Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/scipy/sparse/_compressed.py: 11%

740 statements  

« prev     ^ index     » next       coverage.py v7.3.1, created at 2023-09-23 06:43 +0000

1"""Base class for sparse matrix formats using compressed storage.""" 

2__all__ = [] 

3 

4from warnings import warn 

5import operator 

6 

7import numpy as np 

8from scipy._lib._util import _prune_array 

9 

10from ._base import _spbase, issparse, SparseEfficiencyWarning 

11from ._data import _data_matrix, _minmax_mixin 

12from . import _sparsetools 

13from ._sparsetools import (get_csr_submatrix, csr_sample_offsets, csr_todense, 

14 csr_sample_values, csr_row_index, csr_row_slice, 

15 csr_column_index1, csr_column_index2) 

16from ._index import IndexMixin 

17from ._sputils import (upcast, upcast_char, to_native, isdense, isshape, 

18 getdtype, isscalarlike, isintlike, downcast_intp_index, get_sum_dtype, check_shape, 

19 is_pydata_spmatrix) 

20 

21 

22class _cs_matrix(_data_matrix, _minmax_mixin, IndexMixin): 

23 """base array/matrix class for compressed row- and column-oriented arrays/matrices""" 

24 

25 def __init__(self, arg1, shape=None, dtype=None, copy=False): 

26 _data_matrix.__init__(self) 

27 

28 if issparse(arg1): 

29 if arg1.format == self.format and copy: 

30 arg1 = arg1.copy() 

31 else: 

32 arg1 = arg1.asformat(self.format) 

33 self._set_self(arg1) 

34 

35 elif isinstance(arg1, tuple): 

36 if isshape(arg1): 

37 # It's a tuple of matrix dimensions (M, N) 

38 # create empty matrix 

39 self._shape = check_shape(arg1) 

40 M, N = self.shape 

41 # Select index dtype large enough to pass array and 

42 # scalar parameters to sparsetools 

43 idx_dtype = self._get_index_dtype(maxval=max(M, N)) 

44 self.data = np.zeros(0, getdtype(dtype, default=float)) 

45 self.indices = np.zeros(0, idx_dtype) 

46 self.indptr = np.zeros(self._swap((M, N))[0] + 1, 

47 dtype=idx_dtype) 

48 else: 

49 if len(arg1) == 2: 

50 # (data, ij) format 

51 other = self.__class__( 

52 self._coo_container(arg1, shape=shape, dtype=dtype) 

53 ) 

54 self._set_self(other) 

55 elif len(arg1) == 3: 

56 # (data, indices, indptr) format 

57 (data, indices, indptr) = arg1 

58 

59 # Select index dtype large enough to pass array and 

60 # scalar parameters to sparsetools 

61 maxval = None 

62 if shape is not None: 

63 maxval = max(shape) 

64 idx_dtype = self._get_index_dtype((indices, indptr), 

65 maxval=maxval, 

66 check_contents=True) 

67 

68 self.indices = np.array(indices, copy=copy, 

69 dtype=idx_dtype) 

70 self.indptr = np.array(indptr, copy=copy, dtype=idx_dtype) 

71 self.data = np.array(data, copy=copy, dtype=dtype) 

72 else: 

73 raise ValueError("unrecognized {}_matrix " 

74 "constructor usage".format(self.format)) 

75 

76 else: 

77 # must be dense 

78 try: 

79 arg1 = np.asarray(arg1) 

80 except Exception as e: 

81 raise ValueError("unrecognized {}_matrix constructor usage" 

82 "".format(self.format)) from e 

83 self._set_self(self.__class__( 

84 self._coo_container(arg1, dtype=dtype) 

85 )) 

86 

87 # Read matrix dimensions given, if any 

88 if shape is not None: 

89 self._shape = check_shape(shape) 

90 else: 

91 if self.shape is None: 

92 # shape not already set, try to infer dimensions 

93 try: 

94 major_dim = len(self.indptr) - 1 

95 minor_dim = self.indices.max() + 1 

96 except Exception as e: 

97 raise ValueError('unable to infer matrix dimensions') from e 

98 else: 

99 self._shape = check_shape(self._swap((major_dim, 

100 minor_dim))) 

101 

102 if dtype is not None: 

103 self.data = self.data.astype(dtype, copy=False) 

104 

105 self.check_format(full_check=False) 

106 

107 def _getnnz(self, axis=None): 

108 if axis is None: 

109 return int(self.indptr[-1]) 

110 else: 

111 if axis < 0: 

112 axis += 2 

113 axis, _ = self._swap((axis, 1 - axis)) 

114 _, N = self._swap(self.shape) 

115 if axis == 0: 

116 return np.bincount(downcast_intp_index(self.indices), 

117 minlength=N) 

118 elif axis == 1: 

119 return np.diff(self.indptr) 

120 raise ValueError('axis out of bounds') 

121 

122 _getnnz.__doc__ = _spbase._getnnz.__doc__ 

123 

124 def _set_self(self, other, copy=False): 

125 """take the member variables of other and assign them to self""" 

126 

127 if copy: 

128 other = other.copy() 

129 

130 self.data = other.data 

131 self.indices = other.indices 

132 self.indptr = other.indptr 

133 self._shape = check_shape(other.shape) 

134 

135 def check_format(self, full_check=True): 

136 """Check whether the array/matrix respects the CSR or CSC format. 

137 

138 Parameters 

139 ---------- 

140 full_check : bool, optional 

141 If `True`, run rigorous check, scanning arrays for valid values. 

142 Note that activating those check might copy arrays for casting, 

143 modifying indices and index pointers' inplace. 

144 If `False`, run basic checks on attributes. O(1) operations. 

145 Default is `True`. 

146 """ 

147 # use _swap to determine proper bounds 

148 major_name, minor_name = self._swap(('row', 'column')) 

149 major_dim, minor_dim = self._swap(self.shape) 

150 

151 # index arrays should have integer data types 

152 if self.indptr.dtype.kind != 'i': 

153 warn("indptr array has non-integer dtype ({})" 

154 "".format(self.indptr.dtype.name), stacklevel=3) 

155 if self.indices.dtype.kind != 'i': 

156 warn("indices array has non-integer dtype ({})" 

157 "".format(self.indices.dtype.name), stacklevel=3) 

158 

159 # check array shapes 

160 for x in [self.data.ndim, self.indices.ndim, self.indptr.ndim]: 

161 if x != 1: 

162 raise ValueError('data, indices, and indptr should be 1-D') 

163 

164 # check index pointer 

165 if (len(self.indptr) != major_dim + 1): 

166 raise ValueError("index pointer size ({}) should be ({})" 

167 "".format(len(self.indptr), major_dim + 1)) 

168 if (self.indptr[0] != 0): 

169 raise ValueError("index pointer should start with 0") 

170 

171 # check index and data arrays 

172 if (len(self.indices) != len(self.data)): 

173 raise ValueError("indices and data should have the same size") 

174 if (self.indptr[-1] > len(self.indices)): 

175 raise ValueError("Last value of index pointer should be less than " 

176 "the size of index and data arrays") 

177 

178 self.prune() 

179 

180 if full_check: 

181 # check format validity (more expensive) 

182 if self.nnz > 0: 

183 if self.indices.max() >= minor_dim: 

184 raise ValueError("{} index values must be < {}" 

185 "".format(minor_name, minor_dim)) 

186 if self.indices.min() < 0: 

187 raise ValueError("{} index values must be >= 0" 

188 "".format(minor_name)) 

189 if np.diff(self.indptr).min() < 0: 

190 raise ValueError("index pointer values must form a " 

191 "non-decreasing sequence") 

192 

193 idx_dtype = self._get_index_dtype((self.indptr, self.indices)) 

194 self.indptr = np.asarray(self.indptr, dtype=idx_dtype) 

195 self.indices = np.asarray(self.indices, dtype=idx_dtype) 

196 self.data = to_native(self.data) 

197 

198 # if not self.has_sorted_indices(): 

199 # warn('Indices were not in sorted order. Sorting indices.') 

200 # self.sort_indices() 

201 # assert(self.has_sorted_indices()) 

202 # TODO check for duplicates? 

203 

204 ####################### 

205 # Boolean comparisons # 

206 ####################### 

207 

208 def _scalar_binopt(self, other, op): 

209 """Scalar version of self._binopt, for cases in which no new nonzeros 

210 are added. Produces a new sparse array in canonical form. 

211 """ 

212 self.sum_duplicates() 

213 res = self._with_data(op(self.data, other), copy=True) 

214 res.eliminate_zeros() 

215 return res 

216 

217 def __eq__(self, other): 

218 # Scalar other. 

219 if isscalarlike(other): 

220 if np.isnan(other): 

221 return self.__class__(self.shape, dtype=np.bool_) 

222 

223 if other == 0: 

224 warn("Comparing a sparse matrix with 0 using == is inefficient" 

225 ", try using != instead.", SparseEfficiencyWarning, 

226 stacklevel=3) 

227 all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) 

228 inv = self._scalar_binopt(other, operator.ne) 

229 return all_true - inv 

230 else: 

231 return self._scalar_binopt(other, operator.eq) 

232 # Dense other. 

233 elif isdense(other): 

234 return self.todense() == other 

235 # Pydata sparse other. 

236 elif is_pydata_spmatrix(other): 

237 return NotImplemented 

238 # Sparse other. 

239 elif issparse(other): 

240 warn("Comparing sparse matrices using == is inefficient, try using" 

241 " != instead.", SparseEfficiencyWarning, stacklevel=3) 

242 # TODO sparse broadcasting 

243 if self.shape != other.shape: 

244 return False 

245 elif self.format != other.format: 

246 other = other.asformat(self.format) 

247 res = self._binopt(other, '_ne_') 

248 all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) 

249 return all_true - res 

250 else: 

251 return False 

252 

253 def __ne__(self, other): 

254 # Scalar other. 

255 if isscalarlike(other): 

256 if np.isnan(other): 

257 warn("Comparing a sparse matrix with nan using != is" 

258 " inefficient", SparseEfficiencyWarning, stacklevel=3) 

259 all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) 

260 return all_true 

261 elif other != 0: 

262 warn("Comparing a sparse matrix with a nonzero scalar using !=" 

263 " is inefficient, try using == instead.", 

264 SparseEfficiencyWarning, stacklevel=3) 

265 all_true = self.__class__(np.ones(self.shape), dtype=np.bool_) 

266 inv = self._scalar_binopt(other, operator.eq) 

267 return all_true - inv 

268 else: 

269 return self._scalar_binopt(other, operator.ne) 

270 # Dense other. 

271 elif isdense(other): 

272 return self.todense() != other 

273 # Pydata sparse other. 

274 elif is_pydata_spmatrix(other): 

275 return NotImplemented 

276 # Sparse other. 

277 elif issparse(other): 

278 # TODO sparse broadcasting 

279 if self.shape != other.shape: 

280 return True 

281 elif self.format != other.format: 

282 other = other.asformat(self.format) 

283 return self._binopt(other, '_ne_') 

284 else: 

285 return True 

286 

287 def _inequality(self, other, op, op_name, bad_scalar_msg): 

288 # Scalar other. 

289 if isscalarlike(other): 

290 if 0 == other and op_name in ('_le_', '_ge_'): 

291 raise NotImplementedError(" >= and <= don't work with 0.") 

292 elif op(0, other): 

293 warn(bad_scalar_msg, SparseEfficiencyWarning) 

294 other_arr = np.empty(self.shape, dtype=np.result_type(other)) 

295 other_arr.fill(other) 

296 other_arr = self.__class__(other_arr) 

297 return self._binopt(other_arr, op_name) 

298 else: 

299 return self._scalar_binopt(other, op) 

300 # Dense other. 

301 elif isdense(other): 

302 return op(self.todense(), other) 

303 # Sparse other. 

304 elif issparse(other): 

305 # TODO sparse broadcasting 

306 if self.shape != other.shape: 

307 raise ValueError("inconsistent shapes") 

308 elif self.format != other.format: 

309 other = other.asformat(self.format) 

310 if op_name not in ('_ge_', '_le_'): 

311 return self._binopt(other, op_name) 

312 

313 warn("Comparing sparse matrices using >= and <= is inefficient, " 

314 "using <, >, or !=, instead.", SparseEfficiencyWarning) 

315 all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) 

316 res = self._binopt(other, '_gt_' if op_name == '_le_' else '_lt_') 

317 return all_true - res 

318 else: 

319 raise ValueError("Operands could not be compared.") 

320 

321 def __lt__(self, other): 

322 return self._inequality(other, operator.lt, '_lt_', 

323 "Comparing a sparse matrix with a scalar " 

324 "greater than zero using < is inefficient, " 

325 "try using >= instead.") 

326 

327 def __gt__(self, other): 

328 return self._inequality(other, operator.gt, '_gt_', 

329 "Comparing a sparse matrix with a scalar " 

330 "less than zero using > is inefficient, " 

331 "try using <= instead.") 

332 

333 def __le__(self, other): 

334 return self._inequality(other, operator.le, '_le_', 

335 "Comparing a sparse matrix with a scalar " 

336 "greater than zero using <= is inefficient, " 

337 "try using > instead.") 

338 

339 def __ge__(self, other): 

340 return self._inequality(other, operator.ge, '_ge_', 

341 "Comparing a sparse matrix with a scalar " 

342 "less than zero using >= is inefficient, " 

343 "try using < instead.") 

344 

345 ################################# 

346 # Arithmetic operator overrides # 

347 ################################# 

348 

349 def _add_dense(self, other): 

350 if other.shape != self.shape: 

351 raise ValueError('Incompatible shapes ({} and {})' 

352 .format(self.shape, other.shape)) 

353 dtype = upcast_char(self.dtype.char, other.dtype.char) 

354 order = self._swap('CF')[0] 

355 result = np.array(other, dtype=dtype, order=order, copy=True) 

356 M, N = self._swap(self.shape) 

357 y = result if result.flags.c_contiguous else result.T 

358 csr_todense(M, N, self.indptr, self.indices, self.data, y) 

359 return self._container(result, copy=False) 

360 

361 def _add_sparse(self, other): 

362 return self._binopt(other, '_plus_') 

363 

364 def _sub_sparse(self, other): 

365 return self._binopt(other, '_minus_') 

366 

367 def multiply(self, other): 

368 """Point-wise multiplication by another array/matrix, vector, or 

369 scalar. 

370 """ 

371 # Scalar multiplication. 

372 if isscalarlike(other): 

373 return self._mul_scalar(other) 

374 # Sparse matrix or vector. 

375 if issparse(other): 

376 if self.shape == other.shape: 

377 other = self.__class__(other) 

378 return self._binopt(other, '_elmul_') 

379 # Single element. 

380 elif other.shape == (1, 1): 

381 return self._mul_scalar(other.toarray()[0, 0]) 

382 elif self.shape == (1, 1): 

383 return other._mul_scalar(self.toarray()[0, 0]) 

384 # A row times a column. 

385 elif self.shape[1] == 1 and other.shape[0] == 1: 

386 return self._mul_sparse_matrix(other.tocsc()) 

387 elif self.shape[0] == 1 and other.shape[1] == 1: 

388 return other._mul_sparse_matrix(self.tocsc()) 

389 # Row vector times matrix. other is a row. 

390 elif other.shape[0] == 1 and self.shape[1] == other.shape[1]: 

391 other = self._dia_container( 

392 (other.toarray().ravel(), [0]), 

393 shape=(other.shape[1], other.shape[1]) 

394 ) 

395 return self._mul_sparse_matrix(other) 

396 # self is a row. 

397 elif self.shape[0] == 1 and self.shape[1] == other.shape[1]: 

398 copy = self._dia_container( 

399 (self.toarray().ravel(), [0]), 

400 shape=(self.shape[1], self.shape[1]) 

401 ) 

402 return other._mul_sparse_matrix(copy) 

403 # Column vector times matrix. other is a column. 

404 elif other.shape[1] == 1 and self.shape[0] == other.shape[0]: 

405 other = self._dia_container( 

406 (other.toarray().ravel(), [0]), 

407 shape=(other.shape[0], other.shape[0]) 

408 ) 

409 return other._mul_sparse_matrix(self) 

410 # self is a column. 

411 elif self.shape[1] == 1 and self.shape[0] == other.shape[0]: 

412 copy = self._dia_container( 

413 (self.toarray().ravel(), [0]), 

414 shape=(self.shape[0], self.shape[0]) 

415 ) 

416 return copy._mul_sparse_matrix(other) 

417 else: 

418 raise ValueError("inconsistent shapes") 

419 

420 # Assume other is a dense matrix/array, which produces a single-item 

421 # object array if other isn't convertible to ndarray. 

422 other = np.atleast_2d(other) 

423 

424 if other.ndim != 2: 

425 return np.multiply(self.toarray(), other) 

426 # Single element / wrapped object. 

427 if other.size == 1: 

428 return self._mul_scalar(other.flat[0]) 

429 # Fast case for trivial sparse matrix. 

430 elif self.shape == (1, 1): 

431 return np.multiply(self.toarray()[0, 0], other) 

432 

433 ret = self.tocoo() 

434 # Matching shapes. 

435 if self.shape == other.shape: 

436 data = np.multiply(ret.data, other[ret.row, ret.col]) 

437 # Sparse row vector times... 

438 elif self.shape[0] == 1: 

439 if other.shape[1] == 1: # Dense column vector. 

440 data = np.multiply(ret.data, other) 

441 elif other.shape[1] == self.shape[1]: # Dense matrix. 

442 data = np.multiply(ret.data, other[:, ret.col]) 

443 else: 

444 raise ValueError("inconsistent shapes") 

445 row = np.repeat(np.arange(other.shape[0]), len(ret.row)) 

446 col = np.tile(ret.col, other.shape[0]) 

447 return self._coo_container( 

448 (data.view(np.ndarray).ravel(), (row, col)), 

449 shape=(other.shape[0], self.shape[1]), 

450 copy=False 

451 ) 

452 # Sparse column vector times... 

453 elif self.shape[1] == 1: 

454 if other.shape[0] == 1: # Dense row vector. 

455 data = np.multiply(ret.data[:, None], other) 

456 elif other.shape[0] == self.shape[0]: # Dense matrix. 

457 data = np.multiply(ret.data[:, None], other[ret.row]) 

458 else: 

459 raise ValueError("inconsistent shapes") 

460 row = np.repeat(ret.row, other.shape[1]) 

461 col = np.tile(np.arange(other.shape[1]), len(ret.col)) 

462 return self._coo_container( 

463 (data.view(np.ndarray).ravel(), (row, col)), 

464 shape=(self.shape[0], other.shape[1]), 

465 copy=False 

466 ) 

467 # Sparse matrix times dense row vector. 

468 elif other.shape[0] == 1 and self.shape[1] == other.shape[1]: 

469 data = np.multiply(ret.data, other[:, ret.col].ravel()) 

470 # Sparse matrix times dense column vector. 

471 elif other.shape[1] == 1 and self.shape[0] == other.shape[0]: 

472 data = np.multiply(ret.data, other[ret.row].ravel()) 

473 else: 

474 raise ValueError("inconsistent shapes") 

475 ret.data = data.view(np.ndarray).ravel() 

476 return ret 

477 

478 ########################### 

479 # Multiplication handlers # 

480 ########################### 

481 

482 def _mul_vector(self, other): 

483 M, N = self.shape 

484 

485 # output array 

486 result = np.zeros(M, dtype=upcast_char(self.dtype.char, 

487 other.dtype.char)) 

488 

489 # csr_matvec or csc_matvec 

490 fn = getattr(_sparsetools, self.format + '_matvec') 

491 fn(M, N, self.indptr, self.indices, self.data, other, result) 

492 

493 return result 

494 

495 def _mul_multivector(self, other): 

496 M, N = self.shape 

497 n_vecs = other.shape[1] # number of column vectors 

498 

499 result = np.zeros((M, n_vecs), 

500 dtype=upcast_char(self.dtype.char, other.dtype.char)) 

501 

502 # csr_matvecs or csc_matvecs 

503 fn = getattr(_sparsetools, self.format + '_matvecs') 

504 fn(M, N, n_vecs, self.indptr, self.indices, self.data, 

505 other.ravel(), result.ravel()) 

506 

507 return result 

508 

509 def _mul_sparse_matrix(self, other): 

510 M, K1 = self.shape 

511 K2, N = other.shape 

512 

513 major_axis = self._swap((M, N))[0] 

514 other = self.__class__(other) # convert to this format 

515 

516 idx_dtype = self._get_index_dtype((self.indptr, self.indices, 

517 other.indptr, other.indices)) 

518 

519 fn = getattr(_sparsetools, self.format + '_matmat_maxnnz') 

520 nnz = fn(M, N, 

521 np.asarray(self.indptr, dtype=idx_dtype), 

522 np.asarray(self.indices, dtype=idx_dtype), 

523 np.asarray(other.indptr, dtype=idx_dtype), 

524 np.asarray(other.indices, dtype=idx_dtype)) 

525 

526 idx_dtype = self._get_index_dtype((self.indptr, self.indices, 

527 other.indptr, other.indices), 

528 maxval=nnz) 

529 

530 indptr = np.empty(major_axis + 1, dtype=idx_dtype) 

531 indices = np.empty(nnz, dtype=idx_dtype) 

532 data = np.empty(nnz, dtype=upcast(self.dtype, other.dtype)) 

533 

534 fn = getattr(_sparsetools, self.format + '_matmat') 

535 fn(M, N, np.asarray(self.indptr, dtype=idx_dtype), 

536 np.asarray(self.indices, dtype=idx_dtype), 

537 self.data, 

538 np.asarray(other.indptr, dtype=idx_dtype), 

539 np.asarray(other.indices, dtype=idx_dtype), 

540 other.data, 

541 indptr, indices, data) 

542 

543 return self.__class__((data, indices, indptr), shape=(M, N)) 

544 

545 def diagonal(self, k=0): 

546 rows, cols = self.shape 

547 if k <= -rows or k >= cols: 

548 return np.empty(0, dtype=self.data.dtype) 

549 fn = getattr(_sparsetools, self.format + "_diagonal") 

550 y = np.empty(min(rows + min(k, 0), cols - max(k, 0)), 

551 dtype=upcast(self.dtype)) 

552 fn(k, self.shape[0], self.shape[1], self.indptr, self.indices, 

553 self.data, y) 

554 return y 

555 

556 diagonal.__doc__ = _spbase.diagonal.__doc__ 

557 

558 ##################### 

559 # Other binary ops # 

560 ##################### 

561 

562 def _maximum_minimum(self, other, npop, op_name, dense_check): 

563 if isscalarlike(other): 

564 if dense_check(other): 

565 warn("Taking maximum (minimum) with > 0 (< 0) number results" 

566 " to a dense matrix.", SparseEfficiencyWarning, 

567 stacklevel=3) 

568 other_arr = np.empty(self.shape, dtype=np.asarray(other).dtype) 

569 other_arr.fill(other) 

570 other_arr = self.__class__(other_arr) 

571 return self._binopt(other_arr, op_name) 

572 else: 

573 self.sum_duplicates() 

574 new_data = npop(self.data, np.asarray(other)) 

575 mat = self.__class__((new_data, self.indices, self.indptr), 

576 dtype=new_data.dtype, shape=self.shape) 

577 return mat 

578 elif isdense(other): 

579 return npop(self.todense(), other) 

580 elif issparse(other): 

581 return self._binopt(other, op_name) 

582 else: 

583 raise ValueError("Operands not compatible.") 

584 

585 def maximum(self, other): 

586 return self._maximum_minimum(other, np.maximum, 

587 '_maximum_', lambda x: np.asarray(x) > 0) 

588 

589 maximum.__doc__ = _spbase.maximum.__doc__ 

590 

591 def minimum(self, other): 

592 return self._maximum_minimum(other, np.minimum, 

593 '_minimum_', lambda x: np.asarray(x) < 0) 

594 

595 minimum.__doc__ = _spbase.minimum.__doc__ 

596 

597 ##################### 

598 # Reduce operations # 

599 ##################### 

600 

601 def sum(self, axis=None, dtype=None, out=None): 

602 """Sum the array/matrix over the given axis. If the axis is None, sum 

603 over both rows and columns, returning a scalar. 

604 """ 

605 # The _spbase base class already does axis=0 and axis=1 efficiently 

606 # so we only do the case axis=None here 

607 if (not hasattr(self, 'blocksize') and 

608 axis in self._swap(((1, -1), (0, 2)))[0]): 

609 # faster than multiplication for large minor axis in CSC/CSR 

610 res_dtype = get_sum_dtype(self.dtype) 

611 ret = np.zeros(len(self.indptr) - 1, dtype=res_dtype) 

612 

613 major_index, value = self._minor_reduce(np.add) 

614 ret[major_index] = value 

615 ret = self._ascontainer(ret) 

616 if axis % 2 == 1: 

617 ret = ret.T 

618 

619 if out is not None and out.shape != ret.shape: 

620 raise ValueError('dimensions do not match') 

621 

622 return ret.sum(axis=(), dtype=dtype, out=out) 

623 # _spbase will handle the remaining situations when axis 

624 # is in {None, -1, 0, 1} 

625 else: 

626 return _spbase.sum(self, axis=axis, dtype=dtype, out=out) 

627 

628 sum.__doc__ = _spbase.sum.__doc__ 

629 

630 def _minor_reduce(self, ufunc, data=None): 

631 """Reduce nonzeros with a ufunc over the minor axis when non-empty 

632 

633 Can be applied to a function of self.data by supplying data parameter. 

634 

635 Warning: this does not call sum_duplicates() 

636 

637 Returns 

638 ------- 

639 major_index : array of ints 

640 Major indices where nonzero 

641 

642 value : array of self.dtype 

643 Reduce result for nonzeros in each major_index 

644 """ 

645 if data is None: 

646 data = self.data 

647 major_index = np.flatnonzero(np.diff(self.indptr)) 

648 value = ufunc.reduceat(data, 

649 downcast_intp_index(self.indptr[major_index])) 

650 return major_index, value 

651 

652 ####################### 

653 # Getting and Setting # 

654 ####################### 

655 

656 def _get_intXint(self, row, col): 

657 M, N = self._swap(self.shape) 

658 major, minor = self._swap((row, col)) 

659 indptr, indices, data = get_csr_submatrix( 

660 M, N, self.indptr, self.indices, self.data, 

661 major, major + 1, minor, minor + 1) 

662 return data.sum(dtype=self.dtype) 

663 

664 def _get_sliceXslice(self, row, col): 

665 major, minor = self._swap((row, col)) 

666 if major.step in (1, None) and minor.step in (1, None): 

667 return self._get_submatrix(major, minor, copy=True) 

668 return self._major_slice(major)._minor_slice(minor) 

669 

670 def _get_arrayXarray(self, row, col): 

671 # inner indexing 

672 idx_dtype = self.indices.dtype 

673 M, N = self._swap(self.shape) 

674 major, minor = self._swap((row, col)) 

675 major = np.asarray(major, dtype=idx_dtype) 

676 minor = np.asarray(minor, dtype=idx_dtype) 

677 

678 val = np.empty(major.size, dtype=self.dtype) 

679 csr_sample_values(M, N, self.indptr, self.indices, self.data, 

680 major.size, major.ravel(), minor.ravel(), val) 

681 if major.ndim == 1: 

682 return self._ascontainer(val) 

683 return self.__class__(val.reshape(major.shape)) 

684 

685 def _get_columnXarray(self, row, col): 

686 # outer indexing 

687 major, minor = self._swap((row, col)) 

688 return self._major_index_fancy(major)._minor_index_fancy(minor) 

689 

690 def _major_index_fancy(self, idx): 

691 """Index along the major axis where idx is an array of ints. 

692 """ 

693 idx_dtype = self.indices.dtype 

694 indices = np.asarray(idx, dtype=idx_dtype).ravel() 

695 

696 _, N = self._swap(self.shape) 

697 M = len(indices) 

698 new_shape = self._swap((M, N)) 

699 if M == 0: 

700 return self.__class__(new_shape, dtype=self.dtype) 

701 

702 row_nnz = self.indptr[indices + 1] - self.indptr[indices] 

703 idx_dtype = self.indices.dtype 

704 res_indptr = np.zeros(M+1, dtype=idx_dtype) 

705 np.cumsum(row_nnz, out=res_indptr[1:]) 

706 

707 nnz = res_indptr[-1] 

708 res_indices = np.empty(nnz, dtype=idx_dtype) 

709 res_data = np.empty(nnz, dtype=self.dtype) 

710 csr_row_index(M, indices, self.indptr, self.indices, self.data, 

711 res_indices, res_data) 

712 

713 return self.__class__((res_data, res_indices, res_indptr), 

714 shape=new_shape, copy=False) 

715 

716 def _major_slice(self, idx, copy=False): 

717 """Index along the major axis where idx is a slice object. 

718 """ 

719 if idx == slice(None): 

720 return self.copy() if copy else self 

721 

722 M, N = self._swap(self.shape) 

723 start, stop, step = idx.indices(M) 

724 M = len(range(start, stop, step)) 

725 new_shape = self._swap((M, N)) 

726 if M == 0: 

727 return self.__class__(new_shape, dtype=self.dtype) 

728 

729 # Work out what slices are needed for `row_nnz` 

730 # start,stop can be -1, only if step is negative 

731 start0, stop0 = start, stop 

732 if stop == -1 and start >= 0: 

733 stop0 = None 

734 start1, stop1 = start + 1, stop + 1 

735 

736 row_nnz = self.indptr[start1:stop1:step] - \ 

737 self.indptr[start0:stop0:step] 

738 idx_dtype = self.indices.dtype 

739 res_indptr = np.zeros(M+1, dtype=idx_dtype) 

740 np.cumsum(row_nnz, out=res_indptr[1:]) 

741 

742 if step == 1: 

743 all_idx = slice(self.indptr[start], self.indptr[stop]) 

744 res_indices = np.array(self.indices[all_idx], copy=copy) 

745 res_data = np.array(self.data[all_idx], copy=copy) 

746 else: 

747 nnz = res_indptr[-1] 

748 res_indices = np.empty(nnz, dtype=idx_dtype) 

749 res_data = np.empty(nnz, dtype=self.dtype) 

750 csr_row_slice(start, stop, step, self.indptr, self.indices, 

751 self.data, res_indices, res_data) 

752 

753 return self.__class__((res_data, res_indices, res_indptr), 

754 shape=new_shape, copy=False) 

755 

756 def _minor_index_fancy(self, idx): 

757 """Index along the minor axis where idx is an array of ints. 

758 """ 

759 idx_dtype = self.indices.dtype 

760 idx = np.asarray(idx, dtype=idx_dtype).ravel() 

761 

762 M, N = self._swap(self.shape) 

763 k = len(idx) 

764 new_shape = self._swap((M, k)) 

765 if k == 0: 

766 return self.__class__(new_shape, dtype=self.dtype) 

767 

768 # pass 1: count idx entries and compute new indptr 

769 col_offsets = np.zeros(N, dtype=idx_dtype) 

770 res_indptr = np.empty_like(self.indptr) 

771 csr_column_index1(k, idx, M, N, self.indptr, self.indices, 

772 col_offsets, res_indptr) 

773 

774 # pass 2: copy indices/data for selected idxs 

775 col_order = np.argsort(idx).astype(idx_dtype, copy=False) 

776 nnz = res_indptr[-1] 

777 res_indices = np.empty(nnz, dtype=idx_dtype) 

778 res_data = np.empty(nnz, dtype=self.dtype) 

779 csr_column_index2(col_order, col_offsets, len(self.indices), 

780 self.indices, self.data, res_indices, res_data) 

781 return self.__class__((res_data, res_indices, res_indptr), 

782 shape=new_shape, copy=False) 

783 

784 def _minor_slice(self, idx, copy=False): 

785 """Index along the minor axis where idx is a slice object. 

786 """ 

787 if idx == slice(None): 

788 return self.copy() if copy else self 

789 

790 M, N = self._swap(self.shape) 

791 start, stop, step = idx.indices(N) 

792 N = len(range(start, stop, step)) 

793 if N == 0: 

794 return self.__class__(self._swap((M, N)), dtype=self.dtype) 

795 if step == 1: 

796 return self._get_submatrix(minor=idx, copy=copy) 

797 # TODO: don't fall back to fancy indexing here 

798 return self._minor_index_fancy(np.arange(start, stop, step)) 

799 

800 def _get_submatrix(self, major=None, minor=None, copy=False): 

801 """Return a submatrix of this matrix. 

802 

803 major, minor: None, int, or slice with step 1 

804 """ 

805 M, N = self._swap(self.shape) 

806 i0, i1 = _process_slice(major, M) 

807 j0, j1 = _process_slice(minor, N) 

808 

809 if i0 == 0 and j0 == 0 and i1 == M and j1 == N: 

810 return self.copy() if copy else self 

811 

812 indptr, indices, data = get_csr_submatrix( 

813 M, N, self.indptr, self.indices, self.data, i0, i1, j0, j1) 

814 

815 shape = self._swap((i1 - i0, j1 - j0)) 

816 return self.__class__((data, indices, indptr), shape=shape, 

817 dtype=self.dtype, copy=False) 

818 

819 def _set_intXint(self, row, col, x): 

820 i, j = self._swap((row, col)) 

821 self._set_many(i, j, x) 

822 

823 def _set_arrayXarray(self, row, col, x): 

824 i, j = self._swap((row, col)) 

825 self._set_many(i, j, x) 

826 

827 def _set_arrayXarray_sparse(self, row, col, x): 

828 # clear entries that will be overwritten 

829 self._zero_many(*self._swap((row, col))) 

830 

831 M, N = row.shape # matches col.shape 

832 broadcast_row = M != 1 and x.shape[0] == 1 

833 broadcast_col = N != 1 and x.shape[1] == 1 

834 r, c = x.row, x.col 

835 

836 x = np.asarray(x.data, dtype=self.dtype) 

837 if x.size == 0: 

838 return 

839 

840 if broadcast_row: 

841 r = np.repeat(np.arange(M), len(r)) 

842 c = np.tile(c, M) 

843 x = np.tile(x, M) 

844 if broadcast_col: 

845 r = np.repeat(r, N) 

846 c = np.tile(np.arange(N), len(c)) 

847 x = np.repeat(x, N) 

848 # only assign entries in the new sparsity structure 

849 i, j = self._swap((row[r, c], col[r, c])) 

850 self._set_many(i, j, x) 

851 

852 def _setdiag(self, values, k): 

853 if 0 in self.shape: 

854 return 

855 

856 M, N = self.shape 

857 broadcast = (values.ndim == 0) 

858 

859 if k < 0: 

860 if broadcast: 

861 max_index = min(M + k, N) 

862 else: 

863 max_index = min(M + k, N, len(values)) 

864 i = np.arange(max_index, dtype=self.indices.dtype) 

865 j = np.arange(max_index, dtype=self.indices.dtype) 

866 i -= k 

867 

868 else: 

869 if broadcast: 

870 max_index = min(M, N - k) 

871 else: 

872 max_index = min(M, N - k, len(values)) 

873 i = np.arange(max_index, dtype=self.indices.dtype) 

874 j = np.arange(max_index, dtype=self.indices.dtype) 

875 j += k 

876 

877 if not broadcast: 

878 values = values[:len(i)] 

879 

880 self[i, j] = values 

881 

882 def _prepare_indices(self, i, j): 

883 M, N = self._swap(self.shape) 

884 

885 def check_bounds(indices, bound): 

886 idx = indices.max() 

887 if idx >= bound: 

888 raise IndexError('index (%d) out of range (>= %d)' % 

889 (idx, bound)) 

890 idx = indices.min() 

891 if idx < -bound: 

892 raise IndexError('index (%d) out of range (< -%d)' % 

893 (idx, bound)) 

894 

895 i = np.array(i, dtype=self.indices.dtype, copy=False, ndmin=1).ravel() 

896 j = np.array(j, dtype=self.indices.dtype, copy=False, ndmin=1).ravel() 

897 check_bounds(i, M) 

898 check_bounds(j, N) 

899 return i, j, M, N 

900 

901 def _set_many(self, i, j, x): 

902 """Sets value at each (i, j) to x 

903 

904 Here (i,j) index major and minor respectively, and must not contain 

905 duplicate entries. 

906 """ 

907 i, j, M, N = self._prepare_indices(i, j) 

908 x = np.array(x, dtype=self.dtype, copy=False, ndmin=1).ravel() 

909 

910 n_samples = x.size 

911 offsets = np.empty(n_samples, dtype=self.indices.dtype) 

912 ret = csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, 

913 i, j, offsets) 

914 if ret == 1: 

915 # rinse and repeat 

916 self.sum_duplicates() 

917 csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, 

918 i, j, offsets) 

919 

920 if -1 not in offsets: 

921 # only affects existing non-zero cells 

922 self.data[offsets] = x 

923 return 

924 

925 else: 

926 warn("Changing the sparsity structure of a {}_matrix is expensive." 

927 " lil_matrix is more efficient.".format(self.format), 

928 SparseEfficiencyWarning, stacklevel=3) 

929 # replace where possible 

930 mask = offsets > -1 

931 self.data[offsets[mask]] = x[mask] 

932 # only insertions remain 

933 mask = ~mask 

934 i = i[mask] 

935 i[i < 0] += M 

936 j = j[mask] 

937 j[j < 0] += N 

938 self._insert_many(i, j, x[mask]) 

939 

940 def _zero_many(self, i, j): 

941 """Sets value at each (i, j) to zero, preserving sparsity structure. 

942 

943 Here (i,j) index major and minor respectively. 

944 """ 

945 i, j, M, N = self._prepare_indices(i, j) 

946 

947 n_samples = len(i) 

948 offsets = np.empty(n_samples, dtype=self.indices.dtype) 

949 ret = csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, 

950 i, j, offsets) 

951 if ret == 1: 

952 # rinse and repeat 

953 self.sum_duplicates() 

954 csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, 

955 i, j, offsets) 

956 

957 # only assign zeros to the existing sparsity structure 

958 self.data[offsets[offsets > -1]] = 0 

959 

960 def _insert_many(self, i, j, x): 

961 """Inserts new nonzero at each (i, j) with value x 

962 

963 Here (i,j) index major and minor respectively. 

964 i, j and x must be non-empty, 1d arrays. 

965 Inserts each major group (e.g. all entries per row) at a time. 

966 Maintains has_sorted_indices property. 

967 Modifies i, j, x in place. 

968 """ 

969 order = np.argsort(i, kind='mergesort') # stable for duplicates 

970 i = i.take(order, mode='clip') 

971 j = j.take(order, mode='clip') 

972 x = x.take(order, mode='clip') 

973 

974 do_sort = self.has_sorted_indices 

975 

976 # Update index data type 

977 idx_dtype = self._get_index_dtype((self.indices, self.indptr), 

978 maxval=(self.indptr[-1] + x.size)) 

979 self.indptr = np.asarray(self.indptr, dtype=idx_dtype) 

980 self.indices = np.asarray(self.indices, dtype=idx_dtype) 

981 i = np.asarray(i, dtype=idx_dtype) 

982 j = np.asarray(j, dtype=idx_dtype) 

983 

984 # Collate old and new in chunks by major index 

985 indices_parts = [] 

986 data_parts = [] 

987 ui, ui_indptr = np.unique(i, return_index=True) 

988 ui_indptr = np.append(ui_indptr, len(j)) 

989 new_nnzs = np.diff(ui_indptr) 

990 prev = 0 

991 for c, (ii, js, je) in enumerate(zip(ui, ui_indptr, ui_indptr[1:])): 

992 # old entries 

993 start = self.indptr[prev] 

994 stop = self.indptr[ii] 

995 indices_parts.append(self.indices[start:stop]) 

996 data_parts.append(self.data[start:stop]) 

997 

998 # handle duplicate j: keep last setting 

999 uj, uj_indptr = np.unique(j[js:je][::-1], return_index=True) 

1000 if len(uj) == je - js: 

1001 indices_parts.append(j[js:je]) 

1002 data_parts.append(x[js:je]) 

1003 else: 

1004 indices_parts.append(j[js:je][::-1][uj_indptr]) 

1005 data_parts.append(x[js:je][::-1][uj_indptr]) 

1006 new_nnzs[c] = len(uj) 

1007 

1008 prev = ii 

1009 

1010 # remaining old entries 

1011 start = self.indptr[ii] 

1012 indices_parts.append(self.indices[start:]) 

1013 data_parts.append(self.data[start:]) 

1014 

1015 # update attributes 

1016 self.indices = np.concatenate(indices_parts) 

1017 self.data = np.concatenate(data_parts) 

1018 nnzs = np.empty(self.indptr.shape, dtype=idx_dtype) 

1019 nnzs[0] = idx_dtype(0) 

1020 indptr_diff = np.diff(self.indptr) 

1021 indptr_diff[ui] += new_nnzs 

1022 nnzs[1:] = indptr_diff 

1023 self.indptr = np.cumsum(nnzs, out=nnzs) 

1024 

1025 if do_sort: 

1026 # TODO: only sort where necessary 

1027 self.has_sorted_indices = False 

1028 self.sort_indices() 

1029 

1030 self.check_format(full_check=False) 

1031 

1032 ###################### 

1033 # Conversion methods # 

1034 ###################### 

1035 

1036 def tocoo(self, copy=True): 

1037 major_dim, minor_dim = self._swap(self.shape) 

1038 minor_indices = self.indices 

1039 major_indices = np.empty(len(minor_indices), dtype=self.indices.dtype) 

1040 _sparsetools.expandptr(major_dim, self.indptr, major_indices) 

1041 row, col = self._swap((major_indices, minor_indices)) 

1042 

1043 return self._coo_container( 

1044 (self.data, (row, col)), self.shape, copy=copy, 

1045 dtype=self.dtype 

1046 ) 

1047 

1048 tocoo.__doc__ = _spbase.tocoo.__doc__ 

1049 

1050 def toarray(self, order=None, out=None): 

1051 if out is None and order is None: 

1052 order = self._swap('cf')[0] 

1053 out = self._process_toarray_args(order, out) 

1054 if not (out.flags.c_contiguous or out.flags.f_contiguous): 

1055 raise ValueError('Output array must be C or F contiguous') 

1056 # align ideal order with output array order 

1057 if out.flags.c_contiguous: 

1058 x = self.tocsr() 

1059 y = out 

1060 else: 

1061 x = self.tocsc() 

1062 y = out.T 

1063 M, N = x._swap(x.shape) 

1064 csr_todense(M, N, x.indptr, x.indices, x.data, y) 

1065 return out 

1066 

1067 toarray.__doc__ = _spbase.toarray.__doc__ 

1068 

1069 ############################################################## 

1070 # methods that examine or modify the internal data structure # 

1071 ############################################################## 

1072 

1073 def eliminate_zeros(self): 

1074 """Remove zero entries from the array/matrix 

1075 

1076 This is an *in place* operation. 

1077 """ 

1078 M, N = self._swap(self.shape) 

1079 _sparsetools.csr_eliminate_zeros(M, N, self.indptr, self.indices, 

1080 self.data) 

1081 self.prune() # nnz may have changed 

1082 

1083 @property 

1084 def has_canonical_format(self) -> bool: 

1085 """Whether the array/matrix has sorted indices and no duplicates 

1086 

1087 Returns 

1088 - True: if the above applies 

1089 - False: otherwise 

1090 

1091 has_canonical_format implies has_sorted_indices, so if the latter flag 

1092 is False, so will the former be; if the former is found True, the 

1093 latter flag is also set. 

1094 """ 

1095 # first check to see if result was cached 

1096 if not getattr(self, '_has_sorted_indices', True): 

1097 # not sorted => not canonical 

1098 self._has_canonical_format = False 

1099 elif not hasattr(self, '_has_canonical_format'): 

1100 self.has_canonical_format = bool( 

1101 _sparsetools.csr_has_canonical_format( 

1102 len(self.indptr) - 1, self.indptr, self.indices) 

1103 ) 

1104 return self._has_canonical_format 

1105 

1106 @has_canonical_format.setter 

1107 def has_canonical_format(self, val: bool): 

1108 self._has_canonical_format = bool(val) 

1109 if val: 

1110 self.has_sorted_indices = True 

1111 

1112 def sum_duplicates(self): 

1113 """Eliminate duplicate entries by adding them together 

1114 

1115 This is an *in place* operation. 

1116 """ 

1117 if self.has_canonical_format: 

1118 return 

1119 self.sort_indices() 

1120 

1121 M, N = self._swap(self.shape) 

1122 _sparsetools.csr_sum_duplicates(M, N, self.indptr, self.indices, 

1123 self.data) 

1124 

1125 self.prune() # nnz may have changed 

1126 self.has_canonical_format = True 

1127 

1128 @property 

1129 def has_sorted_indices(self) -> bool: 

1130 """Whether the indices are sorted 

1131 

1132 Returns 

1133 - True: if the indices of the array/matrix are in sorted order 

1134 - False: otherwise 

1135 """ 

1136 # first check to see if result was cached 

1137 if not hasattr(self, '_has_sorted_indices'): 

1138 self._has_sorted_indices = bool( 

1139 _sparsetools.csr_has_sorted_indices( 

1140 len(self.indptr) - 1, self.indptr, self.indices) 

1141 ) 

1142 return self._has_sorted_indices 

1143 

1144 @has_sorted_indices.setter 

1145 def has_sorted_indices(self, val: bool): 

1146 self._has_sorted_indices = bool(val) 

1147 

1148 

1149 def sorted_indices(self): 

1150 """Return a copy of this array/matrix with sorted indices 

1151 """ 

1152 A = self.copy() 

1153 A.sort_indices() 

1154 return A 

1155 

1156 # an alternative that has linear complexity is the following 

1157 # although the previous option is typically faster 

1158 # return self.toother().toother() 

1159 

1160 def sort_indices(self): 

1161 """Sort the indices of this array/matrix *in place* 

1162 """ 

1163 

1164 if not self.has_sorted_indices: 

1165 _sparsetools.csr_sort_indices(len(self.indptr) - 1, self.indptr, 

1166 self.indices, self.data) 

1167 self.has_sorted_indices = True 

1168 

1169 def prune(self): 

1170 """Remove empty space after all non-zero elements. 

1171 """ 

1172 major_dim = self._swap(self.shape)[0] 

1173 

1174 if len(self.indptr) != major_dim + 1: 

1175 raise ValueError('index pointer has invalid length') 

1176 if len(self.indices) < self.nnz: 

1177 raise ValueError('indices array has fewer than nnz elements') 

1178 if len(self.data) < self.nnz: 

1179 raise ValueError('data array has fewer than nnz elements') 

1180 

1181 self.indices = _prune_array(self.indices[:self.nnz]) 

1182 self.data = _prune_array(self.data[:self.nnz]) 

1183 

1184 def resize(self, *shape): 

1185 shape = check_shape(shape) 

1186 if hasattr(self, 'blocksize'): 

1187 bm, bn = self.blocksize 

1188 new_M, rm = divmod(shape[0], bm) 

1189 new_N, rn = divmod(shape[1], bn) 

1190 if rm or rn: 

1191 raise ValueError("shape must be divisible into {} blocks. " 

1192 "Got {}".format(self.blocksize, shape)) 

1193 M, N = self.shape[0] // bm, self.shape[1] // bn 

1194 else: 

1195 new_M, new_N = self._swap(shape) 

1196 M, N = self._swap(self.shape) 

1197 

1198 if new_M < M: 

1199 self.indices = self.indices[:self.indptr[new_M]] 

1200 self.data = self.data[:self.indptr[new_M]] 

1201 self.indptr = self.indptr[:new_M + 1] 

1202 elif new_M > M: 

1203 self.indptr = np.resize(self.indptr, new_M + 1) 

1204 self.indptr[M + 1:].fill(self.indptr[M]) 

1205 

1206 if new_N < N: 

1207 mask = self.indices < new_N 

1208 if not np.all(mask): 

1209 self.indices = self.indices[mask] 

1210 self.data = self.data[mask] 

1211 major_index, val = self._minor_reduce(np.add, mask) 

1212 self.indptr.fill(0) 

1213 self.indptr[1:][major_index] = val 

1214 np.cumsum(self.indptr, out=self.indptr) 

1215 

1216 self._shape = shape 

1217 

1218 resize.__doc__ = _spbase.resize.__doc__ 

1219 

1220 ################### 

1221 # utility methods # 

1222 ################### 

1223 

1224 # needed by _data_matrix 

1225 def _with_data(self, data, copy=True): 

1226 """Returns a matrix with the same sparsity structure as self, 

1227 but with different data. By default the structure arrays 

1228 (i.e. .indptr and .indices) are copied. 

1229 """ 

1230 if copy: 

1231 return self.__class__((data, self.indices.copy(), 

1232 self.indptr.copy()), 

1233 shape=self.shape, 

1234 dtype=data.dtype) 

1235 else: 

1236 return self.__class__((data, self.indices, self.indptr), 

1237 shape=self.shape, dtype=data.dtype) 

1238 

1239 def _binopt(self, other, op): 

1240 """apply the binary operation fn to two sparse matrices.""" 

1241 other = self.__class__(other) 

1242 

1243 # e.g. csr_plus_csr, csr_minus_csr, etc. 

1244 fn = getattr(_sparsetools, self.format + op + self.format) 

1245 

1246 maxnnz = self.nnz + other.nnz 

1247 idx_dtype = self._get_index_dtype((self.indptr, self.indices, 

1248 other.indptr, other.indices), 

1249 maxval=maxnnz) 

1250 indptr = np.empty(self.indptr.shape, dtype=idx_dtype) 

1251 indices = np.empty(maxnnz, dtype=idx_dtype) 

1252 

1253 bool_ops = ['_ne_', '_lt_', '_gt_', '_le_', '_ge_'] 

1254 if op in bool_ops: 

1255 data = np.empty(maxnnz, dtype=np.bool_) 

1256 else: 

1257 data = np.empty(maxnnz, dtype=upcast(self.dtype, other.dtype)) 

1258 

1259 fn(self.shape[0], self.shape[1], 

1260 np.asarray(self.indptr, dtype=idx_dtype), 

1261 np.asarray(self.indices, dtype=idx_dtype), 

1262 self.data, 

1263 np.asarray(other.indptr, dtype=idx_dtype), 

1264 np.asarray(other.indices, dtype=idx_dtype), 

1265 other.data, 

1266 indptr, indices, data) 

1267 

1268 A = self.__class__((data, indices, indptr), shape=self.shape) 

1269 A.prune() 

1270 

1271 return A 

1272 

1273 def _divide_sparse(self, other): 

1274 """ 

1275 Divide this matrix by a second sparse matrix. 

1276 """ 

1277 if other.shape != self.shape: 

1278 raise ValueError('inconsistent shapes') 

1279 

1280 r = self._binopt(other, '_eldiv_') 

1281 

1282 if np.issubdtype(r.dtype, np.inexact): 

1283 # Eldiv leaves entries outside the combined sparsity 

1284 # pattern empty, so they must be filled manually. 

1285 # Everything outside of other's sparsity is NaN, and everything 

1286 # inside it is either zero or defined by eldiv. 

1287 out = np.empty(self.shape, dtype=self.dtype) 

1288 out.fill(np.nan) 

1289 row, col = other.nonzero() 

1290 out[row, col] = 0 

1291 r = r.tocoo() 

1292 out[r.row, r.col] = r.data 

1293 out = self._container(out) 

1294 else: 

1295 # integers types go with nan <-> 0 

1296 out = r 

1297 

1298 return out 

1299 

1300 

1301def _process_slice(sl, num): 

1302 if sl is None: 

1303 i0, i1 = 0, num 

1304 elif isinstance(sl, slice): 

1305 i0, i1, stride = sl.indices(num) 

1306 if stride != 1: 

1307 raise ValueError('slicing with step != 1 not supported') 

1308 i0 = min(i0, i1) # give an empty slice when i0 > i1 

1309 elif isintlike(sl): 

1310 if sl < 0: 

1311 sl += num 

1312 i0, i1 = sl, sl + 1 

1313 if i0 < 0 or i1 > num: 

1314 raise IndexError('index out of bounds: 0 <= %d < %d <= %d' % 

1315 (i0, i1, num)) 

1316 else: 

1317 raise TypeError('expected slice or scalar') 

1318 

1319 return i0, i1