Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/scipy/integrate/_ivp/dop853_coefficients.py: 100%

152 statements  

« prev     ^ index     » next       coverage.py v7.3.2, created at 2023-12-12 06:31 +0000

1import numpy as np 

2 

3N_STAGES = 12 

4N_STAGES_EXTENDED = 16 

5INTERPOLATOR_POWER = 7 

6 

7C = np.array([0.0, 

8 0.526001519587677318785587544488e-01, 

9 0.789002279381515978178381316732e-01, 

10 0.118350341907227396726757197510, 

11 0.281649658092772603273242802490, 

12 0.333333333333333333333333333333, 

13 0.25, 

14 0.307692307692307692307692307692, 

15 0.651282051282051282051282051282, 

16 0.6, 

17 0.857142857142857142857142857142, 

18 1.0, 

19 1.0, 

20 0.1, 

21 0.2, 

22 0.777777777777777777777777777778]) 

23 

24A = np.zeros((N_STAGES_EXTENDED, N_STAGES_EXTENDED)) 

25A[1, 0] = 5.26001519587677318785587544488e-2 

26 

27A[2, 0] = 1.97250569845378994544595329183e-2 

28A[2, 1] = 5.91751709536136983633785987549e-2 

29 

30A[3, 0] = 2.95875854768068491816892993775e-2 

31A[3, 2] = 8.87627564304205475450678981324e-2 

32 

33A[4, 0] = 2.41365134159266685502369798665e-1 

34A[4, 2] = -8.84549479328286085344864962717e-1 

35A[4, 3] = 9.24834003261792003115737966543e-1 

36 

37A[5, 0] = 3.7037037037037037037037037037e-2 

38A[5, 3] = 1.70828608729473871279604482173e-1 

39A[5, 4] = 1.25467687566822425016691814123e-1 

40 

41A[6, 0] = 3.7109375e-2 

42A[6, 3] = 1.70252211019544039314978060272e-1 

43A[6, 4] = 6.02165389804559606850219397283e-2 

44A[6, 5] = -1.7578125e-2 

45 

46A[7, 0] = 3.70920001185047927108779319836e-2 

47A[7, 3] = 1.70383925712239993810214054705e-1 

48A[7, 4] = 1.07262030446373284651809199168e-1 

49A[7, 5] = -1.53194377486244017527936158236e-2 

50A[7, 6] = 8.27378916381402288758473766002e-3 

51 

52A[8, 0] = 6.24110958716075717114429577812e-1 

53A[8, 3] = -3.36089262944694129406857109825 

54A[8, 4] = -8.68219346841726006818189891453e-1 

55A[8, 5] = 2.75920996994467083049415600797e1 

56A[8, 6] = 2.01540675504778934086186788979e1 

57A[8, 7] = -4.34898841810699588477366255144e1 

58 

59A[9, 0] = 4.77662536438264365890433908527e-1 

60A[9, 3] = -2.48811461997166764192642586468 

61A[9, 4] = -5.90290826836842996371446475743e-1 

62A[9, 5] = 2.12300514481811942347288949897e1 

63A[9, 6] = 1.52792336328824235832596922938e1 

64A[9, 7] = -3.32882109689848629194453265587e1 

65A[9, 8] = -2.03312017085086261358222928593e-2 

66 

67A[10, 0] = -9.3714243008598732571704021658e-1 

68A[10, 3] = 5.18637242884406370830023853209 

69A[10, 4] = 1.09143734899672957818500254654 

70A[10, 5] = -8.14978701074692612513997267357 

71A[10, 6] = -1.85200656599969598641566180701e1 

72A[10, 7] = 2.27394870993505042818970056734e1 

73A[10, 8] = 2.49360555267965238987089396762 

74A[10, 9] = -3.0467644718982195003823669022 

75 

76A[11, 0] = 2.27331014751653820792359768449 

77A[11, 3] = -1.05344954667372501984066689879e1 

78A[11, 4] = -2.00087205822486249909675718444 

79A[11, 5] = -1.79589318631187989172765950534e1 

80A[11, 6] = 2.79488845294199600508499808837e1 

81A[11, 7] = -2.85899827713502369474065508674 

82A[11, 8] = -8.87285693353062954433549289258 

83A[11, 9] = 1.23605671757943030647266201528e1 

84A[11, 10] = 6.43392746015763530355970484046e-1 

85 

86A[12, 0] = 5.42937341165687622380535766363e-2 

87A[12, 5] = 4.45031289275240888144113950566 

88A[12, 6] = 1.89151789931450038304281599044 

89A[12, 7] = -5.8012039600105847814672114227 

90A[12, 8] = 3.1116436695781989440891606237e-1 

91A[12, 9] = -1.52160949662516078556178806805e-1 

92A[12, 10] = 2.01365400804030348374776537501e-1 

93A[12, 11] = 4.47106157277725905176885569043e-2 

94 

95A[13, 0] = 5.61675022830479523392909219681e-2 

96A[13, 6] = 2.53500210216624811088794765333e-1 

97A[13, 7] = -2.46239037470802489917441475441e-1 

98A[13, 8] = -1.24191423263816360469010140626e-1 

99A[13, 9] = 1.5329179827876569731206322685e-1 

100A[13, 10] = 8.20105229563468988491666602057e-3 

101A[13, 11] = 7.56789766054569976138603589584e-3 

102A[13, 12] = -8.298e-3 

103 

104A[14, 0] = 3.18346481635021405060768473261e-2 

105A[14, 5] = 2.83009096723667755288322961402e-2 

106A[14, 6] = 5.35419883074385676223797384372e-2 

107A[14, 7] = -5.49237485713909884646569340306e-2 

108A[14, 10] = -1.08347328697249322858509316994e-4 

109A[14, 11] = 3.82571090835658412954920192323e-4 

110A[14, 12] = -3.40465008687404560802977114492e-4 

111A[14, 13] = 1.41312443674632500278074618366e-1 

112 

113A[15, 0] = -4.28896301583791923408573538692e-1 

114A[15, 5] = -4.69762141536116384314449447206 

115A[15, 6] = 7.68342119606259904184240953878 

116A[15, 7] = 4.06898981839711007970213554331 

117A[15, 8] = 3.56727187455281109270669543021e-1 

118A[15, 12] = -1.39902416515901462129418009734e-3 

119A[15, 13] = 2.9475147891527723389556272149 

120A[15, 14] = -9.15095847217987001081870187138 

121 

122 

123B = A[N_STAGES, :N_STAGES] 

124 

125E3 = np.zeros(N_STAGES + 1) 

126E3[:-1] = B.copy() 

127E3[0] -= 0.244094488188976377952755905512 

128E3[8] -= 0.733846688281611857341361741547 

129E3[11] -= 0.220588235294117647058823529412e-1 

130 

131E5 = np.zeros(N_STAGES + 1) 

132E5[0] = 0.1312004499419488073250102996e-1 

133E5[5] = -0.1225156446376204440720569753e+1 

134E5[6] = -0.4957589496572501915214079952 

135E5[7] = 0.1664377182454986536961530415e+1 

136E5[8] = -0.3503288487499736816886487290 

137E5[9] = 0.3341791187130174790297318841 

138E5[10] = 0.8192320648511571246570742613e-1 

139E5[11] = -0.2235530786388629525884427845e-1 

140 

141# First 3 coefficients are computed separately. 

142D = np.zeros((INTERPOLATOR_POWER - 3, N_STAGES_EXTENDED)) 

143D[0, 0] = -0.84289382761090128651353491142e+1 

144D[0, 5] = 0.56671495351937776962531783590 

145D[0, 6] = -0.30689499459498916912797304727e+1 

146D[0, 7] = 0.23846676565120698287728149680e+1 

147D[0, 8] = 0.21170345824450282767155149946e+1 

148D[0, 9] = -0.87139158377797299206789907490 

149D[0, 10] = 0.22404374302607882758541771650e+1 

150D[0, 11] = 0.63157877876946881815570249290 

151D[0, 12] = -0.88990336451333310820698117400e-1 

152D[0, 13] = 0.18148505520854727256656404962e+2 

153D[0, 14] = -0.91946323924783554000451984436e+1 

154D[0, 15] = -0.44360363875948939664310572000e+1 

155 

156D[1, 0] = 0.10427508642579134603413151009e+2 

157D[1, 5] = 0.24228349177525818288430175319e+3 

158D[1, 6] = 0.16520045171727028198505394887e+3 

159D[1, 7] = -0.37454675472269020279518312152e+3 

160D[1, 8] = -0.22113666853125306036270938578e+2 

161D[1, 9] = 0.77334326684722638389603898808e+1 

162D[1, 10] = -0.30674084731089398182061213626e+2 

163D[1, 11] = -0.93321305264302278729567221706e+1 

164D[1, 12] = 0.15697238121770843886131091075e+2 

165D[1, 13] = -0.31139403219565177677282850411e+2 

166D[1, 14] = -0.93529243588444783865713862664e+1 

167D[1, 15] = 0.35816841486394083752465898540e+2 

168 

169D[2, 0] = 0.19985053242002433820987653617e+2 

170D[2, 5] = -0.38703730874935176555105901742e+3 

171D[2, 6] = -0.18917813819516756882830838328e+3 

172D[2, 7] = 0.52780815920542364900561016686e+3 

173D[2, 8] = -0.11573902539959630126141871134e+2 

174D[2, 9] = 0.68812326946963000169666922661e+1 

175D[2, 10] = -0.10006050966910838403183860980e+1 

176D[2, 11] = 0.77771377980534432092869265740 

177D[2, 12] = -0.27782057523535084065932004339e+1 

178D[2, 13] = -0.60196695231264120758267380846e+2 

179D[2, 14] = 0.84320405506677161018159903784e+2 

180D[2, 15] = 0.11992291136182789328035130030e+2 

181 

182D[3, 0] = -0.25693933462703749003312586129e+2 

183D[3, 5] = -0.15418974869023643374053993627e+3 

184D[3, 6] = -0.23152937917604549567536039109e+3 

185D[3, 7] = 0.35763911791061412378285349910e+3 

186D[3, 8] = 0.93405324183624310003907691704e+2 

187D[3, 9] = -0.37458323136451633156875139351e+2 

188D[3, 10] = 0.10409964950896230045147246184e+3 

189D[3, 11] = 0.29840293426660503123344363579e+2 

190D[3, 12] = -0.43533456590011143754432175058e+2 

191D[3, 13] = 0.96324553959188282948394950600e+2 

192D[3, 14] = -0.39177261675615439165231486172e+2 

193D[3, 15] = -0.14972683625798562581422125276e+3