Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/scipy/ndimage/_ni_support.py: 12%
51 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-12 06:31 +0000
1# Copyright (C) 2003-2005 Peter J. Verveer
2#
3# Redistribution and use in source and binary forms, with or without
4# modification, are permitted provided that the following conditions
5# are met:
6#
7# 1. Redistributions of source code must retain the above copyright
8# notice, this list of conditions and the following disclaimer.
9#
10# 2. Redistributions in binary form must reproduce the above
11# copyright notice, this list of conditions and the following
12# disclaimer in the documentation and/or other materials provided
13# with the distribution.
14#
15# 3. The name of the author may not be used to endorse or promote
16# products derived from this software without specific prior
17# written permission.
18#
19# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
23# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31from collections.abc import Iterable
32import warnings
33import numpy
36def _extend_mode_to_code(mode):
37 """Convert an extension mode to the corresponding integer code.
38 """
39 if mode == 'nearest':
40 return 0
41 elif mode == 'wrap':
42 return 1
43 elif mode in ['reflect', 'grid-mirror']:
44 return 2
45 elif mode == 'mirror':
46 return 3
47 elif mode == 'constant':
48 return 4
49 elif mode == 'grid-wrap':
50 return 5
51 elif mode == 'grid-constant':
52 return 6
53 else:
54 raise RuntimeError('boundary mode not supported')
57def _normalize_sequence(input, rank):
58 """If input is a scalar, create a sequence of length equal to the
59 rank by duplicating the input. If input is a sequence,
60 check if its length is equal to the length of array.
61 """
62 is_str = isinstance(input, str)
63 if not is_str and isinstance(input, Iterable):
64 normalized = list(input)
65 if len(normalized) != rank:
66 err = "sequence argument must have length equal to input rank"
67 raise RuntimeError(err)
68 else:
69 normalized = [input] * rank
70 return normalized
73def _get_output(output, input, shape=None, complex_output=False):
74 if shape is None:
75 shape = input.shape
76 if output is None:
77 if not complex_output:
78 output = numpy.zeros(shape, dtype=input.dtype.name)
79 else:
80 complex_type = numpy.promote_types(input.dtype, numpy.complex64)
81 output = numpy.zeros(shape, dtype=complex_type)
82 elif isinstance(output, (type, numpy.dtype)):
83 # Classes (like `np.float32`) and dtypes are interpreted as dtype
84 if complex_output and numpy.dtype(output).kind != 'c':
85 warnings.warn("promoting specified output dtype to complex")
86 output = numpy.promote_types(output, numpy.complex64)
87 output = numpy.zeros(shape, dtype=output)
88 elif isinstance(output, str):
89 output = numpy.sctypeDict[output]
90 if complex_output and numpy.dtype(output).kind != 'c':
91 raise RuntimeError("output must have complex dtype")
92 output = numpy.zeros(shape, dtype=output)
93 elif output.shape != shape:
94 raise RuntimeError("output shape not correct")
95 elif complex_output and output.dtype.kind != 'c':
96 raise RuntimeError("output must have complex dtype")
97 return output