Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/scipy/integrate/_ivp/dop853_coefficients.py: 100%
152 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
1import numpy as np
3N_STAGES = 12
4N_STAGES_EXTENDED = 16
5INTERPOLATOR_POWER = 7
7C = np.array([0.0,
8 0.526001519587677318785587544488e-01,
9 0.789002279381515978178381316732e-01,
10 0.118350341907227396726757197510,
11 0.281649658092772603273242802490,
12 0.333333333333333333333333333333,
13 0.25,
14 0.307692307692307692307692307692,
15 0.651282051282051282051282051282,
16 0.6,
17 0.857142857142857142857142857142,
18 1.0,
19 1.0,
20 0.1,
21 0.2,
22 0.777777777777777777777777777778])
24A = np.zeros((N_STAGES_EXTENDED, N_STAGES_EXTENDED))
25A[1, 0] = 5.26001519587677318785587544488e-2
27A[2, 0] = 1.97250569845378994544595329183e-2
28A[2, 1] = 5.91751709536136983633785987549e-2
30A[3, 0] = 2.95875854768068491816892993775e-2
31A[3, 2] = 8.87627564304205475450678981324e-2
33A[4, 0] = 2.41365134159266685502369798665e-1
34A[4, 2] = -8.84549479328286085344864962717e-1
35A[4, 3] = 9.24834003261792003115737966543e-1
37A[5, 0] = 3.7037037037037037037037037037e-2
38A[5, 3] = 1.70828608729473871279604482173e-1
39A[5, 4] = 1.25467687566822425016691814123e-1
41A[6, 0] = 3.7109375e-2
42A[6, 3] = 1.70252211019544039314978060272e-1
43A[6, 4] = 6.02165389804559606850219397283e-2
44A[6, 5] = -1.7578125e-2
46A[7, 0] = 3.70920001185047927108779319836e-2
47A[7, 3] = 1.70383925712239993810214054705e-1
48A[7, 4] = 1.07262030446373284651809199168e-1
49A[7, 5] = -1.53194377486244017527936158236e-2
50A[7, 6] = 8.27378916381402288758473766002e-3
52A[8, 0] = 6.24110958716075717114429577812e-1
53A[8, 3] = -3.36089262944694129406857109825
54A[8, 4] = -8.68219346841726006818189891453e-1
55A[8, 5] = 2.75920996994467083049415600797e1
56A[8, 6] = 2.01540675504778934086186788979e1
57A[8, 7] = -4.34898841810699588477366255144e1
59A[9, 0] = 4.77662536438264365890433908527e-1
60A[9, 3] = -2.48811461997166764192642586468
61A[9, 4] = -5.90290826836842996371446475743e-1
62A[9, 5] = 2.12300514481811942347288949897e1
63A[9, 6] = 1.52792336328824235832596922938e1
64A[9, 7] = -3.32882109689848629194453265587e1
65A[9, 8] = -2.03312017085086261358222928593e-2
67A[10, 0] = -9.3714243008598732571704021658e-1
68A[10, 3] = 5.18637242884406370830023853209
69A[10, 4] = 1.09143734899672957818500254654
70A[10, 5] = -8.14978701074692612513997267357
71A[10, 6] = -1.85200656599969598641566180701e1
72A[10, 7] = 2.27394870993505042818970056734e1
73A[10, 8] = 2.49360555267965238987089396762
74A[10, 9] = -3.0467644718982195003823669022
76A[11, 0] = 2.27331014751653820792359768449
77A[11, 3] = -1.05344954667372501984066689879e1
78A[11, 4] = -2.00087205822486249909675718444
79A[11, 5] = -1.79589318631187989172765950534e1
80A[11, 6] = 2.79488845294199600508499808837e1
81A[11, 7] = -2.85899827713502369474065508674
82A[11, 8] = -8.87285693353062954433549289258
83A[11, 9] = 1.23605671757943030647266201528e1
84A[11, 10] = 6.43392746015763530355970484046e-1
86A[12, 0] = 5.42937341165687622380535766363e-2
87A[12, 5] = 4.45031289275240888144113950566
88A[12, 6] = 1.89151789931450038304281599044
89A[12, 7] = -5.8012039600105847814672114227
90A[12, 8] = 3.1116436695781989440891606237e-1
91A[12, 9] = -1.52160949662516078556178806805e-1
92A[12, 10] = 2.01365400804030348374776537501e-1
93A[12, 11] = 4.47106157277725905176885569043e-2
95A[13, 0] = 5.61675022830479523392909219681e-2
96A[13, 6] = 2.53500210216624811088794765333e-1
97A[13, 7] = -2.46239037470802489917441475441e-1
98A[13, 8] = -1.24191423263816360469010140626e-1
99A[13, 9] = 1.5329179827876569731206322685e-1
100A[13, 10] = 8.20105229563468988491666602057e-3
101A[13, 11] = 7.56789766054569976138603589584e-3
102A[13, 12] = -8.298e-3
104A[14, 0] = 3.18346481635021405060768473261e-2
105A[14, 5] = 2.83009096723667755288322961402e-2
106A[14, 6] = 5.35419883074385676223797384372e-2
107A[14, 7] = -5.49237485713909884646569340306e-2
108A[14, 10] = -1.08347328697249322858509316994e-4
109A[14, 11] = 3.82571090835658412954920192323e-4
110A[14, 12] = -3.40465008687404560802977114492e-4
111A[14, 13] = 1.41312443674632500278074618366e-1
113A[15, 0] = -4.28896301583791923408573538692e-1
114A[15, 5] = -4.69762141536116384314449447206
115A[15, 6] = 7.68342119606259904184240953878
116A[15, 7] = 4.06898981839711007970213554331
117A[15, 8] = 3.56727187455281109270669543021e-1
118A[15, 12] = -1.39902416515901462129418009734e-3
119A[15, 13] = 2.9475147891527723389556272149
120A[15, 14] = -9.15095847217987001081870187138
123B = A[N_STAGES, :N_STAGES]
125E3 = np.zeros(N_STAGES + 1)
126E3[:-1] = B.copy()
127E3[0] -= 0.244094488188976377952755905512
128E3[8] -= 0.733846688281611857341361741547
129E3[11] -= 0.220588235294117647058823529412e-1
131E5 = np.zeros(N_STAGES + 1)
132E5[0] = 0.1312004499419488073250102996e-1
133E5[5] = -0.1225156446376204440720569753e+1
134E5[6] = -0.4957589496572501915214079952
135E5[7] = 0.1664377182454986536961530415e+1
136E5[8] = -0.3503288487499736816886487290
137E5[9] = 0.3341791187130174790297318841
138E5[10] = 0.8192320648511571246570742613e-1
139E5[11] = -0.2235530786388629525884427845e-1
141# First 3 coefficients are computed separately.
142D = np.zeros((INTERPOLATOR_POWER - 3, N_STAGES_EXTENDED))
143D[0, 0] = -0.84289382761090128651353491142e+1
144D[0, 5] = 0.56671495351937776962531783590
145D[0, 6] = -0.30689499459498916912797304727e+1
146D[0, 7] = 0.23846676565120698287728149680e+1
147D[0, 8] = 0.21170345824450282767155149946e+1
148D[0, 9] = -0.87139158377797299206789907490
149D[0, 10] = 0.22404374302607882758541771650e+1
150D[0, 11] = 0.63157877876946881815570249290
151D[0, 12] = -0.88990336451333310820698117400e-1
152D[0, 13] = 0.18148505520854727256656404962e+2
153D[0, 14] = -0.91946323924783554000451984436e+1
154D[0, 15] = -0.44360363875948939664310572000e+1
156D[1, 0] = 0.10427508642579134603413151009e+2
157D[1, 5] = 0.24228349177525818288430175319e+3
158D[1, 6] = 0.16520045171727028198505394887e+3
159D[1, 7] = -0.37454675472269020279518312152e+3
160D[1, 8] = -0.22113666853125306036270938578e+2
161D[1, 9] = 0.77334326684722638389603898808e+1
162D[1, 10] = -0.30674084731089398182061213626e+2
163D[1, 11] = -0.93321305264302278729567221706e+1
164D[1, 12] = 0.15697238121770843886131091075e+2
165D[1, 13] = -0.31139403219565177677282850411e+2
166D[1, 14] = -0.93529243588444783865713862664e+1
167D[1, 15] = 0.35816841486394083752465898540e+2
169D[2, 0] = 0.19985053242002433820987653617e+2
170D[2, 5] = -0.38703730874935176555105901742e+3
171D[2, 6] = -0.18917813819516756882830838328e+3
172D[2, 7] = 0.52780815920542364900561016686e+3
173D[2, 8] = -0.11573902539959630126141871134e+2
174D[2, 9] = 0.68812326946963000169666922661e+1
175D[2, 10] = -0.10006050966910838403183860980e+1
176D[2, 11] = 0.77771377980534432092869265740
177D[2, 12] = -0.27782057523535084065932004339e+1
178D[2, 13] = -0.60196695231264120758267380846e+2
179D[2, 14] = 0.84320405506677161018159903784e+2
180D[2, 15] = 0.11992291136182789328035130030e+2
182D[3, 0] = -0.25693933462703749003312586129e+2
183D[3, 5] = -0.15418974869023643374053993627e+3
184D[3, 6] = -0.23152937917604549567536039109e+3
185D[3, 7] = 0.35763911791061412378285349910e+3
186D[3, 8] = 0.93405324183624310003907691704e+2
187D[3, 9] = -0.37458323136451633156875139351e+2
188D[3, 10] = 0.10409964950896230045147246184e+3
189D[3, 11] = 0.29840293426660503123344363579e+2
190D[3, 12] = -0.43533456590011143754432175058e+2
191D[3, 13] = 0.96324553959188282948394950600e+2
192D[3, 14] = -0.39177261675615439165231486172e+2
193D[3, 15] = -0.14972683625798562581422125276e+3