Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/scipy/sparse/linalg/__init__.py: 100%
13 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
1"""
2Sparse linear algebra (:mod:`scipy.sparse.linalg`)
3==================================================
5.. currentmodule:: scipy.sparse.linalg
7Abstract linear operators
8-------------------------
10.. autosummary::
11 :toctree: generated/
13 LinearOperator -- abstract representation of a linear operator
14 aslinearoperator -- convert an object to an abstract linear operator
16Matrix Operations
17-----------------
19.. autosummary::
20 :toctree: generated/
22 inv -- compute the sparse matrix inverse
23 expm -- compute the sparse matrix exponential
24 expm_multiply -- compute the product of a matrix exponential and a matrix
26Matrix norms
27------------
29.. autosummary::
30 :toctree: generated/
32 norm -- Norm of a sparse matrix
33 onenormest -- Estimate the 1-norm of a sparse matrix
35Solving linear problems
36-----------------------
38Direct methods for linear equation systems:
40.. autosummary::
41 :toctree: generated/
43 spsolve -- Solve the sparse linear system Ax=b
44 spsolve_triangular -- Solve the sparse linear system Ax=b for a triangular matrix
45 factorized -- Pre-factorize matrix to a function solving a linear system
46 MatrixRankWarning -- Warning on exactly singular matrices
47 use_solver -- Select direct solver to use
49Iterative methods for linear equation systems:
51.. autosummary::
52 :toctree: generated/
54 bicg -- Use BIConjugate Gradient iteration to solve A x = b
55 bicgstab -- Use BIConjugate Gradient STABilized iteration to solve A x = b
56 cg -- Use Conjugate Gradient iteration to solve A x = b
57 cgs -- Use Conjugate Gradient Squared iteration to solve A x = b
58 gmres -- Use Generalized Minimal RESidual iteration to solve A x = b
59 lgmres -- Solve a matrix equation using the LGMRES algorithm
60 minres -- Use MINimum RESidual iteration to solve Ax = b
61 qmr -- Use Quasi-Minimal Residual iteration to solve A x = b
62 gcrotmk -- Solve a matrix equation using the GCROT(m,k) algorithm
63 tfqmr -- Use Transpose-Free Quasi-Minimal Residual iteration to solve A x = b
65Iterative methods for least-squares problems:
67.. autosummary::
68 :toctree: generated/
70 lsqr -- Find the least-squares solution to a sparse linear equation system
71 lsmr -- Find the least-squares solution to a sparse linear equation system
73Matrix factorizations
74---------------------
76Eigenvalue problems:
78.. autosummary::
79 :toctree: generated/
81 eigs -- Find k eigenvalues and eigenvectors of the square matrix A
82 eigsh -- Find k eigenvalues and eigenvectors of a symmetric matrix
83 lobpcg -- Solve symmetric partial eigenproblems with optional preconditioning
85Singular values problems:
87.. autosummary::
88 :toctree: generated/
90 svds -- Compute k singular values/vectors for a sparse matrix
92The `svds` function supports the following solvers:
94.. toctree::
96 sparse.linalg.svds-arpack
97 sparse.linalg.svds-lobpcg
98 sparse.linalg.svds-propack
100Complete or incomplete LU factorizations
102.. autosummary::
103 :toctree: generated/
105 splu -- Compute a LU decomposition for a sparse matrix
106 spilu -- Compute an incomplete LU decomposition for a sparse matrix
107 SuperLU -- Object representing an LU factorization
109Exceptions
110----------
112.. autosummary::
113 :toctree: generated/
115 ArpackNoConvergence
116 ArpackError
118"""
120from ._isolve import *
121from ._dsolve import *
122from ._interface import *
123from ._eigen import *
124from ._matfuncs import *
125from ._onenormest import *
126from ._norm import *
127from ._expm_multiply import *
129# Deprecated namespaces, to be removed in v2.0.0
130from . import isolve, dsolve, interface, eigen, matfuncs
132__all__ = [s for s in dir() if not s.startswith('_')]
134from scipy._lib._testutils import PytestTester
135test = PytestTester(__name__)
136del PytestTester