1"""
2Reducer using memory mapping for numpy arrays
3"""
4# Author: Thomas Moreau <thomas.moreau.2010@gmail.com>
5# Copyright: 2017, Thomas Moreau
6# License: BSD 3 clause
7
8import atexit
9import errno
10import os
11import stat
12import tempfile
13import threading
14import time
15import warnings
16import weakref
17from mmap import mmap
18from multiprocessing import util
19from pickle import HIGHEST_PROTOCOL, PicklingError, dumps, loads, whichmodule
20from uuid import uuid4
21
22try:
23 WindowsError
24except NameError:
25 WindowsError = type(None)
26
27try:
28 import numpy as np
29 from numpy.lib.stride_tricks import as_strided
30except ImportError:
31 np = None
32
33from .backports import make_memmap
34from .disk import delete_folder
35from .externals.loky.backend import resource_tracker
36from .numpy_pickle import dump, load, load_temporary_memmap
37
38# Some system have a ramdisk mounted by default, we can use it instead of /tmp
39# as the default folder to dump big arrays to share with subprocesses.
40SYSTEM_SHARED_MEM_FS = "/dev/shm"
41
42# Minimal number of bytes available on SYSTEM_SHARED_MEM_FS to consider using
43# it as the default folder to dump big arrays to share with subprocesses.
44SYSTEM_SHARED_MEM_FS_MIN_SIZE = int(2e9)
45
46# Folder and file permissions to chmod temporary files generated by the
47# memmapping pool. Only the owner of the Python process can access the
48# temporary files and folder.
49FOLDER_PERMISSIONS = stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR
50FILE_PERMISSIONS = stat.S_IRUSR | stat.S_IWUSR
51
52# Set used in joblib workers, referencing the filenames of temporary memmaps
53# created by joblib to speed up data communication. In child processes, we add
54# a finalizer to these memmaps that sends a maybe_unlink call to the
55# resource_tracker, in order to free main memory as fast as possible.
56JOBLIB_MMAPS = set()
57
58
59def _log_and_unlink(filename):
60 from .externals.loky.backend.resource_tracker import _resource_tracker
61
62 util.debug(
63 "[FINALIZER CALL] object mapping to {} about to be deleted,"
64 " decrementing the refcount of the file (pid: {})".format(
65 os.path.basename(filename), os.getpid()
66 )
67 )
68 _resource_tracker.maybe_unlink(filename, "file")
69
70
71def add_maybe_unlink_finalizer(memmap):
72 util.debug(
73 "[FINALIZER ADD] adding finalizer to {} (id {}, filename {}, pid {})".format(
74 type(memmap), id(memmap), os.path.basename(memmap.filename), os.getpid()
75 )
76 )
77 weakref.finalize(memmap, _log_and_unlink, memmap.filename)
78
79
80def unlink_file(filename):
81 """Wrapper around os.unlink with a retry mechanism.
82
83 The retry mechanism has been implemented primarily to overcome a race
84 condition happening during the finalizer of a np.memmap: when a process
85 holding the last reference to a mmap-backed np.memmap/np.array is about to
86 delete this array (and close the reference), it sends a maybe_unlink
87 request to the resource_tracker. This request can be processed faster than
88 it takes for the last reference of the memmap to be closed, yielding (on
89 Windows) a PermissionError in the resource_tracker loop.
90 """
91 NUM_RETRIES = 10
92 for retry_no in range(1, NUM_RETRIES + 1):
93 try:
94 os.unlink(filename)
95 break
96 except PermissionError:
97 util.debug(
98 "[ResourceTracker] tried to unlink {}, got PermissionError".format(
99 filename
100 )
101 )
102 if retry_no == NUM_RETRIES:
103 raise
104 else:
105 time.sleep(0.2)
106 except FileNotFoundError:
107 # In case of a race condition when deleting the temporary folder,
108 # avoid noisy FileNotFoundError exception in the resource tracker.
109 pass
110
111
112resource_tracker._CLEANUP_FUNCS["file"] = unlink_file
113
114
115class _WeakArrayKeyMap:
116 """A variant of weakref.WeakKeyDictionary for unhashable numpy arrays.
117
118 This datastructure will be used with numpy arrays as obj keys, therefore we
119 do not use the __get__ / __set__ methods to avoid any conflict with the
120 numpy fancy indexing syntax.
121 """
122
123 def __init__(self):
124 self._data = {}
125
126 def get(self, obj):
127 ref, val = self._data[id(obj)]
128 if ref() is not obj:
129 # In case of race condition with on_destroy: could never be
130 # triggered by the joblib tests with CPython.
131 raise KeyError(obj)
132 return val
133
134 def set(self, obj, value):
135 key = id(obj)
136 try:
137 ref, _ = self._data[key]
138 if ref() is not obj:
139 # In case of race condition with on_destroy: could never be
140 # triggered by the joblib tests with CPython.
141 raise KeyError(obj)
142 except KeyError:
143 # Insert the new entry in the mapping along with a weakref
144 # callback to automatically delete the entry from the mapping
145 # as soon as the object used as key is garbage collected.
146 def on_destroy(_):
147 del self._data[key]
148
149 ref = weakref.ref(obj, on_destroy)
150 self._data[key] = ref, value
151
152 def __getstate__(self):
153 raise PicklingError("_WeakArrayKeyMap is not pickleable")
154
155
156###############################################################################
157# Support for efficient transient pickling of numpy data structures
158
159
160def _get_backing_memmap(a):
161 """Recursively look up the original np.memmap instance base if any."""
162 b = getattr(a, "base", None)
163 if b is None:
164 # TODO: check scipy sparse datastructure if scipy is installed
165 # a nor its descendants do not have a memmap base
166 return None
167
168 elif isinstance(b, mmap):
169 # a is already a real memmap instance.
170 return a
171
172 else:
173 # Recursive exploration of the base ancestry
174 return _get_backing_memmap(b)
175
176
177def _get_temp_dir(pool_folder_name, temp_folder=None):
178 """Get the full path to a subfolder inside the temporary folder.
179
180 Parameters
181 ----------
182 pool_folder_name : str
183 Sub-folder name used for the serialization of a pool instance.
184
185 temp_folder: str, optional
186 Folder to be used by the pool for memmapping large arrays
187 for sharing memory with worker processes. If None, this will try in
188 order:
189
190 - a folder pointed by the JOBLIB_TEMP_FOLDER environment
191 variable,
192 - /dev/shm if the folder exists and is writable: this is a
193 RAMdisk filesystem available by default on modern Linux
194 distributions,
195 - the default system temporary folder that can be
196 overridden with TMP, TMPDIR or TEMP environment
197 variables, typically /tmp under Unix operating systems.
198
199 Returns
200 -------
201 pool_folder : str
202 full path to the temporary folder
203 use_shared_mem : bool
204 whether the temporary folder is written to the system shared memory
205 folder or some other temporary folder.
206 """
207 use_shared_mem = False
208 if temp_folder is None:
209 temp_folder = os.environ.get("JOBLIB_TEMP_FOLDER", None)
210 if temp_folder is None:
211 if os.path.exists(SYSTEM_SHARED_MEM_FS) and hasattr(os, "statvfs"):
212 try:
213 shm_stats = os.statvfs(SYSTEM_SHARED_MEM_FS)
214 available_nbytes = shm_stats.f_bsize * shm_stats.f_bavail
215 if available_nbytes > SYSTEM_SHARED_MEM_FS_MIN_SIZE:
216 # Try to see if we have write access to the shared mem
217 # folder only if it is reasonably large (that is 2GB or
218 # more).
219 temp_folder = SYSTEM_SHARED_MEM_FS
220 pool_folder = os.path.join(temp_folder, pool_folder_name)
221 if not os.path.exists(pool_folder):
222 os.makedirs(pool_folder)
223 use_shared_mem = True
224 except (IOError, OSError):
225 # Missing rights in the /dev/shm partition, fallback to regular
226 # temp folder.
227 temp_folder = None
228 if temp_folder is None:
229 # Fallback to the default tmp folder, typically /tmp
230 temp_folder = tempfile.gettempdir()
231 temp_folder = os.path.abspath(os.path.expanduser(temp_folder))
232 pool_folder = os.path.join(temp_folder, pool_folder_name)
233 return pool_folder, use_shared_mem
234
235
236def has_shareable_memory(a):
237 """Return True if a is backed by some mmap buffer directly or not."""
238 return _get_backing_memmap(a) is not None
239
240
241def _strided_from_memmap(
242 filename,
243 dtype,
244 mode,
245 offset,
246 order,
247 shape,
248 strides,
249 total_buffer_len,
250 unlink_on_gc_collect,
251):
252 """Reconstruct an array view on a memory mapped file."""
253 if mode == "w+":
254 # Do not zero the original data when unpickling
255 mode = "r+"
256
257 if strides is None:
258 # Simple, contiguous memmap
259 return make_memmap(
260 filename,
261 dtype=dtype,
262 shape=shape,
263 mode=mode,
264 offset=offset,
265 order=order,
266 unlink_on_gc_collect=unlink_on_gc_collect,
267 )
268 else:
269 # For non-contiguous data, memmap the total enclosing buffer and then
270 # extract the non-contiguous view with the stride-tricks API
271 base = make_memmap(
272 filename,
273 dtype=dtype,
274 shape=total_buffer_len,
275 offset=offset,
276 mode=mode,
277 order=order,
278 unlink_on_gc_collect=unlink_on_gc_collect,
279 )
280 return as_strided(base, shape=shape, strides=strides)
281
282
283def _reduce_memmap_backed(a, m):
284 """Pickling reduction for memmap backed arrays.
285
286 a is expected to be an instance of np.ndarray (or np.memmap)
287 m is expected to be an instance of np.memmap on the top of the ``base``
288 attribute ancestry of a. ``m.base`` should be the real python mmap object.
289 """
290 # offset that comes from the striding differences between a and m
291 util.debug(
292 "[MEMMAP REDUCE] reducing a memmap-backed array (shape, {}, pid: {})".format(
293 a.shape, os.getpid()
294 )
295 )
296 try:
297 from numpy.lib.array_utils import byte_bounds
298 except (ModuleNotFoundError, ImportError):
299 # Backward-compat for numpy < 2.0
300 from numpy import byte_bounds
301 a_start, a_end = byte_bounds(a)
302 m_start = byte_bounds(m)[0]
303 offset = a_start - m_start
304
305 # offset from the backing memmap
306 offset += m.offset
307
308 # 1D arrays are both F and C contiguous, so only set the flag in
309 # higher dimensions. See https://github.com/joblib/joblib/pull/1704.
310 if m.ndim > 1 and m.flags["F_CONTIGUOUS"]:
311 order = "F"
312 else:
313 # The backing memmap buffer is necessarily contiguous hence C if not
314 # Fortran
315 order = "C"
316
317 if a.flags["F_CONTIGUOUS"] or a.flags["C_CONTIGUOUS"]:
318 # If the array is a contiguous view, no need to pass the strides
319 strides = None
320 total_buffer_len = None
321 else:
322 # Compute the total number of items to map from which the strided
323 # view will be extracted.
324 strides = a.strides
325 total_buffer_len = (a_end - a_start) // a.itemsize
326
327 return (
328 _strided_from_memmap,
329 (
330 m.filename,
331 a.dtype,
332 m.mode,
333 offset,
334 order,
335 a.shape,
336 strides,
337 total_buffer_len,
338 False,
339 ),
340 )
341
342
343def reduce_array_memmap_backward(a):
344 """reduce a np.array or a np.memmap from a child process"""
345 m = _get_backing_memmap(a)
346 if isinstance(m, np.memmap) and m.filename not in JOBLIB_MMAPS:
347 # if a is backed by a memmaped file, reconstruct a using the
348 # memmaped file.
349 return _reduce_memmap_backed(a, m)
350 else:
351 # a is either a regular (not memmap-backed) numpy array, or an array
352 # backed by a shared temporary file created by joblib. In the latter
353 # case, in order to limit the lifespan of these temporary files, we
354 # serialize the memmap as a regular numpy array, and decref the
355 # file backing the memmap (done implicitly in a previously registered
356 # finalizer, see ``unlink_on_gc_collect`` for more details)
357 return (loads, (dumps(np.asarray(a), protocol=HIGHEST_PROTOCOL),))
358
359
360class ArrayMemmapForwardReducer(object):
361 """Reducer callable to dump large arrays to memmap files.
362
363 Parameters
364 ----------
365 max_nbytes: int
366 Threshold to trigger memmapping of large arrays to files created
367 a folder.
368 temp_folder_resolver: callable
369 An callable in charge of resolving a temporary folder name where files
370 for backing memmapped arrays are created.
371 mmap_mode: 'r', 'r+' or 'c'
372 Mode for the created memmap datastructure. See the documentation of
373 numpy.memmap for more details. Note: 'w+' is coerced to 'r+'
374 automatically to avoid zeroing the data on unpickling.
375 verbose: int, optional, 0 by default
376 If verbose > 0, memmap creations are logged.
377 If verbose > 1, both memmap creations, reuse and array pickling are
378 logged.
379 prewarm: bool, optional, False by default.
380 Force a read on newly memmapped array to make sure that OS pre-cache it
381 memory. This can be useful to avoid concurrent disk access when the
382 same data array is passed to different worker processes.
383 """
384
385 def __init__(
386 self,
387 max_nbytes,
388 temp_folder_resolver,
389 mmap_mode,
390 unlink_on_gc_collect,
391 verbose=0,
392 prewarm=True,
393 ):
394 self._max_nbytes = max_nbytes
395 self._temp_folder_resolver = temp_folder_resolver
396 self._mmap_mode = mmap_mode
397 self.verbose = int(verbose)
398 if prewarm == "auto":
399 self._prewarm = not self._temp_folder.startswith(SYSTEM_SHARED_MEM_FS)
400 else:
401 self._prewarm = prewarm
402 self._prewarm = prewarm
403 self._memmaped_arrays = _WeakArrayKeyMap()
404 self._temporary_memmaped_filenames = set()
405 self._unlink_on_gc_collect = unlink_on_gc_collect
406
407 @property
408 def _temp_folder(self):
409 return self._temp_folder_resolver()
410
411 def __reduce__(self):
412 # The ArrayMemmapForwardReducer is passed to the children processes: it
413 # needs to be pickled but the _WeakArrayKeyMap need to be skipped as
414 # it's only guaranteed to be consistent with the parent process memory
415 # garbage collection.
416 # Although this reducer is pickled, it is not needed in its destination
417 # process (child processes), as we only use this reducer to send
418 # memmaps from the parent process to the children processes. For this
419 # reason, we can afford skipping the resolver, (which would otherwise
420 # be unpicklable), and pass it as None instead.
421 args = (self._max_nbytes, None, self._mmap_mode, self._unlink_on_gc_collect)
422 kwargs = {
423 "verbose": self.verbose,
424 "prewarm": self._prewarm,
425 }
426 return ArrayMemmapForwardReducer, args, kwargs
427
428 def __call__(self, a):
429 m = _get_backing_memmap(a)
430 if m is not None and isinstance(m, np.memmap):
431 # a is already backed by a memmap file, let's reuse it directly
432 return _reduce_memmap_backed(a, m)
433
434 if (
435 not a.dtype.hasobject
436 and self._max_nbytes is not None
437 and a.nbytes > self._max_nbytes
438 ):
439 # check that the folder exists (lazily create the pool temp folder
440 # if required)
441 try:
442 os.makedirs(self._temp_folder)
443 os.chmod(self._temp_folder, FOLDER_PERMISSIONS)
444 except OSError as e:
445 if e.errno != errno.EEXIST:
446 raise e
447
448 try:
449 basename = self._memmaped_arrays.get(a)
450 except KeyError:
451 # Generate a new unique random filename. The process and thread
452 # ids are only useful for debugging purpose and to make it
453 # easier to cleanup orphaned files in case of hard process
454 # kill (e.g. by "kill -9" or segfault).
455 basename = "{}-{}-{}.pkl".format(
456 os.getpid(), id(threading.current_thread()), uuid4().hex
457 )
458 self._memmaped_arrays.set(a, basename)
459 filename = os.path.join(self._temp_folder, basename)
460
461 # In case the same array with the same content is passed several
462 # times to the pool subprocess children, serialize it only once
463
464 is_new_memmap = filename not in self._temporary_memmaped_filenames
465
466 # add the memmap to the list of temporary memmaps created by joblib
467 self._temporary_memmaped_filenames.add(filename)
468
469 if self._unlink_on_gc_collect:
470 # Bump reference count of the memmap by 1 to account for
471 # shared usage of the memmap by a child process. The
472 # corresponding decref call will be executed upon calling
473 # resource_tracker.maybe_unlink, registered as a finalizer in
474 # the child.
475 # the incref/decref calls here are only possible when the child
476 # and the parent share the same resource_tracker. It is not the
477 # case for the multiprocessing backend, but it does not matter
478 # because unlinking a memmap from a child process is only
479 # useful to control the memory usage of long-lasting child
480 # processes, while the multiprocessing-based pools terminate
481 # their workers at the end of a map() call.
482 resource_tracker.register(filename, "file")
483
484 if is_new_memmap:
485 # Incref each temporary memmap created by joblib one extra
486 # time. This means that these memmaps will only be deleted
487 # once an extra maybe_unlink() is called, which is done once
488 # all the jobs have completed (or been canceled) in the
489 # Parallel._terminate_backend() method.
490 resource_tracker.register(filename, "file")
491
492 if not os.path.exists(filename):
493 util.debug(
494 "[ARRAY DUMP] Pickling new array (shape={}, dtype={}) "
495 "creating a new memmap at {}".format(a.shape, a.dtype, filename)
496 )
497 for dumped_filename in dump(a, filename):
498 os.chmod(dumped_filename, FILE_PERMISSIONS)
499
500 if self._prewarm:
501 # Warm up the data by accessing it. This operation ensures
502 # that the disk access required to create the memmapping
503 # file are performed in the reducing process and avoids
504 # concurrent memmap creation in multiple children
505 # processes.
506 load(filename, mmap_mode=self._mmap_mode).max()
507
508 else:
509 util.debug(
510 "[ARRAY DUMP] Pickling known array (shape={}, dtype={}) "
511 "reusing memmap file: {}".format(
512 a.shape, a.dtype, os.path.basename(filename)
513 )
514 )
515
516 # The worker process will use joblib.load to memmap the data
517 return (
518 load_temporary_memmap,
519 (filename, self._mmap_mode, self._unlink_on_gc_collect),
520 )
521 else:
522 # do not convert a into memmap, let pickler do its usual copy with
523 # the default system pickler
524 util.debug(
525 "[ARRAY DUMP] Pickling array (NO MEMMAPPING) (shape={}, "
526 " dtype={}).".format(a.shape, a.dtype)
527 )
528 return (loads, (dumps(a, protocol=HIGHEST_PROTOCOL),))
529
530
531def get_memmapping_reducers(
532 forward_reducers=None,
533 backward_reducers=None,
534 temp_folder_resolver=None,
535 max_nbytes=1e6,
536 mmap_mode="r",
537 verbose=0,
538 prewarm=False,
539 unlink_on_gc_collect=True,
540 **kwargs,
541):
542 """Construct a pair of memmapping reducer linked to a tmpdir.
543
544 This function manage the creation and the clean up of the temporary folders
545 underlying the memory maps and should be use to get the reducers necessary
546 to construct joblib pool or executor.
547 """
548 if forward_reducers is None:
549 forward_reducers = dict()
550 if backward_reducers is None:
551 backward_reducers = dict()
552
553 if np is not None:
554 # Register smart numpy.ndarray reducers that detects memmap backed
555 # arrays and that is also able to dump to memmap large in-memory
556 # arrays over the max_nbytes threshold
557 forward_reduce_ndarray = ArrayMemmapForwardReducer(
558 max_nbytes,
559 temp_folder_resolver,
560 mmap_mode,
561 unlink_on_gc_collect,
562 verbose,
563 prewarm=prewarm,
564 )
565 forward_reducers[np.ndarray] = forward_reduce_ndarray
566 forward_reducers[np.memmap] = forward_reduce_ndarray
567
568 # Communication from child process to the parent process always
569 # pickles in-memory numpy.ndarray without dumping them as memmap
570 # to avoid confusing the caller and make it tricky to collect the
571 # temporary folder
572 backward_reducers[np.ndarray] = reduce_array_memmap_backward
573 backward_reducers[np.memmap] = reduce_array_memmap_backward
574
575 return forward_reducers, backward_reducers
576
577
578class TemporaryResourcesManager(object):
579 """Stateful object able to manage temporary folder and pickles
580
581 It exposes:
582 - a per-context folder name resolving API that memmap-based reducers will
583 rely on to know where to pickle the temporary memmaps
584 - a temporary file/folder management API that internally uses the
585 resource_tracker.
586 """
587
588 def __init__(self, temp_folder_root=None, context_id=None):
589 self._current_temp_folder = None
590 self._temp_folder_root = temp_folder_root
591 self._use_shared_mem = None
592 self._cached_temp_folders = dict()
593 self._id = uuid4().hex
594 self._finalizers = {}
595 if context_id is None:
596 # It would be safer to not assign a default context id (less silent
597 # bugs), but doing this while maintaining backward compatibility
598 # with the previous, context-unaware version get_memmaping_executor
599 # exposes too many low-level details.
600 context_id = uuid4().hex
601 self.set_current_context(context_id)
602
603 def set_current_context(self, context_id):
604 self._current_context_id = context_id
605 self.register_new_context(context_id)
606
607 def register_new_context(self, context_id):
608 # Prepare a sub-folder name specific to a context (usually a unique id
609 # generated by each instance of the Parallel class). Do not create in
610 # advance to spare FS write access if no array is to be dumped).
611 if context_id in self._cached_temp_folders:
612 return
613 else:
614 # During its lifecycle, one Parallel object can have several
615 # executors associated to it (for instance, if a loky worker raises
616 # an exception, joblib shutdowns the executor and instantly
617 # recreates a new one before raising the error - see
618 # ``ensure_ready``. Because we don't want two executors tied to
619 # the same Parallel object (and thus the same context id) to
620 # register/use/delete the same folder, we also add an id specific
621 # to the current Manager (and thus specific to its associated
622 # executor) to the folder name.
623 new_folder_name = "joblib_memmapping_folder_{}_{}_{}".format(
624 os.getpid(), self._id, context_id
625 )
626 new_folder_path, _ = _get_temp_dir(new_folder_name, self._temp_folder_root)
627 self.register_folder_finalizer(new_folder_path, context_id)
628 self._cached_temp_folders[context_id] = new_folder_path
629
630 def resolve_temp_folder_name(self):
631 """Return a folder name specific to the currently activated context"""
632 return self._cached_temp_folders[self._current_context_id]
633
634 # resource management API
635
636 def register_folder_finalizer(self, pool_subfolder, context_id):
637 # Register the garbage collector at program exit in case caller forgets
638 # to call terminate explicitly: note we do not pass any reference to
639 # ensure that this callback won't prevent garbage collection of
640 # parallel instance and related file handler resources such as POSIX
641 # semaphores and pipes
642 pool_module_name = whichmodule(delete_folder, "delete_folder")
643 resource_tracker.register(pool_subfolder, "folder")
644
645 def _cleanup():
646 # In some cases the Python runtime seems to set delete_folder to
647 # None just before exiting when accessing the delete_folder
648 # function from the closure namespace. So instead we reimport
649 # the delete_folder function explicitly.
650 # https://github.com/joblib/joblib/issues/328
651 # We cannot just use from 'joblib.pool import delete_folder'
652 # because joblib should only use relative imports to allow
653 # easy vendoring.
654 delete_folder = __import__(
655 pool_module_name, fromlist=["delete_folder"]
656 ).delete_folder
657 try:
658 delete_folder(pool_subfolder, allow_non_empty=True)
659 resource_tracker.unregister(pool_subfolder, "folder")
660 except OSError:
661 warnings.warn(
662 "Failed to delete temporary folder: {}".format(pool_subfolder)
663 )
664
665 self._finalizers[context_id] = atexit.register(_cleanup)
666
667 def _clean_temporary_resources(
668 self, context_id=None, force=False, allow_non_empty=False
669 ):
670 """Clean temporary resources created by a process-based pool"""
671 if context_id is None:
672 # Iterates over a copy of the cache keys to avoid Error due to
673 # iterating over a changing size dictionary.
674 for context_id in list(self._cached_temp_folders):
675 self._clean_temporary_resources(
676 context_id, force=force, allow_non_empty=allow_non_empty
677 )
678 else:
679 temp_folder = self._cached_temp_folders.get(context_id)
680 if temp_folder and os.path.exists(temp_folder):
681 for filename in os.listdir(temp_folder):
682 if force:
683 # Some workers have failed and the ref counted might
684 # be off. The workers should have shut down by this
685 # time so forcefully clean up the files.
686 resource_tracker.unregister(
687 os.path.join(temp_folder, filename), "file"
688 )
689 else:
690 resource_tracker.maybe_unlink(
691 os.path.join(temp_folder, filename), "file"
692 )
693
694 # When forcing clean-up, try to delete the folder even if some
695 # files are still in it. Otherwise, try to delete the folder
696 allow_non_empty |= force
697
698 # Clean up the folder if possible, either if it is empty or
699 # if none of the files in it are in used and allow_non_empty.
700 try:
701 delete_folder(temp_folder, allow_non_empty=allow_non_empty)
702 # Forget the folder once it has been deleted
703 self._cached_temp_folders.pop(context_id, None)
704 resource_tracker.unregister(temp_folder, "folder")
705
706 # Also cancel the finalizers that gets triggered at gc.
707 finalizer = self._finalizers.pop(context_id, None)
708 if finalizer is not None:
709 atexit.unregister(finalizer)
710
711 except OSError:
712 # Temporary folder cannot be deleted right now.
713 # This folder will be cleaned up by an atexit
714 # finalizer registered by the memmapping_reducer.
715 pass