Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/scipy/fft/_realtransforms.py: 71%
28 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
1from ._basic import _dispatch
2from scipy._lib.uarray import Dispatchable
3import numpy as np
5__all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn']
8@_dispatch
9def dctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
10 workers=None, *, orthogonalize=None):
11 """
12 Return multidimensional Discrete Cosine Transform along the specified axes.
14 Parameters
15 ----------
16 x : array_like
17 The input array.
18 type : {1, 2, 3, 4}, optional
19 Type of the DCT (see Notes). Default type is 2.
20 s : int or array_like of ints or None, optional
21 The shape of the result. If both `s` and `axes` (see below) are None,
22 `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
23 ``numpy.take(x.shape, axes, axis=0)``.
24 If ``s[i] > x.shape[i]``, the ith dimension is padded with zeros.
25 If ``s[i] < x.shape[i]``, the ith dimension is truncated to length
26 ``s[i]``.
27 If any element of `s` is -1, the size of the corresponding dimension of
28 `x` is used.
29 axes : int or array_like of ints or None, optional
30 Axes over which the DCT is computed. If not given, the last ``len(s)``
31 axes are used, or all axes if `s` is also not specified.
32 norm : {"backward", "ortho", "forward"}, optional
33 Normalization mode (see Notes). Default is "backward".
34 overwrite_x : bool, optional
35 If True, the contents of `x` can be destroyed; the default is False.
36 workers : int, optional
37 Maximum number of workers to use for parallel computation. If negative,
38 the value wraps around from ``os.cpu_count()``.
39 See :func:`~scipy.fft.fft` for more details.
40 orthogonalize : bool, optional
41 Whether to use the orthogonalized DCT variant (see Notes).
42 Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
44 .. versionadded:: 1.8.0
46 Returns
47 -------
48 y : ndarray of real
49 The transformed input array.
51 See Also
52 --------
53 idctn : Inverse multidimensional DCT
55 Notes
56 -----
57 For full details of the DCT types and normalization modes, as well as
58 references, see `dct`.
60 Examples
61 --------
62 >>> import numpy as np
63 >>> from scipy.fft import dctn, idctn
64 >>> rng = np.random.default_rng()
65 >>> y = rng.standard_normal((16, 16))
66 >>> np.allclose(y, idctn(dctn(y)))
67 True
69 """
70 return (Dispatchable(x, np.ndarray),)
73@_dispatch
74def idctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
75 workers=None, orthogonalize=None):
76 """
77 Return multidimensional Inverse Discrete Cosine Transform along the specified axes.
79 Parameters
80 ----------
81 x : array_like
82 The input array.
83 type : {1, 2, 3, 4}, optional
84 Type of the DCT (see Notes). Default type is 2.
85 s : int or array_like of ints or None, optional
86 The shape of the result. If both `s` and `axes` (see below) are
87 None, `s` is ``x.shape``; if `s` is None but `axes` is
88 not None, then `s` is ``numpy.take(x.shape, axes, axis=0)``.
89 If ``s[i] > x.shape[i]``, the ith dimension is padded with zeros.
90 If ``s[i] < x.shape[i]``, the ith dimension is truncated to length
91 ``s[i]``.
92 If any element of `s` is -1, the size of the corresponding dimension of
93 `x` is used.
94 axes : int or array_like of ints or None, optional
95 Axes over which the IDCT is computed. If not given, the last ``len(s)``
96 axes are used, or all axes if `s` is also not specified.
97 norm : {"backward", "ortho", "forward"}, optional
98 Normalization mode (see Notes). Default is "backward".
99 overwrite_x : bool, optional
100 If True, the contents of `x` can be destroyed; the default is False.
101 workers : int, optional
102 Maximum number of workers to use for parallel computation. If negative,
103 the value wraps around from ``os.cpu_count()``.
104 See :func:`~scipy.fft.fft` for more details.
105 orthogonalize : bool, optional
106 Whether to use the orthogonalized IDCT variant (see Notes).
107 Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
109 .. versionadded:: 1.8.0
111 Returns
112 -------
113 y : ndarray of real
114 The transformed input array.
116 See Also
117 --------
118 dctn : multidimensional DCT
120 Notes
121 -----
122 For full details of the IDCT types and normalization modes, as well as
123 references, see `idct`.
125 Examples
126 --------
127 >>> import numpy as np
128 >>> from scipy.fft import dctn, idctn
129 >>> rng = np.random.default_rng()
130 >>> y = rng.standard_normal((16, 16))
131 >>> np.allclose(y, idctn(dctn(y)))
132 True
134 """
135 return (Dispatchable(x, np.ndarray),)
138@_dispatch
139def dstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
140 workers=None, orthogonalize=None):
141 """
142 Return multidimensional Discrete Sine Transform along the specified axes.
144 Parameters
145 ----------
146 x : array_like
147 The input array.
148 type : {1, 2, 3, 4}, optional
149 Type of the DST (see Notes). Default type is 2.
150 s : int or array_like of ints or None, optional
151 The shape of the result. If both `s` and `axes` (see below) are None,
152 `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
153 ``numpy.take(x.shape, axes, axis=0)``.
154 If ``s[i] > x.shape[i]``, the ith dimension is padded with zeros.
155 If ``s[i] < x.shape[i]``, the ith dimension is truncated to length
156 ``s[i]``.
157 If any element of `shape` is -1, the size of the corresponding dimension
158 of `x` is used.
159 axes : int or array_like of ints or None, optional
160 Axes over which the DST is computed. If not given, the last ``len(s)``
161 axes are used, or all axes if `s` is also not specified.
162 norm : {"backward", "ortho", "forward"}, optional
163 Normalization mode (see Notes). Default is "backward".
164 overwrite_x : bool, optional
165 If True, the contents of `x` can be destroyed; the default is False.
166 workers : int, optional
167 Maximum number of workers to use for parallel computation. If negative,
168 the value wraps around from ``os.cpu_count()``.
169 See :func:`~scipy.fft.fft` for more details.
170 orthogonalize : bool, optional
171 Whether to use the orthogonalized DST variant (see Notes).
172 Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
174 .. versionadded:: 1.8.0
176 Returns
177 -------
178 y : ndarray of real
179 The transformed input array.
181 See Also
182 --------
183 idstn : Inverse multidimensional DST
185 Notes
186 -----
187 For full details of the DST types and normalization modes, as well as
188 references, see `dst`.
190 Examples
191 --------
192 >>> import numpy as np
193 >>> from scipy.fft import dstn, idstn
194 >>> rng = np.random.default_rng()
195 >>> y = rng.standard_normal((16, 16))
196 >>> np.allclose(y, idstn(dstn(y)))
197 True
199 """
200 return (Dispatchable(x, np.ndarray),)
203@_dispatch
204def idstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
205 workers=None, orthogonalize=None):
206 """
207 Return multidimensional Inverse Discrete Sine Transform along the specified axes.
209 Parameters
210 ----------
211 x : array_like
212 The input array.
213 type : {1, 2, 3, 4}, optional
214 Type of the DST (see Notes). Default type is 2.
215 s : int or array_like of ints or None, optional
216 The shape of the result. If both `s` and `axes` (see below) are None,
217 `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
218 ``numpy.take(x.shape, axes, axis=0)``.
219 If ``s[i] > x.shape[i]``, the ith dimension is padded with zeros.
220 If ``s[i] < x.shape[i]``, the ith dimension is truncated to length
221 ``s[i]``.
222 If any element of `s` is -1, the size of the corresponding dimension of
223 `x` is used.
224 axes : int or array_like of ints or None, optional
225 Axes over which the IDST is computed. If not given, the last ``len(s)``
226 axes are used, or all axes if `s` is also not specified.
227 norm : {"backward", "ortho", "forward"}, optional
228 Normalization mode (see Notes). Default is "backward".
229 overwrite_x : bool, optional
230 If True, the contents of `x` can be destroyed; the default is False.
231 workers : int, optional
232 Maximum number of workers to use for parallel computation. If negative,
233 the value wraps around from ``os.cpu_count()``.
234 See :func:`~scipy.fft.fft` for more details.
235 orthogonalize : bool, optional
236 Whether to use the orthogonalized IDST variant (see Notes).
237 Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
239 .. versionadded:: 1.8.0
241 Returns
242 -------
243 y : ndarray of real
244 The transformed input array.
246 See Also
247 --------
248 dstn : multidimensional DST
250 Notes
251 -----
252 For full details of the IDST types and normalization modes, as well as
253 references, see `idst`.
255 Examples
256 --------
257 >>> import numpy as np
258 >>> from scipy.fft import dstn, idstn
259 >>> rng = np.random.default_rng()
260 >>> y = rng.standard_normal((16, 16))
261 >>> np.allclose(y, idstn(dstn(y)))
262 True
264 """
265 return (Dispatchable(x, np.ndarray),)
268@_dispatch
269def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, workers=None,
270 orthogonalize=None):
271 r"""Return the Discrete Cosine Transform of arbitrary type sequence x.
273 Parameters
274 ----------
275 x : array_like
276 The input array.
277 type : {1, 2, 3, 4}, optional
278 Type of the DCT (see Notes). Default type is 2.
279 n : int, optional
280 Length of the transform. If ``n < x.shape[axis]``, `x` is
281 truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
282 default results in ``n = x.shape[axis]``.
283 axis : int, optional
284 Axis along which the dct is computed; the default is over the
285 last axis (i.e., ``axis=-1``).
286 norm : {"backward", "ortho", "forward"}, optional
287 Normalization mode (see Notes). Default is "backward".
288 overwrite_x : bool, optional
289 If True, the contents of `x` can be destroyed; the default is False.
290 workers : int, optional
291 Maximum number of workers to use for parallel computation. If negative,
292 the value wraps around from ``os.cpu_count()``.
293 See :func:`~scipy.fft.fft` for more details.
294 orthogonalize : bool, optional
295 Whether to use the orthogonalized DCT variant (see Notes).
296 Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
298 .. versionadded:: 1.8.0
300 Returns
301 -------
302 y : ndarray of real
303 The transformed input array.
305 See Also
306 --------
307 idct : Inverse DCT
309 Notes
310 -----
311 For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
312 MATLAB ``dct(x)``.
314 .. warning:: For ``type in {1, 2, 3}``, ``norm="ortho"`` breaks the direct
315 correspondence with the direct Fourier transform. To recover
316 it you must specify ``orthogonalize=False``.
318 For ``norm="ortho"`` both the `dct` and `idct` are scaled by the same
319 overall factor in both directions. By default, the transform is also
320 orthogonalized which for types 1, 2 and 3 means the transform definition is
321 modified to give orthogonality of the DCT matrix (see below).
323 For ``norm="backward"``, there is no scaling on `dct` and the `idct` is
324 scaled by ``1/N`` where ``N`` is the "logical" size of the DCT. For
325 ``norm="forward"`` the ``1/N`` normalization is applied to the forward
326 `dct` instead and the `idct` is unnormalized.
328 There are, theoretically, 8 types of the DCT, only the first 4 types are
329 implemented in SciPy.'The' DCT generally refers to DCT type 2, and 'the'
330 Inverse DCT generally refers to DCT type 3.
332 **Type I**
334 There are several definitions of the DCT-I; we use the following
335 (for ``norm="backward"``)
337 .. math::
339 y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
340 \frac{\pi k n}{N-1} \right)
342 If ``orthogonalize=True``, ``x[0]`` and ``x[N-1]`` are multiplied by a
343 scaling factor of :math:`\sqrt{2}`, and ``y[0]`` and ``y[N-1]`` are divided
344 by :math:`\sqrt{2}`. When combined with ``norm="ortho"``, this makes the
345 corresponding matrix of coefficients orthonormal (``O @ O.T = np.eye(N)``).
347 .. note::
348 The DCT-I is only supported for input size > 1.
350 **Type II**
352 There are several definitions of the DCT-II; we use the following
353 (for ``norm="backward"``)
355 .. math::
357 y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)
359 If ``orthogonalize=True``, ``y[0]`` is divided by :math:`\sqrt{2}` which,
360 when combined with ``norm="ortho"``, makes the corresponding matrix of
361 coefficients orthonormal (``O @ O.T = np.eye(N)``).
363 **Type III**
365 There are several definitions, we use the following (for
366 ``norm="backward"``)
368 .. math::
370 y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)
372 If ``orthogonalize=True``, ``x[0]`` terms are multiplied by
373 :math:`\sqrt{2}` which, when combined with ``norm="ortho"``, makes the
374 corresponding matrix of coefficients orthonormal (``O @ O.T = np.eye(N)``).
376 The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
377 to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
378 the orthonormalized DCT-II.
380 **Type IV**
382 There are several definitions of the DCT-IV; we use the following
383 (for ``norm="backward"``)
385 .. math::
387 y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)
389 ``orthogonalize`` has no effect here, as the DCT-IV matrix is already
390 orthogonal up to a scale factor of ``2N``.
392 References
393 ----------
394 .. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
395 Makhoul, `IEEE Transactions on acoustics, speech and signal
396 processing` vol. 28(1), pp. 27-34,
397 :doi:`10.1109/TASSP.1980.1163351` (1980).
398 .. [2] Wikipedia, "Discrete cosine transform",
399 https://en.wikipedia.org/wiki/Discrete_cosine_transform
401 Examples
402 --------
403 The Type 1 DCT is equivalent to the FFT (though faster) for real,
404 even-symmetrical inputs. The output is also real and even-symmetrical.
405 Half of the FFT input is used to generate half of the FFT output:
407 >>> from scipy.fft import fft, dct
408 >>> import numpy as np
409 >>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
410 array([ 30., -8., 6., -2., 6., -8.])
411 >>> dct(np.array([4., 3., 5., 10.]), 1)
412 array([ 30., -8., 6., -2.])
414 """
415 return (Dispatchable(x, np.ndarray),)
418@_dispatch
419def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False,
420 workers=None, orthogonalize=None):
421 """
422 Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
424 Parameters
425 ----------
426 x : array_like
427 The input array.
428 type : {1, 2, 3, 4}, optional
429 Type of the DCT (see Notes). Default type is 2.
430 n : int, optional
431 Length of the transform. If ``n < x.shape[axis]``, `x` is
432 truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
433 default results in ``n = x.shape[axis]``.
434 axis : int, optional
435 Axis along which the idct is computed; the default is over the
436 last axis (i.e., ``axis=-1``).
437 norm : {"backward", "ortho", "forward"}, optional
438 Normalization mode (see Notes). Default is "backward".
439 overwrite_x : bool, optional
440 If True, the contents of `x` can be destroyed; the default is False.
441 workers : int, optional
442 Maximum number of workers to use for parallel computation. If negative,
443 the value wraps around from ``os.cpu_count()``.
444 See :func:`~scipy.fft.fft` for more details.
445 orthogonalize : bool, optional
446 Whether to use the orthogonalized IDCT variant (see Notes).
447 Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
449 .. versionadded:: 1.8.0
451 Returns
452 -------
453 idct : ndarray of real
454 The transformed input array.
456 See Also
457 --------
458 dct : Forward DCT
460 Notes
461 -----
462 For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
463 MATLAB ``idct(x)``.
465 .. warning:: For ``type in {1, 2, 3}``, ``norm="ortho"`` breaks the direct
466 correspondence with the inverse direct Fourier transform. To
467 recover it you must specify ``orthogonalize=False``.
469 For ``norm="ortho"`` both the `dct` and `idct` are scaled by the same
470 overall factor in both directions. By default, the transform is also
471 orthogonalized which for types 1, 2 and 3 means the transform definition is
472 modified to give orthogonality of the IDCT matrix (see `dct` for the full
473 definitions).
475 'The' IDCT is the IDCT-II, which is the same as the normalized DCT-III.
477 The IDCT is equivalent to a normal DCT except for the normalization and
478 type. DCT type 1 and 4 are their own inverse and DCTs 2 and 3 are each
479 other's inverses.
481 Examples
482 --------
483 The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
484 inputs. The output is also real and even-symmetrical. Half of the IFFT
485 input is used to generate half of the IFFT output:
487 >>> from scipy.fft import ifft, idct
488 >>> import numpy as np
489 >>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real
490 array([ 4., 3., 5., 10., 5., 3.])
491 >>> idct(np.array([ 30., -8., 6., -2.]), 1)
492 array([ 4., 3., 5., 10.])
494 """
495 return (Dispatchable(x, np.ndarray),)
498@_dispatch
499def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, workers=None,
500 orthogonalize=None):
501 r"""
502 Return the Discrete Sine Transform of arbitrary type sequence x.
504 Parameters
505 ----------
506 x : array_like
507 The input array.
508 type : {1, 2, 3, 4}, optional
509 Type of the DST (see Notes). Default type is 2.
510 n : int, optional
511 Length of the transform. If ``n < x.shape[axis]``, `x` is
512 truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
513 default results in ``n = x.shape[axis]``.
514 axis : int, optional
515 Axis along which the dst is computed; the default is over the
516 last axis (i.e., ``axis=-1``).
517 norm : {"backward", "ortho", "forward"}, optional
518 Normalization mode (see Notes). Default is "backward".
519 overwrite_x : bool, optional
520 If True, the contents of `x` can be destroyed; the default is False.
521 workers : int, optional
522 Maximum number of workers to use for parallel computation. If negative,
523 the value wraps around from ``os.cpu_count()``.
524 See :func:`~scipy.fft.fft` for more details.
525 orthogonalize : bool, optional
526 Whether to use the orthogonalized DST variant (see Notes).
527 Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
529 .. versionadded:: 1.8.0
531 Returns
532 -------
533 dst : ndarray of reals
534 The transformed input array.
536 See Also
537 --------
538 idst : Inverse DST
540 Notes
541 -----
542 .. warning:: For ``type in {2, 3}``, ``norm="ortho"`` breaks the direct
543 correspondence with the direct Fourier transform. To recover
544 it you must specify ``orthogonalize=False``.
546 For ``norm="ortho"`` both the `dst` and `idst` are scaled by the same
547 overall factor in both directions. By default, the transform is also
548 orthogonalized which for types 2 and 3 means the transform definition is
549 modified to give orthogonality of the DST matrix (see below).
551 For ``norm="backward"``, there is no scaling on the `dst` and the `idst` is
552 scaled by ``1/N`` where ``N`` is the "logical" size of the DST.
554 There are, theoretically, 8 types of the DST for different combinations of
555 even/odd boundary conditions and boundary off sets [1]_, only the first
556 4 types are implemented in SciPy.
558 **Type I**
560 There are several definitions of the DST-I; we use the following for
561 ``norm="backward"``. DST-I assumes the input is odd around :math:`n=-1` and
562 :math:`n=N`.
564 .. math::
566 y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)
568 Note that the DST-I is only supported for input size > 1.
569 The (unnormalized) DST-I is its own inverse, up to a factor :math:`2(N+1)`.
570 The orthonormalized DST-I is exactly its own inverse.
572 ``orthogonalize`` has no effect here, as the DST-I matrix is already
573 orthogonal up to a scale factor of ``2N``.
575 **Type II**
577 There are several definitions of the DST-II; we use the following for
578 ``norm="backward"``. DST-II assumes the input is odd around :math:`n=-1/2` and
579 :math:`n=N-1/2`; the output is odd around :math:`k=-1` and even around :math:`k=N-1`
581 .. math::
583 y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)
585 If ``orthogonalize=True``, ``y[0]`` is divided :math:`\sqrt{2}` which, when
586 combined with ``norm="ortho"``, makes the corresponding matrix of
587 coefficients orthonormal (``O @ O.T = np.eye(N)``).
589 **Type III**
591 There are several definitions of the DST-III, we use the following (for
592 ``norm="backward"``). DST-III assumes the input is odd around :math:`n=-1` and
593 even around :math:`n=N-1`
595 .. math::
597 y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
598 \frac{\pi(2k+1)(n+1)}{2N}\right)
600 If ``orthogonalize=True``, ``x[0]`` is multiplied by :math:`\sqrt{2}`
601 which, when combined with ``norm="ortho"``, makes the corresponding matrix
602 of coefficients orthonormal (``O @ O.T = np.eye(N)``).
604 The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
605 to a factor :math:`2N`. The orthonormalized DST-III is exactly the inverse of the
606 orthonormalized DST-II.
608 **Type IV**
610 There are several definitions of the DST-IV, we use the following (for
611 ``norm="backward"``). DST-IV assumes the input is odd around :math:`n=-0.5` and
612 even around :math:`n=N-0.5`
614 .. math::
616 y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)
618 ``orthogonalize`` has no effect here, as the DST-IV matrix is already
619 orthogonal up to a scale factor of ``2N``.
621 The (unnormalized) DST-IV is its own inverse, up to a factor :math:`2N`. The
622 orthonormalized DST-IV is exactly its own inverse.
624 References
625 ----------
626 .. [1] Wikipedia, "Discrete sine transform",
627 https://en.wikipedia.org/wiki/Discrete_sine_transform
629 """
630 return (Dispatchable(x, np.ndarray),)
633@_dispatch
634def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False,
635 workers=None, orthogonalize=None):
636 """
637 Return the Inverse Discrete Sine Transform of an arbitrary type sequence.
639 Parameters
640 ----------
641 x : array_like
642 The input array.
643 type : {1, 2, 3, 4}, optional
644 Type of the DST (see Notes). Default type is 2.
645 n : int, optional
646 Length of the transform. If ``n < x.shape[axis]``, `x` is
647 truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
648 default results in ``n = x.shape[axis]``.
649 axis : int, optional
650 Axis along which the idst is computed; the default is over the
651 last axis (i.e., ``axis=-1``).
652 norm : {"backward", "ortho", "forward"}, optional
653 Normalization mode (see Notes). Default is "backward".
654 overwrite_x : bool, optional
655 If True, the contents of `x` can be destroyed; the default is False.
656 workers : int, optional
657 Maximum number of workers to use for parallel computation. If negative,
658 the value wraps around from ``os.cpu_count()``.
659 See :func:`~scipy.fft.fft` for more details.
660 orthogonalize : bool, optional
661 Whether to use the orthogonalized IDST variant (see Notes).
662 Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
664 .. versionadded:: 1.8.0
666 Returns
667 -------
668 idst : ndarray of real
669 The transformed input array.
671 See Also
672 --------
673 dst : Forward DST
675 Notes
676 -----
677 .. warning:: For ``type in {2, 3}``, ``norm="ortho"`` breaks the direct
678 correspondence with the inverse direct Fourier transform.
680 For ``norm="ortho"`` both the `dst` and `idst` are scaled by the same
681 overall factor in both directions. By default, the transform is also
682 orthogonalized which for types 2 and 3 means the transform definition is
683 modified to give orthogonality of the DST matrix (see `dst` for the full
684 definitions).
686 'The' IDST is the IDST-II, which is the same as the normalized DST-III.
688 The IDST is equivalent to a normal DST except for the normalization and
689 type. DST type 1 and 4 are their own inverse and DSTs 2 and 3 are each
690 other's inverses.
692 """
693 return (Dispatchable(x, np.ndarray),)