Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py: 11%

209 statements  

« prev     ^ index     » next       coverage.py v7.3.2, created at 2023-12-12 06:31 +0000

1from warnings import warn 

2 

3import numpy as np 

4from numpy import asarray 

5from scipy.sparse import (isspmatrix_csc, isspmatrix_csr, isspmatrix, 

6 SparseEfficiencyWarning, csc_matrix, csr_matrix) 

7from scipy.sparse._sputils import is_pydata_spmatrix 

8from scipy.linalg import LinAlgError 

9import copy 

10 

11from . import _superlu 

12 

13noScikit = False 

14try: 

15 import scikits.umfpack as umfpack 

16except ImportError: 

17 noScikit = True 

18 

19useUmfpack = not noScikit 

20 

21__all__ = ['use_solver', 'spsolve', 'splu', 'spilu', 'factorized', 

22 'MatrixRankWarning', 'spsolve_triangular'] 

23 

24 

25class MatrixRankWarning(UserWarning): 

26 pass 

27 

28 

29def use_solver(**kwargs): 

30 """ 

31 Select default sparse direct solver to be used. 

32 

33 Parameters 

34 ---------- 

35 useUmfpack : bool, optional 

36 Use UMFPACK [1]_, [2]_, [3]_, [4]_. over SuperLU. Has effect only 

37 if ``scikits.umfpack`` is installed. Default: True 

38 assumeSortedIndices : bool, optional 

39 Allow UMFPACK to skip the step of sorting indices for a CSR/CSC matrix. 

40 Has effect only if useUmfpack is True and ``scikits.umfpack`` is 

41 installed. Default: False 

42 

43 Notes 

44 ----- 

45 The default sparse solver is UMFPACK when available 

46 (``scikits.umfpack`` is installed). This can be changed by passing 

47 useUmfpack = False, which then causes the always present SuperLU 

48 based solver to be used. 

49 

50 UMFPACK requires a CSR/CSC matrix to have sorted column/row indices. If 

51 sure that the matrix fulfills this, pass ``assumeSortedIndices=True`` 

52 to gain some speed. 

53 

54 References 

55 ---------- 

56 .. [1] T. A. Davis, Algorithm 832: UMFPACK - an unsymmetric-pattern 

57 multifrontal method with a column pre-ordering strategy, ACM 

58 Trans. on Mathematical Software, 30(2), 2004, pp. 196--199. 

59 https://dl.acm.org/doi/abs/10.1145/992200.992206 

60 

61 .. [2] T. A. Davis, A column pre-ordering strategy for the 

62 unsymmetric-pattern multifrontal method, ACM Trans. 

63 on Mathematical Software, 30(2), 2004, pp. 165--195. 

64 https://dl.acm.org/doi/abs/10.1145/992200.992205 

65 

66 .. [3] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal 

67 method for unsymmetric sparse matrices, ACM Trans. on 

68 Mathematical Software, 25(1), 1999, pp. 1--19. 

69 https://doi.org/10.1145/305658.287640 

70 

71 .. [4] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal 

72 method for sparse LU factorization, SIAM J. Matrix Analysis and 

73 Computations, 18(1), 1997, pp. 140--158. 

74 https://doi.org/10.1137/S0895479894246905T. 

75 

76 Examples 

77 -------- 

78 >>> import numpy as np 

79 >>> from scipy.sparse.linalg import use_solver, spsolve 

80 >>> from scipy.sparse import csc_matrix 

81 >>> R = np.random.randn(5, 5) 

82 >>> A = csc_matrix(R) 

83 >>> b = np.random.randn(5) 

84 >>> use_solver(useUmfpack=False) # enforce superLU over UMFPACK 

85 >>> x = spsolve(A, b) 

86 >>> np.allclose(A.dot(x), b) 

87 True 

88 >>> use_solver(useUmfpack=True) # reset umfPack usage to default 

89 """ 

90 if 'useUmfpack' in kwargs: 

91 globals()['useUmfpack'] = kwargs['useUmfpack'] 

92 if useUmfpack and 'assumeSortedIndices' in kwargs: 

93 umfpack.configure(assumeSortedIndices=kwargs['assumeSortedIndices']) 

94 

95def _get_umf_family(A): 

96 """Get umfpack family string given the sparse matrix dtype.""" 

97 _families = { 

98 (np.float64, np.int32): 'di', 

99 (np.complex128, np.int32): 'zi', 

100 (np.float64, np.int64): 'dl', 

101 (np.complex128, np.int64): 'zl' 

102 } 

103 

104 f_type = np.sctypeDict[A.dtype.name] 

105 i_type = np.sctypeDict[A.indices.dtype.name] 

106 

107 try: 

108 family = _families[(f_type, i_type)] 

109 

110 except KeyError as e: 

111 msg = 'only float64 or complex128 matrices with int32 or int64' \ 

112 ' indices are supported! (got: matrix: %s, indices: %s)' \ 

113 % (f_type, i_type) 

114 raise ValueError(msg) from e 

115 

116 # See gh-8278. Considered converting only if 

117 # A.shape[0]*A.shape[1] > np.iinfo(np.int32).max, 

118 # but that didn't always fix the issue. 

119 family = family[0] + "l" 

120 A_new = copy.copy(A) 

121 A_new.indptr = np.array(A.indptr, copy=False, dtype=np.int64) 

122 A_new.indices = np.array(A.indices, copy=False, dtype=np.int64) 

123 

124 return family, A_new 

125 

126def spsolve(A, b, permc_spec=None, use_umfpack=True): 

127 """Solve the sparse linear system Ax=b, where b may be a vector or a matrix. 

128 

129 Parameters 

130 ---------- 

131 A : ndarray or sparse matrix 

132 The square matrix A will be converted into CSC or CSR form 

133 b : ndarray or sparse matrix 

134 The matrix or vector representing the right hand side of the equation. 

135 If a vector, b.shape must be (n,) or (n, 1). 

136 permc_spec : str, optional 

137 How to permute the columns of the matrix for sparsity preservation. 

138 (default: 'COLAMD') 

139 

140 - ``NATURAL``: natural ordering. 

141 - ``MMD_ATA``: minimum degree ordering on the structure of A^T A. 

142 - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A. 

143 - ``COLAMD``: approximate minimum degree column ordering [1]_, [2]_. 

144 

145 use_umfpack : bool, optional 

146 if True (default) then use UMFPACK for the solution [3]_, [4]_, [5]_, 

147 [6]_ . This is only referenced if b is a vector and 

148 ``scikits.umfpack`` is installed. 

149 

150 Returns 

151 ------- 

152 x : ndarray or sparse matrix 

153 the solution of the sparse linear equation. 

154 If b is a vector, then x is a vector of size A.shape[1] 

155 If b is a matrix, then x is a matrix of size (A.shape[1], b.shape[1]) 

156 

157 Notes 

158 ----- 

159 For solving the matrix expression AX = B, this solver assumes the resulting 

160 matrix X is sparse, as is often the case for very sparse inputs. If the 

161 resulting X is dense, the construction of this sparse result will be 

162 relatively expensive. In that case, consider converting A to a dense 

163 matrix and using scipy.linalg.solve or its variants. 

164 

165 References 

166 ---------- 

167 .. [1] T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: 

168 COLAMD, an approximate column minimum degree ordering algorithm, 

169 ACM Trans. on Mathematical Software, 30(3), 2004, pp. 377--380. 

170 :doi:`10.1145/1024074.1024080` 

171 

172 .. [2] T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, A column approximate 

173 minimum degree ordering algorithm, ACM Trans. on Mathematical 

174 Software, 30(3), 2004, pp. 353--376. :doi:`10.1145/1024074.1024079` 

175 

176 .. [3] T. A. Davis, Algorithm 832: UMFPACK - an unsymmetric-pattern 

177 multifrontal method with a column pre-ordering strategy, ACM 

178 Trans. on Mathematical Software, 30(2), 2004, pp. 196--199. 

179 https://dl.acm.org/doi/abs/10.1145/992200.992206 

180 

181 .. [4] T. A. Davis, A column pre-ordering strategy for the 

182 unsymmetric-pattern multifrontal method, ACM Trans. 

183 on Mathematical Software, 30(2), 2004, pp. 165--195. 

184 https://dl.acm.org/doi/abs/10.1145/992200.992205 

185 

186 .. [5] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal 

187 method for unsymmetric sparse matrices, ACM Trans. on 

188 Mathematical Software, 25(1), 1999, pp. 1--19. 

189 https://doi.org/10.1145/305658.287640 

190 

191 .. [6] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal 

192 method for sparse LU factorization, SIAM J. Matrix Analysis and 

193 Computations, 18(1), 1997, pp. 140--158. 

194 https://doi.org/10.1137/S0895479894246905T. 

195 

196 

197 Examples 

198 -------- 

199 >>> import numpy as np 

200 >>> from scipy.sparse import csc_matrix 

201 >>> from scipy.sparse.linalg import spsolve 

202 >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float) 

203 >>> B = csc_matrix([[2, 0], [-1, 0], [2, 0]], dtype=float) 

204 >>> x = spsolve(A, B) 

205 >>> np.allclose(A.dot(x).toarray(), B.toarray()) 

206 True 

207 """ 

208 

209 if is_pydata_spmatrix(A): 

210 A = A.to_scipy_sparse().tocsc() 

211 

212 if not (isspmatrix_csc(A) or isspmatrix_csr(A)): 

213 A = csc_matrix(A) 

214 warn('spsolve requires A be CSC or CSR matrix format', 

215 SparseEfficiencyWarning) 

216 

217 # b is a vector only if b have shape (n,) or (n, 1) 

218 b_is_sparse = isspmatrix(b) or is_pydata_spmatrix(b) 

219 if not b_is_sparse: 

220 b = asarray(b) 

221 b_is_vector = ((b.ndim == 1) or (b.ndim == 2 and b.shape[1] == 1)) 

222 

223 # sum duplicates for non-canonical format 

224 A.sum_duplicates() 

225 A = A.asfptype() # upcast to a floating point format 

226 result_dtype = np.promote_types(A.dtype, b.dtype) 

227 if A.dtype != result_dtype: 

228 A = A.astype(result_dtype) 

229 if b.dtype != result_dtype: 

230 b = b.astype(result_dtype) 

231 

232 # validate input shapes 

233 M, N = A.shape 

234 if (M != N): 

235 raise ValueError("matrix must be square (has shape %s)" % ((M, N),)) 

236 

237 if M != b.shape[0]: 

238 raise ValueError("matrix - rhs dimension mismatch (%s - %s)" 

239 % (A.shape, b.shape[0])) 

240 

241 use_umfpack = use_umfpack and useUmfpack 

242 

243 if b_is_vector and use_umfpack: 

244 if b_is_sparse: 

245 b_vec = b.toarray() 

246 else: 

247 b_vec = b 

248 b_vec = asarray(b_vec, dtype=A.dtype).ravel() 

249 

250 if noScikit: 

251 raise RuntimeError('Scikits.umfpack not installed.') 

252 

253 if A.dtype.char not in 'dD': 

254 raise ValueError("convert matrix data to double, please, using" 

255 " .astype(), or set linsolve.useUmfpack = False") 

256 

257 umf_family, A = _get_umf_family(A) 

258 umf = umfpack.UmfpackContext(umf_family) 

259 x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec, 

260 autoTranspose=True) 

261 else: 

262 if b_is_vector and b_is_sparse: 

263 b = b.toarray() 

264 b_is_sparse = False 

265 

266 if not b_is_sparse: 

267 if isspmatrix_csc(A): 

268 flag = 1 # CSC format 

269 else: 

270 flag = 0 # CSR format 

271 

272 options = dict(ColPerm=permc_spec) 

273 x, info = _superlu.gssv(N, A.nnz, A.data, A.indices, A.indptr, 

274 b, flag, options=options) 

275 if info != 0: 

276 warn("Matrix is exactly singular", MatrixRankWarning) 

277 x.fill(np.nan) 

278 if b_is_vector: 

279 x = x.ravel() 

280 else: 

281 # b is sparse 

282 Afactsolve = factorized(A) 

283 

284 if not (isspmatrix_csc(b) or is_pydata_spmatrix(b)): 

285 warn('spsolve is more efficient when sparse b ' 

286 'is in the CSC matrix format', SparseEfficiencyWarning) 

287 b = csc_matrix(b) 

288 

289 # Create a sparse output matrix by repeatedly applying 

290 # the sparse factorization to solve columns of b. 

291 data_segs = [] 

292 row_segs = [] 

293 col_segs = [] 

294 for j in range(b.shape[1]): 

295 # TODO: replace this with 

296 # bj = b[:, j].toarray().ravel() 

297 # once 1D sparse arrays are supported. 

298 # That is a slightly faster code path. 

299 bj = b[:, [j]].toarray().ravel() 

300 xj = Afactsolve(bj) 

301 w = np.flatnonzero(xj) 

302 segment_length = w.shape[0] 

303 row_segs.append(w) 

304 col_segs.append(np.full(segment_length, j, dtype=int)) 

305 data_segs.append(np.asarray(xj[w], dtype=A.dtype)) 

306 sparse_data = np.concatenate(data_segs) 

307 sparse_row = np.concatenate(row_segs) 

308 sparse_col = np.concatenate(col_segs) 

309 x = A.__class__((sparse_data, (sparse_row, sparse_col)), 

310 shape=b.shape, dtype=A.dtype) 

311 

312 if is_pydata_spmatrix(b): 

313 x = b.__class__(x) 

314 

315 return x 

316 

317 

318def splu(A, permc_spec=None, diag_pivot_thresh=None, 

319 relax=None, panel_size=None, options=dict()): 

320 """ 

321 Compute the LU decomposition of a sparse, square matrix. 

322 

323 Parameters 

324 ---------- 

325 A : sparse matrix 

326 Sparse matrix to factorize. Most efficient when provided in CSC 

327 format. Other formats will be converted to CSC before factorization. 

328 permc_spec : str, optional 

329 How to permute the columns of the matrix for sparsity preservation. 

330 (default: 'COLAMD') 

331 

332 - ``NATURAL``: natural ordering. 

333 - ``MMD_ATA``: minimum degree ordering on the structure of A^T A. 

334 - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A. 

335 - ``COLAMD``: approximate minimum degree column ordering 

336 

337 diag_pivot_thresh : float, optional 

338 Threshold used for a diagonal entry to be an acceptable pivot. 

339 See SuperLU user's guide for details [1]_ 

340 relax : int, optional 

341 Expert option for customizing the degree of relaxing supernodes. 

342 See SuperLU user's guide for details [1]_ 

343 panel_size : int, optional 

344 Expert option for customizing the panel size. 

345 See SuperLU user's guide for details [1]_ 

346 options : dict, optional 

347 Dictionary containing additional expert options to SuperLU. 

348 See SuperLU user guide [1]_ (section 2.4 on the 'Options' argument) 

349 for more details. For example, you can specify 

350 ``options=dict(Equil=False, IterRefine='SINGLE'))`` 

351 to turn equilibration off and perform a single iterative refinement. 

352 

353 Returns 

354 ------- 

355 invA : scipy.sparse.linalg.SuperLU 

356 Object, which has a ``solve`` method. 

357 

358 See also 

359 -------- 

360 spilu : incomplete LU decomposition 

361 

362 Notes 

363 ----- 

364 This function uses the SuperLU library. 

365 

366 References 

367 ---------- 

368 .. [1] SuperLU https://portal.nersc.gov/project/sparse/superlu/ 

369 

370 Examples 

371 -------- 

372 >>> import numpy as np 

373 >>> from scipy.sparse import csc_matrix 

374 >>> from scipy.sparse.linalg import splu 

375 >>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]], dtype=float) 

376 >>> B = splu(A) 

377 >>> x = np.array([1., 2., 3.], dtype=float) 

378 >>> B.solve(x) 

379 array([ 1. , -3. , -1.5]) 

380 >>> A.dot(B.solve(x)) 

381 array([ 1., 2., 3.]) 

382 >>> B.solve(A.dot(x)) 

383 array([ 1., 2., 3.]) 

384 """ 

385 

386 if is_pydata_spmatrix(A): 

387 csc_construct_func = lambda *a, cls=type(A): cls(csc_matrix(*a)) 

388 A = A.to_scipy_sparse().tocsc() 

389 else: 

390 csc_construct_func = csc_matrix 

391 

392 if not isspmatrix_csc(A): 

393 A = csc_matrix(A) 

394 warn('splu converted its input to CSC format', SparseEfficiencyWarning) 

395 

396 # sum duplicates for non-canonical format 

397 A.sum_duplicates() 

398 A = A.asfptype() # upcast to a floating point format 

399 

400 M, N = A.shape 

401 if (M != N): 

402 raise ValueError("can only factor square matrices") # is this true? 

403 

404 _options = dict(DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec, 

405 PanelSize=panel_size, Relax=relax) 

406 if options is not None: 

407 _options.update(options) 

408 

409 # Ensure that no column permutations are applied 

410 if (_options["ColPerm"] == "NATURAL"): 

411 _options["SymmetricMode"] = True 

412 

413 return _superlu.gstrf(N, A.nnz, A.data, A.indices, A.indptr, 

414 csc_construct_func=csc_construct_func, 

415 ilu=False, options=_options) 

416 

417 

418def spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None, 

419 diag_pivot_thresh=None, relax=None, panel_size=None, options=None): 

420 """ 

421 Compute an incomplete LU decomposition for a sparse, square matrix. 

422 

423 The resulting object is an approximation to the inverse of `A`. 

424 

425 Parameters 

426 ---------- 

427 A : (N, N) array_like 

428 Sparse matrix to factorize. Most efficient when provided in CSC format. 

429 Other formats will be converted to CSC before factorization. 

430 drop_tol : float, optional 

431 Drop tolerance (0 <= tol <= 1) for an incomplete LU decomposition. 

432 (default: 1e-4) 

433 fill_factor : float, optional 

434 Specifies the fill ratio upper bound (>= 1.0) for ILU. (default: 10) 

435 drop_rule : str, optional 

436 Comma-separated string of drop rules to use. 

437 Available rules: ``basic``, ``prows``, ``column``, ``area``, 

438 ``secondary``, ``dynamic``, ``interp``. (Default: ``basic,area``) 

439 

440 See SuperLU documentation for details. 

441 

442 Remaining other options 

443 Same as for `splu` 

444 

445 Returns 

446 ------- 

447 invA_approx : scipy.sparse.linalg.SuperLU 

448 Object, which has a ``solve`` method. 

449 

450 See also 

451 -------- 

452 splu : complete LU decomposition 

453 

454 Notes 

455 ----- 

456 To improve the better approximation to the inverse, you may need to 

457 increase `fill_factor` AND decrease `drop_tol`. 

458 

459 This function uses the SuperLU library. 

460 

461 Examples 

462 -------- 

463 >>> import numpy as np 

464 >>> from scipy.sparse import csc_matrix 

465 >>> from scipy.sparse.linalg import spilu 

466 >>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]], dtype=float) 

467 >>> B = spilu(A) 

468 >>> x = np.array([1., 2., 3.], dtype=float) 

469 >>> B.solve(x) 

470 array([ 1. , -3. , -1.5]) 

471 >>> A.dot(B.solve(x)) 

472 array([ 1., 2., 3.]) 

473 >>> B.solve(A.dot(x)) 

474 array([ 1., 2., 3.]) 

475 """ 

476 

477 if is_pydata_spmatrix(A): 

478 csc_construct_func = lambda *a, cls=type(A): cls(csc_matrix(*a)) 

479 A = A.to_scipy_sparse().tocsc() 

480 else: 

481 csc_construct_func = csc_matrix 

482 

483 if not isspmatrix_csc(A): 

484 A = csc_matrix(A) 

485 warn('spilu converted its input to CSC format', 

486 SparseEfficiencyWarning) 

487 

488 # sum duplicates for non-canonical format 

489 A.sum_duplicates() 

490 A = A.asfptype() # upcast to a floating point format 

491 

492 M, N = A.shape 

493 if (M != N): 

494 raise ValueError("can only factor square matrices") # is this true? 

495 

496 _options = dict(ILU_DropRule=drop_rule, ILU_DropTol=drop_tol, 

497 ILU_FillFactor=fill_factor, 

498 DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec, 

499 PanelSize=panel_size, Relax=relax) 

500 if options is not None: 

501 _options.update(options) 

502 

503 # Ensure that no column permutations are applied 

504 if (_options["ColPerm"] == "NATURAL"): 

505 _options["SymmetricMode"] = True 

506 

507 return _superlu.gstrf(N, A.nnz, A.data, A.indices, A.indptr, 

508 csc_construct_func=csc_construct_func, 

509 ilu=True, options=_options) 

510 

511 

512def factorized(A): 

513 """ 

514 Return a function for solving a sparse linear system, with A pre-factorized. 

515 

516 Parameters 

517 ---------- 

518 A : (N, N) array_like 

519 Input. A in CSC format is most efficient. A CSR format matrix will 

520 be converted to CSC before factorization. 

521 

522 Returns 

523 ------- 

524 solve : callable 

525 To solve the linear system of equations given in `A`, the `solve` 

526 callable should be passed an ndarray of shape (N,). 

527 

528 Examples 

529 -------- 

530 >>> import numpy as np 

531 >>> from scipy.sparse.linalg import factorized 

532 >>> A = np.array([[ 3. , 2. , -1. ], 

533 ... [ 2. , -2. , 4. ], 

534 ... [-1. , 0.5, -1. ]]) 

535 >>> solve = factorized(A) # Makes LU decomposition. 

536 >>> rhs1 = np.array([1, -2, 0]) 

537 >>> solve(rhs1) # Uses the LU factors. 

538 array([ 1., -2., -2.]) 

539 

540 """ 

541 if is_pydata_spmatrix(A): 

542 A = A.to_scipy_sparse().tocsc() 

543 

544 if useUmfpack: 

545 if noScikit: 

546 raise RuntimeError('Scikits.umfpack not installed.') 

547 

548 if not isspmatrix_csc(A): 

549 A = csc_matrix(A) 

550 warn('splu converted its input to CSC format', 

551 SparseEfficiencyWarning) 

552 

553 A = A.asfptype() # upcast to a floating point format 

554 

555 if A.dtype.char not in 'dD': 

556 raise ValueError("convert matrix data to double, please, using" 

557 " .astype(), or set linsolve.useUmfpack = False") 

558 

559 umf_family, A = _get_umf_family(A) 

560 umf = umfpack.UmfpackContext(umf_family) 

561 

562 # Make LU decomposition. 

563 umf.numeric(A) 

564 

565 def solve(b): 

566 with np.errstate(divide="ignore", invalid="ignore"): 

567 # Ignoring warnings with numpy >= 1.23.0, see gh-16523 

568 result = umf.solve(umfpack.UMFPACK_A, A, b, autoTranspose=True) 

569 

570 return result 

571 

572 return solve 

573 else: 

574 return splu(A).solve 

575 

576 

577def spsolve_triangular(A, b, lower=True, overwrite_A=False, overwrite_b=False, 

578 unit_diagonal=False): 

579 """ 

580 Solve the equation ``A x = b`` for `x`, assuming A is a triangular matrix. 

581 

582 Parameters 

583 ---------- 

584 A : (M, M) sparse matrix 

585 A sparse square triangular matrix. Should be in CSR format. 

586 b : (M,) or (M, N) array_like 

587 Right-hand side matrix in ``A x = b`` 

588 lower : bool, optional 

589 Whether `A` is a lower or upper triangular matrix. 

590 Default is lower triangular matrix. 

591 overwrite_A : bool, optional 

592 Allow changing `A`. The indices of `A` are going to be sorted and zero 

593 entries are going to be removed. 

594 Enabling gives a performance gain. Default is False. 

595 overwrite_b : bool, optional 

596 Allow overwriting data in `b`. 

597 Enabling gives a performance gain. Default is False. 

598 If `overwrite_b` is True, it should be ensured that 

599 `b` has an appropriate dtype to be able to store the result. 

600 unit_diagonal : bool, optional 

601 If True, diagonal elements of `a` are assumed to be 1 and will not be 

602 referenced. 

603 

604 .. versionadded:: 1.4.0 

605 

606 Returns 

607 ------- 

608 x : (M,) or (M, N) ndarray 

609 Solution to the system ``A x = b``. Shape of return matches shape 

610 of `b`. 

611 

612 Raises 

613 ------ 

614 LinAlgError 

615 If `A` is singular or not triangular. 

616 ValueError 

617 If shape of `A` or shape of `b` do not match the requirements. 

618 

619 Notes 

620 ----- 

621 .. versionadded:: 0.19.0 

622 

623 Examples 

624 -------- 

625 >>> import numpy as np 

626 >>> from scipy.sparse import csr_matrix 

627 >>> from scipy.sparse.linalg import spsolve_triangular 

628 >>> A = csr_matrix([[3, 0, 0], [1, -1, 0], [2, 0, 1]], dtype=float) 

629 >>> B = np.array([[2, 0], [-1, 0], [2, 0]], dtype=float) 

630 >>> x = spsolve_triangular(A, B) 

631 >>> np.allclose(A.dot(x), B) 

632 True 

633 """ 

634 

635 if is_pydata_spmatrix(A): 

636 A = A.to_scipy_sparse().tocsr() 

637 

638 # Check the input for correct type and format. 

639 if not isspmatrix_csr(A): 

640 warn('CSR matrix format is required. Converting to CSR matrix.', 

641 SparseEfficiencyWarning) 

642 A = csr_matrix(A) 

643 elif not overwrite_A: 

644 A = A.copy() 

645 

646 if A.shape[0] != A.shape[1]: 

647 raise ValueError( 

648 'A must be a square matrix but its shape is {}.'.format(A.shape)) 

649 

650 # sum duplicates for non-canonical format 

651 A.sum_duplicates() 

652 

653 b = np.asanyarray(b) 

654 

655 if b.ndim not in [1, 2]: 

656 raise ValueError( 

657 'b must have 1 or 2 dims but its shape is {}.'.format(b.shape)) 

658 if A.shape[0] != b.shape[0]: 

659 raise ValueError( 

660 'The size of the dimensions of A must be equal to ' 

661 'the size of the first dimension of b but the shape of A is ' 

662 '{} and the shape of b is {}.'.format(A.shape, b.shape)) 

663 

664 # Init x as (a copy of) b. 

665 x_dtype = np.result_type(A.data, b, np.float64) 

666 if overwrite_b: 

667 if np.can_cast(b.dtype, x_dtype, casting='same_kind'): 

668 x = b 

669 else: 

670 raise ValueError( 

671 'Cannot overwrite b (dtype {}) with result ' 

672 'of type {}.'.format(b.dtype, x_dtype)) 

673 else: 

674 x = b.astype(x_dtype, copy=True) 

675 

676 # Choose forward or backward order. 

677 if lower: 

678 row_indices = range(len(b)) 

679 else: 

680 row_indices = range(len(b) - 1, -1, -1) 

681 

682 # Fill x iteratively. 

683 for i in row_indices: 

684 

685 # Get indices for i-th row. 

686 indptr_start = A.indptr[i] 

687 indptr_stop = A.indptr[i + 1] 

688 

689 if lower: 

690 A_diagonal_index_row_i = indptr_stop - 1 

691 A_off_diagonal_indices_row_i = slice(indptr_start, indptr_stop - 1) 

692 else: 

693 A_diagonal_index_row_i = indptr_start 

694 A_off_diagonal_indices_row_i = slice(indptr_start + 1, indptr_stop) 

695 

696 # Check regularity and triangularity of A. 

697 if not unit_diagonal and (indptr_stop <= indptr_start 

698 or A.indices[A_diagonal_index_row_i] < i): 

699 raise LinAlgError( 

700 'A is singular: diagonal {} is zero.'.format(i)) 

701 if not unit_diagonal and A.indices[A_diagonal_index_row_i] > i: 

702 raise LinAlgError( 

703 'A is not triangular: A[{}, {}] is nonzero.' 

704 ''.format(i, A.indices[A_diagonal_index_row_i])) 

705 

706 # Incorporate off-diagonal entries. 

707 A_column_indices_in_row_i = A.indices[A_off_diagonal_indices_row_i] 

708 A_values_in_row_i = A.data[A_off_diagonal_indices_row_i] 

709 x[i] -= np.dot(x[A_column_indices_in_row_i].T, A_values_in_row_i) 

710 

711 # Compute i-th entry of x. 

712 if not unit_diagonal: 

713 x[i] /= A.data[A_diagonal_index_row_i] 

714 

715 return x