/work/mbedtls-2.28.8/library/constant_time.c
Line  | Count  | Source  | 
1  |  | /**  | 
2  |  |  *  Constant-time functions  | 
3  |  |  *  | 
4  |  |  *  Copyright The Mbed TLS Contributors  | 
5  |  |  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later  | 
6  |  |  */  | 
7  |  |  | 
8  |  | /*  | 
9  |  |  * The following functions are implemented without using comparison operators, as those  | 
10  |  |  * might be translated to branches by some compilers on some platforms.  | 
11  |  |  */  | 
12  |  |  | 
13  |  | #include "common.h"  | 
14  |  | #include "constant_time_internal.h"  | 
15  |  | #include "mbedtls/constant_time.h"  | 
16  |  | #include "mbedtls/error.h"  | 
17  |  | #include "mbedtls/platform_util.h"  | 
18  |  |  | 
19  |  | #if defined(MBEDTLS_BIGNUM_C)  | 
20  |  | #include "mbedtls/bignum.h"  | 
21  |  | #endif  | 
22  |  |  | 
23  |  | #if defined(MBEDTLS_SSL_TLS_C)  | 
24  |  | #include "mbedtls/ssl_internal.h"  | 
25  |  | #endif  | 
26  |  |  | 
27  |  | #if defined(MBEDTLS_RSA_C)  | 
28  |  | #include "mbedtls/rsa.h"  | 
29  |  | #endif  | 
30  |  |  | 
31  |  | #if defined(MBEDTLS_BASE64_C)  | 
32  |  | #include "constant_time_invasive.h"  | 
33  |  | #endif  | 
34  |  |  | 
35  |  | #include <string.h>  | 
36  |  |  | 
37  |  | int mbedtls_ct_memcmp(const void *a,  | 
38  |  |                       const void *b,  | 
39  |  |                       size_t n)  | 
40  | 0  | { | 
41  | 0  |     size_t i;  | 
42  | 0  |     volatile const unsigned char *A = (volatile const unsigned char *) a;  | 
43  | 0  |     volatile const unsigned char *B = (volatile const unsigned char *) b;  | 
44  | 0  |     volatile unsigned char diff = 0;  | 
45  |  | 
  | 
46  | 0  |     for (i = 0; i < n; i++) { | 
47  |  |         /* Read volatile data in order before computing diff.  | 
48  |  |          * This avoids IAR compiler warning:  | 
49  |  |          * 'the order of volatile accesses is undefined ..' */  | 
50  | 0  |         unsigned char x = A[i], y = B[i];  | 
51  | 0  |         diff |= x ^ y;  | 
52  | 0  |     }  | 
53  |  | 
  | 
54  | 0  |     return (int) diff;  | 
55  | 0  | }  | 
56  |  |  | 
57  |  | unsigned mbedtls_ct_uint_mask(unsigned value)  | 
58  | 0  | { | 
59  |  |     /* MSVC has a warning about unary minus on unsigned, but this is  | 
60  |  |      * well-defined and precisely what we want to do here */  | 
61  |  | #if defined(_MSC_VER)  | 
62  |  | #pragma warning( push )  | 
63  |  | #pragma warning( disable : 4146 )  | 
64  |  | #endif  | 
65  | 0  |     return -((value | -value) >> (sizeof(value) * 8 - 1));  | 
66  |  | #if defined(_MSC_VER)  | 
67  |  | #pragma warning( pop )  | 
68  |  | #endif  | 
69  | 0  | }  | 
70  |  |  | 
71  |  | #if defined(MBEDTLS_SSL_SOME_MODES_USE_MAC) || defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) || \  | 
72  |  |     defined(MBEDTLS_NIST_KW_C) || defined(MBEDTLS_CIPHER_MODE_CBC)  | 
73  |  |  | 
74  |  | size_t mbedtls_ct_size_mask(size_t value)  | 
75  | 0  | { | 
76  |  |     /* MSVC has a warning about unary minus on unsigned integer types,  | 
77  |  |      * but this is well-defined and precisely what we want to do here. */  | 
78  |  | #if defined(_MSC_VER)  | 
79  |  | #pragma warning( push )  | 
80  |  | #pragma warning( disable : 4146 )  | 
81  |  | #endif  | 
82  | 0  |     return -((value | -value) >> (sizeof(value) * 8 - 1));  | 
83  |  | #if defined(_MSC_VER)  | 
84  |  | #pragma warning( pop )  | 
85  |  | #endif  | 
86  | 0  | }  | 
87  |  |  | 
88  |  | #endif /* defined(MBEDTLS_SSL_SOME_MODES_USE_MAC) || defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) ||  | 
89  |  |           defined(MBEDTLS_NIST_KW_C) || defined(MBEDTLS_CIPHER_MODE_CBC) */  | 
90  |  |  | 
91  |  | #if defined(MBEDTLS_BIGNUM_C)  | 
92  |  |  | 
93  |  | mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)  | 
94  | 0  | { | 
95  |  |     /* MSVC has a warning about unary minus on unsigned, but this is  | 
96  |  |      * well-defined and precisely what we want to do here */  | 
97  |  | #if defined(_MSC_VER)  | 
98  |  | #pragma warning( push )  | 
99  |  | #pragma warning( disable : 4146 )  | 
100  |  | #endif  | 
101  | 0  |     return -((value | -value) >> (sizeof(value) * 8 - 1));  | 
102  |  | #if defined(_MSC_VER)  | 
103  |  | #pragma warning( pop )  | 
104  |  | #endif  | 
105  | 0  | }  | 
106  |  |  | 
107  |  | #endif /* MBEDTLS_BIGNUM_C */  | 
108  |  |  | 
109  |  | #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) || defined(MBEDTLS_NIST_KW_C) || \  | 
110  |  |     defined(MBEDTLS_CIPHER_MODE_CBC)  | 
111  |  |  | 
112  |  | /** Constant-flow mask generation for "less than" comparison:  | 
113  |  |  * - if \p x < \p y, return all-bits 1, that is (size_t) -1  | 
114  |  |  * - otherwise, return all bits 0, that is 0  | 
115  |  |  *  | 
116  |  |  * This function can be used to write constant-time code by replacing branches  | 
117  |  |  * with bit operations using masks.  | 
118  |  |  *  | 
119  |  |  * \param x     The first value to analyze.  | 
120  |  |  * \param y     The second value to analyze.  | 
121  |  |  *  | 
122  |  |  * \return      All-bits-one if \p x is less than \p y, otherwise zero.  | 
123  |  |  */  | 
124  |  | static size_t mbedtls_ct_size_mask_lt(size_t x,  | 
125  |  |                                       size_t y)  | 
126  | 0  | { | 
127  |  |     /* This has the most significant bit set if and only if x < y */  | 
128  | 0  |     const size_t sub = x - y;  | 
129  |  |  | 
130  |  |     /* sub1 = (x < y) ? 1 : 0 */  | 
131  | 0  |     const size_t sub1 = sub >> (sizeof(sub) * 8 - 1);  | 
132  |  |  | 
133  |  |     /* mask = (x < y) ? 0xff... : 0x00... */  | 
134  | 0  |     const size_t mask = mbedtls_ct_size_mask(sub1);  | 
135  |  | 
  | 
136  | 0  |     return mask;  | 
137  | 0  | }  | 
138  |  |  | 
139  |  | size_t mbedtls_ct_size_mask_ge(size_t x,  | 
140  |  |                                size_t y)  | 
141  | 0  | { | 
142  | 0  |     return ~mbedtls_ct_size_mask_lt(x, y);  | 
143  | 0  | }  | 
144  |  |  | 
145  |  | #endif /* defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) || defined(MBEDTLS_NIST_KW_C) ||  | 
146  |  |           defined(MBEDTLS_CIPHER_MODE_CBC) */  | 
147  |  |  | 
148  |  | #if defined(MBEDTLS_BASE64_C)  | 
149  |  |  | 
150  |  | /* Return 0xff if low <= c <= high, 0 otherwise.  | 
151  |  |  *  | 
152  |  |  * Constant flow with respect to c.  | 
153  |  |  */  | 
154  |  | MBEDTLS_STATIC_TESTABLE  | 
155  |  | unsigned char mbedtls_ct_uchar_mask_of_range(unsigned char low,  | 
156  |  |                                              unsigned char high,  | 
157  |  |                                              unsigned char c)  | 
158  | 0  | { | 
159  |  |     /* low_mask is: 0 if low <= c, 0x...ff if low > c */  | 
160  | 0  |     unsigned low_mask = ((unsigned) c - low) >> 8;  | 
161  |  |     /* high_mask is: 0 if c <= high, 0x...ff if c > high */  | 
162  | 0  |     unsigned high_mask = ((unsigned) high - c) >> 8;  | 
163  | 0  |     return ~(low_mask | high_mask) & 0xff;  | 
164  | 0  | }  | 
165  |  |  | 
166  |  | #endif /* MBEDTLS_BASE64_C */  | 
167  |  |  | 
168  |  | unsigned mbedtls_ct_size_bool_eq(size_t x,  | 
169  |  |                                  size_t y)  | 
170  | 0  | { | 
171  |  |     /* diff = 0 if x == y, non-zero otherwise */  | 
172  | 0  |     const size_t diff = x ^ y;  | 
173  |  |  | 
174  |  |     /* MSVC has a warning about unary minus on unsigned integer types,  | 
175  |  |      * but this is well-defined and precisely what we want to do here. */  | 
176  |  | #if defined(_MSC_VER)  | 
177  |  | #pragma warning( push )  | 
178  |  | #pragma warning( disable : 4146 )  | 
179  |  | #endif  | 
180  |  |  | 
181  |  |     /* diff_msb's most significant bit is equal to x != y */  | 
182  | 0  |     const size_t diff_msb = (diff | (size_t) -diff);  | 
183  |  | 
  | 
184  |  | #if defined(_MSC_VER)  | 
185  |  | #pragma warning( pop )  | 
186  |  | #endif  | 
187  |  |  | 
188  |  |     /* diff1 = (x != y) ? 1 : 0 */  | 
189  | 0  |     const unsigned diff1 = diff_msb >> (sizeof(diff_msb) * 8 - 1);  | 
190  |  | 
  | 
191  | 0  |     return 1 ^ diff1;  | 
192  | 0  | }  | 
193  |  |  | 
194  |  | #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)  | 
195  |  |  | 
196  |  | /** Constant-flow "greater than" comparison:  | 
197  |  |  * return x > y  | 
198  |  |  *  | 
199  |  |  * This is equivalent to \p x > \p y, but is likely to be compiled  | 
200  |  |  * to code using bitwise operation rather than a branch.  | 
201  |  |  *  | 
202  |  |  * \param x     The first value to analyze.  | 
203  |  |  * \param y     The second value to analyze.  | 
204  |  |  *  | 
205  |  |  * \return      1 if \p x greater than \p y, otherwise 0.  | 
206  |  |  */  | 
207  |  | static unsigned mbedtls_ct_size_gt(size_t x,  | 
208  |  |                                    size_t y)  | 
209  | 0  | { | 
210  |  |     /* Return the sign bit (1 for negative) of (y - x). */  | 
211  | 0  |     return (y - x) >> (sizeof(size_t) * 8 - 1);  | 
212  | 0  | }  | 
213  |  |  | 
214  |  | #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */  | 
215  |  |  | 
216  |  | #if defined(MBEDTLS_BIGNUM_C)  | 
217  |  |  | 
218  |  | unsigned mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,  | 
219  |  |                                 const mbedtls_mpi_uint y)  | 
220  | 0  | { | 
221  | 0  |     mbedtls_mpi_uint ret;  | 
222  | 0  |     mbedtls_mpi_uint cond;  | 
223  |  |  | 
224  |  |     /*  | 
225  |  |      * Check if the most significant bits (MSB) of the operands are different.  | 
226  |  |      */  | 
227  | 0  |     cond = (x ^ y);  | 
228  |  |     /*  | 
229  |  |      * If the MSB are the same then the difference x-y will be negative (and  | 
230  |  |      * have its MSB set to 1 during conversion to unsigned) if and only if x<y.  | 
231  |  |      */  | 
232  | 0  |     ret = (x - y) & ~cond;  | 
233  |  |     /*  | 
234  |  |      * If the MSB are different, then the operand with the MSB of 1 is the  | 
235  |  |      * bigger. (That is if y has MSB of 1, then x<y is true and it is false if  | 
236  |  |      * the MSB of y is 0.)  | 
237  |  |      */  | 
238  | 0  |     ret |= y & cond;  | 
239  |  |  | 
240  |  | 
  | 
241  | 0  |     ret = ret >> (sizeof(mbedtls_mpi_uint) * 8 - 1);  | 
242  |  | 
  | 
243  | 0  |     return (unsigned) ret;  | 
244  | 0  | }  | 
245  |  |  | 
246  |  | #endif /* MBEDTLS_BIGNUM_C */  | 
247  |  |  | 
248  |  | unsigned mbedtls_ct_uint_if(unsigned condition,  | 
249  |  |                             unsigned if1,  | 
250  |  |                             unsigned if0)  | 
251  | 0  | { | 
252  | 0  |     unsigned mask = mbedtls_ct_uint_mask(condition);  | 
253  | 0  |     return (mask & if1) | (~mask & if0);  | 
254  | 0  | }  | 
255  |  |  | 
256  |  | #if defined(MBEDTLS_BIGNUM_C)  | 
257  |  |  | 
258  |  | void mbedtls_ct_mpi_uint_cond_assign(size_t n,  | 
259  |  |                                      mbedtls_mpi_uint *dest,  | 
260  |  |                                      const mbedtls_mpi_uint *src,  | 
261  |  |                                      unsigned char condition)  | 
262  | 0  | { | 
263  | 0  |     size_t i;  | 
264  |  |  | 
265  |  |     /* MSVC has a warning about unary minus on unsigned integer types,  | 
266  |  |      * but this is well-defined and precisely what we want to do here. */  | 
267  |  | #if defined(_MSC_VER)  | 
268  |  | #pragma warning( push )  | 
269  |  | #pragma warning( disable : 4146 )  | 
270  |  | #endif  | 
271  |  |  | 
272  |  |     /* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */  | 
273  | 0  |     const mbedtls_mpi_uint mask = -condition;  | 
274  |  | 
  | 
275  |  | #if defined(_MSC_VER)  | 
276  |  | #pragma warning( pop )  | 
277  |  | #endif  | 
278  |  | 
  | 
279  | 0  |     for (i = 0; i < n; i++) { | 
280  | 0  |         dest[i] = (src[i] & mask) | (dest[i] & ~mask);  | 
281  | 0  |     }  | 
282  | 0  | }  | 
283  |  |  | 
284  |  | #endif /* MBEDTLS_BIGNUM_C */  | 
285  |  |  | 
286  |  | #if defined(MBEDTLS_BASE64_C)  | 
287  |  |  | 
288  |  | unsigned char mbedtls_ct_base64_enc_char(unsigned char value)  | 
289  | 0  | { | 
290  | 0  |     unsigned char digit = 0;  | 
291  |  |     /* For each range of values, if value is in that range, mask digit with  | 
292  |  |      * the corresponding value. Since value can only be in a single range,  | 
293  |  |      * only at most one masking will change digit. */  | 
294  | 0  |     digit |= mbedtls_ct_uchar_mask_of_range(0, 25, value) & ('A' + value); | 
295  | 0  |     digit |= mbedtls_ct_uchar_mask_of_range(26, 51, value) & ('a' + value - 26); | 
296  | 0  |     digit |= mbedtls_ct_uchar_mask_of_range(52, 61, value) & ('0' + value - 52); | 
297  | 0  |     digit |= mbedtls_ct_uchar_mask_of_range(62, 62, value) & '+';  | 
298  | 0  |     digit |= mbedtls_ct_uchar_mask_of_range(63, 63, value) & '/';  | 
299  | 0  |     return digit;  | 
300  | 0  | }  | 
301  |  |  | 
302  |  | signed char mbedtls_ct_base64_dec_value(unsigned char c)  | 
303  | 0  | { | 
304  | 0  |     unsigned char val = 0;  | 
305  |  |     /* For each range of digits, if c is in that range, mask val with  | 
306  |  |      * the corresponding value. Since c can only be in a single range,  | 
307  |  |      * only at most one masking will change val. Set val to one plus  | 
308  |  |      * the desired value so that it stays 0 if c is in none of the ranges. */  | 
309  | 0  |     val |= mbedtls_ct_uchar_mask_of_range('A', 'Z', c) & (c - 'A' +  0 + 1); | 
310  | 0  |     val |= mbedtls_ct_uchar_mask_of_range('a', 'z', c) & (c - 'a' + 26 + 1); | 
311  | 0  |     val |= mbedtls_ct_uchar_mask_of_range('0', '9', c) & (c - '0' + 52 + 1); | 
312  | 0  |     val |= mbedtls_ct_uchar_mask_of_range('+', '+', c) & (c - '+' + 62 + 1); | 
313  | 0  |     val |= mbedtls_ct_uchar_mask_of_range('/', '/', c) & (c - '/' + 63 + 1); | 
314  |  |     /* At this point, val is 0 if c is an invalid digit and v+1 if c is  | 
315  |  |      * a digit with the value v. */  | 
316  | 0  |     return val - 1;  | 
317  | 0  | }  | 
318  |  |  | 
319  |  | #endif /* MBEDTLS_BASE64_C */  | 
320  |  |  | 
321  |  | #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)  | 
322  |  |  | 
323  |  | /** Shift some data towards the left inside a buffer.  | 
324  |  |  *  | 
325  |  |  * `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally  | 
326  |  |  * equivalent to  | 
327  |  |  * ```  | 
328  |  |  * memmove(start, start + offset, total - offset);  | 
329  |  |  * memset(start + offset, 0, total - offset);  | 
330  |  |  * ```  | 
331  |  |  * but it strives to use a memory access pattern (and thus total timing)  | 
332  |  |  * that does not depend on \p offset. This timing independence comes at  | 
333  |  |  * the expense of performance.  | 
334  |  |  *  | 
335  |  |  * \param start     Pointer to the start of the buffer.  | 
336  |  |  * \param total     Total size of the buffer.  | 
337  |  |  * \param offset    Offset from which to copy \p total - \p offset bytes.  | 
338  |  |  */  | 
339  |  | static void mbedtls_ct_mem_move_to_left(void *start,  | 
340  |  |                                         size_t total,  | 
341  |  |                                         size_t offset)  | 
342  | 0  | { | 
343  | 0  |     volatile unsigned char *buf = start;  | 
344  | 0  |     size_t i, n;  | 
345  | 0  |     if (total == 0) { | 
346  | 0  |         return;  | 
347  | 0  |     }  | 
348  | 0  |     for (i = 0; i < total; i++) { | 
349  | 0  |         unsigned no_op = mbedtls_ct_size_gt(total - offset, i);  | 
350  |  |         /* The first `total - offset` passes are a no-op. The last  | 
351  |  |          * `offset` passes shift the data one byte to the left and  | 
352  |  |          * zero out the last byte. */  | 
353  | 0  |         for (n = 0; n < total - 1; n++) { | 
354  | 0  |             unsigned char current = buf[n];  | 
355  | 0  |             unsigned char next = buf[n+1];  | 
356  | 0  |             buf[n] = mbedtls_ct_uint_if(no_op, current, next);  | 
357  | 0  |         }  | 
358  | 0  |         buf[total-1] = mbedtls_ct_uint_if(no_op, buf[total-1], 0);  | 
359  | 0  |     }  | 
360  | 0  | }  | 
361  |  |  | 
362  |  | #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */  | 
363  |  |  | 
364  |  | #if defined(MBEDTLS_SSL_SOME_MODES_USE_MAC)  | 
365  |  | void mbedtls_ct_memcpy_if_eq(unsigned char *dest,  | 
366  |  |                              const unsigned char *src,  | 
367  |  |                              size_t len,  | 
368  |  |                              size_t c1,  | 
369  |  |                              size_t c2)  | 
370  | 0  | { | 
371  |  |     /* mask = c1 == c2 ? 0xff : 0x00 */  | 
372  | 0  |     const size_t equal = mbedtls_ct_size_bool_eq(c1, c2);  | 
373  | 0  |     const unsigned char mask = (unsigned char) mbedtls_ct_size_mask(equal);  | 
374  |  |  | 
375  |  |     /* dest[i] = c1 == c2 ? src[i] : dest[i] */  | 
376  | 0  |     for (size_t i = 0; i < len; i++) { | 
377  | 0  |         dest[i] = (src[i] & mask) | (dest[i] & ~mask);  | 
378  | 0  |     }  | 
379  | 0  | }  | 
380  |  |  | 
381  |  | void mbedtls_ct_memcpy_offset(unsigned char *dest,  | 
382  |  |                               const unsigned char *src,  | 
383  |  |                               size_t offset,  | 
384  |  |                               size_t offset_min,  | 
385  |  |                               size_t offset_max,  | 
386  |  |                               size_t len)  | 
387  | 0  | { | 
388  | 0  |     size_t offsetval;  | 
389  |  | 
  | 
390  | 0  |     for (offsetval = offset_min; offsetval <= offset_max; offsetval++) { | 
391  | 0  |         mbedtls_ct_memcpy_if_eq(dest, src + offsetval, len,  | 
392  | 0  |                                 offsetval, offset);  | 
393  | 0  |     }  | 
394  | 0  | }  | 
395  |  |  | 
396  |  | int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,  | 
397  |  |                     const unsigned char *add_data,  | 
398  |  |                     size_t add_data_len,  | 
399  |  |                     const unsigned char *data,  | 
400  |  |                     size_t data_len_secret,  | 
401  |  |                     size_t min_data_len,  | 
402  |  |                     size_t max_data_len,  | 
403  |  |                     unsigned char *output)  | 
404  | 0  | { | 
405  |  |     /*  | 
406  |  |      * This function breaks the HMAC abstraction and uses the md_clone()  | 
407  |  |      * extension to the MD API in order to get constant-flow behaviour.  | 
408  |  |      *  | 
409  |  |      * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means  | 
410  |  |      * concatenation, and okey/ikey are the XOR of the key with some fixed bit  | 
411  |  |      * patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.  | 
412  |  |      *  | 
413  |  |      * We'll first compute inner_hash = HASH(ikey + msg) by hashing up to  | 
414  |  |      * minlen, then cloning the context, and for each byte up to maxlen  | 
415  |  |      * finishing up the hash computation, keeping only the correct result.  | 
416  |  |      *  | 
417  |  |      * Then we only need to compute HASH(okey + inner_hash) and we're done.  | 
418  |  |      */  | 
419  | 0  |     const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info);  | 
420  |  |     /* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5,  | 
421  |  |      * all of which have the same block size except SHA-384. */  | 
422  | 0  |     const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;  | 
423  | 0  |     const unsigned char * const ikey = ctx->hmac_ctx;  | 
424  | 0  |     const unsigned char * const okey = ikey + block_size;  | 
425  | 0  |     const size_t hash_size = mbedtls_md_get_size(ctx->md_info);  | 
426  |  | 
  | 
427  | 0  |     unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];  | 
428  | 0  |     mbedtls_md_context_t aux;  | 
429  | 0  |     size_t offset;  | 
430  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
431  |  | 
  | 
432  | 0  |     mbedtls_md_init(&aux);  | 
433  |  | 
  | 
434  | 0  | #define MD_CHK(func_call) \  | 
435  | 0  |     do {                    \ | 
436  | 0  |         ret = (func_call);  \  | 
437  | 0  |         if (ret != 0)      \  | 
438  | 0  |         goto cleanup;   \  | 
439  | 0  |     } while (0)  | 
440  |  | 
  | 
441  | 0  |     MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0));  | 
442  |  |  | 
443  |  |     /* After hmac_start() of hmac_reset(), ikey has already been hashed,  | 
444  |  |      * so we can start directly with the message */  | 
445  | 0  |     MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len));  | 
446  | 0  |     MD_CHK(mbedtls_md_update(ctx, data, min_data_len));  | 
447  |  |  | 
448  |  |     /* Fill the hash buffer in advance with something that is  | 
449  |  |      * not a valid hash (barring an attack on the hash and  | 
450  |  |      * deliberately-crafted input), in case the caller doesn't  | 
451  |  |      * check the return status properly. */  | 
452  | 0  |     memset(output, '!', hash_size);  | 
453  |  |  | 
454  |  |     /* For each possible length, compute the hash up to that point */  | 
455  | 0  |     for (offset = min_data_len; offset <= max_data_len; offset++) { | 
456  | 0  |         MD_CHK(mbedtls_md_clone(&aux, ctx));  | 
457  | 0  |         MD_CHK(mbedtls_md_finish(&aux, aux_out));  | 
458  |  |         /* Keep only the correct inner_hash in the output buffer */  | 
459  | 0  |         mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,  | 
460  | 0  |                                 offset, data_len_secret);  | 
461  |  | 
  | 
462  | 0  |         if (offset < max_data_len) { | 
463  | 0  |             MD_CHK(mbedtls_md_update(ctx, data + offset, 1));  | 
464  | 0  |         }  | 
465  | 0  |     }  | 
466  |  |  | 
467  |  |     /* The context needs to finish() before it starts() again */  | 
468  | 0  |     MD_CHK(mbedtls_md_finish(ctx, aux_out));  | 
469  |  |  | 
470  |  |     /* Now compute HASH(okey + inner_hash) */  | 
471  | 0  |     MD_CHK(mbedtls_md_starts(ctx));  | 
472  | 0  |     MD_CHK(mbedtls_md_update(ctx, okey, block_size));  | 
473  | 0  |     MD_CHK(mbedtls_md_update(ctx, output, hash_size));  | 
474  | 0  |     MD_CHK(mbedtls_md_finish(ctx, output));  | 
475  |  |  | 
476  |  |     /* Done, get ready for next time */  | 
477  | 0  |     MD_CHK(mbedtls_md_hmac_reset(ctx));  | 
478  |  |  | 
479  | 0  | #undef MD_CHK  | 
480  |  |  | 
481  | 0  | cleanup:  | 
482  | 0  |     mbedtls_md_free(&aux);  | 
483  | 0  |     return ret;  | 
484  | 0  | }  | 
485  |  |  | 
486  |  | #endif /* MBEDTLS_SSL_SOME_MODES_USE_MAC */  | 
487  |  |  | 
488  |  | #if defined(MBEDTLS_BIGNUM_C)  | 
489  |  |  | 
490  |  | #define MPI_VALIDATE_RET(cond)                                       \  | 
491  | 0  |     MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)  | 
492  |  |  | 
493  |  | /*  | 
494  |  |  * Conditionally assign X = Y, without leaking information  | 
495  |  |  * about whether the assignment was made or not.  | 
496  |  |  * (Leaking information about the respective sizes of X and Y is ok however.)  | 
497  |  |  */  | 
498  |  | #if defined(_MSC_VER) && defined(_M_ARM64) && (_MSC_FULL_VER < 193131103)  | 
499  |  | /*  | 
500  |  |  * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:  | 
501  |  |  * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989  | 
502  |  |  */  | 
503  |  | __declspec(noinline)  | 
504  |  | #endif  | 
505  |  | int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,  | 
506  |  |                                  const mbedtls_mpi *Y,  | 
507  |  |                                  unsigned char assign)  | 
508  | 0  | { | 
509  | 0  |     int ret = 0;  | 
510  | 0  |     size_t i;  | 
511  | 0  |     mbedtls_mpi_uint limb_mask;  | 
512  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
513  | 0  |     MPI_VALIDATE_RET(Y != NULL);  | 
514  |  |  | 
515  |  |     /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */  | 
516  | 0  |     limb_mask = mbedtls_ct_mpi_uint_mask(assign);;  | 
517  |  | 
  | 
518  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));  | 
519  |  |  | 
520  | 0  |     X->s = (int) mbedtls_ct_uint_if(assign, Y->s, X->s);  | 
521  |  | 
  | 
522  | 0  |     mbedtls_ct_mpi_uint_cond_assign(Y->n, X->p, Y->p, assign);  | 
523  |  | 
  | 
524  | 0  |     for (i = Y->n; i < X->n; i++) { | 
525  | 0  |         X->p[i] &= ~limb_mask;  | 
526  | 0  |     }  | 
527  |  | 
  | 
528  | 0  | cleanup:  | 
529  | 0  |     return ret;  | 
530  | 0  | }  | 
531  |  |  | 
532  |  | /*  | 
533  |  |  * Conditionally swap X and Y, without leaking information  | 
534  |  |  * about whether the swap was made or not.  | 
535  |  |  * Here it is not ok to simply swap the pointers, which would lead to  | 
536  |  |  * different memory access patterns when X and Y are used afterwards.  | 
537  |  |  */  | 
538  |  | int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,  | 
539  |  |                                mbedtls_mpi *Y,  | 
540  |  |                                unsigned char swap)  | 
541  | 0  | { | 
542  | 0  |     int ret, s;  | 
543  | 0  |     size_t i;  | 
544  | 0  |     mbedtls_mpi_uint limb_mask;  | 
545  | 0  |     mbedtls_mpi_uint tmp;  | 
546  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
547  | 0  |     MPI_VALIDATE_RET(Y != NULL);  | 
548  |  | 
  | 
549  | 0  |     if (X == Y) { | 
550  | 0  |         return 0;  | 
551  | 0  |     }  | 
552  |  |  | 
553  |  |     /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */  | 
554  | 0  |     limb_mask = mbedtls_ct_mpi_uint_mask(swap);  | 
555  |  | 
  | 
556  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));  | 
557  | 0  |     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));  | 
558  |  |  | 
559  | 0  |     s = X->s;  | 
560  | 0  |     X->s = (int) mbedtls_ct_uint_if(swap, Y->s, X->s);  | 
561  | 0  |     Y->s = (int) mbedtls_ct_uint_if(swap, s, Y->s);  | 
562  |  |  | 
563  |  | 
  | 
564  | 0  |     for (i = 0; i < X->n; i++) { | 
565  | 0  |         tmp = X->p[i];  | 
566  | 0  |         X->p[i] = (X->p[i] & ~limb_mask) | (Y->p[i] & limb_mask);  | 
567  | 0  |         Y->p[i] = (Y->p[i] & ~limb_mask) | (tmp & limb_mask);  | 
568  | 0  |     }  | 
569  |  | 
  | 
570  | 0  | cleanup:  | 
571  | 0  |     return ret;  | 
572  | 0  | }  | 
573  |  |  | 
574  |  | /*  | 
575  |  |  * Compare signed values in constant time  | 
576  |  |  */  | 
577  |  | int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,  | 
578  |  |                           const mbedtls_mpi *Y,  | 
579  |  |                           unsigned *ret)  | 
580  | 0  | { | 
581  | 0  |     size_t i;  | 
582  |  |     /* The value of any of these variables is either 0 or 1 at all times. */  | 
583  | 0  |     unsigned cond, done, X_is_negative, Y_is_negative;  | 
584  |  | 
  | 
585  | 0  |     MPI_VALIDATE_RET(X != NULL);  | 
586  | 0  |     MPI_VALIDATE_RET(Y != NULL);  | 
587  | 0  |     MPI_VALIDATE_RET(ret != NULL);  | 
588  |  | 
  | 
589  | 0  |     if (X->n != Y->n) { | 
590  | 0  |         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;  | 
591  | 0  |     }  | 
592  |  |  | 
593  |  |     /*  | 
594  |  |      * Set sign_N to 1 if N >= 0, 0 if N < 0.  | 
595  |  |      * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.  | 
596  |  |      */  | 
597  | 0  |     X_is_negative = (X->s & 2) >> 1;  | 
598  | 0  |     Y_is_negative = (Y->s & 2) >> 1;  | 
599  |  |  | 
600  |  |     /*  | 
601  |  |      * If the signs are different, then the positive operand is the bigger.  | 
602  |  |      * That is if X is negative (X_is_negative == 1), then X < Y is true and it  | 
603  |  |      * is false if X is positive (X_is_negative == 0).  | 
604  |  |      */  | 
605  | 0  |     cond = (X_is_negative ^ Y_is_negative);  | 
606  | 0  |     *ret = cond & X_is_negative;  | 
607  |  |  | 
608  |  |     /*  | 
609  |  |      * This is a constant-time function. We might have the result, but we still  | 
610  |  |      * need to go through the loop. Record if we have the result already.  | 
611  |  |      */  | 
612  | 0  |     done = cond;  | 
613  |  | 
  | 
614  | 0  |     for (i = X->n; i > 0; i--) { | 
615  |  |         /*  | 
616  |  |          * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both  | 
617  |  |          * X and Y are negative.  | 
618  |  |          *  | 
619  |  |          * Again even if we can make a decision, we just mark the result and  | 
620  |  |          * the fact that we are done and continue looping.  | 
621  |  |          */  | 
622  | 0  |         cond = mbedtls_ct_mpi_uint_lt(Y->p[i - 1], X->p[i - 1]);  | 
623  | 0  |         *ret |= cond & (1 - done) & X_is_negative;  | 
624  | 0  |         done |= cond;  | 
625  |  |  | 
626  |  |         /*  | 
627  |  |          * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both  | 
628  |  |          * X and Y are positive.  | 
629  |  |          *  | 
630  |  |          * Again even if we can make a decision, we just mark the result and  | 
631  |  |          * the fact that we are done and continue looping.  | 
632  |  |          */  | 
633  | 0  |         cond = mbedtls_ct_mpi_uint_lt(X->p[i - 1], Y->p[i - 1]);  | 
634  | 0  |         *ret |= cond & (1 - done) & (1 - X_is_negative);  | 
635  | 0  |         done |= cond;  | 
636  | 0  |     }  | 
637  |  | 
  | 
638  | 0  |     return 0;  | 
639  | 0  | }  | 
640  |  |  | 
641  |  | #endif /* MBEDTLS_BIGNUM_C */  | 
642  |  |  | 
643  |  | #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)  | 
644  |  |  | 
645  |  | int mbedtls_ct_rsaes_pkcs1_v15_unpadding(int mode,  | 
646  |  |                                          unsigned char *input,  | 
647  |  |                                          size_t ilen,  | 
648  |  |                                          unsigned char *output,  | 
649  |  |                                          size_t output_max_len,  | 
650  |  |                                          size_t *olen)  | 
651  | 0  | { | 
652  | 0  |     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;  | 
653  | 0  |     size_t i, plaintext_max_size;  | 
654  |  |  | 
655  |  |     /* The following variables take sensitive values: their value must  | 
656  |  |      * not leak into the observable behavior of the function other than  | 
657  |  |      * the designated outputs (output, olen, return value). Otherwise  | 
658  |  |      * this would open the execution of the function to  | 
659  |  |      * side-channel-based variants of the Bleichenbacher padding oracle  | 
660  |  |      * attack. Potential side channels include overall timing, memory  | 
661  |  |      * access patterns (especially visible to an adversary who has access  | 
662  |  |      * to a shared memory cache), and branches (especially visible to  | 
663  |  |      * an adversary who has access to a shared code cache or to a shared  | 
664  |  |      * branch predictor). */  | 
665  | 0  |     size_t pad_count = 0;  | 
666  | 0  |     unsigned bad = 0;  | 
667  | 0  |     unsigned char pad_done = 0;  | 
668  | 0  |     size_t plaintext_size = 0;  | 
669  | 0  |     unsigned output_too_large;  | 
670  |  | 
  | 
671  | 0  |     plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11  | 
672  | 0  |                                                         : output_max_len;  | 
673  |  |  | 
674  |  |     /* Check and get padding length in constant time and constant  | 
675  |  |      * memory trace. The first byte must be 0. */  | 
676  | 0  |     bad |= input[0];  | 
677  |  | 
  | 
678  | 0  |     if (mode == MBEDTLS_RSA_PRIVATE) { | 
679  |  |         /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00  | 
680  |  |          * where PS must be at least 8 nonzero bytes. */  | 
681  | 0  |         bad |= input[1] ^ MBEDTLS_RSA_CRYPT;  | 
682  |  |  | 
683  |  |         /* Read the whole buffer. Set pad_done to nonzero if we find  | 
684  |  |          * the 0x00 byte and remember the padding length in pad_count. */  | 
685  | 0  |         for (i = 2; i < ilen; i++) { | 
686  | 0  |             pad_done  |= ((input[i] | (unsigned char) -input[i]) >> 7) ^ 1;  | 
687  | 0  |             pad_count += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1;  | 
688  | 0  |         }  | 
689  | 0  |     } else { | 
690  |  |         /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00  | 
691  |  |          * where PS must be at least 8 bytes with the value 0xFF. */  | 
692  | 0  |         bad |= input[1] ^ MBEDTLS_RSA_SIGN;  | 
693  |  |  | 
694  |  |         /* Read the whole buffer. Set pad_done to nonzero if we find  | 
695  |  |          * the 0x00 byte and remember the padding length in pad_count.  | 
696  |  |          * If there's a non-0xff byte in the padding, the padding is bad. */  | 
697  | 0  |         for (i = 2; i < ilen; i++) { | 
698  | 0  |             pad_done |= mbedtls_ct_uint_if(input[i], 0, 1);  | 
699  | 0  |             pad_count += mbedtls_ct_uint_if(pad_done, 0, 1);  | 
700  | 0  |             bad |= mbedtls_ct_uint_if(pad_done, 0, input[i] ^ 0xFF);  | 
701  | 0  |         }  | 
702  | 0  |     }  | 
703  |  |  | 
704  |  |     /* If pad_done is still zero, there's no data, only unfinished padding. */  | 
705  | 0  |     bad |= mbedtls_ct_uint_if(pad_done, 0, 1);  | 
706  |  |  | 
707  |  |     /* There must be at least 8 bytes of padding. */  | 
708  | 0  |     bad |= mbedtls_ct_size_gt(8, pad_count);  | 
709  |  |  | 
710  |  |     /* If the padding is valid, set plaintext_size to the number of  | 
711  |  |      * remaining bytes after stripping the padding. If the padding  | 
712  |  |      * is invalid, avoid leaking this fact through the size of the  | 
713  |  |      * output: use the maximum message size that fits in the output  | 
714  |  |      * buffer. Do it without branches to avoid leaking the padding  | 
715  |  |      * validity through timing. RSA keys are small enough that all the  | 
716  |  |      * size_t values involved fit in unsigned int. */  | 
717  | 0  |     plaintext_size = mbedtls_ct_uint_if(  | 
718  | 0  |         bad, (unsigned) plaintext_max_size,  | 
719  | 0  |         (unsigned) (ilen - pad_count - 3));  | 
720  |  |  | 
721  |  |     /* Set output_too_large to 0 if the plaintext fits in the output  | 
722  |  |      * buffer and to 1 otherwise. */  | 
723  | 0  |     output_too_large = mbedtls_ct_size_gt(plaintext_size,  | 
724  | 0  |                                           plaintext_max_size);  | 
725  |  |  | 
726  |  |     /* Set ret without branches to avoid timing attacks. Return:  | 
727  |  |      * - INVALID_PADDING if the padding is bad (bad != 0).  | 
728  |  |      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted  | 
729  |  |      *   plaintext does not fit in the output buffer.  | 
730  |  |      * - 0 if the padding is correct. */  | 
731  | 0  |     ret = -(int) mbedtls_ct_uint_if(  | 
732  | 0  |         bad, -MBEDTLS_ERR_RSA_INVALID_PADDING,  | 
733  | 0  |         mbedtls_ct_uint_if(output_too_large,  | 
734  | 0  |                            -MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,  | 
735  | 0  |                            0));  | 
736  |  |  | 
737  |  |     /* If the padding is bad or the plaintext is too large, zero the  | 
738  |  |      * data that we're about to copy to the output buffer.  | 
739  |  |      * We need to copy the same amount of data  | 
740  |  |      * from the same buffer whether the padding is good or not to  | 
741  |  |      * avoid leaking the padding validity through overall timing or  | 
742  |  |      * through memory or cache access patterns. */  | 
743  | 0  |     bad = mbedtls_ct_uint_mask(bad | output_too_large);  | 
744  | 0  |     for (i = 11; i < ilen; i++) { | 
745  | 0  |         input[i] &= ~bad;  | 
746  | 0  |     }  | 
747  |  |  | 
748  |  |     /* If the plaintext is too large, truncate it to the buffer size.  | 
749  |  |      * Copy anyway to avoid revealing the length through timing, because  | 
750  |  |      * revealing the length is as bad as revealing the padding validity  | 
751  |  |      * for a Bleichenbacher attack. */  | 
752  | 0  |     plaintext_size = mbedtls_ct_uint_if(output_too_large,  | 
753  | 0  |                                         (unsigned) plaintext_max_size,  | 
754  | 0  |                                         (unsigned) plaintext_size);  | 
755  |  |  | 
756  |  |     /* Move the plaintext to the leftmost position where it can start in  | 
757  |  |      * the working buffer, i.e. make it start plaintext_max_size from  | 
758  |  |      * the end of the buffer. Do this with a memory access trace that  | 
759  |  |      * does not depend on the plaintext size. After this move, the  | 
760  |  |      * starting location of the plaintext is no longer sensitive  | 
761  |  |      * information. */  | 
762  | 0  |     mbedtls_ct_mem_move_to_left(input + ilen - plaintext_max_size,  | 
763  | 0  |                                 plaintext_max_size,  | 
764  | 0  |                                 plaintext_max_size - plaintext_size);  | 
765  |  |  | 
766  |  |     /* Finally copy the decrypted plaintext plus trailing zeros into the output  | 
767  |  |      * buffer. If output_max_len is 0, then output may be an invalid pointer  | 
768  |  |      * and the result of memcpy() would be undefined; prevent undefined  | 
769  |  |      * behavior making sure to depend only on output_max_len (the size of the  | 
770  |  |      * user-provided output buffer), which is independent from plaintext  | 
771  |  |      * length, validity of padding, success of the decryption, and other  | 
772  |  |      * secrets. */  | 
773  | 0  |     if (output_max_len != 0) { | 
774  | 0  |         memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);  | 
775  | 0  |     }  | 
776  |  |  | 
777  |  |     /* Report the amount of data we copied to the output buffer. In case  | 
778  |  |      * of errors (bad padding or output too large), the value of *olen  | 
779  |  |      * when this function returns is not specified. Making it equivalent  | 
780  |  |      * to the good case limits the risks of leaking the padding validity. */  | 
781  | 0  |     *olen = plaintext_size;  | 
782  |  | 
  | 
783  | 0  |     return ret;  | 
784  | 0  | }  | 
785  |  |  | 
786  |  | #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */  |