/work/mbedtls-2.28.8/library/bignum.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  *  Multi-precision integer library  | 
3  |  |  *  | 
4  |  |  *  Copyright The Mbed TLS Contributors  | 
5  |  |  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later  | 
6  |  |  */  | 
7  |  |  | 
8  |  | /*  | 
9  |  |  *  The following sources were referenced in the design of this Multi-precision  | 
10  |  |  *  Integer library:  | 
11  |  |  *  | 
12  |  |  *  [1] Handbook of Applied Cryptography - 1997  | 
13  |  |  *      Menezes, van Oorschot and Vanstone  | 
14  |  |  *  | 
15  |  |  *  [2] Multi-Precision Math  | 
16  |  |  *      Tom St Denis  | 
17  |  |  *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf  | 
18  |  |  *  | 
19  |  |  *  [3] GNU Multi-Precision Arithmetic Library  | 
20  |  |  *      https://gmplib.org/manual/index.html  | 
21  |  |  *  | 
22  |  |  */  | 
23  |  |  | 
24  |  | #include "common.h"  | 
25  |  |  | 
26  |  | #if defined(MBEDTLS_BIGNUM_C)  | 
27  |  |  | 
28  |  | #include "mbedtls/bignum.h"  | 
29  |  | #include "mbedtls/bn_mul.h"  | 
30  |  | #include "mbedtls/platform_util.h"  | 
31  |  | #include "mbedtls/error.h"  | 
32  |  | #include "constant_time_internal.h"  | 
33  |  | #include "bignum_internal.h"  | 
34  |  |  | 
35  |  | #include <limits.h>  | 
36  |  | #include <string.h>  | 
37  |  |  | 
38  |  | #include "mbedtls/platform.h"  | 
39  |  |  | 
40  |  | #define MPI_VALIDATE_RET(cond)                                       \  | 
41  | 0  |     MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)  | 
42  |  | #define MPI_VALIDATE(cond)                                           \  | 
43  | 0  |     MBEDTLS_INTERNAL_VALIDATE(cond)  | 
44  |  |  | 
45  | 0  | #define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */  | 
46  | 0  | #define biL    (ciL << 3)               /* bits  in limb  */  | 
47  | 0  | #define biH    (ciL << 2)               /* half limb size */  | 
48  |  |  | 
49  | 0  | #define MPI_SIZE_T_MAX  ((size_t) -1)   /* SIZE_T_MAX is not standard */  | 
50  |  |  | 
51  |  | /*  | 
52  |  |  * Convert between bits/chars and number of limbs  | 
53  |  |  * Divide first in order to avoid potential overflows  | 
54  |  |  */  | 
55  | 0  | #define BITS_TO_LIMBS(i)  ((i) / biL + ((i) % biL != 0))  | 
56  | 0  | #define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0))  | 
57  |  |  | 
58  |  | /* Implementation that should never be optimized out by the compiler */  | 
59  |  | static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)  | 
60  | 0  | { | 
61  | 0  |     mbedtls_platform_zeroize(v, ciL * n);  | 
62  | 0  | }  | 
63  |  |  | 
64  |  | /*  | 
65  |  |  * Initialize one MPI  | 
66  |  |  */  | 
67  |  | void mbedtls_mpi_init(mbedtls_mpi *X)  | 
68  | 0  | { | 
69  | 0  |     MPI_VALIDATE(X != NULL);  | 
70  |  | 
  | 
71  | 0  |     X->s = 1;  | 
72  | 0  |     X->n = 0;  | 
73  | 0  |     X->p = NULL;  | 
74  | 0  | }  | 
75  |  |  | 
76  |  | /*  | 
77  |  |  * Unallocate one MPI  | 
78  |  |  */  | 
79  |  | void mbedtls_mpi_free(mbedtls_mpi *X)  | 
80  | 0  | { | 
81  | 0  |     if (X == NULL) { | 
82  | 0  |         return;  | 
83  | 0  |     }  | 
84  |  |  | 
85  | 0  |     if (X->p != NULL) { | 
86  | 0  |         mbedtls_mpi_zeroize(X->p, X->n);  | 
87  | 0  |         mbedtls_free(X->p);  | 
88  | 0  |     }  | 
89  |  | 
  | 
90  | 0  |     X->s = 1;  | 
91  | 0  |     X->n = 0;  | 
92  | 0  |     X->p = NULL;  | 
93  | 0  | }  | 
94  |  |  | 
95  |  | /*  | 
96  |  |  * Enlarge to the specified number of limbs  | 
97  |  |  */  | 
98  |  | int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)  | 
99  | 0  | { | 
100  | 0  |     mbedtls_mpi_uint *p;  | 
101  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
102  |  | 
  | 
103  | 0  |     if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) { | 
104  | 0  |         return MBEDTLS_ERR_MPI_ALLOC_FAILED;  | 
105  | 0  |     }  | 
106  |  |  | 
107  | 0  |     if (X->n < nblimbs) { | 
108  | 0  |         if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) { | 
109  | 0  |             return MBEDTLS_ERR_MPI_ALLOC_FAILED;  | 
110  | 0  |         }  | 
111  |  |  | 
112  | 0  |         if (X->p != NULL) { | 
113  | 0  |             memcpy(p, X->p, X->n * ciL);  | 
114  | 0  |             mbedtls_mpi_zeroize(X->p, X->n);  | 
115  | 0  |             mbedtls_free(X->p);  | 
116  | 0  |         }  | 
117  |  | 
  | 
118  | 0  |         X->n = nblimbs;  | 
119  | 0  |         X->p = p;  | 
120  | 0  |     }  | 
121  |  |  | 
122  | 0  |     return 0;  | 
123  | 0  | }  | 
124  |  |  | 
125  |  | /*  | 
126  |  |  * Resize down as much as possible,  | 
127  |  |  * while keeping at least the specified number of limbs  | 
128  |  |  */  | 
129  |  | int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)  | 
130  | 0  | { | 
131  | 0  |     mbedtls_mpi_uint *p;  | 
132  | 0  |     size_t i;  | 
133  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
134  |  | 
  | 
135  | 0  |     if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) { | 
136  | 0  |         return MBEDTLS_ERR_MPI_ALLOC_FAILED;  | 
137  | 0  |     }  | 
138  |  |  | 
139  |  |     /* Actually resize up if there are currently fewer than nblimbs limbs. */  | 
140  | 0  |     if (X->n <= nblimbs) { | 
141  | 0  |         return mbedtls_mpi_grow(X, nblimbs);  | 
142  | 0  |     }  | 
143  |  |     /* After this point, then X->n > nblimbs and in particular X->n > 0. */  | 
144  |  |  | 
145  | 0  |     for (i = X->n - 1; i > 0; i--) { | 
146  | 0  |         if (X->p[i] != 0) { | 
147  | 0  |             break;  | 
148  | 0  |         }  | 
149  | 0  |     }  | 
150  | 0  |     i++;  | 
151  |  | 
  | 
152  | 0  |     if (i < nblimbs) { | 
153  | 0  |         i = nblimbs;  | 
154  | 0  |     }  | 
155  |  | 
  | 
156  | 0  |     if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) { | 
157  | 0  |         return MBEDTLS_ERR_MPI_ALLOC_FAILED;  | 
158  | 0  |     }  | 
159  |  |  | 
160  | 0  |     if (X->p != NULL) { | 
161  | 0  |         memcpy(p, X->p, i * ciL);  | 
162  | 0  |         mbedtls_mpi_zeroize(X->p, X->n);  | 
163  | 0  |         mbedtls_free(X->p);  | 
164  | 0  |     }  | 
165  |  | 
  | 
166  | 0  |     X->n = i;  | 
167  | 0  |     X->p = p;  | 
168  |  | 
  | 
169  | 0  |     return 0;  | 
170  | 0  | }  | 
171  |  |  | 
172  |  | /* Resize X to have exactly n limbs and set it to 0. */  | 
173  |  | static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)  | 
174  | 0  | { | 
175  | 0  |     if (limbs == 0) { | 
176  | 0  |         mbedtls_mpi_free(X);  | 
177  | 0  |         return 0;  | 
178  | 0  |     } else if (X->n == limbs) { | 
179  | 0  |         memset(X->p, 0, limbs * ciL);  | 
180  | 0  |         X->s = 1;  | 
181  | 0  |         return 0;  | 
182  | 0  |     } else { | 
183  | 0  |         mbedtls_mpi_free(X);  | 
184  | 0  |         return mbedtls_mpi_grow(X, limbs);  | 
185  | 0  |     }  | 
186  | 0  | }  | 
187  |  |  | 
188  |  | /*  | 
189  |  |  * Copy the contents of Y into X.  | 
190  |  |  *  | 
191  |  |  * This function is not constant-time. Leading zeros in Y may be removed.  | 
192  |  |  *  | 
193  |  |  * Ensure that X does not shrink. This is not guaranteed by the public API,  | 
194  |  |  * but some code in the bignum module relies on this property, for example  | 
195  |  |  * in mbedtls_mpi_exp_mod().  | 
196  |  |  */  | 
197  |  | int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)  | 
198  | 0  | { | 
199  | 0  |     int ret = 0;  | 
200  | 0  |     size_t i;  | 
201  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
202  | 0  |     MPI_VALIDATE_RET(Y != NULL);  | 
203  |  | 
  | 
204  | 0  |     if (X == Y) { | 
205  | 0  |         return 0;  | 
206  | 0  |     }  | 
207  |  |  | 
208  | 0  |     if (Y->n == 0) { | 
209  | 0  |         if (X->n != 0) { | 
210  | 0  |             X->s = 1;  | 
211  | 0  |             memset(X->p, 0, X->n * ciL);  | 
212  | 0  |         }  | 
213  | 0  |         return 0;  | 
214  | 0  |     }  | 
215  |  |  | 
216  | 0  |     for (i = Y->n - 1; i > 0; i--) { | 
217  | 0  |         if (Y->p[i] != 0) { | 
218  | 0  |             break;  | 
219  | 0  |         }  | 
220  | 0  |     }  | 
221  | 0  |     i++;  | 
222  |  | 
  | 
223  | 0  |     X->s = Y->s;  | 
224  |  | 
  | 
225  | 0  |     if (X->n < i) { | 
226  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));  | 
227  | 0  |     } else { | 
228  | 0  |         memset(X->p + i, 0, (X->n - i) * ciL);  | 
229  | 0  |     }  | 
230  |  |  | 
231  | 0  |     memcpy(X->p, Y->p, i * ciL);  | 
232  |  | 
  | 
233  | 0  | cleanup:  | 
234  |  | 
  | 
235  | 0  |     return ret;  | 
236  | 0  | }  | 
237  |  |  | 
238  |  | /*  | 
239  |  |  * Swap the contents of X and Y  | 
240  |  |  */  | 
241  |  | void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)  | 
242  | 0  | { | 
243  | 0  |     mbedtls_mpi T;  | 
244  | 0  |     MPI_VALIDATE(X != NULL);  | 
245  | 0  |     MPI_VALIDATE(Y != NULL);  | 
246  |  | 
  | 
247  | 0  |     memcpy(&T,  X, sizeof(mbedtls_mpi));  | 
248  | 0  |     memcpy(X,  Y, sizeof(mbedtls_mpi));  | 
249  | 0  |     memcpy(Y, &T, sizeof(mbedtls_mpi));  | 
250  | 0  | }  | 
251  |  |  | 
252  |  | static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)  | 
253  | 0  | { | 
254  | 0  |     if (z >= 0) { | 
255  | 0  |         return z;  | 
256  | 0  |     }  | 
257  |  |     /* Take care to handle the most negative value (-2^(biL-1)) correctly.  | 
258  |  |      * A naive -z would have undefined behavior.  | 
259  |  |      * Write this in a way that makes popular compilers happy (GCC, Clang,  | 
260  |  |      * MSVC). */  | 
261  | 0  |     return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;  | 
262  | 0  | }  | 
263  |  |  | 
264  |  | /*  | 
265  |  |  * Set value from integer  | 
266  |  |  */  | 
267  |  | int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)  | 
268  | 0  | { | 
269  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
270  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
271  |  | 
  | 
272  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));  | 
273  | 0  |     memset(X->p, 0, X->n * ciL);  | 
274  |  | 
  | 
275  | 0  |     X->p[0] = mpi_sint_abs(z);  | 
276  | 0  |     X->s    = (z < 0) ? -1 : 1;  | 
277  |  | 
  | 
278  | 0  | cleanup:  | 
279  |  | 
  | 
280  | 0  |     return ret;  | 
281  | 0  | }  | 
282  |  |  | 
283  |  | /*  | 
284  |  |  * Get a specific bit  | 
285  |  |  */  | 
286  |  | int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)  | 
287  | 0  | { | 
288  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
289  |  | 
  | 
290  | 0  |     if (X->n * biL <= pos) { | 
291  | 0  |         return 0;  | 
292  | 0  |     }  | 
293  |  |  | 
294  | 0  |     return (X->p[pos / biL] >> (pos % biL)) & 0x01;  | 
295  | 0  | }  | 
296  |  |  | 
297  |  | /* Get a specific byte, without range checks. */  | 
298  |  | #define GET_BYTE(X, i)                                \  | 
299  | 0  |     (((X)->p[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff)  | 
300  |  |  | 
301  |  | /*  | 
302  |  |  * Set a bit to a specific value of 0 or 1  | 
303  |  |  */  | 
304  |  | int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)  | 
305  | 0  | { | 
306  | 0  |     int ret = 0;  | 
307  | 0  |     size_t off = pos / biL;  | 
308  | 0  |     size_t idx = pos % biL;  | 
309  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
310  |  | 
  | 
311  | 0  |     if (val != 0 && val != 1) { | 
312  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
313  | 0  |     }  | 
314  |  |  | 
315  | 0  |     if (X->n * biL <= pos) { | 
316  | 0  |         if (val == 0) { | 
317  | 0  |             return 0;  | 
318  | 0  |         }  | 
319  |  |  | 
320  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));  | 
321  | 0  |     }  | 
322  |  |  | 
323  | 0  |     X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);  | 
324  | 0  |     X->p[off] |= (mbedtls_mpi_uint) val << idx;  | 
325  |  | 
  | 
326  | 0  | cleanup:  | 
327  |  | 
  | 
328  | 0  |     return ret;  | 
329  | 0  | }  | 
330  |  |  | 
331  |  | /*  | 
332  |  |  * Return the number of less significant zero-bits  | 
333  |  |  */  | 
334  |  | size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)  | 
335  | 0  | { | 
336  | 0  |     size_t i, j, count = 0;  | 
337  | 0  |     MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);  | 
338  |  | 
  | 
339  | 0  |     for (i = 0; i < X->n; i++) { | 
340  | 0  |         for (j = 0; j < biL; j++, count++) { | 
341  | 0  |             if (((X->p[i] >> j) & 1) != 0) { | 
342  | 0  |                 return count;  | 
343  | 0  |             }  | 
344  | 0  |         }  | 
345  | 0  |     }  | 
346  |  |  | 
347  | 0  |     return 0;  | 
348  | 0  | }  | 
349  |  |  | 
350  |  | /*  | 
351  |  |  * Count leading zero bits in a given integer  | 
352  |  |  */  | 
353  |  | static size_t mbedtls_clz(const mbedtls_mpi_uint x)  | 
354  | 0  | { | 
355  | 0  |     size_t j;  | 
356  | 0  |     mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);  | 
357  |  | 
  | 
358  | 0  |     for (j = 0; j < biL; j++) { | 
359  | 0  |         if (x & mask) { | 
360  | 0  |             break;  | 
361  | 0  |         }  | 
362  |  |  | 
363  | 0  |         mask >>= 1;  | 
364  | 0  |     }  | 
365  |  | 
  | 
366  | 0  |     return j;  | 
367  | 0  | }  | 
368  |  |  | 
369  |  | /*  | 
370  |  |  * Return the number of bits  | 
371  |  |  */  | 
372  |  | size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)  | 
373  | 0  | { | 
374  | 0  |     size_t i, j;  | 
375  |  | 
  | 
376  | 0  |     if (X->n == 0) { | 
377  | 0  |         return 0;  | 
378  | 0  |     }  | 
379  |  |  | 
380  | 0  |     for (i = X->n - 1; i > 0; i--) { | 
381  | 0  |         if (X->p[i] != 0) { | 
382  | 0  |             break;  | 
383  | 0  |         }  | 
384  | 0  |     }  | 
385  |  | 
  | 
386  | 0  |     j = biL - mbedtls_clz(X->p[i]);  | 
387  |  | 
  | 
388  | 0  |     return (i * biL) + j;  | 
389  | 0  | }  | 
390  |  |  | 
391  |  | /*  | 
392  |  |  * Return the total size in bytes  | 
393  |  |  */  | 
394  |  | size_t mbedtls_mpi_size(const mbedtls_mpi *X)  | 
395  | 0  | { | 
396  | 0  |     return (mbedtls_mpi_bitlen(X) + 7) >> 3;  | 
397  | 0  | }  | 
398  |  |  | 
399  |  | /*  | 
400  |  |  * Convert an ASCII character to digit value  | 
401  |  |  */  | 
402  |  | static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)  | 
403  | 0  | { | 
404  | 0  |     *d = 255;  | 
405  |  | 
  | 
406  | 0  |     if (c >= 0x30 && c <= 0x39) { | 
407  | 0  |         *d = c - 0x30;  | 
408  | 0  |     }  | 
409  | 0  |     if (c >= 0x41 && c <= 0x46) { | 
410  | 0  |         *d = c - 0x37;  | 
411  | 0  |     }  | 
412  | 0  |     if (c >= 0x61 && c <= 0x66) { | 
413  | 0  |         *d = c - 0x57;  | 
414  | 0  |     }  | 
415  |  | 
  | 
416  | 0  |     if (*d >= (mbedtls_mpi_uint) radix) { | 
417  | 0  |         return MBEDTLS_ERR_MPI_INVALID_CHARACTER;  | 
418  | 0  |     }  | 
419  |  |  | 
420  | 0  |     return 0;  | 
421  | 0  | }  | 
422  |  |  | 
423  |  | /*  | 
424  |  |  * Import from an ASCII string  | 
425  |  |  */  | 
426  |  | int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)  | 
427  | 0  | { | 
428  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
429  | 0  |     size_t i, j, slen, n;  | 
430  | 0  |     int sign = 1;  | 
431  | 0  |     mbedtls_mpi_uint d;  | 
432  | 0  |     mbedtls_mpi T;  | 
433  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
434  | 0  |     MPI_VALIDATE_RET(s != NULL);  | 
435  |  | 
  | 
436  | 0  |     if (radix < 2 || radix > 16) { | 
437  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
438  | 0  |     }  | 
439  |  |  | 
440  | 0  |     mbedtls_mpi_init(&T);  | 
441  |  | 
  | 
442  | 0  |     if (s[0] == 0) { | 
443  | 0  |         mbedtls_mpi_free(X);  | 
444  | 0  |         return 0;  | 
445  | 0  |     }  | 
446  |  |  | 
447  | 0  |     if (s[0] == '-') { | 
448  | 0  |         ++s;  | 
449  | 0  |         sign = -1;  | 
450  | 0  |     }  | 
451  |  | 
  | 
452  | 0  |     slen = strlen(s);  | 
453  |  | 
  | 
454  | 0  |     if (radix == 16) { | 
455  | 0  |         if (slen > MPI_SIZE_T_MAX >> 2) { | 
456  | 0  |             return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
457  | 0  |         }  | 
458  |  |  | 
459  | 0  |         n = BITS_TO_LIMBS(slen << 2);  | 
460  |  | 
  | 
461  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));  | 
462  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));  | 
463  |  |  | 
464  | 0  |         for (i = slen, j = 0; i > 0; i--, j++) { | 
465  | 0  |             MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));  | 
466  | 0  |             X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);  | 
467  | 0  |         }  | 
468  | 0  |     } else { | 
469  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));  | 
470  |  |  | 
471  | 0  |         for (i = 0; i < slen; i++) { | 
472  | 0  |             MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));  | 
473  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));  | 
474  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));  | 
475  | 0  |         }  | 
476  | 0  |     }  | 
477  |  |  | 
478  | 0  |     if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) { | 
479  | 0  |         X->s = -1;  | 
480  | 0  |     }  | 
481  |  | 
  | 
482  | 0  | cleanup:  | 
483  |  | 
  | 
484  | 0  |     mbedtls_mpi_free(&T);  | 
485  |  | 
  | 
486  | 0  |     return ret;  | 
487  | 0  | }  | 
488  |  |  | 
489  |  | /*  | 
490  |  |  * Helper to write the digits high-order first.  | 
491  |  |  */  | 
492  |  | static int mpi_write_hlp(mbedtls_mpi *X, int radix,  | 
493  |  |                          char **p, const size_t buflen)  | 
494  | 0  | { | 
495  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
496  | 0  |     mbedtls_mpi_uint r;  | 
497  | 0  |     size_t length = 0;  | 
498  | 0  |     char *p_end = *p + buflen;  | 
499  |  | 
  | 
500  | 0  |     do { | 
501  | 0  |         if (length >= buflen) { | 
502  | 0  |             return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;  | 
503  | 0  |         }  | 
504  |  |  | 
505  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));  | 
506  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));  | 
507  |  |         /*  | 
508  |  |          * Write the residue in the current position, as an ASCII character.  | 
509  |  |          */  | 
510  | 0  |         if (r < 0xA) { | 
511  | 0  |             *(--p_end) = (char) ('0' + r); | 
512  | 0  |         } else { | 
513  | 0  |             *(--p_end) = (char) ('A' + (r - 0xA)); | 
514  | 0  |         }  | 
515  |  | 
  | 
516  | 0  |         length++;  | 
517  | 0  |     } while (mbedtls_mpi_cmp_int(X, 0) != 0);  | 
518  |  |  | 
519  | 0  |     memmove(*p, p_end, length);  | 
520  | 0  |     *p += length;  | 
521  |  | 
  | 
522  | 0  | cleanup:  | 
523  |  | 
  | 
524  | 0  |     return ret;  | 
525  | 0  | }  | 
526  |  |  | 
527  |  | /*  | 
528  |  |  * Export into an ASCII string  | 
529  |  |  */  | 
530  |  | int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,  | 
531  |  |                              char *buf, size_t buflen, size_t *olen)  | 
532  | 0  | { | 
533  | 0  |     int ret = 0;  | 
534  | 0  |     size_t n;  | 
535  | 0  |     char *p;  | 
536  | 0  |     mbedtls_mpi T;  | 
537  | 0  |     MPI_VALIDATE_RET(X    != NULL);  | 
538  | 0  |     MPI_VALIDATE_RET(olen != NULL);  | 
539  | 0  |     MPI_VALIDATE_RET(buflen == 0 || buf != NULL);  | 
540  |  | 
  | 
541  | 0  |     if (radix < 2 || radix > 16) { | 
542  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
543  | 0  |     }  | 
544  |  |  | 
545  | 0  |     n = mbedtls_mpi_bitlen(X);   /* Number of bits necessary to present `n`. */  | 
546  | 0  |     if (radix >=  4) { | 
547  | 0  |         n >>= 1;                 /* Number of 4-adic digits necessary to present  | 
548  |  |                                   * `n`. If radix > 4, this might be a strict  | 
549  |  |                                   * overapproximation of the number of  | 
550  |  |                                   * radix-adic digits needed to present `n`. */  | 
551  | 0  |     }  | 
552  | 0  |     if (radix >= 16) { | 
553  | 0  |         n >>= 1;                 /* Number of hexadecimal digits necessary to  | 
554  |  |                                   * present `n`. */  | 
555  |  | 
  | 
556  | 0  |     }  | 
557  | 0  |     n += 1; /* Terminating null byte */  | 
558  | 0  |     n += 1; /* Compensate for the divisions above, which round down `n`  | 
559  |  |              * in case it's not even. */  | 
560  | 0  |     n += 1; /* Potential '-'-sign. */  | 
561  | 0  |     n += (n & 1);   /* Make n even to have enough space for hexadecimal writing,  | 
562  |  |                      * which always uses an even number of hex-digits. */  | 
563  |  | 
  | 
564  | 0  |     if (buflen < n) { | 
565  | 0  |         *olen = n;  | 
566  | 0  |         return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;  | 
567  | 0  |     }  | 
568  |  |  | 
569  | 0  |     p = buf;  | 
570  | 0  |     mbedtls_mpi_init(&T);  | 
571  |  | 
  | 
572  | 0  |     if (X->s == -1) { | 
573  | 0  |         *p++ = '-';  | 
574  | 0  |         buflen--;  | 
575  | 0  |     }  | 
576  |  | 
  | 
577  | 0  |     if (radix == 16) { | 
578  | 0  |         int c;  | 
579  | 0  |         size_t i, j, k;  | 
580  |  | 
  | 
581  | 0  |         for (i = X->n, k = 0; i > 0; i--) { | 
582  | 0  |             for (j = ciL; j > 0; j--) { | 
583  | 0  |                 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;  | 
584  |  | 
  | 
585  | 0  |                 if (c == 0 && k == 0 && (i + j) != 2) { | 
586  | 0  |                     continue;  | 
587  | 0  |                 }  | 
588  |  |  | 
589  | 0  |                 *(p++) = "0123456789ABCDEF" [c / 16];  | 
590  | 0  |                 *(p++) = "0123456789ABCDEF" [c % 16];  | 
591  | 0  |                 k = 1;  | 
592  | 0  |             }  | 
593  | 0  |         }  | 
594  | 0  |     } else { | 
595  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));  | 
596  |  |  | 
597  | 0  |         if (T.s == -1) { | 
598  | 0  |             T.s = 1;  | 
599  | 0  |         }  | 
600  |  | 
  | 
601  | 0  |         MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));  | 
602  | 0  |     }  | 
603  |  |  | 
604  | 0  |     *p++ = '\0';  | 
605  | 0  |     *olen = p - buf;  | 
606  |  | 
  | 
607  | 0  | cleanup:  | 
608  |  | 
  | 
609  | 0  |     mbedtls_mpi_free(&T);  | 
610  |  | 
  | 
611  | 0  |     return ret;  | 
612  | 0  | }  | 
613  |  |  | 
614  |  | #if defined(MBEDTLS_FS_IO)  | 
615  |  | /*  | 
616  |  |  * Read X from an opened file  | 
617  |  |  */  | 
618  |  | int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)  | 
619  | 0  | { | 
620  | 0  |     mbedtls_mpi_uint d;  | 
621  | 0  |     size_t slen;  | 
622  | 0  |     char *p;  | 
623  |  |     /*  | 
624  |  |      * Buffer should have space for (short) label and decimal formatted MPI,  | 
625  |  |      * newline characters and '\0'  | 
626  |  |      */  | 
627  | 0  |     char s[MBEDTLS_MPI_RW_BUFFER_SIZE];  | 
628  |  | 
  | 
629  | 0  |     MPI_VALIDATE_RET(X   != NULL);  | 
630  | 0  |     MPI_VALIDATE_RET(fin != NULL);  | 
631  |  | 
  | 
632  | 0  |     if (radix < 2 || radix > 16) { | 
633  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
634  | 0  |     }  | 
635  |  |  | 
636  | 0  |     memset(s, 0, sizeof(s));  | 
637  | 0  |     if (fgets(s, sizeof(s) - 1, fin) == NULL) { | 
638  | 0  |         return MBEDTLS_ERR_MPI_FILE_IO_ERROR;  | 
639  | 0  |     }  | 
640  |  |  | 
641  | 0  |     slen = strlen(s);  | 
642  | 0  |     if (slen == sizeof(s) - 2) { | 
643  | 0  |         return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;  | 
644  | 0  |     }  | 
645  |  |  | 
646  | 0  |     if (slen > 0 && s[slen - 1] == '\n') { | 
647  | 0  |         slen--; s[slen] = '\0';  | 
648  | 0  |     }  | 
649  | 0  |     if (slen > 0 && s[slen - 1] == '\r') { | 
650  | 0  |         slen--; s[slen] = '\0';  | 
651  | 0  |     }  | 
652  |  | 
  | 
653  | 0  |     p = s + slen;  | 
654  | 0  |     while (p-- > s) { | 
655  | 0  |         if (mpi_get_digit(&d, radix, *p) != 0) { | 
656  | 0  |             break;  | 
657  | 0  |         }  | 
658  | 0  |     }  | 
659  |  | 
  | 
660  | 0  |     return mbedtls_mpi_read_string(X, radix, p + 1);  | 
661  | 0  | }  | 
662  |  |  | 
663  |  | /*  | 
664  |  |  * Write X into an opened file (or stdout if fout == NULL)  | 
665  |  |  */  | 
666  |  | int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)  | 
667  | 0  | { | 
668  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
669  | 0  |     size_t n, slen, plen;  | 
670  |  |     /*  | 
671  |  |      * Buffer should have space for (short) label and decimal formatted MPI,  | 
672  |  |      * newline characters and '\0'  | 
673  |  |      */  | 
674  | 0  |     char s[MBEDTLS_MPI_RW_BUFFER_SIZE];  | 
675  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
676  |  | 
  | 
677  | 0  |     if (radix < 2 || radix > 16) { | 
678  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
679  | 0  |     }  | 
680  |  |  | 
681  | 0  |     memset(s, 0, sizeof(s));  | 
682  |  | 
  | 
683  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));  | 
684  |  |  | 
685  | 0  |     if (p == NULL) { | 
686  | 0  |         p = "";  | 
687  | 0  |     }  | 
688  |  | 
  | 
689  | 0  |     plen = strlen(p);  | 
690  | 0  |     slen = strlen(s);  | 
691  | 0  |     s[slen++] = '\r';  | 
692  | 0  |     s[slen++] = '\n';  | 
693  |  | 
  | 
694  | 0  |     if (fout != NULL) { | 
695  | 0  |         if (fwrite(p, 1, plen, fout) != plen ||  | 
696  | 0  |             fwrite(s, 1, slen, fout) != slen) { | 
697  | 0  |             return MBEDTLS_ERR_MPI_FILE_IO_ERROR;  | 
698  | 0  |         }  | 
699  | 0  |     } else { | 
700  | 0  |         mbedtls_printf("%s%s", p, s); | 
701  | 0  |     }  | 
702  |  |  | 
703  | 0  | cleanup:  | 
704  |  | 
  | 
705  | 0  |     return ret;  | 
706  | 0  | }  | 
707  |  | #endif /* MBEDTLS_FS_IO */  | 
708  |  |  | 
709  |  |  | 
710  |  | /* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint  | 
711  |  |  * into the storage form used by mbedtls_mpi. */  | 
712  |  |  | 
713  |  | static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c(mbedtls_mpi_uint x)  | 
714  | 0  | { | 
715  | 0  |     uint8_t i;  | 
716  | 0  |     unsigned char *x_ptr;  | 
717  | 0  |     mbedtls_mpi_uint tmp = 0;  | 
718  | 0  | 
  | 
719  | 0  |     for (i = 0, x_ptr = (unsigned char *) &x; i < ciL; i++, x_ptr++) { | 
720  | 0  |         tmp <<= CHAR_BIT;  | 
721  | 0  |         tmp |= (mbedtls_mpi_uint) *x_ptr;  | 
722  | 0  |     }  | 
723  | 0  | 
  | 
724  | 0  |     return tmp;  | 
725  | 0  | }  | 
726  |  |  | 
727  |  | static mbedtls_mpi_uint mpi_uint_bigendian_to_host(mbedtls_mpi_uint x)  | 
728  | 0  | { | 
729  | 0  | #if defined(__BYTE_ORDER__)  | 
730  |  |  | 
731  |  | /* Nothing to do on bigendian systems. */  | 
732  |  | #if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)  | 
733  |  |     return x;  | 
734  |  | #endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */  | 
735  |  | 
  | 
736  | 0  | #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)  | 
737  |  |  | 
738  |  | /* For GCC and Clang, have builtins for byte swapping. */  | 
739  | 0  | #if defined(__GNUC__) && defined(__GNUC_PREREQ)  | 
740  |  | #if __GNUC_PREREQ(4, 3)  | 
741  |  | #define have_bswap  | 
742  |  | #endif  | 
743  | 0  | #endif  | 
744  |  | 
  | 
745  | 0  | #if defined(__clang__) && defined(__has_builtin)  | 
746  | 0  | #if __has_builtin(__builtin_bswap32)  &&                 \  | 
747  | 0  |     __has_builtin(__builtin_bswap64)  | 
748  | 0  | #define have_bswap  | 
749  | 0  | #endif  | 
750  | 0  | #endif  | 
751  |  | 
  | 
752  | 0  | #if defined(have_bswap)  | 
753  |  |     /* The compiler is hopefully able to statically evaluate this! */  | 
754  | 0  |     switch (sizeof(mbedtls_mpi_uint)) { | 
755  | 0  |         case 4:  | 
756  | 0  |             return __builtin_bswap32(x);  | 
757  | 0  |         case 8:  | 
758  | 0  |             return __builtin_bswap64(x);  | 
759  | 0  |     }  | 
760  | 0  | #endif  | 
761  | 0  | #endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */  | 
762  | 0  | #endif /* __BYTE_ORDER__ */  | 
763  |  |  | 
764  |  |     /* Fall back to C-based reordering if we don't know the byte order  | 
765  |  |      * or we couldn't use a compiler-specific builtin. */  | 
766  | 0  |     return mpi_uint_bigendian_to_host_c(x);  | 
767  | 0  | }  | 
768  |  |  | 
769  |  | static void mpi_bigendian_to_host(mbedtls_mpi_uint * const p, size_t limbs)  | 
770  | 0  | { | 
771  | 0  |     mbedtls_mpi_uint *cur_limb_left;  | 
772  | 0  |     mbedtls_mpi_uint *cur_limb_right;  | 
773  | 0  |     if (limbs == 0) { | 
774  | 0  |         return;  | 
775  | 0  |     }  | 
776  |  |  | 
777  |  |     /*  | 
778  |  |      * Traverse limbs and  | 
779  |  |      * - adapt byte-order in each limb  | 
780  |  |      * - swap the limbs themselves.  | 
781  |  |      * For that, simultaneously traverse the limbs from left to right  | 
782  |  |      * and from right to left, as long as the left index is not bigger  | 
783  |  |      * than the right index (it's not a problem if limbs is odd and the  | 
784  |  |      * indices coincide in the last iteration).  | 
785  |  |      */  | 
786  | 0  |     for (cur_limb_left = p, cur_limb_right = p + (limbs - 1);  | 
787  | 0  |          cur_limb_left <= cur_limb_right;  | 
788  | 0  |          cur_limb_left++, cur_limb_right--) { | 
789  | 0  |         mbedtls_mpi_uint tmp;  | 
790  |  |         /* Note that if cur_limb_left == cur_limb_right,  | 
791  |  |          * this code effectively swaps the bytes only once. */  | 
792  | 0  |         tmp             = mpi_uint_bigendian_to_host(*cur_limb_left);  | 
793  | 0  |         *cur_limb_left  = mpi_uint_bigendian_to_host(*cur_limb_right);  | 
794  | 0  |         *cur_limb_right = tmp;  | 
795  | 0  |     }  | 
796  | 0  | }  | 
797  |  |  | 
798  |  | /*  | 
799  |  |  * Import X from unsigned binary data, little endian  | 
800  |  |  */  | 
801  |  | int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,  | 
802  |  |                                const unsigned char *buf, size_t buflen)  | 
803  | 0  | { | 
804  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
805  | 0  |     size_t i;  | 
806  | 0  |     size_t const limbs = CHARS_TO_LIMBS(buflen);  | 
807  |  |  | 
808  |  |     /* Ensure that target MPI has exactly the necessary number of limbs */  | 
809  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));  | 
810  |  |  | 
811  | 0  |     for (i = 0; i < buflen; i++) { | 
812  | 0  |         X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);  | 
813  | 0  |     }  | 
814  |  | 
  | 
815  | 0  | cleanup:  | 
816  |  |  | 
817  |  |     /*  | 
818  |  |      * This function is also used to import keys. However, wiping the buffers  | 
819  |  |      * upon failure is not necessary because failure only can happen before any  | 
820  |  |      * input is copied.  | 
821  |  |      */  | 
822  | 0  |     return ret;  | 
823  | 0  | }  | 
824  |  |  | 
825  |  | /*  | 
826  |  |  * Import X from unsigned binary data, big endian  | 
827  |  |  */  | 
828  |  | int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)  | 
829  | 0  | { | 
830  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
831  | 0  |     size_t const limbs    = CHARS_TO_LIMBS(buflen);  | 
832  | 0  |     size_t const overhead = (limbs * ciL) - buflen;  | 
833  | 0  |     unsigned char *Xp;  | 
834  |  | 
  | 
835  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
836  | 0  |     MPI_VALIDATE_RET(buflen == 0 || buf != NULL);  | 
837  |  |  | 
838  |  |     /* Ensure that target MPI has exactly the necessary number of limbs */  | 
839  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));  | 
840  |  |  | 
841  |  |     /* Avoid calling `memcpy` with NULL source or destination argument,  | 
842  |  |      * even if buflen is 0. */  | 
843  | 0  |     if (buflen != 0) { | 
844  | 0  |         Xp = (unsigned char *) X->p;  | 
845  | 0  |         memcpy(Xp + overhead, buf, buflen);  | 
846  |  | 
  | 
847  | 0  |         mpi_bigendian_to_host(X->p, limbs);  | 
848  | 0  |     }  | 
849  |  | 
  | 
850  | 0  | cleanup:  | 
851  |  |  | 
852  |  |     /*  | 
853  |  |      * This function is also used to import keys. However, wiping the buffers  | 
854  |  |      * upon failure is not necessary because failure only can happen before any  | 
855  |  |      * input is copied.  | 
856  |  |      */  | 
857  | 0  |     return ret;  | 
858  | 0  | }  | 
859  |  |  | 
860  |  | /*  | 
861  |  |  * Export X into unsigned binary data, little endian  | 
862  |  |  */  | 
863  |  | int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,  | 
864  |  |                                 unsigned char *buf, size_t buflen)  | 
865  | 0  | { | 
866  | 0  |     size_t stored_bytes = X->n * ciL;  | 
867  | 0  |     size_t bytes_to_copy;  | 
868  | 0  |     size_t i;  | 
869  |  | 
  | 
870  | 0  |     if (stored_bytes < buflen) { | 
871  | 0  |         bytes_to_copy = stored_bytes;  | 
872  | 0  |     } else { | 
873  | 0  |         bytes_to_copy = buflen;  | 
874  |  |  | 
875  |  |         /* The output buffer is smaller than the allocated size of X.  | 
876  |  |          * However X may fit if its leading bytes are zero. */  | 
877  | 0  |         for (i = bytes_to_copy; i < stored_bytes; i++) { | 
878  | 0  |             if (GET_BYTE(X, i) != 0) { | 
879  | 0  |                 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;  | 
880  | 0  |             }  | 
881  | 0  |         }  | 
882  | 0  |     }  | 
883  |  |  | 
884  | 0  |     for (i = 0; i < bytes_to_copy; i++) { | 
885  | 0  |         buf[i] = GET_BYTE(X, i);  | 
886  | 0  |     }  | 
887  |  | 
  | 
888  | 0  |     if (stored_bytes < buflen) { | 
889  |  |         /* Write trailing 0 bytes */  | 
890  | 0  |         memset(buf + stored_bytes, 0, buflen - stored_bytes);  | 
891  | 0  |     }  | 
892  |  | 
  | 
893  | 0  |     return 0;  | 
894  | 0  | }  | 
895  |  |  | 
896  |  | /*  | 
897  |  |  * Export X into unsigned binary data, big endian  | 
898  |  |  */  | 
899  |  | int mbedtls_mpi_write_binary(const mbedtls_mpi *X,  | 
900  |  |                              unsigned char *buf, size_t buflen)  | 
901  | 0  | { | 
902  | 0  |     size_t stored_bytes;  | 
903  | 0  |     size_t bytes_to_copy;  | 
904  | 0  |     unsigned char *p;  | 
905  | 0  |     size_t i;  | 
906  |  | 
  | 
907  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
908  | 0  |     MPI_VALIDATE_RET(buflen == 0 || buf != NULL);  | 
909  |  | 
  | 
910  | 0  |     stored_bytes = X->n * ciL;  | 
911  |  | 
  | 
912  | 0  |     if (stored_bytes < buflen) { | 
913  |  |         /* There is enough space in the output buffer. Write initial  | 
914  |  |          * null bytes and record the position at which to start  | 
915  |  |          * writing the significant bytes. In this case, the execution  | 
916  |  |          * trace of this function does not depend on the value of the  | 
917  |  |          * number. */  | 
918  | 0  |         bytes_to_copy = stored_bytes;  | 
919  | 0  |         p = buf + buflen - stored_bytes;  | 
920  | 0  |         memset(buf, 0, buflen - stored_bytes);  | 
921  | 0  |     } else { | 
922  |  |         /* The output buffer is smaller than the allocated size of X.  | 
923  |  |          * However X may fit if its leading bytes are zero. */  | 
924  | 0  |         bytes_to_copy = buflen;  | 
925  | 0  |         p = buf;  | 
926  | 0  |         for (i = bytes_to_copy; i < stored_bytes; i++) { | 
927  | 0  |             if (GET_BYTE(X, i) != 0) { | 
928  | 0  |                 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;  | 
929  | 0  |             }  | 
930  | 0  |         }  | 
931  | 0  |     }  | 
932  |  |  | 
933  | 0  |     for (i = 0; i < bytes_to_copy; i++) { | 
934  | 0  |         p[bytes_to_copy - i - 1] = GET_BYTE(X, i);  | 
935  | 0  |     }  | 
936  |  | 
  | 
937  | 0  |     return 0;  | 
938  | 0  | }  | 
939  |  |  | 
940  |  | /*  | 
941  |  |  * Left-shift: X <<= count  | 
942  |  |  */  | 
943  |  | int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)  | 
944  | 0  | { | 
945  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
946  | 0  |     size_t i, v0, t1;  | 
947  | 0  |     mbedtls_mpi_uint r0 = 0, r1;  | 
948  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
949  |  | 
  | 
950  | 0  |     v0 = count / (biL);  | 
951  | 0  |     t1 = count & (biL - 1);  | 
952  |  | 
  | 
953  | 0  |     i = mbedtls_mpi_bitlen(X) + count;  | 
954  |  | 
  | 
955  | 0  |     if (X->n * biL < i) { | 
956  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));  | 
957  | 0  |     }  | 
958  |  |  | 
959  | 0  |     ret = 0;  | 
960  |  |  | 
961  |  |     /*  | 
962  |  |      * shift by count / limb_size  | 
963  |  |      */  | 
964  | 0  |     if (v0 > 0) { | 
965  | 0  |         for (i = X->n; i > v0; i--) { | 
966  | 0  |             X->p[i - 1] = X->p[i - v0 - 1];  | 
967  | 0  |         }  | 
968  |  | 
  | 
969  | 0  |         for (; i > 0; i--) { | 
970  | 0  |             X->p[i - 1] = 0;  | 
971  | 0  |         }  | 
972  | 0  |     }  | 
973  |  |  | 
974  |  |     /*  | 
975  |  |      * shift by count % limb_size  | 
976  |  |      */  | 
977  | 0  |     if (t1 > 0) { | 
978  | 0  |         for (i = v0; i < X->n; i++) { | 
979  | 0  |             r1 = X->p[i] >> (biL - t1);  | 
980  | 0  |             X->p[i] <<= t1;  | 
981  | 0  |             X->p[i] |= r0;  | 
982  | 0  |             r0 = r1;  | 
983  | 0  |         }  | 
984  | 0  |     }  | 
985  |  | 
  | 
986  | 0  | cleanup:  | 
987  |  | 
  | 
988  | 0  |     return ret;  | 
989  | 0  | }  | 
990  |  |  | 
991  |  | /*  | 
992  |  |  * Right-shift: X >>= count  | 
993  |  |  */  | 
994  |  | int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)  | 
995  | 0  | { | 
996  | 0  |     size_t i, v0, v1;  | 
997  | 0  |     mbedtls_mpi_uint r0 = 0, r1;  | 
998  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
999  |  | 
  | 
1000  | 0  |     v0 = count /  biL;  | 
1001  | 0  |     v1 = count & (biL - 1);  | 
1002  |  | 
  | 
1003  | 0  |     if (v0 > X->n || (v0 == X->n && v1 > 0)) { | 
1004  | 0  |         return mbedtls_mpi_lset(X, 0);  | 
1005  | 0  |     }  | 
1006  |  |  | 
1007  |  |     /*  | 
1008  |  |      * shift by count / limb_size  | 
1009  |  |      */  | 
1010  | 0  |     if (v0 > 0) { | 
1011  | 0  |         for (i = 0; i < X->n - v0; i++) { | 
1012  | 0  |             X->p[i] = X->p[i + v0];  | 
1013  | 0  |         }  | 
1014  |  | 
  | 
1015  | 0  |         for (; i < X->n; i++) { | 
1016  | 0  |             X->p[i] = 0;  | 
1017  | 0  |         }  | 
1018  | 0  |     }  | 
1019  |  |  | 
1020  |  |     /*  | 
1021  |  |      * shift by count % limb_size  | 
1022  |  |      */  | 
1023  | 0  |     if (v1 > 0) { | 
1024  | 0  |         for (i = X->n; i > 0; i--) { | 
1025  | 0  |             r1 = X->p[i - 1] << (biL - v1);  | 
1026  | 0  |             X->p[i - 1] >>= v1;  | 
1027  | 0  |             X->p[i - 1] |= r0;  | 
1028  | 0  |             r0 = r1;  | 
1029  | 0  |         }  | 
1030  | 0  |     }  | 
1031  |  | 
  | 
1032  | 0  |     return 0;  | 
1033  | 0  | }  | 
1034  |  |  | 
1035  |  | /*  | 
1036  |  |  * Compare unsigned values  | 
1037  |  |  */  | 
1038  |  | int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)  | 
1039  | 0  | { | 
1040  | 0  |     size_t i, j;  | 
1041  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
1042  | 0  |     MPI_VALIDATE_RET(Y != NULL);  | 
1043  |  | 
  | 
1044  | 0  |     for (i = X->n; i > 0; i--) { | 
1045  | 0  |         if (X->p[i - 1] != 0) { | 
1046  | 0  |             break;  | 
1047  | 0  |         }  | 
1048  | 0  |     }  | 
1049  |  | 
  | 
1050  | 0  |     for (j = Y->n; j > 0; j--) { | 
1051  | 0  |         if (Y->p[j - 1] != 0) { | 
1052  | 0  |             break;  | 
1053  | 0  |         }  | 
1054  | 0  |     }  | 
1055  |  | 
  | 
1056  | 0  |     if (i == 0 && j == 0) { | 
1057  | 0  |         return 0;  | 
1058  | 0  |     }  | 
1059  |  |  | 
1060  | 0  |     if (i > j) { | 
1061  | 0  |         return 1;  | 
1062  | 0  |     }  | 
1063  | 0  |     if (j > i) { | 
1064  | 0  |         return -1;  | 
1065  | 0  |     }  | 
1066  |  |  | 
1067  | 0  |     for (; i > 0; i--) { | 
1068  | 0  |         if (X->p[i - 1] > Y->p[i - 1]) { | 
1069  | 0  |             return 1;  | 
1070  | 0  |         }  | 
1071  | 0  |         if (X->p[i - 1] < Y->p[i - 1]) { | 
1072  | 0  |             return -1;  | 
1073  | 0  |         }  | 
1074  | 0  |     }  | 
1075  |  |  | 
1076  | 0  |     return 0;  | 
1077  | 0  | }  | 
1078  |  |  | 
1079  |  | /*  | 
1080  |  |  * Compare signed values  | 
1081  |  |  */  | 
1082  |  | int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)  | 
1083  | 0  | { | 
1084  | 0  |     size_t i, j;  | 
1085  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
1086  | 0  |     MPI_VALIDATE_RET(Y != NULL);  | 
1087  |  | 
  | 
1088  | 0  |     for (i = X->n; i > 0; i--) { | 
1089  | 0  |         if (X->p[i - 1] != 0) { | 
1090  | 0  |             break;  | 
1091  | 0  |         }  | 
1092  | 0  |     }  | 
1093  |  | 
  | 
1094  | 0  |     for (j = Y->n; j > 0; j--) { | 
1095  | 0  |         if (Y->p[j - 1] != 0) { | 
1096  | 0  |             break;  | 
1097  | 0  |         }  | 
1098  | 0  |     }  | 
1099  |  | 
  | 
1100  | 0  |     if (i == 0 && j == 0) { | 
1101  | 0  |         return 0;  | 
1102  | 0  |     }  | 
1103  |  |  | 
1104  | 0  |     if (i > j) { | 
1105  | 0  |         return X->s;  | 
1106  | 0  |     }  | 
1107  | 0  |     if (j > i) { | 
1108  | 0  |         return -Y->s;  | 
1109  | 0  |     }  | 
1110  |  |  | 
1111  | 0  |     if (X->s > 0 && Y->s < 0) { | 
1112  | 0  |         return 1;  | 
1113  | 0  |     }  | 
1114  | 0  |     if (Y->s > 0 && X->s < 0) { | 
1115  | 0  |         return -1;  | 
1116  | 0  |     }  | 
1117  |  |  | 
1118  | 0  |     for (; i > 0; i--) { | 
1119  | 0  |         if (X->p[i - 1] > Y->p[i - 1]) { | 
1120  | 0  |             return X->s;  | 
1121  | 0  |         }  | 
1122  | 0  |         if (X->p[i - 1] < Y->p[i - 1]) { | 
1123  | 0  |             return -X->s;  | 
1124  | 0  |         }  | 
1125  | 0  |     }  | 
1126  |  |  | 
1127  | 0  |     return 0;  | 
1128  | 0  | }  | 
1129  |  |  | 
1130  |  | /*  | 
1131  |  |  * Compare signed values  | 
1132  |  |  */  | 
1133  |  | int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)  | 
1134  | 0  | { | 
1135  | 0  |     mbedtls_mpi Y;  | 
1136  | 0  |     mbedtls_mpi_uint p[1];  | 
1137  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
1138  |  | 
  | 
1139  | 0  |     *p  = mpi_sint_abs(z);  | 
1140  | 0  |     Y.s = (z < 0) ? -1 : 1;  | 
1141  | 0  |     Y.n = 1;  | 
1142  | 0  |     Y.p = p;  | 
1143  |  | 
  | 
1144  | 0  |     return mbedtls_mpi_cmp_mpi(X, &Y);  | 
1145  | 0  | }  | 
1146  |  |  | 
1147  |  | /*  | 
1148  |  |  * Unsigned addition: X = |A| + |B|  (HAC 14.7)  | 
1149  |  |  */  | 
1150  |  | int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)  | 
1151  | 0  | { | 
1152  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1153  | 0  |     size_t i, j;  | 
1154  | 0  |     mbedtls_mpi_uint *o, *p, c, tmp;  | 
1155  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
1156  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1157  | 0  |     MPI_VALIDATE_RET(B != NULL);  | 
1158  |  | 
  | 
1159  | 0  |     if (X == B) { | 
1160  | 0  |         const mbedtls_mpi *T = A; A = X; B = T;  | 
1161  | 0  |     }  | 
1162  |  | 
  | 
1163  | 0  |     if (X != A) { | 
1164  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));  | 
1165  | 0  |     }  | 
1166  |  |  | 
1167  |  |     /*  | 
1168  |  |      * X should always be positive as a result of unsigned additions.  | 
1169  |  |      */  | 
1170  | 0  |     X->s = 1;  | 
1171  |  | 
  | 
1172  | 0  |     for (j = B->n; j > 0; j--) { | 
1173  | 0  |         if (B->p[j - 1] != 0) { | 
1174  | 0  |             break;  | 
1175  | 0  |         }  | 
1176  | 0  |     }  | 
1177  |  |  | 
1178  |  |     /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0  | 
1179  |  |      * and B is 0 (of any size). */  | 
1180  | 0  |     if (j == 0) { | 
1181  | 0  |         return 0;  | 
1182  | 0  |     }  | 
1183  |  |  | 
1184  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));  | 
1185  |  |  | 
1186  | 0  |     o = B->p; p = X->p; c = 0;  | 
1187  |  |  | 
1188  |  |     /*  | 
1189  |  |      * tmp is used because it might happen that p == o  | 
1190  |  |      */  | 
1191  | 0  |     for (i = 0; i < j; i++, o++, p++) { | 
1192  | 0  |         tmp = *o;  | 
1193  | 0  |         *p +=  c; c  = (*p <  c);  | 
1194  | 0  |         *p += tmp; c += (*p < tmp);  | 
1195  | 0  |     }  | 
1196  |  | 
  | 
1197  | 0  |     while (c != 0) { | 
1198  | 0  |         if (i >= X->n) { | 
1199  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + 1));  | 
1200  | 0  |             p = X->p + i;  | 
1201  | 0  |         }  | 
1202  |  |  | 
1203  | 0  |         *p += c; c = (*p < c); i++; p++;  | 
1204  | 0  |     }  | 
1205  |  |  | 
1206  | 0  | cleanup:  | 
1207  |  | 
  | 
1208  | 0  |     return ret;  | 
1209  | 0  | }  | 
1210  |  |  | 
1211  |  | /**  | 
1212  |  |  * Helper for mbedtls_mpi subtraction.  | 
1213  |  |  *  | 
1214  |  |  * Calculate l - r where l and r have the same size.  | 
1215  |  |  * This function operates modulo (2^ciL)^n and returns the carry  | 
1216  |  |  * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).  | 
1217  |  |  *  | 
1218  |  |  * d may be aliased to l or r.  | 
1219  |  |  *  | 
1220  |  |  * \param n             Number of limbs of \p d, \p l and \p r.  | 
1221  |  |  * \param[out] d        The result of the subtraction.  | 
1222  |  |  * \param[in] l         The left operand.  | 
1223  |  |  * \param[in] r         The right operand.  | 
1224  |  |  *  | 
1225  |  |  * \return              1 if `l < r`.  | 
1226  |  |  *                      0 if `l >= r`.  | 
1227  |  |  */  | 
1228  |  | static mbedtls_mpi_uint mpi_sub_hlp(size_t n,  | 
1229  |  |                                     mbedtls_mpi_uint *d,  | 
1230  |  |                                     const mbedtls_mpi_uint *l,  | 
1231  |  |                                     const mbedtls_mpi_uint *r)  | 
1232  | 0  | { | 
1233  | 0  |     size_t i;  | 
1234  | 0  |     mbedtls_mpi_uint c = 0, t, z;  | 
1235  |  | 
  | 
1236  | 0  |     for (i = 0; i < n; i++) { | 
1237  | 0  |         z = (l[i] <  c);    t = l[i] - c;  | 
1238  | 0  |         c = (t < r[i]) + z; d[i] = t - r[i];  | 
1239  | 0  |     }  | 
1240  |  | 
  | 
1241  | 0  |     return c;  | 
1242  | 0  | }  | 
1243  |  |  | 
1244  |  | /*  | 
1245  |  |  * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)  | 
1246  |  |  */  | 
1247  |  | int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)  | 
1248  | 0  | { | 
1249  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1250  | 0  |     size_t n;  | 
1251  | 0  |     mbedtls_mpi_uint carry;  | 
1252  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
1253  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1254  | 0  |     MPI_VALIDATE_RET(B != NULL);  | 
1255  |  | 
  | 
1256  | 0  |     for (n = B->n; n > 0; n--) { | 
1257  | 0  |         if (B->p[n - 1] != 0) { | 
1258  | 0  |             break;  | 
1259  | 0  |         }  | 
1260  | 0  |     }  | 
1261  | 0  |     if (n > A->n) { | 
1262  |  |         /* B >= (2^ciL)^n > A */  | 
1263  | 0  |         ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;  | 
1264  | 0  |         goto cleanup;  | 
1265  | 0  |     }  | 
1266  |  |  | 
1267  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));  | 
1268  |  |  | 
1269  |  |     /* Set the high limbs of X to match A. Don't touch the lower limbs  | 
1270  |  |      * because X might be aliased to B, and we must not overwrite the  | 
1271  |  |      * significant digits of B. */  | 
1272  | 0  |     if (A->n > n && A != X) { | 
1273  | 0  |         memcpy(X->p + n, A->p + n, (A->n - n) * ciL);  | 
1274  | 0  |     }  | 
1275  | 0  |     if (X->n > A->n) { | 
1276  | 0  |         memset(X->p + A->n, 0, (X->n - A->n) * ciL);  | 
1277  | 0  |     }  | 
1278  |  | 
  | 
1279  | 0  |     carry = mpi_sub_hlp(n, X->p, A->p, B->p);  | 
1280  | 0  |     if (carry != 0) { | 
1281  |  |         /* Propagate the carry to the first nonzero limb of X. */  | 
1282  | 0  |         for (; n < X->n && X->p[n] == 0; n++) { | 
1283  | 0  |             --X->p[n];  | 
1284  | 0  |         }  | 
1285  |  |         /* If we ran out of space for the carry, it means that the result  | 
1286  |  |          * is negative. */  | 
1287  | 0  |         if (n == X->n) { | 
1288  | 0  |             ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;  | 
1289  | 0  |             goto cleanup;  | 
1290  | 0  |         }  | 
1291  | 0  |         --X->p[n];  | 
1292  | 0  |     }  | 
1293  |  |  | 
1294  |  |     /* X should always be positive as a result of unsigned subtractions. */  | 
1295  | 0  |     X->s = 1;  | 
1296  |  | 
  | 
1297  | 0  | cleanup:  | 
1298  | 0  |     return ret;  | 
1299  | 0  | }  | 
1300  |  |  | 
1301  |  | /* Common function for signed addition and subtraction.  | 
1302  |  |  * Calculate A + B * flip_B where flip_B is 1 or -1.  | 
1303  |  |  */  | 
1304  |  | static int add_sub_mpi(mbedtls_mpi *X,  | 
1305  |  |                        const mbedtls_mpi *A, const mbedtls_mpi *B,  | 
1306  |  |                        int flip_B)  | 
1307  | 0  | { | 
1308  | 0  |     int ret, s;  | 
1309  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
1310  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1311  | 0  |     MPI_VALIDATE_RET(B != NULL);  | 
1312  |  | 
  | 
1313  | 0  |     s = A->s;  | 
1314  | 0  |     if (A->s * B->s * flip_B < 0) { | 
1315  | 0  |         int cmp = mbedtls_mpi_cmp_abs(A, B);  | 
1316  | 0  |         if (cmp >= 0) { | 
1317  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));  | 
1318  |  |             /* If |A| = |B|, the result is 0 and we must set the sign bit  | 
1319  |  |              * to +1 regardless of which of A or B was negative. Otherwise,  | 
1320  |  |              * since |A| > |B|, the sign is the sign of A. */  | 
1321  | 0  |             X->s = cmp == 0 ? 1 : s;  | 
1322  | 0  |         } else { | 
1323  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));  | 
1324  |  |             /* Since |A| < |B|, the sign is the opposite of A. */  | 
1325  | 0  |             X->s = -s;  | 
1326  | 0  |         }  | 
1327  | 0  |     } else { | 
1328  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));  | 
1329  | 0  |         X->s = s;  | 
1330  | 0  |     }  | 
1331  |  |  | 
1332  | 0  | cleanup:  | 
1333  |  | 
  | 
1334  | 0  |     return ret;  | 
1335  | 0  | }  | 
1336  |  |  | 
1337  |  | /*  | 
1338  |  |  * Signed addition: X = A + B  | 
1339  |  |  */  | 
1340  |  | int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)  | 
1341  | 0  | { | 
1342  | 0  |     return add_sub_mpi(X, A, B, 1);  | 
1343  | 0  | }  | 
1344  |  |  | 
1345  |  | /*  | 
1346  |  |  * Signed subtraction: X = A - B  | 
1347  |  |  */  | 
1348  |  | int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)  | 
1349  | 0  | { | 
1350  | 0  |     return add_sub_mpi(X, A, B, -1);  | 
1351  | 0  | }  | 
1352  |  |  | 
1353  |  | /*  | 
1354  |  |  * Signed addition: X = A + b  | 
1355  |  |  */  | 
1356  |  | int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)  | 
1357  | 0  | { | 
1358  | 0  |     mbedtls_mpi B;  | 
1359  | 0  |     mbedtls_mpi_uint p[1];  | 
1360  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
1361  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1362  |  | 
  | 
1363  | 0  |     p[0] = mpi_sint_abs(b);  | 
1364  | 0  |     B.s = (b < 0) ? -1 : 1;  | 
1365  | 0  |     B.n = 1;  | 
1366  | 0  |     B.p = p;  | 
1367  |  | 
  | 
1368  | 0  |     return mbedtls_mpi_add_mpi(X, A, &B);  | 
1369  | 0  | }  | 
1370  |  |  | 
1371  |  | /*  | 
1372  |  |  * Signed subtraction: X = A - b  | 
1373  |  |  */  | 
1374  |  | int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)  | 
1375  | 0  | { | 
1376  | 0  |     mbedtls_mpi B;  | 
1377  | 0  |     mbedtls_mpi_uint p[1];  | 
1378  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
1379  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1380  |  | 
  | 
1381  | 0  |     p[0] = mpi_sint_abs(b);  | 
1382  | 0  |     B.s = (b < 0) ? -1 : 1;  | 
1383  | 0  |     B.n = 1;  | 
1384  | 0  |     B.p = p;  | 
1385  |  | 
  | 
1386  | 0  |     return mbedtls_mpi_sub_mpi(X, A, &B);  | 
1387  | 0  | }  | 
1388  |  |  | 
1389  |  | /** Helper for mbedtls_mpi multiplication.  | 
1390  |  |  *  | 
1391  |  |  * Add \p b * \p s to \p d.  | 
1392  |  |  *  | 
1393  |  |  * \param i             The number of limbs of \p s.  | 
1394  |  |  * \param[in] s         A bignum to multiply, of size \p i.  | 
1395  |  |  *                      It may overlap with \p d, but only if  | 
1396  |  |  *                      \p d <= \p s.  | 
1397  |  |  *                      Its leading limb must not be \c 0.  | 
1398  |  |  * \param[in,out] d     The bignum to add to.  | 
1399  |  |  *                      It must be sufficiently large to store the  | 
1400  |  |  *                      result of the multiplication. This means  | 
1401  |  |  *                      \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b  | 
1402  |  |  *                      is not known a priori.  | 
1403  |  |  * \param b             A scalar to multiply.  | 
1404  |  |  */  | 
1405  |  | static  | 
1406  |  | #if defined(__APPLE__) && defined(__arm__)  | 
1407  |  | /*  | 
1408  |  |  * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)  | 
1409  |  |  * appears to need this to prevent bad ARM code generation at -O3.  | 
1410  |  |  */  | 
1411  |  | __attribute__((noinline))  | 
1412  |  | #endif  | 
1413  |  | void mpi_mul_hlp(size_t i,  | 
1414  |  |                  const mbedtls_mpi_uint *s,  | 
1415  |  |                  mbedtls_mpi_uint *d,  | 
1416  |  |                  mbedtls_mpi_uint b)  | 
1417  | 0  | { | 
1418  | 0  |     mbedtls_mpi_uint c = 0, t = 0;  | 
1419  | 0  |     (void) t;                   /* Unused in some architectures */  | 
1420  |  | 
  | 
1421  |  | #if defined(MULADDC_HUIT)  | 
1422  |  |     for (; i >= 8; i -= 8) { | 
1423  |  |         MULADDC_INIT  | 
1424  |  |         MULADDC_HUIT  | 
1425  |  |             MULADDC_STOP  | 
1426  |  |     }  | 
1427  |  |  | 
1428  |  |     for (; i > 0; i--) { | 
1429  |  |         MULADDC_INIT  | 
1430  |  |         MULADDC_CORE  | 
1431  |  |             MULADDC_STOP  | 
1432  |  |     }  | 
1433  |  | #else /* MULADDC_HUIT */  | 
1434  | 0  |     for (; i >= 16; i -= 16) { | 
1435  | 0  |         MULADDC_INIT  | 
1436  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1437  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1438  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1439  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1440  |  | 
  | 
1441  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1442  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1443  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1444  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1445  | 0  |             MULADDC_STOP  | 
1446  | 0  |     }  | 
1447  |  | 
  | 
1448  | 0  |     for (; i >= 8; i -= 8) { | 
1449  | 0  |         MULADDC_INIT  | 
1450  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1451  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1452  |  | 
  | 
1453  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1454  | 0  |         MULADDC_CORE   MULADDC_CORE  | 
1455  | 0  |             MULADDC_STOP  | 
1456  | 0  |     }  | 
1457  |  | 
  | 
1458  | 0  |     for (; i > 0; i--) { | 
1459  | 0  |         MULADDC_INIT  | 
1460  | 0  |         MULADDC_CORE  | 
1461  | 0  |             MULADDC_STOP  | 
1462  | 0  |     }  | 
1463  | 0  | #endif /* MULADDC_HUIT */  | 
1464  |  | 
  | 
1465  | 0  |     while (c != 0) { | 
1466  | 0  |         *d += c; c = (*d < c); d++;  | 
1467  | 0  |     }  | 
1468  | 0  | }  | 
1469  |  |  | 
1470  |  | /*  | 
1471  |  |  * Baseline multiplication: X = A * B  (HAC 14.12)  | 
1472  |  |  */  | 
1473  |  | int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)  | 
1474  | 0  | { | 
1475  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1476  | 0  |     size_t i, j;  | 
1477  | 0  |     mbedtls_mpi TA, TB;  | 
1478  | 0  |     int result_is_zero = 0;  | 
1479  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
1480  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1481  | 0  |     MPI_VALIDATE_RET(B != NULL);  | 
1482  |  | 
  | 
1483  | 0  |     mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);  | 
1484  |  | 
  | 
1485  | 0  |     if (X == A) { | 
1486  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;  | 
1487  | 0  |     }  | 
1488  | 0  |     if (X == B) { | 
1489  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;  | 
1490  | 0  |     }  | 
1491  |  |  | 
1492  | 0  |     for (i = A->n; i > 0; i--) { | 
1493  | 0  |         if (A->p[i - 1] != 0) { | 
1494  | 0  |             break;  | 
1495  | 0  |         }  | 
1496  | 0  |     }  | 
1497  | 0  |     if (i == 0) { | 
1498  | 0  |         result_is_zero = 1;  | 
1499  | 0  |     }  | 
1500  |  | 
  | 
1501  | 0  |     for (j = B->n; j > 0; j--) { | 
1502  | 0  |         if (B->p[j - 1] != 0) { | 
1503  | 0  |             break;  | 
1504  | 0  |         }  | 
1505  | 0  |     }  | 
1506  | 0  |     if (j == 0) { | 
1507  | 0  |         result_is_zero = 1;  | 
1508  | 0  |     }  | 
1509  |  | 
  | 
1510  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));  | 
1511  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));  | 
1512  |  |  | 
1513  | 0  |     for (; j > 0; j--) { | 
1514  | 0  |         mpi_mul_hlp(i, A->p, X->p + j - 1, B->p[j - 1]);  | 
1515  | 0  |     }  | 
1516  |  |  | 
1517  |  |     /* If the result is 0, we don't shortcut the operation, which reduces  | 
1518  |  |      * but does not eliminate side channels leaking the zero-ness. We do  | 
1519  |  |      * need to take care to set the sign bit properly since the library does  | 
1520  |  |      * not fully support an MPI object with a value of 0 and s == -1. */  | 
1521  | 0  |     if (result_is_zero) { | 
1522  | 0  |         X->s = 1;  | 
1523  | 0  |     } else { | 
1524  | 0  |         X->s = A->s * B->s;  | 
1525  | 0  |     }  | 
1526  |  | 
  | 
1527  | 0  | cleanup:  | 
1528  |  | 
  | 
1529  | 0  |     mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);  | 
1530  |  | 
  | 
1531  | 0  |     return ret;  | 
1532  | 0  | }  | 
1533  |  |  | 
1534  |  | /*  | 
1535  |  |  * Baseline multiplication: X = A * b  | 
1536  |  |  */  | 
1537  |  | int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)  | 
1538  | 0  | { | 
1539  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
1540  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1541  |  |  | 
1542  |  |     /* mpi_mul_hlp can't deal with a leading 0. */  | 
1543  | 0  |     size_t n = A->n;  | 
1544  | 0  |     while (n > 0 && A->p[n - 1] == 0) { | 
1545  | 0  |         --n;  | 
1546  | 0  |     }  | 
1547  |  |  | 
1548  |  |     /* The general method below doesn't work if n==0 or b==0. By chance  | 
1549  |  |      * calculating the result is trivial in those cases. */  | 
1550  | 0  |     if (b == 0 || n == 0) { | 
1551  | 0  |         return mbedtls_mpi_lset(X, 0);  | 
1552  | 0  |     }  | 
1553  |  |  | 
1554  |  |     /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */  | 
1555  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1556  |  |     /* In general, A * b requires 1 limb more than b. If  | 
1557  |  |      * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same  | 
1558  |  |      * number of limbs as A and the call to grow() is not required since  | 
1559  |  |      * copy() will take care of the growth if needed. However, experimentally,  | 
1560  |  |      * making the call to grow() unconditional causes slightly fewer  | 
1561  |  |      * calls to calloc() in ECP code, presumably because it reuses the  | 
1562  |  |      * same mpi for a while and this way the mpi is more likely to directly  | 
1563  |  |      * grow to its final size. */  | 
1564  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));  | 
1565  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));  | 
1566  | 0  |     mpi_mul_hlp(n, A->p, X->p, b - 1);  | 
1567  |  | 
  | 
1568  | 0  | cleanup:  | 
1569  | 0  |     return ret;  | 
1570  | 0  | }  | 
1571  |  |  | 
1572  |  | /*  | 
1573  |  |  * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and  | 
1574  |  |  * mbedtls_mpi_uint divisor, d  | 
1575  |  |  */  | 
1576  |  | static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,  | 
1577  |  |                                             mbedtls_mpi_uint u0,  | 
1578  |  |                                             mbedtls_mpi_uint d,  | 
1579  |  |                                             mbedtls_mpi_uint *r)  | 
1580  | 0  | { | 
1581  | 0  | #if defined(MBEDTLS_HAVE_UDBL)  | 
1582  | 0  |     mbedtls_t_udbl dividend, quotient;  | 
1583  |  | #else  | 
1584  |  |     const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;  | 
1585  |  |     const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;  | 
1586  |  |     mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;  | 
1587  |  |     mbedtls_mpi_uint u0_msw, u0_lsw;  | 
1588  |  |     size_t s;  | 
1589  |  | #endif  | 
1590  |  |  | 
1591  |  |     /*  | 
1592  |  |      * Check for overflow  | 
1593  |  |      */  | 
1594  | 0  |     if (0 == d || u1 >= d) { | 
1595  | 0  |         if (r != NULL) { | 
1596  | 0  |             *r = ~(mbedtls_mpi_uint) 0u;  | 
1597  | 0  |         }  | 
1598  |  | 
  | 
1599  | 0  |         return ~(mbedtls_mpi_uint) 0u;  | 
1600  | 0  |     }  | 
1601  |  |  | 
1602  | 0  | #if defined(MBEDTLS_HAVE_UDBL)  | 
1603  | 0  |     dividend  = (mbedtls_t_udbl) u1 << biL;  | 
1604  | 0  |     dividend |= (mbedtls_t_udbl) u0;  | 
1605  | 0  |     quotient = dividend / d;  | 
1606  | 0  |     if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) { | 
1607  | 0  |         quotient = ((mbedtls_t_udbl) 1 << biL) - 1;  | 
1608  | 0  |     }  | 
1609  |  | 
  | 
1610  | 0  |     if (r != NULL) { | 
1611  | 0  |         *r = (mbedtls_mpi_uint) (dividend - (quotient * d));  | 
1612  | 0  |     }  | 
1613  |  | 
  | 
1614  | 0  |     return (mbedtls_mpi_uint) quotient;  | 
1615  |  | #else  | 
1616  |  |  | 
1617  |  |     /*  | 
1618  |  |      * Algorithm D, Section 4.3.1 - The Art of Computer Programming  | 
1619  |  |      *   Vol. 2 - Seminumerical Algorithms, Knuth  | 
1620  |  |      */  | 
1621  |  |  | 
1622  |  |     /*  | 
1623  |  |      * Normalize the divisor, d, and dividend, u0, u1  | 
1624  |  |      */  | 
1625  |  |     s = mbedtls_clz(d);  | 
1626  |  |     d = d << s;  | 
1627  |  |  | 
1628  |  |     u1 = u1 << s;  | 
1629  |  |     u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));  | 
1630  |  |     u0 =  u0 << s;  | 
1631  |  |  | 
1632  |  |     d1 = d >> biH;  | 
1633  |  |     d0 = d & uint_halfword_mask;  | 
1634  |  |  | 
1635  |  |     u0_msw = u0 >> biH;  | 
1636  |  |     u0_lsw = u0 & uint_halfword_mask;  | 
1637  |  |  | 
1638  |  |     /*  | 
1639  |  |      * Find the first quotient and remainder  | 
1640  |  |      */  | 
1641  |  |     q1 = u1 / d1;  | 
1642  |  |     r0 = u1 - d1 * q1;  | 
1643  |  |  | 
1644  |  |     while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) { | 
1645  |  |         q1 -= 1;  | 
1646  |  |         r0 += d1;  | 
1647  |  |  | 
1648  |  |         if (r0 >= radix) { | 
1649  |  |             break;  | 
1650  |  |         }  | 
1651  |  |     }  | 
1652  |  |  | 
1653  |  |     rAX = (u1 * radix) + (u0_msw - q1 * d);  | 
1654  |  |     q0 = rAX / d1;  | 
1655  |  |     r0 = rAX - q0 * d1;  | 
1656  |  |  | 
1657  |  |     while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) { | 
1658  |  |         q0 -= 1;  | 
1659  |  |         r0 += d1;  | 
1660  |  |  | 
1661  |  |         if (r0 >= radix) { | 
1662  |  |             break;  | 
1663  |  |         }  | 
1664  |  |     }  | 
1665  |  |  | 
1666  |  |     if (r != NULL) { | 
1667  |  |         *r = (rAX * radix + u0_lsw - q0 * d) >> s;  | 
1668  |  |     }  | 
1669  |  |  | 
1670  |  |     quotient = q1 * radix + q0;  | 
1671  |  |  | 
1672  |  |     return quotient;  | 
1673  |  | #endif  | 
1674  | 0  | }  | 
1675  |  |  | 
1676  |  | /*  | 
1677  |  |  * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)  | 
1678  |  |  */  | 
1679  |  | int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,  | 
1680  |  |                         const mbedtls_mpi *B)  | 
1681  | 0  | { | 
1682  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1683  | 0  |     size_t i, n, t, k;  | 
1684  | 0  |     mbedtls_mpi X, Y, Z, T1, T2;  | 
1685  | 0  |     mbedtls_mpi_uint TP2[3];  | 
1686  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1687  | 0  |     MPI_VALIDATE_RET(B != NULL);  | 
1688  |  | 
  | 
1689  | 0  |     if (mbedtls_mpi_cmp_int(B, 0) == 0) { | 
1690  | 0  |         return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;  | 
1691  | 0  |     }  | 
1692  |  |  | 
1693  | 0  |     mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);  | 
1694  | 0  |     mbedtls_mpi_init(&T1);  | 
1695  |  |     /*  | 
1696  |  |      * Avoid dynamic memory allocations for constant-size T2.  | 
1697  |  |      *  | 
1698  |  |      * T2 is used for comparison only and the 3 limbs are assigned explicitly,  | 
1699  |  |      * so nobody increase the size of the MPI and we're safe to use an on-stack  | 
1700  |  |      * buffer.  | 
1701  |  |      */  | 
1702  | 0  |     T2.s = 1;  | 
1703  | 0  |     T2.n = sizeof(TP2) / sizeof(*TP2);  | 
1704  | 0  |     T2.p = TP2;  | 
1705  |  | 
  | 
1706  | 0  |     if (mbedtls_mpi_cmp_abs(A, B) < 0) { | 
1707  | 0  |         if (Q != NULL) { | 
1708  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));  | 
1709  | 0  |         }  | 
1710  | 0  |         if (R != NULL) { | 
1711  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));  | 
1712  | 0  |         }  | 
1713  | 0  |         return 0;  | 
1714  | 0  |     }  | 
1715  |  |  | 
1716  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));  | 
1717  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));  | 
1718  | 0  |     X.s = Y.s = 1;  | 
1719  |  | 
  | 
1720  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));  | 
1721  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0));  | 
1722  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));  | 
1723  |  |  | 
1724  | 0  |     k = mbedtls_mpi_bitlen(&Y) % biL;  | 
1725  | 0  |     if (k < biL - 1) { | 
1726  | 0  |         k = biL - 1 - k;  | 
1727  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));  | 
1728  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));  | 
1729  | 0  |     } else { | 
1730  | 0  |         k = 0;  | 
1731  | 0  |     }  | 
1732  |  |  | 
1733  | 0  |     n = X.n - 1;  | 
1734  | 0  |     t = Y.n - 1;  | 
1735  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));  | 
1736  |  |  | 
1737  | 0  |     while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) { | 
1738  | 0  |         Z.p[n - t]++;  | 
1739  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));  | 
1740  | 0  |     }  | 
1741  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));  | 
1742  |  |  | 
1743  | 0  |     for (i = n; i > t; i--) { | 
1744  | 0  |         if (X.p[i] >= Y.p[t]) { | 
1745  | 0  |             Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;  | 
1746  | 0  |         } else { | 
1747  | 0  |             Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],  | 
1748  | 0  |                                                  Y.p[t], NULL);  | 
1749  | 0  |         }  | 
1750  |  | 
  | 
1751  | 0  |         T2.p[0] = (i < 2) ? 0 : X.p[i - 2];  | 
1752  | 0  |         T2.p[1] = (i < 1) ? 0 : X.p[i - 1];  | 
1753  | 0  |         T2.p[2] = X.p[i];  | 
1754  |  | 
  | 
1755  | 0  |         Z.p[i - t - 1]++;  | 
1756  | 0  |         do { | 
1757  | 0  |             Z.p[i - t - 1]--;  | 
1758  |  | 
  | 
1759  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));  | 
1760  | 0  |             T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];  | 
1761  | 0  |             T1.p[1] = Y.p[t];  | 
1762  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));  | 
1763  | 0  |         } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);  | 
1764  |  |  | 
1765  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));  | 
1766  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1)));  | 
1767  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));  | 
1768  |  |  | 
1769  | 0  |         if (mbedtls_mpi_cmp_int(&X, 0) < 0) { | 
1770  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));  | 
1771  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));  | 
1772  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));  | 
1773  | 0  |             Z.p[i - t - 1]--;  | 
1774  | 0  |         }  | 
1775  | 0  |     }  | 
1776  |  |  | 
1777  | 0  |     if (Q != NULL) { | 
1778  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));  | 
1779  | 0  |         Q->s = A->s * B->s;  | 
1780  | 0  |     }  | 
1781  |  |  | 
1782  | 0  |     if (R != NULL) { | 
1783  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));  | 
1784  | 0  |         X.s = A->s;  | 
1785  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));  | 
1786  |  |  | 
1787  | 0  |         if (mbedtls_mpi_cmp_int(R, 0) == 0) { | 
1788  | 0  |             R->s = 1;  | 
1789  | 0  |         }  | 
1790  | 0  |     }  | 
1791  |  |  | 
1792  | 0  | cleanup:  | 
1793  |  | 
  | 
1794  | 0  |     mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);  | 
1795  | 0  |     mbedtls_mpi_free(&T1);  | 
1796  | 0  |     mbedtls_platform_zeroize(TP2, sizeof(TP2));  | 
1797  |  | 
  | 
1798  | 0  |     return ret;  | 
1799  | 0  | }  | 
1800  |  |  | 
1801  |  | /*  | 
1802  |  |  * Division by int: A = Q * b + R  | 
1803  |  |  */  | 
1804  |  | int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,  | 
1805  |  |                         const mbedtls_mpi *A,  | 
1806  |  |                         mbedtls_mpi_sint b)  | 
1807  | 0  | { | 
1808  | 0  |     mbedtls_mpi B;  | 
1809  | 0  |     mbedtls_mpi_uint p[1];  | 
1810  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1811  |  | 
  | 
1812  | 0  |     p[0] = mpi_sint_abs(b);  | 
1813  | 0  |     B.s = (b < 0) ? -1 : 1;  | 
1814  | 0  |     B.n = 1;  | 
1815  | 0  |     B.p = p;  | 
1816  |  | 
  | 
1817  | 0  |     return mbedtls_mpi_div_mpi(Q, R, A, &B);  | 
1818  | 0  | }  | 
1819  |  |  | 
1820  |  | /*  | 
1821  |  |  * Modulo: R = A mod B  | 
1822  |  |  */  | 
1823  |  | int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)  | 
1824  | 0  | { | 
1825  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
1826  | 0  |     MPI_VALIDATE_RET(R != NULL);  | 
1827  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1828  | 0  |     MPI_VALIDATE_RET(B != NULL);  | 
1829  |  | 
  | 
1830  | 0  |     if (mbedtls_mpi_cmp_int(B, 0) < 0) { | 
1831  | 0  |         return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;  | 
1832  | 0  |     }  | 
1833  |  |  | 
1834  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));  | 
1835  |  |  | 
1836  | 0  |     while (mbedtls_mpi_cmp_int(R, 0) < 0) { | 
1837  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));  | 
1838  | 0  |     }  | 
1839  |  |  | 
1840  | 0  |     while (mbedtls_mpi_cmp_mpi(R, B) >= 0) { | 
1841  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));  | 
1842  | 0  |     }  | 
1843  |  |  | 
1844  | 0  | cleanup:  | 
1845  |  | 
  | 
1846  | 0  |     return ret;  | 
1847  | 0  | }  | 
1848  |  |  | 
1849  |  | /*  | 
1850  |  |  * Modulo: r = A mod b  | 
1851  |  |  */  | 
1852  |  | int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)  | 
1853  | 0  | { | 
1854  | 0  |     size_t i;  | 
1855  | 0  |     mbedtls_mpi_uint x, y, z;  | 
1856  | 0  |     MPI_VALIDATE_RET(r != NULL);  | 
1857  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
1858  |  | 
  | 
1859  | 0  |     if (b == 0) { | 
1860  | 0  |         return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;  | 
1861  | 0  |     }  | 
1862  |  |  | 
1863  | 0  |     if (b < 0) { | 
1864  | 0  |         return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;  | 
1865  | 0  |     }  | 
1866  |  |  | 
1867  |  |     /*  | 
1868  |  |      * handle trivial cases  | 
1869  |  |      */  | 
1870  | 0  |     if (b == 1 || A->n == 0) { | 
1871  | 0  |         *r = 0;  | 
1872  | 0  |         return 0;  | 
1873  | 0  |     }  | 
1874  |  |  | 
1875  | 0  |     if (b == 2) { | 
1876  | 0  |         *r = A->p[0] & 1;  | 
1877  | 0  |         return 0;  | 
1878  | 0  |     }  | 
1879  |  |  | 
1880  |  |     /*  | 
1881  |  |      * general case  | 
1882  |  |      */  | 
1883  | 0  |     for (i = A->n, y = 0; i > 0; i--) { | 
1884  | 0  |         x  = A->p[i - 1];  | 
1885  | 0  |         y  = (y << biH) | (x >> biH);  | 
1886  | 0  |         z  = y / b;  | 
1887  | 0  |         y -= z * b;  | 
1888  |  | 
  | 
1889  | 0  |         x <<= biH;  | 
1890  | 0  |         y  = (y << biH) | (x >> biH);  | 
1891  | 0  |         z  = y / b;  | 
1892  | 0  |         y -= z * b;  | 
1893  | 0  |     }  | 
1894  |  |  | 
1895  |  |     /*  | 
1896  |  |      * If A is negative, then the current y represents a negative value.  | 
1897  |  |      * Flipping it to the positive side.  | 
1898  |  |      */  | 
1899  | 0  |     if (A->s < 0 && y != 0) { | 
1900  | 0  |         y = b - y;  | 
1901  | 0  |     }  | 
1902  |  | 
  | 
1903  | 0  |     *r = y;  | 
1904  |  | 
  | 
1905  | 0  |     return 0;  | 
1906  | 0  | }  | 
1907  |  |  | 
1908  |  | /*  | 
1909  |  |  * Fast Montgomery initialization (thanks to Tom St Denis)  | 
1910  |  |  */  | 
1911  |  | mbedtls_mpi_uint mbedtls_mpi_montmul_init(const mbedtls_mpi_uint *N)  | 
1912  | 0  | { | 
1913  | 0  |     mbedtls_mpi_uint x = N[0];  | 
1914  |  | 
  | 
1915  | 0  |     x += ((N[0] + 2) & 4) << 1;  | 
1916  |  | 
  | 
1917  | 0  |     for (unsigned int i = biL; i >= 8; i /= 2) { | 
1918  | 0  |         x *= (2 - (N[0] * x));  | 
1919  | 0  |     }  | 
1920  |  | 
  | 
1921  | 0  |     return ~x + 1;  | 
1922  | 0  | }  | 
1923  |  |  | 
1924  |  | void mbedtls_mpi_montmul(mbedtls_mpi *A,  | 
1925  |  |                          const mbedtls_mpi *B,  | 
1926  |  |                          const mbedtls_mpi *N,  | 
1927  |  |                          mbedtls_mpi_uint mm,  | 
1928  |  |                          const mbedtls_mpi *T)  | 
1929  | 0  | { | 
1930  | 0  |     size_t i, n, m;  | 
1931  | 0  |     mbedtls_mpi_uint u0, u1, *d;  | 
1932  |  | 
  | 
1933  | 0  |     memset(T->p, 0, T->n * ciL);  | 
1934  |  | 
  | 
1935  | 0  |     d = T->p;  | 
1936  | 0  |     n = N->n;  | 
1937  | 0  |     m = (B->n < n) ? B->n : n;  | 
1938  |  | 
  | 
1939  | 0  |     for (i = 0; i < n; i++) { | 
1940  |  |         /*  | 
1941  |  |          * T = (T + u0*B + u1*N) / 2^biL  | 
1942  |  |          */  | 
1943  | 0  |         u0 = A->p[i];  | 
1944  | 0  |         u1 = (d[0] + u0 * B->p[0]) * mm;  | 
1945  |  | 
  | 
1946  | 0  |         mpi_mul_hlp(m, B->p, d, u0);  | 
1947  | 0  |         mpi_mul_hlp(n, N->p, d, u1);  | 
1948  |  | 
  | 
1949  | 0  |         *d++ = u0; d[n + 1] = 0;  | 
1950  | 0  |     }  | 
1951  |  |  | 
1952  |  |     /* At this point, d is either the desired result or the desired result  | 
1953  |  |      * plus N. We now potentially subtract N, avoiding leaking whether the  | 
1954  |  |      * subtraction is performed through side channels. */  | 
1955  |  |  | 
1956  |  |     /* Copy the n least significant limbs of d to A, so that  | 
1957  |  |      * A = d if d < N (recall that N has n limbs). */  | 
1958  | 0  |     memcpy(A->p, d, n * ciL);  | 
1959  |  |     /* If d >= N then we want to set A to d - N. To prevent timing attacks,  | 
1960  |  |      * do the calculation without using conditional tests. */  | 
1961  |  |     /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */  | 
1962  | 0  |     d[n] += 1;  | 
1963  | 0  |     d[n] -= mpi_sub_hlp(n, d, d, N->p);  | 
1964  |  |     /* If d0 < N then d < (2^biL)^n  | 
1965  |  |      * so d[n] == 0 and we want to keep A as it is.  | 
1966  |  |      * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n  | 
1967  |  |      * so d[n] == 1 and we want to set A to the result of the subtraction  | 
1968  |  |      * which is d - (2^biL)^n, i.e. the n least significant limbs of d.  | 
1969  |  |      * This exactly corresponds to a conditional assignment. */  | 
1970  | 0  |     mbedtls_ct_mpi_uint_cond_assign(n, A->p, d, (unsigned char) d[n]);  | 
1971  | 0  | }  | 
1972  |  |  | 
1973  |  | /*  | 
1974  |  |  * Montgomery reduction: A = A * R^-1 mod N  | 
1975  |  |  *  | 
1976  |  |  * See mbedtls_mpi_montmul() regarding constraints and guarantees on the  | 
1977  |  |  * parameters.  | 
1978  |  |  */  | 
1979  |  | static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,  | 
1980  |  |                         mbedtls_mpi_uint mm, const mbedtls_mpi *T)  | 
1981  | 0  | { | 
1982  | 0  |     mbedtls_mpi_uint z = 1;  | 
1983  | 0  |     mbedtls_mpi U;  | 
1984  |  | 
  | 
1985  | 0  |     U.n = U.s = (int) z;  | 
1986  | 0  |     U.p = &z;  | 
1987  |  | 
  | 
1988  | 0  |     mbedtls_mpi_montmul(A, &U, N, mm, T);  | 
1989  | 0  | }  | 
1990  |  |  | 
1991  |  | /**  | 
1992  |  |  * Select an MPI from a table without leaking the index.  | 
1993  |  |  *  | 
1994  |  |  * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it  | 
1995  |  |  * reads the entire table in order to avoid leaking the value of idx to an  | 
1996  |  |  * attacker able to observe memory access patterns.  | 
1997  |  |  *  | 
1998  |  |  * \param[out] R        Where to write the selected MPI.  | 
1999  |  |  * \param[in] T         The table to read from.  | 
2000  |  |  * \param[in] T_size    The number of elements in the table.  | 
2001  |  |  * \param[in] idx       The index of the element to select;  | 
2002  |  |  *                      this must satisfy 0 <= idx < T_size.  | 
2003  |  |  *  | 
2004  |  |  * \return \c 0 on success, or a negative error code.  | 
2005  |  |  */  | 
2006  |  | static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)  | 
2007  | 0  | { | 
2008  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2009  |  | 
  | 
2010  | 0  |     for (size_t i = 0; i < T_size; i++) { | 
2011  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],  | 
2012  | 0  |                                                      (unsigned char) mbedtls_ct_size_bool_eq(i,  | 
2013  | 0  |                                                                                              idx)));  | 
2014  | 0  |     }  | 
2015  |  |  | 
2016  | 0  | cleanup:  | 
2017  | 0  |     return ret;  | 
2018  | 0  | }  | 
2019  |  |  | 
2020  |  | int mbedtls_mpi_get_mont_r2_unsafe(mbedtls_mpi *X,  | 
2021  |  |                                    const mbedtls_mpi *N)  | 
2022  | 0  | { | 
2023  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2024  |  | 
  | 
2025  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));  | 
2026  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));  | 
2027  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));  | 
2028  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));  | 
2029  |  |  | 
2030  | 0  | cleanup:  | 
2031  | 0  |     return ret;  | 
2032  | 0  | }  | 
2033  |  |  | 
2034  |  | /*  | 
2035  |  |  * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85)  | 
2036  |  |  */  | 
2037  |  | int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,  | 
2038  |  |                         const mbedtls_mpi *E, const mbedtls_mpi *N,  | 
2039  |  |                         mbedtls_mpi *prec_RR)  | 
2040  | 0  | { | 
2041  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2042  | 0  |     size_t window_bitsize;  | 
2043  | 0  |     size_t i, j, nblimbs;  | 
2044  | 0  |     size_t bufsize, nbits;  | 
2045  | 0  |     size_t exponent_bits_in_window = 0;  | 
2046  | 0  |     mbedtls_mpi_uint ei, mm, state;  | 
2047  | 0  |     mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;  | 
2048  | 0  |     int neg;  | 
2049  |  | 
  | 
2050  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
2051  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
2052  | 0  |     MPI_VALIDATE_RET(E != NULL);  | 
2053  | 0  |     MPI_VALIDATE_RET(N != NULL);  | 
2054  |  | 
  | 
2055  | 0  |     if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) { | 
2056  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
2057  | 0  |     }  | 
2058  |  |  | 
2059  | 0  |     if (mbedtls_mpi_cmp_int(E, 0) < 0) { | 
2060  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
2061  | 0  |     }  | 
2062  |  |  | 
2063  | 0  |     if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||  | 
2064  | 0  |         mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) { | 
2065  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
2066  | 0  |     }  | 
2067  |  |  | 
2068  |  |     /*  | 
2069  |  |      * Init temps and window size  | 
2070  |  |      */  | 
2071  | 0  |     mm = mbedtls_mpi_montmul_init(N->p);  | 
2072  | 0  |     mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);  | 
2073  | 0  |     mbedtls_mpi_init(&Apos);  | 
2074  | 0  |     mbedtls_mpi_init(&WW);  | 
2075  | 0  |     memset(W, 0, sizeof(W));  | 
2076  |  | 
  | 
2077  | 0  |     i = mbedtls_mpi_bitlen(E);  | 
2078  |  | 
  | 
2079  | 0  |     window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :  | 
2080  | 0  |                      (i >  79) ? 4 : (i >  23) ? 3 : 1;  | 
2081  |  | 
  | 
2082  | 0  | #if (MBEDTLS_MPI_WINDOW_SIZE < 6)  | 
2083  | 0  |     if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) { | 
2084  | 0  |         window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;  | 
2085  | 0  |     }  | 
2086  | 0  | #endif  | 
2087  |  | 
  | 
2088  | 0  |     const size_t w_table_used_size = (size_t) 1 << window_bitsize;  | 
2089  |  |  | 
2090  |  |     /*  | 
2091  |  |      * This function is not constant-trace: its memory accesses depend on the  | 
2092  |  |      * exponent value. To defend against timing attacks, callers (such as RSA  | 
2093  |  |      * and DHM) should use exponent blinding. However this is not enough if the  | 
2094  |  |      * adversary can find the exponent in a single trace, so this function  | 
2095  |  |      * takes extra precautions against adversaries who can observe memory  | 
2096  |  |      * access patterns.  | 
2097  |  |      *  | 
2098  |  |      * This function performs a series of multiplications by table elements and  | 
2099  |  |      * squarings, and we want the prevent the adversary from finding out which  | 
2100  |  |      * table element was used, and from distinguishing between multiplications  | 
2101  |  |      * and squarings. Firstly, when multiplying by an element of the window  | 
2102  |  |      * W[i], we do a constant-trace table lookup to obfuscate i. This leaves  | 
2103  |  |      * squarings as having a different memory access patterns from other  | 
2104  |  |      * multiplications. So secondly, we put the accumulator in the table as  | 
2105  |  |      * well, and also do a constant-trace table lookup to multiply by the  | 
2106  |  |      * accumulator which is W[x_index].  | 
2107  |  |      *  | 
2108  |  |      * This way, all multiplications take the form of a lookup-and-multiply.  | 
2109  |  |      * The number of lookup-and-multiply operations inside each iteration of  | 
2110  |  |      * the main loop still depends on the bits of the exponent, but since the  | 
2111  |  |      * other operations in the loop don't have an easily recognizable memory  | 
2112  |  |      * trace, an adversary is unlikely to be able to observe the exact  | 
2113  |  |      * patterns.  | 
2114  |  |      *  | 
2115  |  |      * An adversary may still be able to recover the exponent if they can  | 
2116  |  |      * observe both memory accesses and branches. However, branch prediction  | 
2117  |  |      * exploitation typically requires many traces of execution over the same  | 
2118  |  |      * data, which is defeated by randomized blinding.  | 
2119  |  |      */  | 
2120  | 0  |     const size_t x_index = 0;  | 
2121  | 0  |     mbedtls_mpi_init(&W[x_index]);  | 
2122  |  | 
  | 
2123  | 0  |     j = N->n + 1;  | 
2124  |  |     /* All W[i] including the accumulator must have at least N->n limbs for  | 
2125  |  |      * the mbedtls_mpi_montmul() and mpi_montred() calls later. Here we ensure  | 
2126  |  |      * that W[1] and the accumulator W[x_index] are large enough. later we'll  | 
2127  |  |      * grow other W[i] to the same length. They must not be shrunk midway  | 
2128  |  |      * through this function!  | 
2129  |  |      */  | 
2130  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));  | 
2131  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1],  j));  | 
2132  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));  | 
2133  |  |  | 
2134  |  |     /*  | 
2135  |  |      * Compensate for negative A (and correct at the end)  | 
2136  |  |      */  | 
2137  | 0  |     neg = (A->s == -1);  | 
2138  | 0  |     if (neg) { | 
2139  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));  | 
2140  | 0  |         Apos.s = 1;  | 
2141  | 0  |         A = &Apos;  | 
2142  | 0  |     }  | 
2143  |  |  | 
2144  |  |     /*  | 
2145  |  |      * If 1st call, pre-compute R^2 mod N  | 
2146  |  |      */  | 
2147  | 0  |     if (prec_RR == NULL || prec_RR->p == NULL) { | 
2148  | 0  |         mbedtls_mpi_get_mont_r2_unsafe(&RR, N);  | 
2149  |  | 
  | 
2150  | 0  |         if (prec_RR != NULL) { | 
2151  | 0  |             memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));  | 
2152  | 0  |         }  | 
2153  | 0  |     } else { | 
2154  | 0  |         memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));  | 
2155  | 0  |     }  | 
2156  |  |  | 
2157  |  |     /*  | 
2158  |  |      * W[1] = A * R^2 * R^-1 mod N = A * R mod N  | 
2159  |  |      */  | 
2160  | 0  |     if (mbedtls_mpi_cmp_mpi(A, N) >= 0) { | 
2161  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));  | 
2162  |  |         /* This should be a no-op because W[1] is already that large before  | 
2163  |  |          * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow  | 
2164  |  |          * in mbedtls_mpi_montmul() below, so let's make sure. */  | 
2165  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));  | 
2166  | 0  |     } else { | 
2167  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));  | 
2168  | 0  |     }  | 
2169  |  |  | 
2170  |  |     /* Note that this is safe because W[1] always has at least N->n limbs  | 
2171  |  |      * (it grew above and was preserved by mbedtls_mpi_copy()). */  | 
2172  | 0  |     mbedtls_mpi_montmul(&W[1], &RR, N, mm, &T);  | 
2173  |  |  | 
2174  |  |     /*  | 
2175  |  |      * W[x_index] = R^2 * R^-1 mod N = R mod N  | 
2176  |  |      */  | 
2177  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));  | 
2178  | 0  |     mpi_montred(&W[x_index], N, mm, &T);  | 
2179  |  |  | 
2180  |  | 
  | 
2181  | 0  |     if (window_bitsize > 1) { | 
2182  |  |         /*  | 
2183  |  |          * W[i] = W[1] ^ i  | 
2184  |  |          *  | 
2185  |  |          * The first bit of the sliding window is always 1 and therefore we  | 
2186  |  |          * only need to store the second half of the table.  | 
2187  |  |          *  | 
2188  |  |          * (There are two special elements in the table: W[0] for the  | 
2189  |  |          * accumulator/result and W[1] for A in Montgomery form. Both of these  | 
2190  |  |          * are already set at this point.)  | 
2191  |  |          */  | 
2192  | 0  |         j = w_table_used_size / 2;  | 
2193  |  | 
  | 
2194  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));  | 
2195  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));  | 
2196  |  |  | 
2197  | 0  |         for (i = 0; i < window_bitsize - 1; i++) { | 
2198  | 0  |             mbedtls_mpi_montmul(&W[j], &W[j], N, mm, &T);  | 
2199  | 0  |         }  | 
2200  |  |  | 
2201  |  |         /*  | 
2202  |  |          * W[i] = W[i - 1] * W[1]  | 
2203  |  |          */  | 
2204  | 0  |         for (i = j + 1; i < w_table_used_size; i++) { | 
2205  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));  | 
2206  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));  | 
2207  |  |  | 
2208  | 0  |             mbedtls_mpi_montmul(&W[i], &W[1], N, mm, &T);  | 
2209  | 0  |         }  | 
2210  | 0  |     }  | 
2211  |  |  | 
2212  | 0  |     nblimbs = E->n;  | 
2213  | 0  |     bufsize = 0;  | 
2214  | 0  |     nbits   = 0;  | 
2215  | 0  |     state   = 0;  | 
2216  |  | 
  | 
2217  | 0  |     while (1) { | 
2218  | 0  |         if (bufsize == 0) { | 
2219  | 0  |             if (nblimbs == 0) { | 
2220  | 0  |                 break;  | 
2221  | 0  |             }  | 
2222  |  |  | 
2223  | 0  |             nblimbs--;  | 
2224  |  | 
  | 
2225  | 0  |             bufsize = sizeof(mbedtls_mpi_uint) << 3;  | 
2226  | 0  |         }  | 
2227  |  |  | 
2228  | 0  |         bufsize--;  | 
2229  |  | 
  | 
2230  | 0  |         ei = (E->p[nblimbs] >> bufsize) & 1;  | 
2231  |  |  | 
2232  |  |         /*  | 
2233  |  |          * skip leading 0s  | 
2234  |  |          */  | 
2235  | 0  |         if (ei == 0 && state == 0) { | 
2236  | 0  |             continue;  | 
2237  | 0  |         }  | 
2238  |  |  | 
2239  | 0  |         if (ei == 0 && state == 1) { | 
2240  |  |             /*  | 
2241  |  |              * out of window, square W[x_index]  | 
2242  |  |              */  | 
2243  | 0  |             MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));  | 
2244  | 0  |             mbedtls_mpi_montmul(&W[x_index], &WW, N, mm, &T);  | 
2245  | 0  |             continue;  | 
2246  | 0  |         }  | 
2247  |  |  | 
2248  |  |         /*  | 
2249  |  |          * add ei to current window  | 
2250  |  |          */  | 
2251  | 0  |         state = 2;  | 
2252  |  | 
  | 
2253  | 0  |         nbits++;  | 
2254  | 0  |         exponent_bits_in_window |= (ei << (window_bitsize - nbits));  | 
2255  |  | 
  | 
2256  | 0  |         if (nbits == window_bitsize) { | 
2257  |  |             /*  | 
2258  |  |              * W[x_index] = W[x_index]^window_bitsize R^-1 mod N  | 
2259  |  |              */  | 
2260  | 0  |             for (i = 0; i < window_bitsize; i++) { | 
2261  | 0  |                 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,  | 
2262  | 0  |                                            x_index));  | 
2263  | 0  |                 mbedtls_mpi_montmul(&W[x_index], &WW, N, mm, &T);  | 
2264  | 0  |             }  | 
2265  |  |  | 
2266  |  |             /*  | 
2267  |  |              * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N  | 
2268  |  |              */  | 
2269  | 0  |             MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,  | 
2270  | 0  |                                        exponent_bits_in_window));  | 
2271  | 0  |             mbedtls_mpi_montmul(&W[x_index], &WW, N, mm, &T);  | 
2272  |  | 
  | 
2273  | 0  |             state--;  | 
2274  | 0  |             nbits = 0;  | 
2275  | 0  |             exponent_bits_in_window = 0;  | 
2276  | 0  |         }  | 
2277  | 0  |     }  | 
2278  |  |  | 
2279  |  |     /*  | 
2280  |  |      * process the remaining bits  | 
2281  |  |      */  | 
2282  | 0  |     for (i = 0; i < nbits; i++) { | 
2283  | 0  |         MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));  | 
2284  | 0  |         mbedtls_mpi_montmul(&W[x_index], &WW, N, mm, &T);  | 
2285  |  | 
  | 
2286  | 0  |         exponent_bits_in_window <<= 1;  | 
2287  |  | 
  | 
2288  | 0  |         if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) { | 
2289  | 0  |             MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));  | 
2290  | 0  |             mbedtls_mpi_montmul(&W[x_index], &WW, N, mm, &T);  | 
2291  | 0  |         }  | 
2292  | 0  |     }  | 
2293  |  |  | 
2294  |  |     /*  | 
2295  |  |      * W[x_index] = A^E * R * R^-1 mod N = A^E mod N  | 
2296  |  |      */  | 
2297  | 0  |     mpi_montred(&W[x_index], N, mm, &T);  | 
2298  |  | 
  | 
2299  | 0  |     if (neg && E->n != 0 && (E->p[0] & 1) != 0) { | 
2300  | 0  |         W[x_index].s = -1;  | 
2301  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));  | 
2302  | 0  |     }  | 
2303  |  |  | 
2304  |  |     /*  | 
2305  |  |      * Load the result in the output variable.  | 
2306  |  |      */  | 
2307  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &W[x_index]));  | 
2308  |  |  | 
2309  | 0  | cleanup:  | 
2310  |  |  | 
2311  |  |     /* The first bit of the sliding window is always 1 and therefore the first  | 
2312  |  |      * half of the table was unused. */  | 
2313  | 0  |     for (i = w_table_used_size/2; i < w_table_used_size; i++) { | 
2314  | 0  |         mbedtls_mpi_free(&W[i]);  | 
2315  | 0  |     }  | 
2316  |  | 
  | 
2317  | 0  |     mbedtls_mpi_free(&W[x_index]);  | 
2318  | 0  |     mbedtls_mpi_free(&W[1]);  | 
2319  | 0  |     mbedtls_mpi_free(&T);  | 
2320  | 0  |     mbedtls_mpi_free(&Apos);  | 
2321  | 0  |     mbedtls_mpi_free(&WW);  | 
2322  |  | 
  | 
2323  | 0  |     if (prec_RR == NULL || prec_RR->p == NULL) { | 
2324  | 0  |         mbedtls_mpi_free(&RR);  | 
2325  | 0  |     }  | 
2326  |  | 
  | 
2327  | 0  |     return ret;  | 
2328  | 0  | }  | 
2329  |  |  | 
2330  |  | /*  | 
2331  |  |  * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)  | 
2332  |  |  */  | 
2333  |  | int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)  | 
2334  | 0  | { | 
2335  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2336  | 0  |     size_t lz, lzt;  | 
2337  | 0  |     mbedtls_mpi TA, TB;  | 
2338  |  | 
  | 
2339  | 0  |     MPI_VALIDATE_RET(G != NULL);  | 
2340  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
2341  | 0  |     MPI_VALIDATE_RET(B != NULL);  | 
2342  |  | 
  | 
2343  | 0  |     mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);  | 
2344  |  | 
  | 
2345  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));  | 
2346  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));  | 
2347  |  |  | 
2348  | 0  |     lz = mbedtls_mpi_lsb(&TA);  | 
2349  | 0  |     lzt = mbedtls_mpi_lsb(&TB);  | 
2350  |  |  | 
2351  |  |     /* The loop below gives the correct result when A==0 but not when B==0.  | 
2352  |  |      * So have a special case for B==0. Leverage the fact that we just  | 
2353  |  |      * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test  | 
2354  |  |      * slightly more efficient than cmp_int(). */  | 
2355  | 0  |     if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) { | 
2356  | 0  |         ret = mbedtls_mpi_copy(G, A);  | 
2357  | 0  |         goto cleanup;  | 
2358  | 0  |     }  | 
2359  |  |  | 
2360  | 0  |     if (lzt < lz) { | 
2361  | 0  |         lz = lzt;  | 
2362  | 0  |     }  | 
2363  |  | 
  | 
2364  | 0  |     TA.s = TB.s = 1;  | 
2365  |  |  | 
2366  |  |     /* We mostly follow the procedure described in HAC 14.54, but with some  | 
2367  |  |      * minor differences:  | 
2368  |  |      * - Sequences of multiplications or divisions by 2 are grouped into a  | 
2369  |  |      *   single shift operation.  | 
2370  |  |      * - The procedure in HAC assumes that 0 < TB <= TA.  | 
2371  |  |      *     - The condition TB <= TA is not actually necessary for correctness.  | 
2372  |  |      *       TA and TB have symmetric roles except for the loop termination  | 
2373  |  |      *       condition, and the shifts at the beginning of the loop body  | 
2374  |  |      *       remove any significance from the ordering of TA vs TB before  | 
2375  |  |      *       the shifts.  | 
2376  |  |      *     - If TA = 0, the loop goes through 0 iterations and the result is  | 
2377  |  |      *       correctly TB.  | 
2378  |  |      *     - The case TB = 0 was short-circuited above.  | 
2379  |  |      *  | 
2380  |  |      * For the correctness proof below, decompose the original values of  | 
2381  |  |      * A and B as  | 
2382  |  |      *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1  | 
2383  |  |      *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1  | 
2384  |  |      * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'), | 
2385  |  |      * and gcd(A',B') is odd or 0.  | 
2386  |  |      *  | 
2387  |  |      * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).  | 
2388  |  |      * The code maintains the following invariant:  | 
2389  |  |      *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)  | 
2390  |  |      */  | 
2391  |  |  | 
2392  |  |     /* Proof that the loop terminates:  | 
2393  |  |      * At each iteration, either the right-shift by 1 is made on a nonzero  | 
2394  |  |      * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases  | 
2395  |  |      * by at least 1, or the right-shift by 1 is made on zero and then  | 
2396  |  |      * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted  | 
2397  |  |      * since in that case TB is calculated from TB-TA with the condition TB>TA).  | 
2398  |  |      */  | 
2399  | 0  |     while (mbedtls_mpi_cmp_int(&TA, 0) != 0) { | 
2400  |  |         /* Divisions by 2 preserve the invariant (I). */  | 
2401  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));  | 
2402  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));  | 
2403  |  |  | 
2404  |  |         /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,  | 
2405  |  |          * TA-TB is even so the division by 2 has an integer result.  | 
2406  |  |          * Invariant (I) is preserved since any odd divisor of both TA and TB  | 
2407  |  |          * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2  | 
2408  |  |          * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also  | 
2409  |  |          * divides TA.  | 
2410  |  |          */  | 
2411  | 0  |         if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) { | 
2412  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));  | 
2413  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));  | 
2414  | 0  |         } else { | 
2415  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));  | 
2416  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));  | 
2417  | 0  |         }  | 
2418  |  |         /* Note that one of TA or TB is still odd. */  | 
2419  | 0  |     }  | 
2420  |  |  | 
2421  |  |     /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.  | 
2422  |  |      * At the loop exit, TA = 0, so gcd(TA,TB) = TB.  | 
2423  |  |      * - If there was at least one loop iteration, then one of TA or TB is odd,  | 
2424  |  |      *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,  | 
2425  |  |      *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.  | 
2426  |  |      * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.  | 
2427  |  |      *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.  | 
2428  |  |      */  | 
2429  |  |  | 
2430  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));  | 
2431  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));  | 
2432  |  |  | 
2433  | 0  | cleanup:  | 
2434  |  | 
  | 
2435  | 0  |     mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);  | 
2436  |  | 
  | 
2437  | 0  |     return ret;  | 
2438  | 0  | }  | 
2439  |  |  | 
2440  |  | /* Fill X with n_bytes random bytes.  | 
2441  |  |  * X must already have room for those bytes.  | 
2442  |  |  * The ordering of the bytes returned from the RNG is suitable for  | 
2443  |  |  * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).  | 
2444  |  |  * The size and sign of X are unchanged.  | 
2445  |  |  * n_bytes must not be 0.  | 
2446  |  |  */  | 
2447  |  | static int mpi_fill_random_internal(  | 
2448  |  |     mbedtls_mpi *X, size_t n_bytes,  | 
2449  |  |     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)  | 
2450  | 0  | { | 
2451  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2452  | 0  |     const size_t limbs = CHARS_TO_LIMBS(n_bytes);  | 
2453  | 0  |     const size_t overhead = (limbs * ciL) - n_bytes;  | 
2454  |  | 
  | 
2455  | 0  |     if (X->n < limbs) { | 
2456  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
2457  | 0  |     }  | 
2458  |  |  | 
2459  | 0  |     memset(X->p, 0, overhead);  | 
2460  | 0  |     memset((unsigned char *) X->p + limbs * ciL, 0, (X->n - limbs) * ciL);  | 
2461  | 0  |     MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X->p + overhead, n_bytes));  | 
2462  | 0  |     mpi_bigendian_to_host(X->p, limbs);  | 
2463  |  | 
  | 
2464  | 0  | cleanup:  | 
2465  | 0  |     return ret;  | 
2466  | 0  | }  | 
2467  |  |  | 
2468  |  | /*  | 
2469  |  |  * Fill X with size bytes of random.  | 
2470  |  |  *  | 
2471  |  |  * Use a temporary bytes representation to make sure the result is the same  | 
2472  |  |  * regardless of the platform endianness (useful when f_rng is actually  | 
2473  |  |  * deterministic, eg for tests).  | 
2474  |  |  */  | 
2475  |  | int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,  | 
2476  |  |                             int (*f_rng)(void *, unsigned char *, size_t),  | 
2477  |  |                             void *p_rng)  | 
2478  | 0  | { | 
2479  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2480  | 0  |     size_t const limbs = CHARS_TO_LIMBS(size);  | 
2481  |  | 
  | 
2482  | 0  |     MPI_VALIDATE_RET(X     != NULL);  | 
2483  | 0  |     MPI_VALIDATE_RET(f_rng != NULL);  | 
2484  |  |  | 
2485  |  |     /* Ensure that target MPI has exactly the necessary number of limbs */  | 
2486  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));  | 
2487  | 0  |     if (size == 0) { | 
2488  | 0  |         return 0;  | 
2489  | 0  |     }  | 
2490  |  |  | 
2491  | 0  |     ret = mpi_fill_random_internal(X, size, f_rng, p_rng);  | 
2492  |  | 
  | 
2493  | 0  | cleanup:  | 
2494  | 0  |     return ret;  | 
2495  | 0  | }  | 
2496  |  |  | 
2497  |  | int mbedtls_mpi_random(mbedtls_mpi *X,  | 
2498  |  |                        mbedtls_mpi_sint min,  | 
2499  |  |                        const mbedtls_mpi *N,  | 
2500  |  |                        int (*f_rng)(void *, unsigned char *, size_t),  | 
2501  |  |                        void *p_rng)  | 
2502  | 0  | { | 
2503  | 0  |     int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
2504  | 0  |     int count;  | 
2505  | 0  |     unsigned lt_lower = 1, lt_upper = 0;  | 
2506  | 0  |     size_t n_bits = mbedtls_mpi_bitlen(N);  | 
2507  | 0  |     size_t n_bytes = (n_bits + 7) / 8;  | 
2508  | 0  |     mbedtls_mpi lower_bound;  | 
2509  |  | 
  | 
2510  | 0  |     if (min < 0) { | 
2511  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
2512  | 0  |     }  | 
2513  | 0  |     if (mbedtls_mpi_cmp_int(N, min) <= 0) { | 
2514  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
2515  | 0  |     }  | 
2516  |  |  | 
2517  |  |     /*  | 
2518  |  |      * When min == 0, each try has at worst a probability 1/2 of failing  | 
2519  |  |      * (the msb has a probability 1/2 of being 0, and then the result will  | 
2520  |  |      * be < N), so after 30 tries failure probability is a most 2**(-30).  | 
2521  |  |      *  | 
2522  |  |      * When N is just below a power of 2, as is the case when generating  | 
2523  |  |      * a random scalar on most elliptic curves, 1 try is enough with  | 
2524  |  |      * overwhelming probability. When N is just above a power of 2,  | 
2525  |  |      * as when generating a random scalar on secp224k1, each try has  | 
2526  |  |      * a probability of failing that is almost 1/2.  | 
2527  |  |      *  | 
2528  |  |      * The probabilities are almost the same if min is nonzero but negligible  | 
2529  |  |      * compared to N. This is always the case when N is crypto-sized, but  | 
2530  |  |      * it's convenient to support small N for testing purposes. When N  | 
2531  |  |      * is small, use a higher repeat count, otherwise the probability of  | 
2532  |  |      * failure is macroscopic.  | 
2533  |  |      */  | 
2534  | 0  |     count = (n_bytes > 4 ? 30 : 250);  | 
2535  |  | 
  | 
2536  | 0  |     mbedtls_mpi_init(&lower_bound);  | 
2537  |  |  | 
2538  |  |     /* Ensure that target MPI has exactly the same number of limbs  | 
2539  |  |      * as the upper bound, even if the upper bound has leading zeros.  | 
2540  |  |      * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */  | 
2541  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, N->n));  | 
2542  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&lower_bound, N->n));  | 
2543  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&lower_bound, min));  | 
2544  |  |  | 
2545  |  |     /*  | 
2546  |  |      * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)  | 
2547  |  |      * when f_rng is a suitably parametrized instance of HMAC_DRBG:  | 
2548  |  |      * - use the same byte ordering;  | 
2549  |  |      * - keep the leftmost n_bits bits of the generated octet string;  | 
2550  |  |      * - try until result is in the desired range.  | 
2551  |  |      * This also avoids any bias, which is especially important for ECDSA.  | 
2552  |  |      */  | 
2553  | 0  |     do { | 
2554  | 0  |         MBEDTLS_MPI_CHK(mpi_fill_random_internal(X, n_bytes, f_rng, p_rng));  | 
2555  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, 8 * n_bytes - n_bits));  | 
2556  |  |  | 
2557  | 0  |         if (--count == 0) { | 
2558  | 0  |             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;  | 
2559  | 0  |             goto cleanup;  | 
2560  | 0  |         }  | 
2561  |  |  | 
2562  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, &lower_bound, <_lower));  | 
2563  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, N, <_upper));  | 
2564  | 0  |     } while (lt_lower != 0 || lt_upper == 0);  | 
2565  |  |  | 
2566  | 0  | cleanup:  | 
2567  | 0  |     mbedtls_mpi_free(&lower_bound);  | 
2568  | 0  |     return ret;  | 
2569  | 0  | }  | 
2570  |  |  | 
2571  |  | /*  | 
2572  |  |  * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)  | 
2573  |  |  */  | 
2574  |  | int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)  | 
2575  | 0  | { | 
2576  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2577  | 0  |     mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;  | 
2578  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
2579  | 0  |     MPI_VALIDATE_RET(A != NULL);  | 
2580  | 0  |     MPI_VALIDATE_RET(N != NULL);  | 
2581  |  | 
  | 
2582  | 0  |     if (mbedtls_mpi_cmp_int(N, 1) <= 0) { | 
2583  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
2584  | 0  |     }  | 
2585  |  |  | 
2586  | 0  |     mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);  | 
2587  | 0  |     mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);  | 
2588  | 0  |     mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);  | 
2589  |  | 
  | 
2590  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));  | 
2591  |  |  | 
2592  | 0  |     if (mbedtls_mpi_cmp_int(&G, 1) != 0) { | 
2593  | 0  |         ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;  | 
2594  | 0  |         goto cleanup;  | 
2595  | 0  |     }  | 
2596  |  |  | 
2597  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));  | 
2598  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));  | 
2599  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));  | 
2600  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));  | 
2601  |  |  | 
2602  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));  | 
2603  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));  | 
2604  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));  | 
2605  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));  | 
2606  |  |  | 
2607  | 0  |     do { | 
2608  | 0  |         while ((TU.p[0] & 1) == 0) { | 
2609  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));  | 
2610  |  |  | 
2611  | 0  |             if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) { | 
2612  | 0  |                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));  | 
2613  | 0  |                 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));  | 
2614  | 0  |             }  | 
2615  |  |  | 
2616  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));  | 
2617  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));  | 
2618  | 0  |         }  | 
2619  |  |  | 
2620  | 0  |         while ((TV.p[0] & 1) == 0) { | 
2621  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));  | 
2622  |  |  | 
2623  | 0  |             if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) { | 
2624  | 0  |                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));  | 
2625  | 0  |                 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));  | 
2626  | 0  |             }  | 
2627  |  |  | 
2628  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));  | 
2629  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));  | 
2630  | 0  |         }  | 
2631  |  |  | 
2632  | 0  |         if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) { | 
2633  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));  | 
2634  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));  | 
2635  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));  | 
2636  | 0  |         } else { | 
2637  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));  | 
2638  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));  | 
2639  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));  | 
2640  | 0  |         }  | 
2641  | 0  |     } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);  | 
2642  |  |  | 
2643  | 0  |     while (mbedtls_mpi_cmp_int(&V1, 0) < 0) { | 
2644  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));  | 
2645  | 0  |     }  | 
2646  |  |  | 
2647  | 0  |     while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) { | 
2648  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));  | 
2649  | 0  |     }  | 
2650  |  |  | 
2651  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));  | 
2652  |  |  | 
2653  | 0  | cleanup:  | 
2654  |  | 
  | 
2655  | 0  |     mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);  | 
2656  | 0  |     mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);  | 
2657  | 0  |     mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);  | 
2658  |  | 
  | 
2659  | 0  |     return ret;  | 
2660  | 0  | }  | 
2661  |  |  | 
2662  |  | #if defined(MBEDTLS_GENPRIME)  | 
2663  |  |  | 
2664  |  | static const int small_prime[] =  | 
2665  |  | { | 
2666  |  |     3,    5,    7,   11,   13,   17,   19,   23,  | 
2667  |  |     29,   31,   37,   41,   43,   47,   53,   59,  | 
2668  |  |     61,   67,   71,   73,   79,   83,   89,   97,  | 
2669  |  |     101,  103,  107,  109,  113,  127,  131,  137,  | 
2670  |  |     139,  149,  151,  157,  163,  167,  173,  179,  | 
2671  |  |     181,  191,  193,  197,  199,  211,  223,  227,  | 
2672  |  |     229,  233,  239,  241,  251,  257,  263,  269,  | 
2673  |  |     271,  277,  281,  283,  293,  307,  311,  313,  | 
2674  |  |     317,  331,  337,  347,  349,  353,  359,  367,  | 
2675  |  |     373,  379,  383,  389,  397,  401,  409,  419,  | 
2676  |  |     421,  431,  433,  439,  443,  449,  457,  461,  | 
2677  |  |     463,  467,  479,  487,  491,  499,  503,  509,  | 
2678  |  |     521,  523,  541,  547,  557,  563,  569,  571,  | 
2679  |  |     577,  587,  593,  599,  601,  607,  613,  617,  | 
2680  |  |     619,  631,  641,  643,  647,  653,  659,  661,  | 
2681  |  |     673,  677,  683,  691,  701,  709,  719,  727,  | 
2682  |  |     733,  739,  743,  751,  757,  761,  769,  773,  | 
2683  |  |     787,  797,  809,  811,  821,  823,  827,  829,  | 
2684  |  |     839,  853,  857,  859,  863,  877,  881,  883,  | 
2685  |  |     887,  907,  911,  919,  929,  937,  941,  947,  | 
2686  |  |     953,  967,  971,  977,  983,  991,  997, -103  | 
2687  |  | };  | 
2688  |  |  | 
2689  |  | /*  | 
2690  |  |  * Small divisors test (X must be positive)  | 
2691  |  |  *  | 
2692  |  |  * Return values:  | 
2693  |  |  * 0: no small factor (possible prime, more tests needed)  | 
2694  |  |  * 1: certain prime  | 
2695  |  |  * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime  | 
2696  |  |  * other negative: error  | 
2697  |  |  */  | 
2698  |  | static int mpi_check_small_factors(const mbedtls_mpi *X)  | 
2699  | 0  | { | 
2700  | 0  |     int ret = 0;  | 
2701  | 0  |     size_t i;  | 
2702  | 0  |     mbedtls_mpi_uint r;  | 
2703  |  | 
  | 
2704  | 0  |     if ((X->p[0] & 1) == 0) { | 
2705  | 0  |         return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;  | 
2706  | 0  |     }  | 
2707  |  |  | 
2708  | 0  |     for (i = 0; small_prime[i] > 0; i++) { | 
2709  | 0  |         if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) { | 
2710  | 0  |             return 1;  | 
2711  | 0  |         }  | 
2712  |  |  | 
2713  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));  | 
2714  |  |  | 
2715  | 0  |         if (r == 0) { | 
2716  | 0  |             return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;  | 
2717  | 0  |         }  | 
2718  | 0  |     }  | 
2719  |  |  | 
2720  | 0  | cleanup:  | 
2721  | 0  |     return ret;  | 
2722  | 0  | }  | 
2723  |  |  | 
2724  |  | /*  | 
2725  |  |  * Miller-Rabin pseudo-primality test  (HAC 4.24)  | 
2726  |  |  */  | 
2727  |  | static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,  | 
2728  |  |                             int (*f_rng)(void *, unsigned char *, size_t),  | 
2729  |  |                             void *p_rng)  | 
2730  | 0  | { | 
2731  | 0  |     int ret, count;  | 
2732  | 0  |     size_t i, j, k, s;  | 
2733  | 0  |     mbedtls_mpi W, R, T, A, RR;  | 
2734  |  | 
  | 
2735  | 0  |     MPI_VALIDATE_RET(X     != NULL);  | 
2736  | 0  |     MPI_VALIDATE_RET(f_rng != NULL);  | 
2737  |  | 
  | 
2738  | 0  |     mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);  | 
2739  | 0  |     mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);  | 
2740  | 0  |     mbedtls_mpi_init(&RR);  | 
2741  |  |  | 
2742  |  |     /*  | 
2743  |  |      * W = |X| - 1  | 
2744  |  |      * R = W >> lsb( W )  | 
2745  |  |      */  | 
2746  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));  | 
2747  | 0  |     s = mbedtls_mpi_lsb(&W);  | 
2748  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));  | 
2749  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));  | 
2750  |  |  | 
2751  | 0  |     for (i = 0; i < rounds; i++) { | 
2752  |  |         /*  | 
2753  |  |          * pick a random A, 1 < A < |X| - 1  | 
2754  |  |          */  | 
2755  | 0  |         count = 0;  | 
2756  | 0  |         do { | 
2757  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));  | 
2758  |  |  | 
2759  | 0  |             j = mbedtls_mpi_bitlen(&A);  | 
2760  | 0  |             k = mbedtls_mpi_bitlen(&W);  | 
2761  | 0  |             if (j > k) { | 
2762  | 0  |                 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;  | 
2763  | 0  |             }  | 
2764  |  | 
  | 
2765  | 0  |             if (count++ > 30) { | 
2766  | 0  |                 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;  | 
2767  | 0  |                 goto cleanup;  | 
2768  | 0  |             }  | 
2769  |  | 
  | 
2770  | 0  |         } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||  | 
2771  | 0  |                  mbedtls_mpi_cmp_int(&A, 1)  <= 0);  | 
2772  |  |  | 
2773  |  |         /*  | 
2774  |  |          * A = A^R mod |X|  | 
2775  |  |          */  | 
2776  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));  | 
2777  |  |  | 
2778  | 0  |         if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||  | 
2779  | 0  |             mbedtls_mpi_cmp_int(&A,  1) == 0) { | 
2780  | 0  |             continue;  | 
2781  | 0  |         }  | 
2782  |  |  | 
2783  | 0  |         j = 1;  | 
2784  | 0  |         while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) { | 
2785  |  |             /*  | 
2786  |  |              * A = A * A mod |X|  | 
2787  |  |              */  | 
2788  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));  | 
2789  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));  | 
2790  |  |  | 
2791  | 0  |             if (mbedtls_mpi_cmp_int(&A, 1) == 0) { | 
2792  | 0  |                 break;  | 
2793  | 0  |             }  | 
2794  |  |  | 
2795  | 0  |             j++;  | 
2796  | 0  |         }  | 
2797  |  |  | 
2798  |  |         /*  | 
2799  |  |          * not prime if A != |X| - 1 or A == 1  | 
2800  |  |          */  | 
2801  | 0  |         if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||  | 
2802  | 0  |             mbedtls_mpi_cmp_int(&A,  1) == 0) { | 
2803  | 0  |             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;  | 
2804  | 0  |             break;  | 
2805  | 0  |         }  | 
2806  | 0  |     }  | 
2807  |  |  | 
2808  | 0  | cleanup:  | 
2809  | 0  |     mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);  | 
2810  | 0  |     mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);  | 
2811  | 0  |     mbedtls_mpi_free(&RR);  | 
2812  |  | 
  | 
2813  | 0  |     return ret;  | 
2814  | 0  | }  | 
2815  |  |  | 
2816  |  | /*  | 
2817  |  |  * Pseudo-primality test: small factors, then Miller-Rabin  | 
2818  |  |  */  | 
2819  |  | int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,  | 
2820  |  |                              int (*f_rng)(void *, unsigned char *, size_t),  | 
2821  |  |                              void *p_rng)  | 
2822  | 0  | { | 
2823  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
2824  | 0  |     mbedtls_mpi XX;  | 
2825  | 0  |     MPI_VALIDATE_RET(X     != NULL);  | 
2826  | 0  |     MPI_VALIDATE_RET(f_rng != NULL);  | 
2827  |  | 
  | 
2828  | 0  |     XX.s = 1;  | 
2829  | 0  |     XX.n = X->n;  | 
2830  | 0  |     XX.p = X->p;  | 
2831  |  | 
  | 
2832  | 0  |     if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||  | 
2833  | 0  |         mbedtls_mpi_cmp_int(&XX, 1) == 0) { | 
2834  | 0  |         return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;  | 
2835  | 0  |     }  | 
2836  |  |  | 
2837  | 0  |     if (mbedtls_mpi_cmp_int(&XX, 2) == 0) { | 
2838  | 0  |         return 0;  | 
2839  | 0  |     }  | 
2840  |  |  | 
2841  | 0  |     if ((ret = mpi_check_small_factors(&XX)) != 0) { | 
2842  | 0  |         if (ret == 1) { | 
2843  | 0  |             return 0;  | 
2844  | 0  |         }  | 
2845  |  |  | 
2846  | 0  |         return ret;  | 
2847  | 0  |     }  | 
2848  |  |  | 
2849  | 0  |     return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);  | 
2850  | 0  | }  | 
2851  |  |  | 
2852  |  | #if !defined(MBEDTLS_DEPRECATED_REMOVED)  | 
2853  |  | /*  | 
2854  |  |  * Pseudo-primality test, error probability 2^-80  | 
2855  |  |  */  | 
2856  |  | int mbedtls_mpi_is_prime(const mbedtls_mpi *X,  | 
2857  |  |                          int (*f_rng)(void *, unsigned char *, size_t),  | 
2858  |  |                          void *p_rng)  | 
2859  | 0  | { | 
2860  | 0  |     MPI_VALIDATE_RET(X     != NULL);  | 
2861  | 0  |     MPI_VALIDATE_RET(f_rng != NULL);  | 
2862  |  |  | 
2863  |  |     /*  | 
2864  |  |      * In the past our key generation aimed for an error rate of at most  | 
2865  |  |      * 2^-80. Since this function is deprecated, aim for the same certainty  | 
2866  |  |      * here as well.  | 
2867  |  |      */  | 
2868  | 0  |     return mbedtls_mpi_is_prime_ext(X, 40, f_rng, p_rng);  | 
2869  | 0  | }  | 
2870  |  | #endif  | 
2871  |  |  | 
2872  |  | /*  | 
2873  |  |  * Prime number generation  | 
2874  |  |  *  | 
2875  |  |  * To generate an RSA key in a way recommended by FIPS 186-4, both primes must  | 
2876  |  |  * be either 1024 bits or 1536 bits long, and flags must contain  | 
2877  |  |  * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.  | 
2878  |  |  */  | 
2879  |  | int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,  | 
2880  |  |                           int (*f_rng)(void *, unsigned char *, size_t),  | 
2881  |  |                           void *p_rng)  | 
2882  | 0  | { | 
2883  | 0  | #ifdef MBEDTLS_HAVE_INT64  | 
2884  |  | // ceil(2^63.5)  | 
2885  | 0  | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL  | 
2886  |  | #else  | 
2887  |  | // ceil(2^31.5)  | 
2888  |  | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U  | 
2889  |  | #endif  | 
2890  | 0  |     int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;  | 
2891  | 0  |     size_t k, n;  | 
2892  | 0  |     int rounds;  | 
2893  | 0  |     mbedtls_mpi_uint r;  | 
2894  | 0  |     mbedtls_mpi Y;  | 
2895  |  | 
  | 
2896  | 0  |     MPI_VALIDATE_RET(X     != NULL);  | 
2897  | 0  |     MPI_VALIDATE_RET(f_rng != NULL);  | 
2898  |  | 
  | 
2899  | 0  |     if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) { | 
2900  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
2901  | 0  |     }  | 
2902  |  |  | 
2903  | 0  |     mbedtls_mpi_init(&Y);  | 
2904  |  | 
  | 
2905  | 0  |     n = BITS_TO_LIMBS(nbits);  | 
2906  |  | 
  | 
2907  | 0  |     if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) { | 
2908  |  |         /*  | 
2909  |  |          * 2^-80 error probability, number of rounds chosen per HAC, table 4.4  | 
2910  |  |          */  | 
2911  | 0  |         rounds = ((nbits >= 1300) ?  2 : (nbits >=  850) ?  3 :  | 
2912  | 0  |                   (nbits >=  650) ?  4 : (nbits >=  350) ?  8 :  | 
2913  | 0  |                   (nbits >=  250) ? 12 : (nbits >=  150) ? 18 : 27);  | 
2914  | 0  |     } else { | 
2915  |  |         /*  | 
2916  |  |          * 2^-100 error probability, number of rounds computed based on HAC,  | 
2917  |  |          * fact 4.48  | 
2918  |  |          */  | 
2919  | 0  |         rounds = ((nbits >= 1450) ?  4 : (nbits >=  1150) ?  5 :  | 
2920  | 0  |                   (nbits >= 1000) ?  6 : (nbits >=   850) ?  7 :  | 
2921  | 0  |                   (nbits >=  750) ?  8 : (nbits >=   500) ? 13 :  | 
2922  | 0  |                   (nbits >=  250) ? 28 : (nbits >=   150) ? 40 : 51);  | 
2923  | 0  |     }  | 
2924  |  | 
  | 
2925  | 0  |     while (1) { | 
2926  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));  | 
2927  |  |         /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */  | 
2928  | 0  |         if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) { | 
2929  | 0  |             continue;  | 
2930  | 0  |         }  | 
2931  |  |  | 
2932  | 0  |         k = n * biL;  | 
2933  | 0  |         if (k > nbits) { | 
2934  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));  | 
2935  | 0  |         }  | 
2936  | 0  |         X->p[0] |= 1;  | 
2937  |  | 
  | 
2938  | 0  |         if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) { | 
2939  | 0  |             ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);  | 
2940  |  | 
  | 
2941  | 0  |             if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { | 
2942  | 0  |                 goto cleanup;  | 
2943  | 0  |             }  | 
2944  | 0  |         } else { | 
2945  |  |             /*  | 
2946  |  |              * A necessary condition for Y and X = 2Y + 1 to be prime  | 
2947  |  |              * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).  | 
2948  |  |              * Make sure it is satisfied, while keeping X = 3 mod 4  | 
2949  |  |              */  | 
2950  |  | 
  | 
2951  | 0  |             X->p[0] |= 2;  | 
2952  |  | 
  | 
2953  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));  | 
2954  | 0  |             if (r == 0) { | 
2955  | 0  |                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));  | 
2956  | 0  |             } else if (r == 1) { | 
2957  | 0  |                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));  | 
2958  | 0  |             }  | 
2959  |  |  | 
2960  |  |             /* Set Y = (X-1) / 2, which is X / 2 because X is odd */  | 
2961  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));  | 
2962  | 0  |             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));  | 
2963  |  |  | 
2964  | 0  |             while (1) { | 
2965  |  |                 /*  | 
2966  |  |                  * First, check small factors for X and Y  | 
2967  |  |                  * before doing Miller-Rabin on any of them  | 
2968  |  |                  */  | 
2969  | 0  |                 if ((ret = mpi_check_small_factors(X)) == 0 &&  | 
2970  | 0  |                     (ret = mpi_check_small_factors(&Y)) == 0 &&  | 
2971  | 0  |                     (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))  | 
2972  | 0  |                     == 0 &&  | 
2973  | 0  |                     (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))  | 
2974  | 0  |                     == 0) { | 
2975  | 0  |                     goto cleanup;  | 
2976  | 0  |                 }  | 
2977  |  |  | 
2978  | 0  |                 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { | 
2979  | 0  |                     goto cleanup;  | 
2980  | 0  |                 }  | 
2981  |  |  | 
2982  |  |                 /*  | 
2983  |  |                  * Next candidates. We want to preserve Y = (X-1) / 2 and  | 
2984  |  |                  * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)  | 
2985  |  |                  * so up Y by 6 and X by 12.  | 
2986  |  |                  */  | 
2987  | 0  |                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12));  | 
2988  | 0  |                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));  | 
2989  | 0  |             }  | 
2990  | 0  |         }  | 
2991  | 0  |     }  | 
2992  |  |  | 
2993  | 0  | cleanup:  | 
2994  |  | 
  | 
2995  | 0  |     mbedtls_mpi_free(&Y);  | 
2996  |  | 
  | 
2997  | 0  |     return ret;  | 
2998  | 0  | }  | 
2999  |  |  | 
3000  |  | #endif /* MBEDTLS_GENPRIME */  | 
3001  |  |  | 
3002  |  | #if defined(MBEDTLS_SELF_TEST)  | 
3003  |  |  | 
3004  | 0  | #define GCD_PAIR_COUNT  3  | 
3005  |  |  | 
3006  |  | static const int gcd_pairs[GCD_PAIR_COUNT][3] =  | 
3007  |  | { | 
3008  |  |     { 693, 609, 21 }, | 
3009  |  |     { 1764, 868, 28 }, | 
3010  |  |     { 768454923, 542167814, 1 } | 
3011  |  | };  | 
3012  |  |  | 
3013  |  | /*  | 
3014  |  |  * Checkup routine  | 
3015  |  |  */  | 
3016  |  | int mbedtls_mpi_self_test(int verbose)  | 
3017  | 0  | { | 
3018  | 0  |     int ret, i;  | 
3019  | 0  |     mbedtls_mpi A, E, N, X, Y, U, V;  | 
3020  |  | 
  | 
3021  | 0  |     mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);  | 
3022  | 0  |     mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);  | 
3023  |  | 
  | 
3024  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,  | 
3025  | 0  |                                             "EFE021C2645FD1DC586E69184AF4A31E" \  | 
3026  | 0  |                                             "D5F53E93B5F123FA41680867BA110131" \  | 
3027  | 0  |                                             "944FE7952E2517337780CB0DB80E61AA" \  | 
3028  | 0  |                                             "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));  | 
3029  |  |  | 
3030  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,  | 
3031  | 0  |                                             "B2E7EFD37075B9F03FF989C7C5051C20" \  | 
3032  | 0  |                                             "34D2A323810251127E7BF8625A4F49A5" \  | 
3033  | 0  |                                             "F3E27F4DA8BD59C47D6DAABA4C8127BD" \  | 
3034  | 0  |                                             "5B5C25763222FEFCCFC38B832366C29E"));  | 
3035  |  |  | 
3036  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,  | 
3037  | 0  |                                             "0066A198186C18C10B2F5ED9B522752A" \  | 
3038  | 0  |                                             "9830B69916E535C8F047518A889A43A5" \  | 
3039  | 0  |                                             "94B6BED27A168D31D4A52F88925AA8F5"));  | 
3040  |  |  | 
3041  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));  | 
3042  |  |  | 
3043  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,  | 
3044  | 0  |                                             "602AB7ECA597A3D6B56FF9829A5E8B85" \  | 
3045  | 0  |                                             "9E857EA95A03512E2BAE7391688D264A" \  | 
3046  | 0  |                                             "A5663B0341DB9CCFD2C4C5F421FEC814" \  | 
3047  | 0  |                                             "8001B72E848A38CAE1C65F78E56ABDEF" \  | 
3048  | 0  |                                             "E12D3C039B8A02D6BE593F0BBBDA56F1" \  | 
3049  | 0  |                                             "ECF677152EF804370C1A305CAF3B5BF1" \  | 
3050  | 0  |                                             "30879B56C61DE584A0F53A2447A51E"));  | 
3051  |  |  | 
3052  | 0  |     if (verbose != 0) { | 
3053  | 0  |         mbedtls_printf("  MPI test #1 (mul_mpi): "); | 
3054  | 0  |     }  | 
3055  |  | 
  | 
3056  | 0  |     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { | 
3057  | 0  |         if (verbose != 0) { | 
3058  | 0  |             mbedtls_printf("failed\n"); | 
3059  | 0  |         }  | 
3060  |  | 
  | 
3061  | 0  |         ret = 1;  | 
3062  | 0  |         goto cleanup;  | 
3063  | 0  |     }  | 
3064  |  |  | 
3065  | 0  |     if (verbose != 0) { | 
3066  | 0  |         mbedtls_printf("passed\n"); | 
3067  | 0  |     }  | 
3068  |  | 
  | 
3069  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));  | 
3070  |  |  | 
3071  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,  | 
3072  | 0  |                                             "256567336059E52CAE22925474705F39A94"));  | 
3073  |  |  | 
3074  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,  | 
3075  | 0  |                                             "6613F26162223DF488E9CD48CC132C7A" \  | 
3076  | 0  |                                             "0AC93C701B001B092E4E5B9F73BCD27B" \  | 
3077  | 0  |                                             "9EE50D0657C77F374E903CDFA4C642"));  | 
3078  |  |  | 
3079  | 0  |     if (verbose != 0) { | 
3080  | 0  |         mbedtls_printf("  MPI test #2 (div_mpi): "); | 
3081  | 0  |     }  | 
3082  |  | 
  | 
3083  | 0  |     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||  | 
3084  | 0  |         mbedtls_mpi_cmp_mpi(&Y, &V) != 0) { | 
3085  | 0  |         if (verbose != 0) { | 
3086  | 0  |             mbedtls_printf("failed\n"); | 
3087  | 0  |         }  | 
3088  |  | 
  | 
3089  | 0  |         ret = 1;  | 
3090  | 0  |         goto cleanup;  | 
3091  | 0  |     }  | 
3092  |  |  | 
3093  | 0  |     if (verbose != 0) { | 
3094  | 0  |         mbedtls_printf("passed\n"); | 
3095  | 0  |     }  | 
3096  |  | 
  | 
3097  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));  | 
3098  |  |  | 
3099  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,  | 
3100  | 0  |                                             "36E139AEA55215609D2816998ED020BB" \  | 
3101  | 0  |                                             "BD96C37890F65171D948E9BC7CBAA4D9" \  | 
3102  | 0  |                                             "325D24D6A3C12710F10A09FA08AB87"));  | 
3103  |  |  | 
3104  | 0  |     if (verbose != 0) { | 
3105  | 0  |         mbedtls_printf("  MPI test #3 (exp_mod): "); | 
3106  | 0  |     }  | 
3107  |  | 
  | 
3108  | 0  |     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { | 
3109  | 0  |         if (verbose != 0) { | 
3110  | 0  |             mbedtls_printf("failed\n"); | 
3111  | 0  |         }  | 
3112  |  | 
  | 
3113  | 0  |         ret = 1;  | 
3114  | 0  |         goto cleanup;  | 
3115  | 0  |     }  | 
3116  |  |  | 
3117  | 0  |     if (verbose != 0) { | 
3118  | 0  |         mbedtls_printf("passed\n"); | 
3119  | 0  |     }  | 
3120  |  | 
  | 
3121  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));  | 
3122  |  |  | 
3123  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,  | 
3124  | 0  |                                             "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \  | 
3125  | 0  |                                             "C3DBA76456363A10869622EAC2DD84EC" \  | 
3126  | 0  |                                             "C5B8A74DAC4D09E03B5E0BE779F2DF61"));  | 
3127  |  |  | 
3128  | 0  |     if (verbose != 0) { | 
3129  | 0  |         mbedtls_printf("  MPI test #4 (inv_mod): "); | 
3130  | 0  |     }  | 
3131  |  | 
  | 
3132  | 0  |     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { | 
3133  | 0  |         if (verbose != 0) { | 
3134  | 0  |             mbedtls_printf("failed\n"); | 
3135  | 0  |         }  | 
3136  |  | 
  | 
3137  | 0  |         ret = 1;  | 
3138  | 0  |         goto cleanup;  | 
3139  | 0  |     }  | 
3140  |  |  | 
3141  | 0  |     if (verbose != 0) { | 
3142  | 0  |         mbedtls_printf("passed\n"); | 
3143  | 0  |     }  | 
3144  |  | 
  | 
3145  | 0  |     if (verbose != 0) { | 
3146  | 0  |         mbedtls_printf("  MPI test #5 (simple gcd): "); | 
3147  | 0  |     }  | 
3148  |  | 
  | 
3149  | 0  |     for (i = 0; i < GCD_PAIR_COUNT; i++) { | 
3150  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));  | 
3151  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));  | 
3152  |  |  | 
3153  | 0  |         MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));  | 
3154  |  |  | 
3155  | 0  |         if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) { | 
3156  | 0  |             if (verbose != 0) { | 
3157  | 0  |                 mbedtls_printf("failed at %d\n", i); | 
3158  | 0  |             }  | 
3159  |  | 
  | 
3160  | 0  |             ret = 1;  | 
3161  | 0  |             goto cleanup;  | 
3162  | 0  |         }  | 
3163  | 0  |     }  | 
3164  |  |  | 
3165  | 0  |     if (verbose != 0) { | 
3166  | 0  |         mbedtls_printf("passed\n"); | 
3167  | 0  |     }  | 
3168  |  | 
  | 
3169  | 0  | cleanup:  | 
3170  |  | 
  | 
3171  | 0  |     if (ret != 0 && verbose != 0) { | 
3172  | 0  |         mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret); | 
3173  | 0  |     }  | 
3174  |  | 
  | 
3175  | 0  |     mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);  | 
3176  | 0  |     mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);  | 
3177  |  | 
  | 
3178  | 0  |     if (verbose != 0) { | 
3179  | 0  |         mbedtls_printf("\n"); | 
3180  | 0  |     }  | 
3181  |  | 
  | 
3182  | 0  |     return ret;  | 
3183  | 0  | }  | 
3184  |  |  | 
3185  |  | #endif /* MBEDTLS_SELF_TEST */  | 
3186  |  |  | 
3187  |  | #endif /* MBEDTLS_BIGNUM_C */  |