Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/scipy/integrate/_ivp/bdf.py: 9%
244 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
1import numpy as np
2from scipy.linalg import lu_factor, lu_solve
3from scipy.sparse import issparse, csc_matrix, eye
4from scipy.sparse.linalg import splu
5from scipy.optimize._numdiff import group_columns
6from .common import (validate_max_step, validate_tol, select_initial_step,
7 norm, EPS, num_jac, validate_first_step,
8 warn_extraneous)
9from .base import OdeSolver, DenseOutput
12MAX_ORDER = 5
13NEWTON_MAXITER = 4
14MIN_FACTOR = 0.2
15MAX_FACTOR = 10
18def compute_R(order, factor):
19 """Compute the matrix for changing the differences array."""
20 I = np.arange(1, order + 1)[:, None]
21 J = np.arange(1, order + 1)
22 M = np.zeros((order + 1, order + 1))
23 M[1:, 1:] = (I - 1 - factor * J) / I
24 M[0] = 1
25 return np.cumprod(M, axis=0)
28def change_D(D, order, factor):
29 """Change differences array in-place when step size is changed."""
30 R = compute_R(order, factor)
31 U = compute_R(order, 1)
32 RU = R.dot(U)
33 D[:order + 1] = np.dot(RU.T, D[:order + 1])
36def solve_bdf_system(fun, t_new, y_predict, c, psi, LU, solve_lu, scale, tol):
37 """Solve the algebraic system resulting from BDF method."""
38 d = 0
39 y = y_predict.copy()
40 dy_norm_old = None
41 converged = False
42 for k in range(NEWTON_MAXITER):
43 f = fun(t_new, y)
44 if not np.all(np.isfinite(f)):
45 break
47 dy = solve_lu(LU, c * f - psi - d)
48 dy_norm = norm(dy / scale)
50 if dy_norm_old is None:
51 rate = None
52 else:
53 rate = dy_norm / dy_norm_old
55 if (rate is not None and (rate >= 1 or
56 rate ** (NEWTON_MAXITER - k) / (1 - rate) * dy_norm > tol)):
57 break
59 y += dy
60 d += dy
62 if (dy_norm == 0 or
63 rate is not None and rate / (1 - rate) * dy_norm < tol):
64 converged = True
65 break
67 dy_norm_old = dy_norm
69 return converged, k + 1, y, d
72class BDF(OdeSolver):
73 """Implicit method based on backward-differentiation formulas.
75 This is a variable order method with the order varying automatically from
76 1 to 5. The general framework of the BDF algorithm is described in [1]_.
77 This class implements a quasi-constant step size as explained in [2]_.
78 The error estimation strategy for the constant-step BDF is derived in [3]_.
79 An accuracy enhancement using modified formulas (NDF) [2]_ is also implemented.
81 Can be applied in the complex domain.
83 Parameters
84 ----------
85 fun : callable
86 Right-hand side of the system. The calling signature is ``fun(t, y)``.
87 Here ``t`` is a scalar, and there are two options for the ndarray ``y``:
88 It can either have shape (n,); then ``fun`` must return array_like with
89 shape (n,). Alternatively it can have shape (n, k); then ``fun``
90 must return an array_like with shape (n, k), i.e. each column
91 corresponds to a single column in ``y``. The choice between the two
92 options is determined by `vectorized` argument (see below). The
93 vectorized implementation allows a faster approximation of the Jacobian
94 by finite differences (required for this solver).
95 t0 : float
96 Initial time.
97 y0 : array_like, shape (n,)
98 Initial state.
99 t_bound : float
100 Boundary time - the integration won't continue beyond it. It also
101 determines the direction of the integration.
102 first_step : float or None, optional
103 Initial step size. Default is ``None`` which means that the algorithm
104 should choose.
105 max_step : float, optional
106 Maximum allowed step size. Default is np.inf, i.e., the step size is not
107 bounded and determined solely by the solver.
108 rtol, atol : float and array_like, optional
109 Relative and absolute tolerances. The solver keeps the local error
110 estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
111 relative accuracy (number of correct digits), while `atol` controls
112 absolute accuracy (number of correct decimal places). To achieve the
113 desired `rtol`, set `atol` to be smaller than the smallest value that
114 can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
115 allowable error. If `atol` is larger than ``rtol * abs(y)`` the
116 number of correct digits is not guaranteed. Conversely, to achieve the
117 desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
118 than `atol`. If components of y have different scales, it might be
119 beneficial to set different `atol` values for different components by
120 passing array_like with shape (n,) for `atol`. Default values are
121 1e-3 for `rtol` and 1e-6 for `atol`.
122 jac : {None, array_like, sparse_matrix, callable}, optional
123 Jacobian matrix of the right-hand side of the system with respect to y,
124 required by this method. The Jacobian matrix has shape (n, n) and its
125 element (i, j) is equal to ``d f_i / d y_j``.
126 There are three ways to define the Jacobian:
128 * If array_like or sparse_matrix, the Jacobian is assumed to
129 be constant.
130 * If callable, the Jacobian is assumed to depend on both
131 t and y; it will be called as ``jac(t, y)`` as necessary.
132 For the 'Radau' and 'BDF' methods, the return value might be a
133 sparse matrix.
134 * If None (default), the Jacobian will be approximated by
135 finite differences.
137 It is generally recommended to provide the Jacobian rather than
138 relying on a finite-difference approximation.
139 jac_sparsity : {None, array_like, sparse matrix}, optional
140 Defines a sparsity structure of the Jacobian matrix for a
141 finite-difference approximation. Its shape must be (n, n). This argument
142 is ignored if `jac` is not `None`. If the Jacobian has only few non-zero
143 elements in *each* row, providing the sparsity structure will greatly
144 speed up the computations [4]_. A zero entry means that a corresponding
145 element in the Jacobian is always zero. If None (default), the Jacobian
146 is assumed to be dense.
147 vectorized : bool, optional
148 Whether `fun` is implemented in a vectorized fashion. Default is False.
150 Attributes
151 ----------
152 n : int
153 Number of equations.
154 status : string
155 Current status of the solver: 'running', 'finished' or 'failed'.
156 t_bound : float
157 Boundary time.
158 direction : float
159 Integration direction: +1 or -1.
160 t : float
161 Current time.
162 y : ndarray
163 Current state.
164 t_old : float
165 Previous time. None if no steps were made yet.
166 step_size : float
167 Size of the last successful step. None if no steps were made yet.
168 nfev : int
169 Number of evaluations of the right-hand side.
170 njev : int
171 Number of evaluations of the Jacobian.
172 nlu : int
173 Number of LU decompositions.
175 References
176 ----------
177 .. [1] G. D. Byrne, A. C. Hindmarsh, "A Polyalgorithm for the Numerical
178 Solution of Ordinary Differential Equations", ACM Transactions on
179 Mathematical Software, Vol. 1, No. 1, pp. 71-96, March 1975.
180 .. [2] L. F. Shampine, M. W. Reichelt, "THE MATLAB ODE SUITE", SIAM J. SCI.
181 COMPUTE., Vol. 18, No. 1, pp. 1-22, January 1997.
182 .. [3] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations I:
183 Nonstiff Problems", Sec. III.2.
184 .. [4] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
185 sparse Jacobian matrices", Journal of the Institute of Mathematics
186 and its Applications, 13, pp. 117-120, 1974.
187 """
188 def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
189 rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None,
190 vectorized=False, first_step=None, **extraneous):
191 warn_extraneous(extraneous)
192 super().__init__(fun, t0, y0, t_bound, vectorized,
193 support_complex=True)
194 self.max_step = validate_max_step(max_step)
195 self.rtol, self.atol = validate_tol(rtol, atol, self.n)
196 f = self.fun(self.t, self.y)
197 if first_step is None:
198 self.h_abs = select_initial_step(self.fun, self.t, self.y, f,
199 self.direction, 1,
200 self.rtol, self.atol)
201 else:
202 self.h_abs = validate_first_step(first_step, t0, t_bound)
203 self.h_abs_old = None
204 self.error_norm_old = None
206 self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5))
208 self.jac_factor = None
209 self.jac, self.J = self._validate_jac(jac, jac_sparsity)
210 if issparse(self.J):
211 def lu(A):
212 self.nlu += 1
213 return splu(A)
215 def solve_lu(LU, b):
216 return LU.solve(b)
218 I = eye(self.n, format='csc', dtype=self.y.dtype)
219 else:
220 def lu(A):
221 self.nlu += 1
222 return lu_factor(A, overwrite_a=True)
224 def solve_lu(LU, b):
225 return lu_solve(LU, b, overwrite_b=True)
227 I = np.identity(self.n, dtype=self.y.dtype)
229 self.lu = lu
230 self.solve_lu = solve_lu
231 self.I = I
233 kappa = np.array([0, -0.1850, -1/9, -0.0823, -0.0415, 0])
234 self.gamma = np.hstack((0, np.cumsum(1 / np.arange(1, MAX_ORDER + 1))))
235 self.alpha = (1 - kappa) * self.gamma
236 self.error_const = kappa * self.gamma + 1 / np.arange(1, MAX_ORDER + 2)
238 D = np.empty((MAX_ORDER + 3, self.n), dtype=self.y.dtype)
239 D[0] = self.y
240 D[1] = f * self.h_abs * self.direction
241 self.D = D
243 self.order = 1
244 self.n_equal_steps = 0
245 self.LU = None
247 def _validate_jac(self, jac, sparsity):
248 t0 = self.t
249 y0 = self.y
251 if jac is None:
252 if sparsity is not None:
253 if issparse(sparsity):
254 sparsity = csc_matrix(sparsity)
255 groups = group_columns(sparsity)
256 sparsity = (sparsity, groups)
258 def jac_wrapped(t, y):
259 self.njev += 1
260 f = self.fun_single(t, y)
261 J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f,
262 self.atol, self.jac_factor,
263 sparsity)
264 return J
265 J = jac_wrapped(t0, y0)
266 elif callable(jac):
267 J = jac(t0, y0)
268 self.njev += 1
269 if issparse(J):
270 J = csc_matrix(J, dtype=y0.dtype)
272 def jac_wrapped(t, y):
273 self.njev += 1
274 return csc_matrix(jac(t, y), dtype=y0.dtype)
275 else:
276 J = np.asarray(J, dtype=y0.dtype)
278 def jac_wrapped(t, y):
279 self.njev += 1
280 return np.asarray(jac(t, y), dtype=y0.dtype)
282 if J.shape != (self.n, self.n):
283 raise ValueError("`jac` is expected to have shape {}, but "
284 "actually has {}."
285 .format((self.n, self.n), J.shape))
286 else:
287 if issparse(jac):
288 J = csc_matrix(jac, dtype=y0.dtype)
289 else:
290 J = np.asarray(jac, dtype=y0.dtype)
292 if J.shape != (self.n, self.n):
293 raise ValueError("`jac` is expected to have shape {}, but "
294 "actually has {}."
295 .format((self.n, self.n), J.shape))
296 jac_wrapped = None
298 return jac_wrapped, J
300 def _step_impl(self):
301 t = self.t
302 D = self.D
304 max_step = self.max_step
305 min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
306 if self.h_abs > max_step:
307 h_abs = max_step
308 change_D(D, self.order, max_step / self.h_abs)
309 self.n_equal_steps = 0
310 elif self.h_abs < min_step:
311 h_abs = min_step
312 change_D(D, self.order, min_step / self.h_abs)
313 self.n_equal_steps = 0
314 else:
315 h_abs = self.h_abs
317 atol = self.atol
318 rtol = self.rtol
319 order = self.order
321 alpha = self.alpha
322 gamma = self.gamma
323 error_const = self.error_const
325 J = self.J
326 LU = self.LU
327 current_jac = self.jac is None
329 step_accepted = False
330 while not step_accepted:
331 if h_abs < min_step:
332 return False, self.TOO_SMALL_STEP
334 h = h_abs * self.direction
335 t_new = t + h
337 if self.direction * (t_new - self.t_bound) > 0:
338 t_new = self.t_bound
339 change_D(D, order, np.abs(t_new - t) / h_abs)
340 self.n_equal_steps = 0
341 LU = None
343 h = t_new - t
344 h_abs = np.abs(h)
346 y_predict = np.sum(D[:order + 1], axis=0)
348 scale = atol + rtol * np.abs(y_predict)
349 psi = np.dot(D[1: order + 1].T, gamma[1: order + 1]) / alpha[order]
351 converged = False
352 c = h / alpha[order]
353 while not converged:
354 if LU is None:
355 LU = self.lu(self.I - c * J)
357 converged, n_iter, y_new, d = solve_bdf_system(
358 self.fun, t_new, y_predict, c, psi, LU, self.solve_lu,
359 scale, self.newton_tol)
361 if not converged:
362 if current_jac:
363 break
364 J = self.jac(t_new, y_predict)
365 LU = None
366 current_jac = True
368 if not converged:
369 factor = 0.5
370 h_abs *= factor
371 change_D(D, order, factor)
372 self.n_equal_steps = 0
373 LU = None
374 continue
376 safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER
377 + n_iter)
379 scale = atol + rtol * np.abs(y_new)
380 error = error_const[order] * d
381 error_norm = norm(error / scale)
383 if error_norm > 1:
384 factor = max(MIN_FACTOR,
385 safety * error_norm ** (-1 / (order + 1)))
386 h_abs *= factor
387 change_D(D, order, factor)
388 self.n_equal_steps = 0
389 # As we didn't have problems with convergence, we don't
390 # reset LU here.
391 else:
392 step_accepted = True
394 self.n_equal_steps += 1
396 self.t = t_new
397 self.y = y_new
399 self.h_abs = h_abs
400 self.J = J
401 self.LU = LU
403 # Update differences. The principal relation here is
404 # D^{j + 1} y_n = D^{j} y_n - D^{j} y_{n - 1}. Keep in mind that D
405 # contained difference for previous interpolating polynomial and
406 # d = D^{k + 1} y_n. Thus this elegant code follows.
407 D[order + 2] = d - D[order + 1]
408 D[order + 1] = d
409 for i in reversed(range(order + 1)):
410 D[i] += D[i + 1]
412 if self.n_equal_steps < order + 1:
413 return True, None
415 if order > 1:
416 error_m = error_const[order - 1] * D[order]
417 error_m_norm = norm(error_m / scale)
418 else:
419 error_m_norm = np.inf
421 if order < MAX_ORDER:
422 error_p = error_const[order + 1] * D[order + 2]
423 error_p_norm = norm(error_p / scale)
424 else:
425 error_p_norm = np.inf
427 error_norms = np.array([error_m_norm, error_norm, error_p_norm])
428 with np.errstate(divide='ignore'):
429 factors = error_norms ** (-1 / np.arange(order, order + 3))
431 delta_order = np.argmax(factors) - 1
432 order += delta_order
433 self.order = order
435 factor = min(MAX_FACTOR, safety * np.max(factors))
436 self.h_abs *= factor
437 change_D(D, order, factor)
438 self.n_equal_steps = 0
439 self.LU = None
441 return True, None
443 def _dense_output_impl(self):
444 return BdfDenseOutput(self.t_old, self.t, self.h_abs * self.direction,
445 self.order, self.D[:self.order + 1].copy())
448class BdfDenseOutput(DenseOutput):
449 def __init__(self, t_old, t, h, order, D):
450 super().__init__(t_old, t)
451 self.order = order
452 self.t_shift = self.t - h * np.arange(self.order)
453 self.denom = h * (1 + np.arange(self.order))
454 self.D = D
456 def _call_impl(self, t):
457 if t.ndim == 0:
458 x = (t - self.t_shift) / self.denom
459 p = np.cumprod(x)
460 else:
461 x = (t - self.t_shift[:, None]) / self.denom[:, None]
462 p = np.cumprod(x, axis=0)
464 y = np.dot(self.D[1:].T, p)
465 if y.ndim == 1:
466 y += self.D[0]
467 else:
468 y += self.D[0, :, None]
470 return y