/work/mbedtls-2.28.8/library/rsa_internal.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  *  Helper functions for the RSA module  | 
3  |  |  *  | 
4  |  |  *  Copyright The Mbed TLS Contributors  | 
5  |  |  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later  | 
6  |  |  *  | 
7  |  |  */  | 
8  |  |  | 
9  |  | #include "common.h"  | 
10  |  |  | 
11  |  | #if defined(MBEDTLS_RSA_C)  | 
12  |  |  | 
13  |  | #include "mbedtls/rsa.h"  | 
14  |  | #include "mbedtls/bignum.h"  | 
15  |  | #include "mbedtls/rsa_internal.h"  | 
16  |  |  | 
17  |  | /*  | 
18  |  |  * Compute RSA prime factors from public and private exponents  | 
19  |  |  *  | 
20  |  |  * Summary of algorithm:  | 
21  |  |  * Setting F := lcm(P-1,Q-1), the idea is as follows:  | 
22  |  |  *  | 
23  |  |  * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)  | 
24  |  |  *     is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the  | 
25  |  |  *     square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four  | 
26  |  |  *     possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)  | 
27  |  |  *     or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime  | 
28  |  |  *     factors of N.  | 
29  |  |  *  | 
30  |  |  * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same  | 
31  |  |  *     construction still applies since (-)^K is the identity on the set of  | 
32  |  |  *     roots of 1 in Z/NZ.  | 
33  |  |  *  | 
34  |  |  * The public and private key primitives (-)^E and (-)^D are mutually inverse  | 
35  |  |  * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.  | 
36  |  |  * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.  | 
37  |  |  * Splitting L = 2^t * K with K odd, we have  | 
38  |  |  *  | 
39  |  |  *   DE - 1 = FL = (F/2) * (2^(t+1)) * K,  | 
40  |  |  *  | 
41  |  |  * so (F / 2) * K is among the numbers  | 
42  |  |  *  | 
43  |  |  *   (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord  | 
44  |  |  *  | 
45  |  |  * where ord is the order of 2 in (DE - 1).  | 
46  |  |  * We can therefore iterate through these numbers apply the construction  | 
47  |  |  * of (a) and (b) above to attempt to factor N.  | 
48  |  |  *  | 
49  |  |  */  | 
50  |  | int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N,  | 
51  |  |                               mbedtls_mpi const *E, mbedtls_mpi const *D,  | 
52  |  |                               mbedtls_mpi *P, mbedtls_mpi *Q)  | 
53  | 0  | { | 
54  | 0  |     int ret = 0;  | 
55  |  | 
  | 
56  | 0  |     uint16_t attempt;  /* Number of current attempt  */  | 
57  | 0  |     uint16_t iter;     /* Number of squares computed in the current attempt */  | 
58  |  | 
  | 
59  | 0  |     uint16_t order;    /* Order of 2 in DE - 1 */  | 
60  |  | 
  | 
61  | 0  |     mbedtls_mpi T;  /* Holds largest odd divisor of DE - 1     */  | 
62  | 0  |     mbedtls_mpi K;  /* Temporary holding the current candidate */  | 
63  |  | 
  | 
64  | 0  |     const unsigned char primes[] = { 2, | 
65  | 0  |                                      3,    5,    7,   11,   13,   17,   19,   23,  | 
66  | 0  |                                      29,   31,   37,   41,   43,   47,   53,   59,  | 
67  | 0  |                                      61,   67,   71,   73,   79,   83,   89,   97,  | 
68  | 0  |                                      101,  103,  107,  109,  113,  127,  131,  137,  | 
69  | 0  |                                      139,  149,  151,  157,  163,  167,  173,  179,  | 
70  | 0  |                                      181,  191,  193,  197,  199,  211,  223,  227,  | 
71  | 0  |                                      229,  233,  239,  241,  251 };  | 
72  |  | 
  | 
73  | 0  |     const size_t num_primes = sizeof(primes) / sizeof(*primes);  | 
74  |  | 
  | 
75  | 0  |     if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) { | 
76  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
77  | 0  |     }  | 
78  |  |  | 
79  | 0  |     if (mbedtls_mpi_cmp_int(N, 0) <= 0 ||  | 
80  | 0  |         mbedtls_mpi_cmp_int(D, 1) <= 0 ||  | 
81  | 0  |         mbedtls_mpi_cmp_mpi(D, N) >= 0 ||  | 
82  | 0  |         mbedtls_mpi_cmp_int(E, 1) <= 0 ||  | 
83  | 0  |         mbedtls_mpi_cmp_mpi(E, N) >= 0) { | 
84  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
85  | 0  |     }  | 
86  |  |  | 
87  |  |     /*  | 
88  |  |      * Initializations and temporary changes  | 
89  |  |      */  | 
90  |  |  | 
91  | 0  |     mbedtls_mpi_init(&K);  | 
92  | 0  |     mbedtls_mpi_init(&T);  | 
93  |  |  | 
94  |  |     /* T := DE - 1 */  | 
95  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D,  E));  | 
96  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1));  | 
97  |  |  | 
98  | 0  |     if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) { | 
99  | 0  |         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
100  | 0  |         goto cleanup;  | 
101  | 0  |     }  | 
102  |  |  | 
103  |  |     /* After this operation, T holds the largest odd divisor of DE - 1. */  | 
104  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order));  | 
105  |  |  | 
106  |  |     /*  | 
107  |  |      * Actual work  | 
108  |  |      */  | 
109  |  |  | 
110  |  |     /* Skip trying 2 if N == 1 mod 8 */  | 
111  | 0  |     attempt = 0;  | 
112  | 0  |     if (N->p[0] % 8 == 1) { | 
113  | 0  |         attempt = 1;  | 
114  | 0  |     }  | 
115  |  | 
  | 
116  | 0  |     for (; attempt < num_primes; ++attempt) { | 
117  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&K, primes[attempt]));  | 
118  |  |  | 
119  |  |         /* Check if gcd(K,N) = 1 */  | 
120  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));  | 
121  | 0  |         if (mbedtls_mpi_cmp_int(P, 1) != 0) { | 
122  | 0  |             continue;  | 
123  | 0  |         }  | 
124  |  |  | 
125  |  |         /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...  | 
126  |  |          * and check whether they have nontrivial GCD with N. */  | 
127  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N,  | 
128  | 0  |                                             Q /* temporarily use Q for storing Montgomery  | 
129  | 0  |                                                * multiplication helper values */));  | 
130  |  |  | 
131  | 0  |         for (iter = 1; iter <= order; ++iter) { | 
132  |  |             /* If we reach 1 prematurely, there's no point  | 
133  |  |              * in continuing to square K */  | 
134  | 0  |             if (mbedtls_mpi_cmp_int(&K, 1) == 0) { | 
135  | 0  |                 break;  | 
136  | 0  |             }  | 
137  |  |  | 
138  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1));  | 
139  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));  | 
140  |  |  | 
141  | 0  |             if (mbedtls_mpi_cmp_int(P, 1) ==  1 &&  | 
142  | 0  |                 mbedtls_mpi_cmp_mpi(P, N) == -1) { | 
143  |  |                 /*  | 
144  |  |                  * Have found a nontrivial divisor P of N.  | 
145  |  |                  * Set Q := N / P.  | 
146  |  |                  */  | 
147  |  | 
  | 
148  | 0  |                 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P));  | 
149  | 0  |                 goto cleanup;  | 
150  | 0  |             }  | 
151  |  |  | 
152  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));  | 
153  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K));  | 
154  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N));  | 
155  | 0  |         }  | 
156  |  |  | 
157  |  |         /*  | 
158  |  |          * If we get here, then either we prematurely aborted the loop because  | 
159  |  |          * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must  | 
160  |  |          * be 1 if D,E,N were consistent.  | 
161  |  |          * Check if that's the case and abort if not, to avoid very long,  | 
162  |  |          * yet eventually failing, computations if N,D,E were not sane.  | 
163  |  |          */  | 
164  | 0  |         if (mbedtls_mpi_cmp_int(&K, 1) != 0) { | 
165  | 0  |             break;  | 
166  | 0  |         }  | 
167  | 0  |     }  | 
168  |  |  | 
169  | 0  |     ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
170  |  | 
  | 
171  | 0  | cleanup:  | 
172  |  | 
  | 
173  | 0  |     mbedtls_mpi_free(&K);  | 
174  | 0  |     mbedtls_mpi_free(&T);  | 
175  | 0  |     return ret;  | 
176  | 0  | }  | 
177  |  |  | 
178  |  | /*  | 
179  |  |  * Given P, Q and the public exponent E, deduce D.  | 
180  |  |  * This is essentially a modular inversion.  | 
181  |  |  */  | 
182  |  | int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,  | 
183  |  |                                         mbedtls_mpi const *Q,  | 
184  |  |                                         mbedtls_mpi const *E,  | 
185  |  |                                         mbedtls_mpi *D)  | 
186  | 0  | { | 
187  | 0  |     int ret = 0;  | 
188  | 0  |     mbedtls_mpi K, L;  | 
189  |  | 
  | 
190  | 0  |     if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) { | 
191  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
192  | 0  |     }  | 
193  |  |  | 
194  | 0  |     if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||  | 
195  | 0  |         mbedtls_mpi_cmp_int(Q, 1) <= 0 ||  | 
196  | 0  |         mbedtls_mpi_cmp_int(E, 0) == 0) { | 
197  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
198  | 0  |     }  | 
199  |  |  | 
200  | 0  |     mbedtls_mpi_init(&K);  | 
201  | 0  |     mbedtls_mpi_init(&L);  | 
202  |  |  | 
203  |  |     /* Temporarily put K := P-1 and L := Q-1 */  | 
204  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));  | 
205  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));  | 
206  |  |  | 
207  |  |     /* Temporarily put D := gcd(P-1, Q-1) */  | 
208  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L));  | 
209  |  |  | 
210  |  |     /* K := LCM(P-1, Q-1) */  | 
211  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L));  | 
212  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D));  | 
213  |  |  | 
214  |  |     /* Compute modular inverse of E in LCM(P-1, Q-1) */  | 
215  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K));  | 
216  |  |  | 
217  | 0  | cleanup:  | 
218  |  | 
  | 
219  | 0  |     mbedtls_mpi_free(&K);  | 
220  | 0  |     mbedtls_mpi_free(&L);  | 
221  |  | 
  | 
222  | 0  |     return ret;  | 
223  | 0  | }  | 
224  |  |  | 
225  |  | /*  | 
226  |  |  * Check that RSA CRT parameters are in accordance with core parameters.  | 
227  |  |  */  | 
228  |  | int mbedtls_rsa_validate_crt(const mbedtls_mpi *P,  const mbedtls_mpi *Q,  | 
229  |  |                              const mbedtls_mpi *D,  const mbedtls_mpi *DP,  | 
230  |  |                              const mbedtls_mpi *DQ, const mbedtls_mpi *QP)  | 
231  | 0  | { | 
232  | 0  |     int ret = 0;  | 
233  |  | 
  | 
234  | 0  |     mbedtls_mpi K, L;  | 
235  | 0  |     mbedtls_mpi_init(&K);  | 
236  | 0  |     mbedtls_mpi_init(&L);  | 
237  |  |  | 
238  |  |     /* Check that DP - D == 0 mod P - 1 */  | 
239  | 0  |     if (DP != NULL) { | 
240  | 0  |         if (P == NULL) { | 
241  | 0  |             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;  | 
242  | 0  |             goto cleanup;  | 
243  | 0  |         }  | 
244  |  |  | 
245  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));  | 
246  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D));  | 
247  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));  | 
248  |  |  | 
249  | 0  |         if (mbedtls_mpi_cmp_int(&L, 0) != 0) { | 
250  | 0  |             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
251  | 0  |             goto cleanup;  | 
252  | 0  |         }  | 
253  | 0  |     }  | 
254  |  |  | 
255  |  |     /* Check that DQ - D == 0 mod Q - 1 */  | 
256  | 0  |     if (DQ != NULL) { | 
257  | 0  |         if (Q == NULL) { | 
258  | 0  |             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;  | 
259  | 0  |             goto cleanup;  | 
260  | 0  |         }  | 
261  |  |  | 
262  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));  | 
263  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D));  | 
264  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));  | 
265  |  |  | 
266  | 0  |         if (mbedtls_mpi_cmp_int(&L, 0) != 0) { | 
267  | 0  |             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
268  | 0  |             goto cleanup;  | 
269  | 0  |         }  | 
270  | 0  |     }  | 
271  |  |  | 
272  |  |     /* Check that QP * Q - 1 == 0 mod P */  | 
273  | 0  |     if (QP != NULL) { | 
274  | 0  |         if (P == NULL || Q == NULL) { | 
275  | 0  |             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;  | 
276  | 0  |             goto cleanup;  | 
277  | 0  |         }  | 
278  |  |  | 
279  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q));  | 
280  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));  | 
281  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P));  | 
282  | 0  |         if (mbedtls_mpi_cmp_int(&K, 0) != 0) { | 
283  | 0  |             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
284  | 0  |             goto cleanup;  | 
285  | 0  |         }  | 
286  | 0  |     }  | 
287  |  |  | 
288  | 0  | cleanup:  | 
289  |  |  | 
290  |  |     /* Wrap MPI error codes by RSA check failure error code */  | 
291  | 0  |     if (ret != 0 &&  | 
292  | 0  |         ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&  | 
293  | 0  |         ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) { | 
294  | 0  |         ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
295  | 0  |     }  | 
296  |  | 
  | 
297  | 0  |     mbedtls_mpi_free(&K);  | 
298  | 0  |     mbedtls_mpi_free(&L);  | 
299  |  | 
  | 
300  | 0  |     return ret;  | 
301  | 0  | }  | 
302  |  |  | 
303  |  | /*  | 
304  |  |  * Check that core RSA parameters are sane.  | 
305  |  |  */  | 
306  |  | int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P,  | 
307  |  |                                 const mbedtls_mpi *Q, const mbedtls_mpi *D,  | 
308  |  |                                 const mbedtls_mpi *E,  | 
309  |  |                                 int (*f_rng)(void *, unsigned char *, size_t),  | 
310  |  |                                 void *p_rng)  | 
311  | 0  | { | 
312  | 0  |     int ret = 0;  | 
313  | 0  |     mbedtls_mpi K, L;  | 
314  |  | 
  | 
315  | 0  |     mbedtls_mpi_init(&K);  | 
316  | 0  |     mbedtls_mpi_init(&L);  | 
317  |  |  | 
318  |  |     /*  | 
319  |  |      * Step 1: If PRNG provided, check that P and Q are prime  | 
320  |  |      */  | 
321  |  | 
  | 
322  | 0  | #if defined(MBEDTLS_GENPRIME)  | 
323  |  |     /*  | 
324  |  |      * When generating keys, the strongest security we support aims for an error  | 
325  |  |      * rate of at most 2^-100 and we are aiming for the same certainty here as  | 
326  |  |      * well.  | 
327  |  |      */  | 
328  | 0  |     if (f_rng != NULL && P != NULL &&  | 
329  | 0  |         (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) { | 
330  | 0  |         ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
331  | 0  |         goto cleanup;  | 
332  | 0  |     }  | 
333  |  |  | 
334  | 0  |     if (f_rng != NULL && Q != NULL &&  | 
335  | 0  |         (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) { | 
336  | 0  |         ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
337  | 0  |         goto cleanup;  | 
338  | 0  |     }  | 
339  |  | #else  | 
340  |  |     ((void) f_rng);  | 
341  |  |     ((void) p_rng);  | 
342  |  | #endif /* MBEDTLS_GENPRIME */  | 
343  |  |  | 
344  |  |     /*  | 
345  |  |      * Step 2: Check that 1 < N = P * Q  | 
346  |  |      */  | 
347  |  |  | 
348  | 0  |     if (P != NULL && Q != NULL && N != NULL) { | 
349  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q));  | 
350  | 0  |         if (mbedtls_mpi_cmp_int(N, 1)  <= 0 ||  | 
351  | 0  |             mbedtls_mpi_cmp_mpi(&K, N) != 0) { | 
352  | 0  |             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
353  | 0  |             goto cleanup;  | 
354  | 0  |         }  | 
355  | 0  |     }  | 
356  |  |  | 
357  |  |     /*  | 
358  |  |      * Step 3: Check and 1 < D, E < N if present.  | 
359  |  |      */  | 
360  |  |  | 
361  | 0  |     if (N != NULL && D != NULL && E != NULL) { | 
362  | 0  |         if (mbedtls_mpi_cmp_int(D, 1) <= 0 ||  | 
363  | 0  |             mbedtls_mpi_cmp_int(E, 1) <= 0 ||  | 
364  | 0  |             mbedtls_mpi_cmp_mpi(D, N) >= 0 ||  | 
365  | 0  |             mbedtls_mpi_cmp_mpi(E, N) >= 0) { | 
366  | 0  |             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
367  | 0  |             goto cleanup;  | 
368  | 0  |         }  | 
369  | 0  |     }  | 
370  |  |  | 
371  |  |     /*  | 
372  |  |      * Step 4: Check that D, E are inverse modulo P-1 and Q-1  | 
373  |  |      */  | 
374  |  |  | 
375  | 0  |     if (P != NULL && Q != NULL && D != NULL && E != NULL) { | 
376  | 0  |         if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||  | 
377  | 0  |             mbedtls_mpi_cmp_int(Q, 1) <= 0) { | 
378  | 0  |             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
379  | 0  |             goto cleanup;  | 
380  | 0  |         }  | 
381  |  |  | 
382  |  |         /* Compute DE-1 mod P-1 */  | 
383  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));  | 
384  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));  | 
385  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1));  | 
386  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));  | 
387  | 0  |         if (mbedtls_mpi_cmp_int(&K, 0) != 0) { | 
388  | 0  |             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
389  | 0  |             goto cleanup;  | 
390  | 0  |         }  | 
391  |  |  | 
392  |  |         /* Compute DE-1 mod Q-1 */  | 
393  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));  | 
394  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));  | 
395  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));  | 
396  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));  | 
397  | 0  |         if (mbedtls_mpi_cmp_int(&K, 0) != 0) { | 
398  | 0  |             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
399  | 0  |             goto cleanup;  | 
400  | 0  |         }  | 
401  | 0  |     }  | 
402  |  |  | 
403  | 0  | cleanup:  | 
404  |  | 
  | 
405  | 0  |     mbedtls_mpi_free(&K);  | 
406  | 0  |     mbedtls_mpi_free(&L);  | 
407  |  |  | 
408  |  |     /* Wrap MPI error codes by RSA check failure error code */  | 
409  | 0  |     if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) { | 
410  | 0  |         ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;  | 
411  | 0  |     }  | 
412  |  | 
  | 
413  | 0  |     return ret;  | 
414  | 0  | }  | 
415  |  |  | 
416  |  | int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,  | 
417  |  |                            const mbedtls_mpi *D, mbedtls_mpi *DP,  | 
418  |  |                            mbedtls_mpi *DQ, mbedtls_mpi *QP)  | 
419  | 0  | { | 
420  | 0  |     int ret = 0;  | 
421  | 0  |     mbedtls_mpi K;  | 
422  | 0  |     mbedtls_mpi_init(&K);  | 
423  |  |  | 
424  |  |     /* DP = D mod P-1 */  | 
425  | 0  |     if (DP != NULL) { | 
426  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));  | 
427  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K));  | 
428  | 0  |     }  | 
429  |  |  | 
430  |  |     /* DQ = D mod Q-1 */  | 
431  | 0  |     if (DQ != NULL) { | 
432  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));  | 
433  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K));  | 
434  | 0  |     }  | 
435  |  |  | 
436  |  |     /* QP = Q^{-1} mod P */ | 
437  | 0  |     if (QP != NULL) { | 
438  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P));  | 
439  | 0  |     }  | 
440  |  |  | 
441  | 0  | cleanup:  | 
442  | 0  |     mbedtls_mpi_free(&K);  | 
443  |  | 
  | 
444  | 0  |     return ret;  | 
445  | 0  | }  | 
446  |  |  | 
447  |  | #endif /* MBEDTLS_RSA_C */  |