing edges, the clockwise ordering around v0 would be zyAxBw, |
214 | | // and the clockwise ordering around v1 would be WbXaYZ. (Try making a |
215 | | // diagram with each edge as a separate arc.) |
216 | | static void AddVertexEdges(Graph::EdgeId out_begin, Graph::EdgeId out_end, |
217 | | Graph::EdgeId in_begin, Graph::EdgeId in_end, |
218 | 0 | Graph::VertexId v1, vector<VertexEdge>* v0_edges) { |
219 | 0 | int rank = 0; |
220 | | // Any extra incoming edges go at the beginning of the ordering. |
221 | 0 | while (in_end - in_begin > out_end - out_begin) { |
222 | 0 | v0_edges->push_back(VertexEdge(true, --in_end, v1, rank++)); |
223 | 0 | } |
224 | | // Next we interleave as many outgoing and incoming edges as possible. |
225 | 0 | while (in_end > in_begin) { |
226 | 0 | v0_edges->push_back(VertexEdge(false, out_begin++, v1, rank++)); |
227 | 0 | v0_edges->push_back(VertexEdge(true, --in_end, v1, rank++)); |
228 | 0 | } |
229 | | // Any extra outgoing edges to at the end of the ordering. |
230 | 0 | while (out_end > out_begin) { |
231 | 0 | v0_edges->push_back(VertexEdge(false, out_begin++, v1, rank++)); |
232 | 0 | } |
233 | 0 | } |
234 | | |
235 | | bool Graph::GetLeftTurnMap(absl::Span<const EdgeId> in_edge_ids, |
236 | | vector<EdgeId>* left_turn_map, |
237 | 0 | S2Error* error) const { |
238 | 0 | left_turn_map->assign(num_edges(), -1); |
239 | 0 | if (num_edges() == 0) return true; |
240 | | |
241 | | // Declare vectors outside the loop to avoid reallocating them each time. |
242 | 0 | vector<VertexEdge> v0_edges; |
243 | 0 | vector<EdgeId> e_in, e_out; |
244 | | |
245 | | // Walk through the two sorted arrays of edges (outgoing and incoming) and |
246 | | // gather all the edges incident to each vertex. Then we sort those edges |
247 | | // and add an entry to the left turn map from each incoming edge to the |
248 | | // immediately following outgoing edge in clockwise order. |
249 | 0 | int out = 0, in = 0; |
250 | 0 | const Edge* out_edge = &edge(out); |
251 | 0 | const Edge* in_edge = &edge(in_edge_ids[in]); |
252 | 0 | Edge sentinel(num_vertices(), num_vertices()); |
253 | 0 | Edge min_edge = min(*out_edge, reverse(*in_edge)); |
254 | 0 | while (min_edge != sentinel) { |
255 | | // Gather all incoming and outgoing edges around vertex "v0". |
256 | 0 | VertexId v0 = min_edge.first; |
257 | 0 | for (; min_edge.first == v0; min_edge = min(*out_edge, reverse(*in_edge))) { |
258 | 0 | VertexId v1 = min_edge.second; |
259 | | // Count the number of copies of "min_edge" in each direction. |
260 | 0 | int out_begin = out, in_begin = in; |
261 | 0 | while (*out_edge == min_edge) { |
262 | 0 | out_edge = (++out == num_edges()) ? &sentinel : &edge(out); |
263 | 0 | } |
264 | 0 | while (reverse(*in_edge) == min_edge) { |
265 | 0 | in_edge = (++in == num_edges()) ? &sentinel : &edge(in_edge_ids[in]); |
266 | 0 | } |
267 | 0 | if (v0 != v1) { |
268 | 0 | AddVertexEdges(out_begin, out, in_begin, in, v1, &v0_edges); |
269 | 0 | } else { |
270 | | // Each degenerate edge becomes its own loop. |
271 | 0 | for (; in_begin < in; ++in_begin) { |
272 | 0 | (*left_turn_map)[in_begin] = in_begin; |
273 | 0 | } |
274 | 0 | } |
275 | 0 | } |
276 | 0 | if (v0_edges.empty()) continue; |
277 | | |
278 | | // Sort the edges in clockwise order around "v0". |
279 | 0 | VertexId min_endpoint = v0_edges.front().endpoint; |
280 | 0 | std::sort(v0_edges.begin() + 1, v0_edges.end(), |
281 | 0 | [v0, min_endpoint, this](const VertexEdge& a, |
282 | 0 | const VertexEdge& b) { |
283 | 0 | if (a.endpoint == b.endpoint) return a.rank < b.rank; |
284 | 0 | if (a.endpoint == min_endpoint) return true; |
285 | 0 | if (b.endpoint == min_endpoint) return false; |
286 | 0 | return !s2pred::OrderedCCW(vertex(a.endpoint), vertex(b.endpoint), |
287 | 0 | vertex(min_endpoint), vertex(v0)); |
288 | 0 | }); |
289 | | // Match incoming with outgoing edges. We do this by keeping a stack of |
290 | | // unmatched incoming edges. We also keep a stack of outgoing edges with |
291 | | // no previous incoming edge, and match these at the end by wrapping |
292 | | // around circularly to the start of the edge ordering. |
293 | 0 | for (const VertexEdge& e : v0_edges) { |
294 | 0 | if (e.incoming) { |
295 | 0 | e_in.push_back(in_edge_ids[e.index]); |
296 | 0 | } else if (!e_in.empty()) { |
297 | 0 | (*left_turn_map)[e_in.back()] = e.index; |
298 | 0 | e_in.pop_back(); |
299 | 0 | } else { |
300 | 0 | e_out.push_back(e.index); // Matched below. |
301 | 0 | } |
302 | 0 | } |
303 | | // Pair up additional edges using the fact that the ordering is circular. |
304 | 0 | std::reverse(e_out.begin(), e_out.end()); |
305 | 0 | for (; !e_out.empty() && !e_in.empty(); e_out.pop_back(), e_in.pop_back()) { |
306 | 0 | (*left_turn_map)[e_in.back()] = e_out.back(); |
307 | 0 | } |
308 | | // We only need to process unmatched incoming edges, since we are only |
309 | | // responsible for creating left turn map entries for those edges. |
310 | 0 | if (!e_in.empty() && error->ok()) { |
311 | 0 | *error = S2Error(S2Error::BUILDER_EDGES_DO_NOT_FORM_LOOPS, |
312 | 0 | "Given edges do not form loops (indegree != outdegree)"); |
313 | 0 | } |
314 | 0 | e_in.clear(); |
315 | 0 | e_out.clear(); |
316 | 0 | v0_edges.clear(); |
317 | 0 | } |
318 | 0 | return error->ok(); |
319 | 0 | } |
320 | | |
321 | | void Graph::CanonicalizeLoopOrder(absl::Span<const InputEdgeId> min_input_ids, |
322 | 0 | vector<EdgeId>* loop) { |
323 | 0 | if (loop->empty()) return; |
324 | | // Find the position of the element with the highest input edge id. If |
325 | | // there are multiple such elements together (i.e., the edge was split |
326 | | // into several pieces by snapping it to several vertices), then we choose |
327 | | // the last such position in cyclic order (this attempts to preserve the |
328 | | // original loop order even when new vertices are added). For example, if |
329 | | // the input edge id sequence is (7, 7, 4, 5, 6, 7) then we would rotate |
330 | | // it to obtain (4, 5, 6, 7, 7, 7). |
331 | | |
332 | | // The reason that we put the highest-numbered edge last, rather than the |
333 | | // lowest-numbered edge first, is that S2Loop::Invert() reverses the loop |
334 | | // edge order *except* for the last edge. For example, the loop ABCD (with |
335 | | // edges AB, BC, CD, DA) becomes DCBA (with edges DC, CB, BA, AD). Note |
336 | | // that the last edge is the same except for its direction (DA vs. AD). |
337 | | // This has the advantage that if an undirected loop is assembled with the |
338 | | // wrong orientation and later inverted (e.g. by S2Polygon::InitOriented), |
339 | | // we still end up preserving the original cyclic vertex order. |
340 | 0 | size_t pos = 0; |
341 | 0 | bool saw_gap = false; |
342 | 0 | for (size_t i = 1; i < loop->size(); ++i) { |
343 | 0 | int cmp = min_input_ids[(*loop)[i]] - min_input_ids[(*loop)[pos]]; |
344 | 0 | if (cmp < 0) { |
345 | 0 | saw_gap = true; |
346 | 0 | } else if (cmp > 0 || !saw_gap) { |
347 | 0 | pos = i; |
348 | 0 | saw_gap = false; |
349 | 0 | } |
350 | 0 | } |
351 | 0 | if (++pos == loop->size()) pos = 0; // Convert loop end to loop start. |
352 | 0 | std::rotate(loop->begin(), loop->begin() + pos, loop->end()); |
353 | 0 | } |
354 | | |
355 | | void Graph::CanonicalizeVectorOrder(absl::Span<const InputEdgeId> min_input_ids, |
356 | 0 | vector<vector<EdgeId>>* chains) { |
357 | 0 | std::sort( |
358 | 0 | chains->begin(), chains->end(), |
359 | 0 | [min_input_ids](absl::Span<const EdgeId> a, absl::Span<const EdgeId> b) { |
360 | | // Comparison function ensures sort is stable. |
361 | 0 | return make_pair(min_input_ids[a[0]], a[0]) < |
362 | 0 | make_pair(min_input_ids[b[0]], b[0]); |
363 | 0 | }); |
364 | 0 | } |
365 | | |
366 | | bool Graph::GetDirectedLoops(LoopType loop_type, vector<EdgeLoop>* loops, |
367 | 0 | S2Error* error) const { |
368 | 0 | ABSL_DCHECK(options_.degenerate_edges() == DegenerateEdges::DISCARD || |
369 | 0 | options_.degenerate_edges() == DegenerateEdges::DISCARD_EXCESS); |
370 | 0 | ABSL_DCHECK(options_.edge_type() == EdgeType::DIRECTED); |
371 | |
|
372 | 0 | vector<EdgeId> left_turn_map; |
373 | 0 | if (!GetLeftTurnMap(GetInEdgeIds(), &left_turn_map, error)) return false; |
374 | 0 | vector<InputEdgeId> min_input_ids = GetMinInputEdgeIds(); |
375 | | |
376 | | // If we are breaking loops at repeated vertices, we maintain a map from |
377 | | // VertexId to its position in "path". |
378 | 0 | vector<int> path_index; |
379 | 0 | if (loop_type == LoopType::SIMPLE) path_index.assign(num_vertices(), -1); |
380 | | |
381 | | // Visit edges in arbitrary order, and try to build a loop from each edge. |
382 | 0 | vector<EdgeId> path; |
383 | 0 | for (EdgeId start = 0; start < num_edges(); ++start) { |
384 | 0 | if (left_turn_map[start] < 0) continue; |
385 | | |
386 | | // Build a loop by making left turns at each vertex until we return to |
387 | | // "start". We use "left_turn_map" to keep track of which edges have |
388 | | // already been visited by setting its entries to -1 as we go along. If |
389 | | // we are building vertex cycles, then whenever we encounter a vertex that |
390 | | // is already part of the path, we "peel off" a loop by removing those |
391 | | // edges from the path so far. |
392 | 0 | for (EdgeId e = start, next; left_turn_map[e] >= 0; e = next) { |
393 | 0 | path.push_back(e); |
394 | 0 | next = left_turn_map[e]; |
395 | 0 | left_turn_map[e] = -1; |
396 | 0 | if (loop_type == LoopType::SIMPLE) { |
397 | 0 | path_index[edge(e).first] = path.size() - 1; |
398 | 0 | int loop_start = path_index[edge(e).second]; |
399 | 0 | if (loop_start < 0) continue; |
400 | | // Peel off a loop from the path. |
401 | 0 | vector<EdgeId> loop(path.begin() + loop_start, path.end()); |
402 | 0 | path.erase(path.begin() + loop_start, path.end()); |
403 | 0 | for (EdgeId e2 : loop) path_index[edge(e2).first] = -1; |
404 | 0 | CanonicalizeLoopOrder(min_input_ids, &loop); |
405 | 0 | loops->push_back(std::move(loop)); |
406 | 0 | } |
407 | 0 | } |
408 | 0 | if (loop_type == LoopType::SIMPLE) { |
409 | 0 | ABSL_DCHECK(path.empty()); // Invariant. |
410 | 0 | } else { |
411 | 0 | CanonicalizeLoopOrder(min_input_ids, &path); |
412 | 0 | loops->push_back(std::move(path)); |
413 | 0 | path.clear(); |
414 | 0 | } |
415 | 0 | } |
416 | 0 | CanonicalizeVectorOrder(min_input_ids, loops); |
417 | 0 | return true; |
418 | 0 | } |
419 | | |
420 | | bool Graph::GetDirectedComponents( |
421 | | DegenerateBoundaries degenerate_boundaries, |
422 | 0 | vector<DirectedComponent>* components, S2Error* error) const { |
423 | 0 | ABSL_DCHECK(options_.degenerate_edges() == DegenerateEdges::DISCARD || |
424 | 0 | (options_.degenerate_edges() == DegenerateEdges::DISCARD_EXCESS && |
425 | 0 | degenerate_boundaries == DegenerateBoundaries::KEEP)); |
426 | 0 | ABSL_DCHECK(options_.sibling_pairs() == SiblingPairs::REQUIRE || |
427 | 0 | options_.sibling_pairs() == SiblingPairs::CREATE); |
428 | 0 | ABSL_DCHECK(options_.edge_type() == EdgeType::DIRECTED); // Implied by above. |
429 | |
|
430 | 0 | vector<EdgeId> sibling_map = GetSiblingMap(); |
431 | 0 | vector<EdgeId> left_turn_map; |
432 | 0 | if (!GetLeftTurnMap(sibling_map, &left_turn_map, error)) return false; |
433 | 0 | vector<InputEdgeId> min_input_ids = GetMinInputEdgeIds(); |
434 | 0 | vector<EdgeId> frontier; // Unexplored sibling edges. |
435 | | |
436 | | // A map from EdgeId to the position of that edge in "path". Only needed if |
437 | | // degenerate boundaries are being discarded. |
438 | 0 | vector<int> path_index; |
439 | 0 | if (degenerate_boundaries == DegenerateBoundaries::DISCARD) { |
440 | 0 | path_index.assign(num_edges(), -1); |
441 | 0 | } |
442 | 0 | for (EdgeId start = 0; start < num_edges(); ++start) { |
443 | 0 | if (left_turn_map[start] < 0) continue; // Already used. |
444 | | |
445 | | // Build a connected component by keeping a stack of unexplored siblings |
446 | | // of the edges used so far. |
447 | 0 | DirectedComponent component; |
448 | 0 | frontier.push_back(start); |
449 | 0 | while (!frontier.empty()) { |
450 | 0 | EdgeId e = frontier.back(); |
451 | 0 | frontier.pop_back(); |
452 | 0 | if (left_turn_map[e] < 0) continue; // Already used. |
453 | | |
454 | | // Build a path by making left turns at each vertex until we complete a |
455 | | // loop. Whenever we encounter an edge that is a sibling of an edge |
456 | | // that is already on the path, we "peel off" a loop consisting of any |
457 | | // edges that were between these two edges. |
458 | 0 | vector<EdgeId> path; |
459 | 0 | for (EdgeId next; left_turn_map[e] >= 0; e = next) { |
460 | 0 | path.push_back(e); |
461 | 0 | next = left_turn_map[e]; |
462 | 0 | left_turn_map[e] = -1; |
463 | | // If the sibling hasn't been visited yet, add it to the frontier. |
464 | 0 | EdgeId sibling = sibling_map[e]; |
465 | 0 | if (left_turn_map[sibling] >= 0) { |
466 | 0 | frontier.push_back(sibling); |
467 | 0 | } |
468 | 0 | if (degenerate_boundaries == DegenerateBoundaries::DISCARD) { |
469 | 0 | path_index[e] = path.size() - 1; |
470 | 0 | int sibling_index = path_index[sibling]; |
471 | 0 | if (sibling_index < 0) continue; |
472 | | |
473 | | // Common special case: the edge and its sibling are adjacent, in |
474 | | // which case we can simply remove them from the path and continue. |
475 | 0 | if (static_cast<size_t>(sibling_index) == path.size() - 2) { |
476 | 0 | path.resize(sibling_index); |
477 | | // We don't need to update "path_index" for these two edges |
478 | | // because both edges of the sibling pair have now been used. |
479 | 0 | continue; |
480 | 0 | } |
481 | | // Peel off a loop from the path. |
482 | 0 | vector<EdgeId> loop(path.begin() + sibling_index + 1, path.end() - 1); |
483 | 0 | path.erase(path.begin() + sibling_index, path.end()); |
484 | | // Mark the edges that are no longer part of the path. |
485 | 0 | for (EdgeId e2 : loop) path_index[e2] = -1; |
486 | 0 | CanonicalizeLoopOrder(min_input_ids, &loop); |
487 | 0 | component.push_back(std::move(loop)); |
488 | 0 | } |
489 | 0 | } |
490 | | // Mark the edges that are no longer part of the path. |
491 | 0 | if (degenerate_boundaries == DegenerateBoundaries::DISCARD) { |
492 | 0 | for (EdgeId e2 : path) path_index[e2] = -1; |
493 | 0 | } |
494 | 0 | CanonicalizeLoopOrder(min_input_ids, &path); |
495 | 0 | component.push_back(std::move(path)); |
496 | 0 | } |
497 | 0 | CanonicalizeVectorOrder(min_input_ids, &component); |
498 | 0 | components->push_back(std::move(component)); |
499 | 0 | } |
500 | | // Sort the components to correspond to the input edge ordering. |
501 | 0 | std::sort(components->begin(), components->end(), |
502 | 0 | [&min_input_ids](const DirectedComponent& a, |
503 | 0 | const DirectedComponent& b) { |
504 | 0 | return min_input_ids[a[0][0]] < min_input_ids[b[0][0]]; |
505 | 0 | }); |
506 | 0 | return true; |
507 | 0 | } |
508 | | |
509 | | // Encodes the index of one of the two complements of each component |
510 | | // (a.k.a. the "slot", either 0 or 1) as a negative EdgeId. |
511 | 0 | inline static Graph::EdgeId MarkEdgeUsed(int slot) { return -1 - slot; } |
512 | | |
513 | | bool Graph::GetUndirectedComponents(LoopType loop_type, |
514 | | vector<UndirectedComponent>* components, |
515 | 0 | S2Error* error) const { |
516 | 0 | ABSL_DCHECK(options_.degenerate_edges() == DegenerateEdges::DISCARD || |
517 | 0 | options_.degenerate_edges() == DegenerateEdges::DISCARD_EXCESS); |
518 | 0 | ABSL_DCHECK(options_.edge_type() == EdgeType::UNDIRECTED); |
519 | |
|
520 | 0 | vector<EdgeId> sibling_map = GetInEdgeIds(); |
521 | 0 | vector<EdgeId> left_turn_map; |
522 | 0 | if (!GetLeftTurnMap(sibling_map, &left_turn_map, error)) return false; |
523 | 0 | MakeSiblingMap(&sibling_map); |
524 | 0 | vector<InputEdgeId> min_input_ids = GetMinInputEdgeIds(); |
525 | | |
526 | | // A stack of unexplored sibling edges. Each sibling edge has a "slot" |
527 | | // (0 or 1) that indicates which of the two complements it belongs to. |
528 | 0 | vector<pair<EdgeId, int>> frontier; |
529 | | |
530 | | // If we are breaking loops at repeated vertices, we maintain a map from |
531 | | // VertexId to its position in "path". |
532 | 0 | vector<int> path_index; |
533 | 0 | if (loop_type == LoopType::SIMPLE) path_index.assign(num_vertices(), -1); |
534 | |
|
535 | 0 | for (EdgeId min_start = 0; min_start < num_edges(); ++min_start) { |
536 | 0 | if (left_turn_map[min_start] < 0) continue; // Already used. |
537 | | |
538 | | // Build a connected component by keeping a stack of unexplored siblings |
539 | | // of the edges used so far. |
540 | 0 | UndirectedComponent component; |
541 | 0 | frontier.push_back(make_pair(min_start, 0)); |
542 | 0 | while (!frontier.empty()) { |
543 | 0 | EdgeId start = frontier.back().first; |
544 | 0 | int slot = frontier.back().second; |
545 | 0 | frontier.pop_back(); |
546 | 0 | if (left_turn_map[start] < 0) continue; // Already used. |
547 | | |
548 | | // Build a path by making left turns at each vertex until we return to |
549 | | // "start". We use "left_turn_map" to keep track of which edges have |
550 | | // already been visited, and which complement they were assigned to, by |
551 | | // setting its entries to negative values as we go along. |
552 | 0 | vector<EdgeId> path; |
553 | 0 | for (EdgeId e = start, next; left_turn_map[e] >= 0; e = next) { |
554 | 0 | path.push_back(e); |
555 | 0 | next = left_turn_map[e]; |
556 | 0 | left_turn_map[e] = MarkEdgeUsed(slot); |
557 | | // If the sibling hasn't been visited yet, add it to the frontier. |
558 | 0 | EdgeId sibling = sibling_map[e]; |
559 | 0 | if (left_turn_map[sibling] >= 0) { |
560 | 0 | frontier.push_back(make_pair(sibling, 1 - slot)); |
561 | 0 | } else if (left_turn_map[sibling] != MarkEdgeUsed(1 - slot)) { |
562 | | // Two siblings edges can only belong the same complement if the |
563 | | // given undirected edges do not form loops. |
564 | 0 | *error = S2Error(S2Error::BUILDER_EDGES_DO_NOT_FORM_LOOPS, |
565 | 0 | "Given undirected edges do not form loops"); |
566 | 0 | return false; |
567 | 0 | } |
568 | 0 | if (loop_type == LoopType::SIMPLE) { |
569 | | // Whenever we encounter a vertex that is already part of the path, |
570 | | // we "peel off" a loop by removing those edges from the path. |
571 | 0 | path_index[edge(e).first] = path.size() - 1; |
572 | 0 | int loop_start = path_index[edge(e).second]; |
573 | 0 | if (loop_start < 0) continue; |
574 | 0 | vector<EdgeId> loop(path.begin() + loop_start, path.end()); |
575 | 0 | path.erase(path.begin() + loop_start, path.end()); |
576 | | // Mark the vertices that are no longer part of the path. |
577 | 0 | for (EdgeId e2 : loop) path_index[edge(e2).first] = -1; |
578 | 0 | CanonicalizeLoopOrder(min_input_ids, &loop); |
579 | 0 | component[slot].push_back(std::move(loop)); |
580 | 0 | } |
581 | 0 | } |
582 | 0 | if (loop_type == LoopType::SIMPLE) { |
583 | 0 | ABSL_DCHECK(path.empty()); // Invariant. |
584 | 0 | } else { |
585 | 0 | CanonicalizeLoopOrder(min_input_ids, &path); |
586 | 0 | component[slot].push_back(std::move(path)); |
587 | 0 | } |
588 | 0 | } |
589 | 0 | CanonicalizeVectorOrder(min_input_ids, &component[0]); |
590 | 0 | CanonicalizeVectorOrder(min_input_ids, &component[1]); |
591 | | // To save some work in S2PolygonLayer, we swap the two loop sets of the |
592 | | // component so that the loop set whose first loop most closely follows |
593 | | // the input edge ordering is first. (If the input was a valid S2Polygon, |
594 | | // then this component will contain normalized loops.) |
595 | 0 | if (min_input_ids[component[0][0][0]] > min_input_ids[component[1][0][0]]) { |
596 | 0 | component[0].swap(component[1]); |
597 | 0 | } |
598 | 0 | components->push_back(std::move(component)); |
599 | 0 | } |
600 | | // Sort the components to correspond to the input edge ordering. |
601 | 0 | std::sort(components->begin(), components->end(), |
602 | 0 | [&min_input_ids](const UndirectedComponent& a, |
603 | 0 | const UndirectedComponent& b) { |
604 | 0 | return min_input_ids[a[0][0][0]] < min_input_ids[b[0][0][0]]; |
605 | 0 | }); |
606 | 0 | return true; |
607 | 0 | } |
608 | | |
609 | | class Graph::PolylineBuilder { |
610 | | public: |
611 | | explicit PolylineBuilder(const Graph& g); |
612 | | vector<EdgePolyline> BuildPaths(); |
613 | | vector<EdgePolyline> BuildWalks(); |
614 | | |
615 | | private: |
616 | | bool is_interior(VertexId v); |
617 | | int excess_degree(VertexId v); |
618 | | EdgePolyline BuildPath(EdgeId e); |
619 | | EdgePolyline BuildWalk(VertexId v); |
620 | | void MaximizeWalk(EdgePolyline* polyline); |
621 | | |
622 | | const Graph& g_; |
623 | | Graph::VertexInMap in_; |
624 | | Graph::VertexOutMap out_; |
625 | | vector<EdgeId> sibling_map_; |
626 | | vector<InputEdgeId> min_input_ids_; |
627 | | bool directed_; |
628 | | int edges_left_; |
629 | | vector<bool> used_; |
630 | | // A map of (outdegree(v) - indegree(v)) considering used edges only. |
631 | | absl::btree_map<VertexId, int> excess_used_; |
632 | | }; |
633 | | |
634 | | vector<Graph::EdgePolyline> Graph::GetPolylines( |
635 | 0 | PolylineType polyline_type) const { |
636 | 0 | ABSL_DCHECK(options_.sibling_pairs() == SiblingPairs::DISCARD || |
637 | 0 | options_.sibling_pairs() == SiblingPairs::DISCARD_EXCESS || |
638 | 0 | options_.sibling_pairs() == SiblingPairs::KEEP); |
639 | 0 | PolylineBuilder builder(*this); |
640 | 0 | if (polyline_type == PolylineType::PATH) { |
641 | 0 | return builder.BuildPaths(); |
642 | 0 | } else { |
643 | 0 | return builder.BuildWalks(); |
644 | 0 | } |
645 | 0 | } |
646 | | |
647 | | Graph::PolylineBuilder::PolylineBuilder(const Graph& g) |
648 | 0 | : g_(g), in_(g), out_(g), |
649 | 0 | min_input_ids_(g.GetMinInputEdgeIds()), |
650 | 0 | directed_(g_.options().edge_type() == EdgeType::DIRECTED), |
651 | 0 | edges_left_(g.num_edges() / (directed_ ? 1 : 2)), |
652 | 0 | used_(g.num_edges(), false) { |
653 | 0 | if (!directed_) { |
654 | 0 | sibling_map_ = in_.in_edge_ids(); |
655 | 0 | g.MakeSiblingMap(&sibling_map_); |
656 | 0 | } |
657 | 0 | } |
658 | | |
659 | 0 | inline bool Graph::PolylineBuilder::is_interior(VertexId v) { |
660 | 0 | if (directed_) { |
661 | 0 | return in_.degree(v) == 1 && out_.degree(v) == 1; |
662 | 0 | } else { |
663 | 0 | return out_.degree(v) == 2; |
664 | 0 | } |
665 | 0 | } |
666 | | |
667 | 0 | inline int Graph::PolylineBuilder::excess_degree(VertexId v) { |
668 | 0 | return directed_ ? out_.degree(v) - in_.degree(v) : out_.degree(v) % 2; |
669 | 0 | } |
670 | | |
671 | 0 | vector<Graph::EdgePolyline> Graph::PolylineBuilder::BuildPaths() { |
672 | | // First build polylines starting at all the vertices that cannot be in the |
673 | | // polyline interior (i.e., indegree != 1 or outdegree != 1 for directed |
674 | | // edges, or degree != 2 for undirected edges). We consider the possible |
675 | | // starting edges in input edge id order so that we preserve the input path |
676 | | // direction even when undirected edges are used. (Undirected edges are |
677 | | // represented by sibling pairs where only the edge in the input direction |
678 | | // is labeled with an input edge id.) |
679 | 0 | vector<EdgePolyline> polylines; |
680 | 0 | vector<EdgeId> edges = g_.GetInputEdgeOrder(min_input_ids_); |
681 | 0 | for (EdgeId e : edges) { |
682 | 0 | if (!used_[e] && !is_interior(g_.edge(e).first)) { |
683 | 0 | polylines.push_back(BuildPath(e)); |
684 | 0 | } |
685 | 0 | } |
686 | | // If there are any edges left, they form non-intersecting loops. We build |
687 | | // each loop and then canonicalize its edge order. We consider candidate |
688 | | // starting edges in input edge id order in order to preserve the input |
689 | | // direction of undirected loops. Even so, we still need to canonicalize |
690 | | // the edge order to ensure that when an input edge is split into an edge |
691 | | // chain, the loop does not start in the middle of such a chain. |
692 | 0 | for (EdgeId e : edges) { |
693 | 0 | if (edges_left_ == 0) break; |
694 | 0 | if (used_[e]) continue; |
695 | 0 | EdgePolyline polyline = BuildPath(e); |
696 | 0 | CanonicalizeLoopOrder(min_input_ids_, &polyline); |
697 | 0 | polylines.push_back(std::move(polyline)); |
698 | 0 | } |
699 | 0 | ABSL_DCHECK_EQ(0, edges_left_); |
700 | | |
701 | | // Sort the polylines to correspond to the input order (if possible). |
702 | 0 | CanonicalizeVectorOrder(min_input_ids_, &polylines); |
703 | 0 | return polylines; |
704 | 0 | } |
705 | | |
706 | 0 | Graph::EdgePolyline Graph::PolylineBuilder::BuildPath(EdgeId e) { |
707 | | // We simply follow edges until either we reach a vertex where there is a |
708 | | // choice about which way to go (where is_interior(v) is false), or we |
709 | | // return to the starting vertex (if the polyline is actually a loop). |
710 | 0 | EdgePolyline polyline; |
711 | 0 | VertexId start = g_.edge(e).first; |
712 | 0 | for (;;) { |
713 | 0 | polyline.push_back(e); |
714 | 0 | ABSL_DCHECK(!used_[e]); |
715 | 0 | used_[e] = true; |
716 | 0 | if (!directed_) used_[sibling_map_[e]] = true; |
717 | 0 | --edges_left_; |
718 | 0 | VertexId v = g_.edge(e).second; |
719 | 0 | if (!is_interior(v) || v == start) break; |
720 | 0 | if (directed_) { |
721 | 0 | ABSL_DCHECK_EQ(1, out_.degree(v)); |
722 | 0 | e = *out_.edge_ids(v).begin(); |
723 | 0 | } else { |
724 | 0 | ABSL_DCHECK_EQ(2, out_.degree(v)); |
725 | 0 | for (EdgeId e2 : out_.edge_ids(v)) if (!used_[e2]) e = e2; |
726 | 0 | } |
727 | 0 | } |
728 | 0 | return polyline; |
729 | 0 | } |
730 | | |
731 | 0 | vector<Graph::EdgePolyline> Graph::PolylineBuilder::BuildWalks() { |
732 | | // Note that some of this code is worst-case quadratic in the maximum vertex |
733 | | // degree. This could be fixed with a few extra arrays, but it should not |
734 | | // be a problem in practice. |
735 | | |
736 | | // First, build polylines from all vertices where outdegree > indegree (or |
737 | | // for undirected edges, vertices whose degree is odd). We consider the |
738 | | // possible starting edges in input edge id order, for idempotency in the |
739 | | // case where multiple input polylines share vertices or edges. |
740 | 0 | vector<EdgePolyline> polylines; |
741 | 0 | vector<EdgeId> edges = g_.GetInputEdgeOrder(min_input_ids_); |
742 | 0 | for (EdgeId e : edges) { |
743 | 0 | if (used_[e]) continue; |
744 | 0 | VertexId v = g_.edge(e).first; |
745 | 0 | int excess = excess_degree(v); |
746 | 0 | if (excess <= 0) continue; |
747 | 0 | excess -= excess_used_[v]; |
748 | 0 | if (directed_ ? (excess <= 0) : (excess % 2 == 0)) continue; |
749 | 0 | ++excess_used_[v]; |
750 | 0 | polylines.push_back(BuildWalk(v)); |
751 | 0 | --excess_used_[g_.edge(polylines.back().back()).second]; |
752 | 0 | } |
753 | | // Now all vertices have outdegree == indegree (or even degree if undirected |
754 | | // edges are being used). Therefore all remaining edges can be assembled |
755 | | // into loops. We first try to expand the existing polylines if possible by |
756 | | // adding loops to them. |
757 | 0 | if (edges_left_ > 0) { |
758 | 0 | for (EdgePolyline& polyline : polylines) { |
759 | 0 | MaximizeWalk(&polyline); |
760 | 0 | } |
761 | 0 | } |
762 | | // Finally, if there are still unused edges then we build loops. If the |
763 | | // input is a polyline that forms a loop, then for idempotency we need to |
764 | | // start from the edge with minimum input edge id. If the minimal input |
765 | | // edge was split into several edges, then we start from the first edge of |
766 | | // the chain. |
767 | 0 | for (size_t i = 0; i < edges.size() && edges_left_ > 0; ++i) { |
768 | 0 | EdgeId e = edges[i]; |
769 | 0 | if (used_[e]) continue; |
770 | | |
771 | | // Determine whether the origin of this edge is the start of an edge |
772 | | // chain. To do this, we test whether (outdegree - indegree == 1) for the |
773 | | // origin, considering only unused edges with the same minimum input edge |
774 | | // id. (Undirected edges have input edge ids in one direction only.) |
775 | 0 | VertexId v = g_.edge(e).first; |
776 | 0 | InputEdgeId id = min_input_ids_[e]; |
777 | 0 | int excess = 0; |
778 | 0 | for (size_t j = i; j < edges.size() && min_input_ids_[edges[j]] == id; |
779 | 0 | ++j) { |
780 | 0 | EdgeId e2 = edges[j]; |
781 | 0 | if (used_[e2]) continue; |
782 | 0 | if (g_.edge(e2).first == v) ++excess; |
783 | 0 | if (g_.edge(e2).second == v) --excess; |
784 | 0 | } |
785 | | // It is also acceptable to start a polyline from any degenerate edge. |
786 | 0 | if (excess == 1 || g_.edge(e).second == v) { |
787 | 0 | EdgePolyline polyline = BuildWalk(v); |
788 | 0 | MaximizeWalk(&polyline); |
789 | 0 | polylines.push_back(std::move(polyline)); |
790 | 0 | } |
791 | 0 | } |
792 | 0 | ABSL_DCHECK_EQ(0, edges_left_); |
793 | | |
794 | | // Sort the polylines to correspond to the input order (if possible). |
795 | 0 | CanonicalizeVectorOrder(min_input_ids_, &polylines); |
796 | 0 | return polylines; |
797 | 0 | } |
798 | | |
799 | 0 | Graph::EdgePolyline Graph::PolylineBuilder::BuildWalk(VertexId v) { |
800 | 0 | EdgePolyline polyline; |
801 | 0 | for (;;) { |
802 | | // Follow the edge with the smallest input edge id. |
803 | 0 | EdgeId best_edge = -1; |
804 | 0 | InputEdgeId best_out_id = std::numeric_limits<InputEdgeId>::max(); |
805 | 0 | for (EdgeId e : out_.edge_ids(v)) { |
806 | 0 | if (used_[e] || min_input_ids_[e] >= best_out_id) continue; |
807 | 0 | best_out_id = min_input_ids_[e]; |
808 | 0 | best_edge = e; |
809 | 0 | } |
810 | 0 | if (best_edge < 0) return polyline; |
811 | | // For idempotency when there are multiple input polylines, we stop the |
812 | | // walk early if "best_edge" might be a continuation of a different |
813 | | // incoming edge. |
814 | 0 | int excess = excess_degree(v) - excess_used_[v]; |
815 | 0 | if (directed_ ? (excess < 0) : (excess % 2) == 1) { |
816 | 0 | for (EdgeId e : in_.edge_ids(v)) { |
817 | 0 | if (!used_[e] && min_input_ids_[e] <= best_out_id) { |
818 | 0 | return polyline; |
819 | 0 | } |
820 | 0 | } |
821 | 0 | } |
822 | 0 | polyline.push_back(best_edge); |
823 | 0 | used_[best_edge] = true; |
824 | 0 | if (!directed_) used_[sibling_map_[best_edge]] = true; |
825 | 0 | --edges_left_; |
826 | 0 | v = g_.edge(best_edge).second; |
827 | 0 | } |
828 | 0 | } |
829 | | |
830 | 0 | void Graph::PolylineBuilder::MaximizeWalk(EdgePolyline* polyline) { |
831 | | // Examine all vertices of the polyline and check whether there are any |
832 | | // unused outgoing edges. If so, then build a loop starting at that vertex |
833 | | // and insert it into the polyline. (The walk is guaranteed to be a loop |
834 | | // because this method is only called when all vertices have equal numbers |
835 | | // of unused incoming and outgoing edges.) |
836 | 0 | for (size_t i = 0; i <= polyline->size(); ++i) { |
837 | 0 | VertexId v = (i == 0 ? g_.edge((*polyline)[i]).first |
838 | 0 | : g_.edge((*polyline)[i - 1]).second); |
839 | 0 | for (EdgeId e : out_.edge_ids(v)) { |
840 | 0 | if (!used_[e]) { |
841 | 0 | EdgePolyline loop = BuildWalk(v); |
842 | 0 | ABSL_DCHECK_EQ(v, g_.edge(loop.back()).second); |
843 | 0 | polyline->insert(polyline->begin() + i, loop.begin(), loop.end()); |
844 | 0 | ABSL_DCHECK(used_[e]); // All outgoing edges from "v" are now used. |
845 | 0 | break; |
846 | 0 | } |
847 | 0 | } |
848 | 0 | } |
849 | 0 | } |
850 | | |
851 | | class Graph::EdgeProcessor { |
852 | | public: |
853 | | EdgeProcessor(const GraphOptions& options, |
854 | | vector<Edge>* edges, |
855 | | vector<InputEdgeIdSetId>* input_ids, |
856 | | IdSetLexicon* id_set_lexicon); |
857 | | void Run(S2Error* error); |
858 | | |
859 | | private: |
860 | | void AddEdge(const Edge& edge, InputEdgeIdSetId input_edge_id_set_id); |
861 | | void AddEdges(int num_edges, const Edge& edge, |
862 | | InputEdgeIdSetId input_edge_id_set_id); |
863 | | void CopyEdges(int out_begin, int out_end); |
864 | | InputEdgeIdSetId MergeInputIds(int out_begin, int out_end); |
865 | | |
866 | | GraphOptions options_; |
867 | | vector<Edge>& edges_; |
868 | | vector<InputEdgeIdSetId>& input_ids_; |
869 | | IdSetLexicon* id_set_lexicon_; |
870 | | vector<EdgeId> out_edges_; |
871 | | vector<EdgeId> in_edges_; |
872 | | |
873 | | vector<Edge> new_edges_; |
874 | | vector<InputEdgeIdSetId> new_input_ids_; |
875 | | |
876 | | vector<InputEdgeId> tmp_ids_; |
877 | | }; |
878 | | |
879 | | void Graph::ProcessEdges(GraphOptions* options, vector<Edge>* edges, |
880 | | vector<InputEdgeIdSetId>* input_ids, |
881 | | IdSetLexicon* id_set_lexicon, S2Error* error, |
882 | 0 | S2MemoryTracker::Client* tracker) { |
883 | | // Graph::EdgeProcessor uses 8 bytes per input edge (out_edges_ and |
884 | | // in_edges_) plus 12 bytes per output edge (new_edges_, new_input_ids_). |
885 | | // For simplicity we assume that num_input_edges == num_output_edges, since |
886 | | // Graph:EdgeProcessor does not increase the number of edges except possibly |
887 | | // in the case of SiblingPairs::CREATE (which we ignore). |
888 | | // |
889 | | // vector<EdgeId> out_edges_; // Graph::EdgeProcessor |
890 | | // vector<EdgeId> in_edges_; // Graph::EdgeProcessor |
891 | | // vector<Edge> new_edges_; // Graph::EdgeProcessor |
892 | | // vector<InputEdgeIdSetId> new_input_ids_; // Graph::EdgeProcessor |
893 | | // |
894 | | // EdgeProcessor discards the "edges" and "input_ids" vectors and replaces |
895 | | // them with new vectors that could be larger or smaller. To handle this |
896 | | // correctly, we untally these vectors now and retally them at the end. |
897 | 0 | const int64_t kFinalPerEdge = sizeof(Edge) + sizeof(InputEdgeIdSetId); |
898 | 0 | const int64_t kTempPerEdge = kFinalPerEdge + 2 * sizeof(EdgeId); |
899 | 0 | if (tracker) { |
900 | 0 | tracker->TallyTemp(edges->size() * kTempPerEdge); |
901 | 0 | tracker->Tally(-edges->capacity() * kFinalPerEdge); |
902 | 0 | } |
903 | 0 | if (!tracker || tracker->ok()) { |
904 | 0 | EdgeProcessor processor(*options, edges, input_ids, id_set_lexicon); |
905 | 0 | processor.Run(error); |
906 | 0 | } |
907 | | // Certain values of sibling_pairs() discard half of the edges and change |
908 | | // the edge_type() to DIRECTED (see the description of GraphOptions). |
909 | 0 | if (options->sibling_pairs() == SiblingPairs::REQUIRE || |
910 | 0 | options->sibling_pairs() == SiblingPairs::CREATE) { |
911 | 0 | options->set_edge_type(EdgeType::DIRECTED); |
912 | 0 | } |
913 | 0 | if (tracker && !tracker->Tally(edges->capacity() * kFinalPerEdge)) { |
914 | 0 | *error = tracker->error(); |
915 | 0 | } |
916 | 0 | } |
917 | | |
918 | | Graph::EdgeProcessor::EdgeProcessor(const GraphOptions& options, |
919 | | vector<Edge>* edges, |
920 | | vector<InputEdgeIdSetId>* input_ids, |
921 | | IdSetLexicon* id_set_lexicon) |
922 | 0 | : options_(options), edges_(*edges), |
923 | 0 | input_ids_(*input_ids), id_set_lexicon_(id_set_lexicon), |
924 | 0 | out_edges_(edges_.size()), in_edges_(edges_.size()) { |
925 | | // Sort the outgoing and incoming edges in lexigraphic order. We use a |
926 | | // stable sort to ensure that each undirected edge becomes a sibling pair, |
927 | | // even if there are multiple identical input edges. |
928 | 0 | std::iota(out_edges_.begin(), out_edges_.end(), 0); |
929 | 0 | std::sort(out_edges_.begin(), out_edges_.end(), [this](EdgeId a, EdgeId b) { |
930 | 0 | return StableLessThan(edges_[a], edges_[b], a, b); |
931 | 0 | }); |
932 | 0 | std::iota(in_edges_.begin(), in_edges_.end(), 0); |
933 | 0 | std::sort(in_edges_.begin(), in_edges_.end(), [this](EdgeId a, EdgeId b) { |
934 | 0 | return StableLessThan(reverse(edges_[a]), reverse(edges_[b]), a, b); |
935 | 0 | }); |
936 | 0 | new_edges_.reserve(edges_.size()); |
937 | 0 | new_input_ids_.reserve(edges_.size()); |
938 | 0 | } |
939 | | |
940 | | inline void Graph::EdgeProcessor::AddEdge( |
941 | 0 | const Edge& edge, InputEdgeIdSetId input_edge_id_set_id) { |
942 | 0 | new_edges_.push_back(edge); |
943 | 0 | new_input_ids_.push_back(input_edge_id_set_id); |
944 | 0 | } |
945 | | |
946 | | void Graph::EdgeProcessor::AddEdges(int num_edges, const Edge& edge, |
947 | 0 | InputEdgeIdSetId input_edge_id_set_id) { |
948 | 0 | for (int i = 0; i < num_edges; ++i) { |
949 | 0 | AddEdge(edge, input_edge_id_set_id); |
950 | 0 | } |
951 | 0 | } |
952 | | |
953 | 0 | void Graph::EdgeProcessor::CopyEdges(int out_begin, int out_end) { |
954 | 0 | for (int i = out_begin; i < out_end; ++i) { |
955 | 0 | AddEdge(edges_[out_edges_[i]], input_ids_[out_edges_[i]]); |
956 | 0 | } |
957 | 0 | } |
958 | | |
959 | | S2Builder::InputEdgeIdSetId Graph::EdgeProcessor::MergeInputIds( |
960 | 0 | int out_begin, int out_end) { |
961 | 0 | if (out_end - out_begin == 1) { |
962 | 0 | return input_ids_[out_edges_[out_begin]]; |
963 | 0 | } |
964 | 0 | tmp_ids_.clear(); |
965 | 0 | for (int i = out_begin; i < out_end; ++i) { |
966 | 0 | for (auto id : id_set_lexicon_->id_set(input_ids_[out_edges_[i]])) { |
967 | 0 | tmp_ids_.push_back(id); |
968 | 0 | } |
969 | 0 | } |
970 | 0 | return id_set_lexicon_->Add(tmp_ids_); |
971 | 0 | } |
972 | | |
973 | 0 | void Graph::EdgeProcessor::Run(S2Error* error) { |
974 | 0 | int num_edges = edges_.size(); |
975 | 0 | if (num_edges == 0) return; |
976 | | |
977 | | // Walk through the two sorted arrays performing a merge join. For each |
978 | | // edge, gather all the duplicate copies of the edge in both directions |
979 | | // (outgoing and incoming). Then decide what to do based on "options_" and |
980 | | // how many copies of the edge there are in each direction. |
981 | 0 | int out = 0, in = 0; |
982 | 0 | const Edge* out_edge = &edges_[out_edges_[out]]; |
983 | 0 | const Edge* in_edge = &edges_[in_edges_[in]]; |
984 | 0 | Edge sentinel(std::numeric_limits<VertexId>::max(), |
985 | 0 | std::numeric_limits<VertexId>::max()); |
986 | 0 | for (;;) { |
987 | 0 | Edge edge = min(*out_edge, reverse(*in_edge)); |
988 | 0 | if (edge == sentinel) break; |
989 | | |
990 | 0 | int out_begin = out, in_begin = in; |
991 | 0 | while (*out_edge == edge) { |
992 | 0 | out_edge = (++out == num_edges) ? &sentinel : &edges_[out_edges_[out]]; |
993 | 0 | } |
994 | 0 | while (reverse(*in_edge) == edge) { |
995 | 0 | in_edge = (++in == num_edges) ? &sentinel : &edges_[in_edges_[in]]; |
996 | 0 | } |
997 | 0 | int n_out = out - out_begin; |
998 | 0 | int n_in = in - in_begin; |
999 | 0 | if (edge.first == edge.second) { |
1000 | | // This is a degenerate edge. |
1001 | 0 | ABSL_DCHECK_EQ(n_out, n_in); |
1002 | 0 | if (options_.degenerate_edges() == DegenerateEdges::DISCARD) { |
1003 | 0 | continue; |
1004 | 0 | } |
1005 | 0 | if (options_.degenerate_edges() == DegenerateEdges::DISCARD_EXCESS && |
1006 | 0 | ((out_begin > 0 && |
1007 | 0 | edges_[out_edges_[out_begin - 1]].first == edge.first) || |
1008 | 0 | (out < num_edges && edges_[out_edges_[out]].first == edge.first) || |
1009 | 0 | (in_begin > 0 && |
1010 | 0 | edges_[in_edges_[in_begin - 1]].second == edge.first) || |
1011 | 0 | (in < num_edges && edges_[in_edges_[in]].second == edge.first))) { |
1012 | 0 | continue; // There were non-degenerate incident edges, so discard. |
1013 | 0 | } |
1014 | | // DegenerateEdges::DISCARD_EXCESS also merges degenerate edges. |
1015 | 0 | bool merge = |
1016 | 0 | (options_.duplicate_edges() == DuplicateEdges::MERGE || |
1017 | 0 | options_.degenerate_edges() == DegenerateEdges::DISCARD_EXCESS); |
1018 | 0 | if (options_.edge_type() == EdgeType::UNDIRECTED && |
1019 | 0 | (options_.sibling_pairs() == SiblingPairs::REQUIRE || |
1020 | 0 | options_.sibling_pairs() == SiblingPairs::CREATE)) { |
1021 | | // When we have undirected edges and are guaranteed to have siblings, |
1022 | | // we cut the number of edges in half (see s2builder.h). |
1023 | 0 | ABSL_DCHECK_EQ(0, n_out & 1); // Number of edges is always even. |
1024 | 0 | AddEdges(merge ? 1 : (n_out / 2), edge, MergeInputIds(out_begin, out)); |
1025 | 0 | } else if (merge) { |
1026 | 0 | AddEdges(options_.edge_type() == EdgeType::UNDIRECTED ? 2 : 1, |
1027 | 0 | edge, MergeInputIds(out_begin, out)); |
1028 | 0 | } else if (options_.sibling_pairs() == SiblingPairs::DISCARD || |
1029 | 0 | options_.sibling_pairs() == SiblingPairs::DISCARD_EXCESS) { |
1030 | | // Any SiblingPair option that discards edges causes the labels of all |
1031 | | // duplicate edges to be merged together (see s2builder.h). |
1032 | 0 | AddEdges(n_out, edge, MergeInputIds(out_begin, out)); |
1033 | 0 | } else { |
1034 | 0 | CopyEdges(out_begin, out); |
1035 | 0 | } |
1036 | 0 | } else if (options_.sibling_pairs() == SiblingPairs::KEEP) { |
1037 | 0 | if (n_out > 1 && options_.duplicate_edges() == DuplicateEdges::MERGE) { |
1038 | 0 | AddEdge(edge, MergeInputIds(out_begin, out)); |
1039 | 0 | } else { |
1040 | 0 | CopyEdges(out_begin, out); |
1041 | 0 | } |
1042 | 0 | } else if (options_.sibling_pairs() == SiblingPairs::DISCARD) { |
1043 | 0 | if (options_.edge_type() == EdgeType::DIRECTED) { |
1044 | | // If n_out == n_in: balanced sibling pairs |
1045 | | // If n_out < n_in: unbalanced siblings, in the form AB, BA, BA |
1046 | | // If n_out > n_in: unbalanced siblings, in the form AB, AB, BA |
1047 | 0 | if (n_out <= n_in) continue; |
1048 | | // Any option that discards edges causes the labels of all duplicate |
1049 | | // edges to be merged together (see s2builder.h). |
1050 | 0 | AddEdges(options_.duplicate_edges() == DuplicateEdges::MERGE ? |
1051 | 0 | 1 : (n_out - n_in), edge, MergeInputIds(out_begin, out)); |
1052 | 0 | } else { |
1053 | 0 | if ((n_out & 1) == 0) continue; |
1054 | 0 | AddEdge(edge, MergeInputIds(out_begin, out)); |
1055 | 0 | } |
1056 | 0 | } else if (options_.sibling_pairs() == SiblingPairs::DISCARD_EXCESS) { |
1057 | 0 | if (options_.edge_type() == EdgeType::DIRECTED) { |
1058 | | // See comments above. The only difference is that if there are |
1059 | | // balanced sibling pairs, we want to keep one such pair. |
1060 | 0 | if (n_out < n_in) continue; |
1061 | 0 | AddEdges(options_.duplicate_edges() == DuplicateEdges::MERGE ? |
1062 | 0 | 1 : max(1, n_out - n_in), edge, MergeInputIds(out_begin, out)); |
1063 | 0 | } else { |
1064 | 0 | AddEdges((n_out & 1) ? 1 : 2, edge, MergeInputIds(out_begin, out)); |
1065 | 0 | } |
1066 | 0 | } else { |
1067 | 0 | ABSL_DCHECK(options_.sibling_pairs() == SiblingPairs::REQUIRE || |
1068 | 0 | options_.sibling_pairs() == SiblingPairs::CREATE); |
1069 | 0 | if (error->ok() && options_.sibling_pairs() == SiblingPairs::REQUIRE && |
1070 | 0 | (options_.edge_type() == EdgeType::DIRECTED ? (n_out != n_in) |
1071 | 0 | : ((n_out & 1) != 0))) { |
1072 | 0 | *error = S2Error(S2Error::BUILDER_MISSING_EXPECTED_SIBLING_EDGES, |
1073 | 0 | "Expected all input edges to have siblings, " |
1074 | 0 | "but some were missing"); |
1075 | 0 | } |
1076 | 0 | if (options_.duplicate_edges() == DuplicateEdges::MERGE) { |
1077 | 0 | AddEdge(edge, MergeInputIds(out_begin, out)); |
1078 | 0 | } else if (options_.edge_type() == EdgeType::UNDIRECTED) { |
1079 | | // Convert graph to use directed edges instead (see documentation of |
1080 | | // REQUIRE/CREATE for undirected edges). |
1081 | 0 | AddEdges((n_out + 1) / 2, edge, MergeInputIds(out_begin, out)); |
1082 | 0 | } else { |
1083 | 0 | CopyEdges(out_begin, out); |
1084 | 0 | if (n_in > n_out) { |
1085 | | // Automatically created edges have no input edge ids or labels. |
1086 | 0 | AddEdges(n_in - n_out, edge, IdSetLexicon::EmptySetId()); |
1087 | 0 | } |
1088 | 0 | } |
1089 | 0 | } |
1090 | 0 | } |
1091 | 0 | edges_.swap(new_edges_); |
1092 | 0 | input_ids_.swap(new_input_ids_); |
1093 | 0 | edges_.shrink_to_fit(); |
1094 | 0 | input_ids_.shrink_to_fit(); |
1095 | 0 | } |
1096 | | |
1097 | | // LINT.IfChange |
1098 | | vector<S2Point> Graph::FilterVertices(absl::Span<const S2Point> vertices, |
1099 | | vector<Edge>* edges, |
1100 | 0 | vector<VertexId>* tmp) { |
1101 | | // Gather the vertices that are actually used. |
1102 | 0 | vector<VertexId> used; |
1103 | 0 | used.reserve(2 * edges->size()); |
1104 | 0 | for (const Edge& e : *edges) { |
1105 | 0 | used.push_back(e.first); |
1106 | 0 | used.push_back(e.second); |
1107 | 0 | } |
1108 | | // Sort the vertices and find the distinct ones. |
1109 | 0 | std::sort(used.begin(), used.end()); |
1110 | 0 | used.erase(std::unique(used.begin(), used.end()), used.end()); |
1111 | | |
1112 | | // Build the list of new vertices, and generate a map from old vertex id to |
1113 | | // new vertex id. |
1114 | 0 | vector<VertexId>& vmap = *tmp; |
1115 | 0 | vmap.resize(vertices.size()); |
1116 | 0 | vector<S2Point> new_vertices(used.size()); |
1117 | 0 | for (size_t i = 0; i < used.size(); ++i) { |
1118 | 0 | new_vertices[i] = vertices[used[i]]; |
1119 | 0 | vmap[used[i]] = i; |
1120 | 0 | } |
1121 | | // Update the edges. |
1122 | 0 | for (Edge& e : *edges) { |
1123 | 0 | e.first = vmap[e.first]; |
1124 | 0 | e.second = vmap[e.second]; |
1125 | 0 | } |
1126 | 0 | return new_vertices; |
1127 | 0 | } |
1128 | | // LINT.ThenChange(s2builder.cc:TallyFilterVertices) |
1129 | | |
1130 | | Graph Graph::MakeSubgraph( |
1131 | | GraphOptions new_options, vector<Edge>* new_edges, |
1132 | | vector<InputEdgeIdSetId>* new_input_edge_id_set_ids, |
1133 | | IdSetLexicon* new_input_edge_id_set_lexicon, |
1134 | | IsFullPolygonPredicate is_full_polygon_predicate, |
1135 | 0 | S2Error* error, S2MemoryTracker::Client* tracker) const { |
1136 | 0 | if (options().edge_type() == EdgeType::DIRECTED && |
1137 | 0 | new_options.edge_type() == EdgeType::UNDIRECTED) { |
1138 | | // Create a reversed edge for every edge. |
1139 | 0 | int n = new_edges->size(); |
1140 | 0 | if (tracker == nullptr) { |
1141 | 0 | new_edges->reserve(2 * n); |
1142 | 0 | new_input_edge_id_set_ids->reserve(2 * n); |
1143 | 0 | } else if (!tracker->AddSpaceExact(new_edges, n) || |
1144 | 0 | !tracker->AddSpaceExact(new_input_edge_id_set_ids, n)) { |
1145 | 0 | *error = tracker->error(); |
1146 | 0 | return Graph(); |
1147 | 0 | } |
1148 | 0 | for (int i = 0; i < n; ++i) { |
1149 | 0 | new_edges->push_back(Graph::reverse((*new_edges)[i])); |
1150 | 0 | new_input_edge_id_set_ids->push_back(IdSetLexicon::EmptySetId()); |
1151 | 0 | } |
1152 | 0 | } |
1153 | 0 | Graph::ProcessEdges(&new_options, new_edges, new_input_edge_id_set_ids, |
1154 | 0 | new_input_edge_id_set_lexicon, error, tracker); |
1155 | 0 | if (tracker && !tracker->ok()) return Graph(); // Graph would be invalid. |
1156 | 0 | return Graph(new_options, &vertices(), new_edges, new_input_edge_id_set_ids, |
1157 | 0 | new_input_edge_id_set_lexicon, &label_set_ids(), |
1158 | 0 | &label_set_lexicon(), std::move(is_full_polygon_predicate)); |
1159 | 0 | } |