/work/mbedtls-2.28.8/library/rsa_internal.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Helper functions for the RSA module |
3 | | * |
4 | | * Copyright The Mbed TLS Contributors |
5 | | * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later |
6 | | * |
7 | | */ |
8 | | |
9 | | #include "common.h" |
10 | | |
11 | | #if defined(MBEDTLS_RSA_C) |
12 | | |
13 | | #include "mbedtls/rsa.h" |
14 | | #include "mbedtls/bignum.h" |
15 | | #include "mbedtls/rsa_internal.h" |
16 | | |
17 | | /* |
18 | | * Compute RSA prime factors from public and private exponents |
19 | | * |
20 | | * Summary of algorithm: |
21 | | * Setting F := lcm(P-1,Q-1), the idea is as follows: |
22 | | * |
23 | | * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2) |
24 | | * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the |
25 | | * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four |
26 | | * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1) |
27 | | * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime |
28 | | * factors of N. |
29 | | * |
30 | | * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same |
31 | | * construction still applies since (-)^K is the identity on the set of |
32 | | * roots of 1 in Z/NZ. |
33 | | * |
34 | | * The public and private key primitives (-)^E and (-)^D are mutually inverse |
35 | | * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e. |
36 | | * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L. |
37 | | * Splitting L = 2^t * K with K odd, we have |
38 | | * |
39 | | * DE - 1 = FL = (F/2) * (2^(t+1)) * K, |
40 | | * |
41 | | * so (F / 2) * K is among the numbers |
42 | | * |
43 | | * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord |
44 | | * |
45 | | * where ord is the order of 2 in (DE - 1). |
46 | | * We can therefore iterate through these numbers apply the construction |
47 | | * of (a) and (b) above to attempt to factor N. |
48 | | * |
49 | | */ |
50 | | int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N, |
51 | | mbedtls_mpi const *E, mbedtls_mpi const *D, |
52 | | mbedtls_mpi *P, mbedtls_mpi *Q) |
53 | 0 | { |
54 | 0 | int ret = 0; |
55 | |
|
56 | 0 | uint16_t attempt; /* Number of current attempt */ |
57 | 0 | uint16_t iter; /* Number of squares computed in the current attempt */ |
58 | |
|
59 | 0 | uint16_t order; /* Order of 2 in DE - 1 */ |
60 | |
|
61 | 0 | mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */ |
62 | 0 | mbedtls_mpi K; /* Temporary holding the current candidate */ |
63 | |
|
64 | 0 | const unsigned char primes[] = { 2, |
65 | 0 | 3, 5, 7, 11, 13, 17, 19, 23, |
66 | 0 | 29, 31, 37, 41, 43, 47, 53, 59, |
67 | 0 | 61, 67, 71, 73, 79, 83, 89, 97, |
68 | 0 | 101, 103, 107, 109, 113, 127, 131, 137, |
69 | 0 | 139, 149, 151, 157, 163, 167, 173, 179, |
70 | 0 | 181, 191, 193, 197, 199, 211, 223, 227, |
71 | 0 | 229, 233, 239, 241, 251 }; |
72 | |
|
73 | 0 | const size_t num_primes = sizeof(primes) / sizeof(*primes); |
74 | |
|
75 | 0 | if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) { |
76 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
77 | 0 | } |
78 | | |
79 | 0 | if (mbedtls_mpi_cmp_int(N, 0) <= 0 || |
80 | 0 | mbedtls_mpi_cmp_int(D, 1) <= 0 || |
81 | 0 | mbedtls_mpi_cmp_mpi(D, N) >= 0 || |
82 | 0 | mbedtls_mpi_cmp_int(E, 1) <= 0 || |
83 | 0 | mbedtls_mpi_cmp_mpi(E, N) >= 0) { |
84 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
85 | 0 | } |
86 | | |
87 | | /* |
88 | | * Initializations and temporary changes |
89 | | */ |
90 | | |
91 | 0 | mbedtls_mpi_init(&K); |
92 | 0 | mbedtls_mpi_init(&T); |
93 | | |
94 | | /* T := DE - 1 */ |
95 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D, E)); |
96 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1)); |
97 | | |
98 | 0 | if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) { |
99 | 0 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
100 | 0 | goto cleanup; |
101 | 0 | } |
102 | | |
103 | | /* After this operation, T holds the largest odd divisor of DE - 1. */ |
104 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order)); |
105 | | |
106 | | /* |
107 | | * Actual work |
108 | | */ |
109 | | |
110 | | /* Skip trying 2 if N == 1 mod 8 */ |
111 | 0 | attempt = 0; |
112 | 0 | if (N->p[0] % 8 == 1) { |
113 | 0 | attempt = 1; |
114 | 0 | } |
115 | |
|
116 | 0 | for (; attempt < num_primes; ++attempt) { |
117 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&K, primes[attempt])); |
118 | | |
119 | | /* Check if gcd(K,N) = 1 */ |
120 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N)); |
121 | 0 | if (mbedtls_mpi_cmp_int(P, 1) != 0) { |
122 | 0 | continue; |
123 | 0 | } |
124 | | |
125 | | /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... |
126 | | * and check whether they have nontrivial GCD with N. */ |
127 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N, |
128 | 0 | Q /* temporarily use Q for storing Montgomery |
129 | 0 | * multiplication helper values */)); |
130 | | |
131 | 0 | for (iter = 1; iter <= order; ++iter) { |
132 | | /* If we reach 1 prematurely, there's no point |
133 | | * in continuing to square K */ |
134 | 0 | if (mbedtls_mpi_cmp_int(&K, 1) == 0) { |
135 | 0 | break; |
136 | 0 | } |
137 | | |
138 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1)); |
139 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N)); |
140 | | |
141 | 0 | if (mbedtls_mpi_cmp_int(P, 1) == 1 && |
142 | 0 | mbedtls_mpi_cmp_mpi(P, N) == -1) { |
143 | | /* |
144 | | * Have found a nontrivial divisor P of N. |
145 | | * Set Q := N / P. |
146 | | */ |
147 | |
|
148 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P)); |
149 | 0 | goto cleanup; |
150 | 0 | } |
151 | | |
152 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
153 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K)); |
154 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N)); |
155 | 0 | } |
156 | | |
157 | | /* |
158 | | * If we get here, then either we prematurely aborted the loop because |
159 | | * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must |
160 | | * be 1 if D,E,N were consistent. |
161 | | * Check if that's the case and abort if not, to avoid very long, |
162 | | * yet eventually failing, computations if N,D,E were not sane. |
163 | | */ |
164 | 0 | if (mbedtls_mpi_cmp_int(&K, 1) != 0) { |
165 | 0 | break; |
166 | 0 | } |
167 | 0 | } |
168 | | |
169 | 0 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
170 | |
|
171 | 0 | cleanup: |
172 | |
|
173 | 0 | mbedtls_mpi_free(&K); |
174 | 0 | mbedtls_mpi_free(&T); |
175 | 0 | return ret; |
176 | 0 | } |
177 | | |
178 | | /* |
179 | | * Given P, Q and the public exponent E, deduce D. |
180 | | * This is essentially a modular inversion. |
181 | | */ |
182 | | int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P, |
183 | | mbedtls_mpi const *Q, |
184 | | mbedtls_mpi const *E, |
185 | | mbedtls_mpi *D) |
186 | 0 | { |
187 | 0 | int ret = 0; |
188 | 0 | mbedtls_mpi K, L; |
189 | |
|
190 | 0 | if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) { |
191 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
192 | 0 | } |
193 | | |
194 | 0 | if (mbedtls_mpi_cmp_int(P, 1) <= 0 || |
195 | 0 | mbedtls_mpi_cmp_int(Q, 1) <= 0 || |
196 | 0 | mbedtls_mpi_cmp_int(E, 0) == 0) { |
197 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
198 | 0 | } |
199 | | |
200 | 0 | mbedtls_mpi_init(&K); |
201 | 0 | mbedtls_mpi_init(&L); |
202 | | |
203 | | /* Temporarily put K := P-1 and L := Q-1 */ |
204 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); |
205 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1)); |
206 | | |
207 | | /* Temporarily put D := gcd(P-1, Q-1) */ |
208 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L)); |
209 | | |
210 | | /* K := LCM(P-1, Q-1) */ |
211 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L)); |
212 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D)); |
213 | | |
214 | | /* Compute modular inverse of E in LCM(P-1, Q-1) */ |
215 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K)); |
216 | | |
217 | 0 | cleanup: |
218 | |
|
219 | 0 | mbedtls_mpi_free(&K); |
220 | 0 | mbedtls_mpi_free(&L); |
221 | |
|
222 | 0 | return ret; |
223 | 0 | } |
224 | | |
225 | | /* |
226 | | * Check that RSA CRT parameters are in accordance with core parameters. |
227 | | */ |
228 | | int mbedtls_rsa_validate_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q, |
229 | | const mbedtls_mpi *D, const mbedtls_mpi *DP, |
230 | | const mbedtls_mpi *DQ, const mbedtls_mpi *QP) |
231 | 0 | { |
232 | 0 | int ret = 0; |
233 | |
|
234 | 0 | mbedtls_mpi K, L; |
235 | 0 | mbedtls_mpi_init(&K); |
236 | 0 | mbedtls_mpi_init(&L); |
237 | | |
238 | | /* Check that DP - D == 0 mod P - 1 */ |
239 | 0 | if (DP != NULL) { |
240 | 0 | if (P == NULL) { |
241 | 0 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
242 | 0 | goto cleanup; |
243 | 0 | } |
244 | | |
245 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); |
246 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D)); |
247 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K)); |
248 | | |
249 | 0 | if (mbedtls_mpi_cmp_int(&L, 0) != 0) { |
250 | 0 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
251 | 0 | goto cleanup; |
252 | 0 | } |
253 | 0 | } |
254 | | |
255 | | /* Check that DQ - D == 0 mod Q - 1 */ |
256 | 0 | if (DQ != NULL) { |
257 | 0 | if (Q == NULL) { |
258 | 0 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
259 | 0 | goto cleanup; |
260 | 0 | } |
261 | | |
262 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1)); |
263 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D)); |
264 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K)); |
265 | | |
266 | 0 | if (mbedtls_mpi_cmp_int(&L, 0) != 0) { |
267 | 0 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
268 | 0 | goto cleanup; |
269 | 0 | } |
270 | 0 | } |
271 | | |
272 | | /* Check that QP * Q - 1 == 0 mod P */ |
273 | 0 | if (QP != NULL) { |
274 | 0 | if (P == NULL || Q == NULL) { |
275 | 0 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
276 | 0 | goto cleanup; |
277 | 0 | } |
278 | | |
279 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q)); |
280 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
281 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P)); |
282 | 0 | if (mbedtls_mpi_cmp_int(&K, 0) != 0) { |
283 | 0 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
284 | 0 | goto cleanup; |
285 | 0 | } |
286 | 0 | } |
287 | | |
288 | 0 | cleanup: |
289 | | |
290 | | /* Wrap MPI error codes by RSA check failure error code */ |
291 | 0 | if (ret != 0 && |
292 | 0 | ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED && |
293 | 0 | ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) { |
294 | 0 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
295 | 0 | } |
296 | |
|
297 | 0 | mbedtls_mpi_free(&K); |
298 | 0 | mbedtls_mpi_free(&L); |
299 | |
|
300 | 0 | return ret; |
301 | 0 | } |
302 | | |
303 | | /* |
304 | | * Check that core RSA parameters are sane. |
305 | | */ |
306 | | int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P, |
307 | | const mbedtls_mpi *Q, const mbedtls_mpi *D, |
308 | | const mbedtls_mpi *E, |
309 | | int (*f_rng)(void *, unsigned char *, size_t), |
310 | | void *p_rng) |
311 | 0 | { |
312 | 0 | int ret = 0; |
313 | 0 | mbedtls_mpi K, L; |
314 | |
|
315 | 0 | mbedtls_mpi_init(&K); |
316 | 0 | mbedtls_mpi_init(&L); |
317 | | |
318 | | /* |
319 | | * Step 1: If PRNG provided, check that P and Q are prime |
320 | | */ |
321 | |
|
322 | 0 | #if defined(MBEDTLS_GENPRIME) |
323 | | /* |
324 | | * When generating keys, the strongest security we support aims for an error |
325 | | * rate of at most 2^-100 and we are aiming for the same certainty here as |
326 | | * well. |
327 | | */ |
328 | 0 | if (f_rng != NULL && P != NULL && |
329 | 0 | (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) { |
330 | 0 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
331 | 0 | goto cleanup; |
332 | 0 | } |
333 | | |
334 | 0 | if (f_rng != NULL && Q != NULL && |
335 | 0 | (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) { |
336 | 0 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
337 | 0 | goto cleanup; |
338 | 0 | } |
339 | | #else |
340 | | ((void) f_rng); |
341 | | ((void) p_rng); |
342 | | #endif /* MBEDTLS_GENPRIME */ |
343 | | |
344 | | /* |
345 | | * Step 2: Check that 1 < N = P * Q |
346 | | */ |
347 | | |
348 | 0 | if (P != NULL && Q != NULL && N != NULL) { |
349 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q)); |
350 | 0 | if (mbedtls_mpi_cmp_int(N, 1) <= 0 || |
351 | 0 | mbedtls_mpi_cmp_mpi(&K, N) != 0) { |
352 | 0 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
353 | 0 | goto cleanup; |
354 | 0 | } |
355 | 0 | } |
356 | | |
357 | | /* |
358 | | * Step 3: Check and 1 < D, E < N if present. |
359 | | */ |
360 | | |
361 | 0 | if (N != NULL && D != NULL && E != NULL) { |
362 | 0 | if (mbedtls_mpi_cmp_int(D, 1) <= 0 || |
363 | 0 | mbedtls_mpi_cmp_int(E, 1) <= 0 || |
364 | 0 | mbedtls_mpi_cmp_mpi(D, N) >= 0 || |
365 | 0 | mbedtls_mpi_cmp_mpi(E, N) >= 0) { |
366 | 0 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
367 | 0 | goto cleanup; |
368 | 0 | } |
369 | 0 | } |
370 | | |
371 | | /* |
372 | | * Step 4: Check that D, E are inverse modulo P-1 and Q-1 |
373 | | */ |
374 | | |
375 | 0 | if (P != NULL && Q != NULL && D != NULL && E != NULL) { |
376 | 0 | if (mbedtls_mpi_cmp_int(P, 1) <= 0 || |
377 | 0 | mbedtls_mpi_cmp_int(Q, 1) <= 0) { |
378 | 0 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
379 | 0 | goto cleanup; |
380 | 0 | } |
381 | | |
382 | | /* Compute DE-1 mod P-1 */ |
383 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E)); |
384 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
385 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1)); |
386 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L)); |
387 | 0 | if (mbedtls_mpi_cmp_int(&K, 0) != 0) { |
388 | 0 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
389 | 0 | goto cleanup; |
390 | 0 | } |
391 | | |
392 | | /* Compute DE-1 mod Q-1 */ |
393 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E)); |
394 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1)); |
395 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1)); |
396 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L)); |
397 | 0 | if (mbedtls_mpi_cmp_int(&K, 0) != 0) { |
398 | 0 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
399 | 0 | goto cleanup; |
400 | 0 | } |
401 | 0 | } |
402 | | |
403 | 0 | cleanup: |
404 | |
|
405 | 0 | mbedtls_mpi_free(&K); |
406 | 0 | mbedtls_mpi_free(&L); |
407 | | |
408 | | /* Wrap MPI error codes by RSA check failure error code */ |
409 | 0 | if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) { |
410 | 0 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
411 | 0 | } |
412 | |
|
413 | 0 | return ret; |
414 | 0 | } |
415 | | |
416 | | int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q, |
417 | | const mbedtls_mpi *D, mbedtls_mpi *DP, |
418 | | mbedtls_mpi *DQ, mbedtls_mpi *QP) |
419 | 0 | { |
420 | 0 | int ret = 0; |
421 | 0 | mbedtls_mpi K; |
422 | 0 | mbedtls_mpi_init(&K); |
423 | | |
424 | | /* DP = D mod P-1 */ |
425 | 0 | if (DP != NULL) { |
426 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1)); |
427 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K)); |
428 | 0 | } |
429 | | |
430 | | /* DQ = D mod Q-1 */ |
431 | 0 | if (DQ != NULL) { |
432 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1)); |
433 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K)); |
434 | 0 | } |
435 | | |
436 | | /* QP = Q^{-1} mod P */ |
437 | 0 | if (QP != NULL) { |
438 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P)); |
439 | 0 | } |
440 | | |
441 | 0 | cleanup: |
442 | 0 | mbedtls_mpi_free(&K); |
443 | |
|
444 | 0 | return ret; |
445 | 0 | } |
446 | | |
447 | | #endif /* MBEDTLS_RSA_C */ |