Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.9/dist-packages/scipy/_lib/array_api_compat/common/_linalg.py: 41%
91 statements
« prev ^ index » next coverage.py v7.4.4, created at 2024-04-03 06:39 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2024-04-03 06:39 +0000
1from __future__ import annotations
3from typing import TYPE_CHECKING, NamedTuple
4if TYPE_CHECKING:
5 from typing import Literal, Optional, Tuple, Union
6 from ._typing import ndarray
8import math
10import numpy as np
11if np.__version__[0] == "2":
12 from numpy.lib.array_utils import normalize_axis_tuple
13else:
14 from numpy.core.numeric import normalize_axis_tuple
16from ._aliases import matmul, matrix_transpose, tensordot, vecdot, isdtype
17from .._internal import get_xp
19# These are in the main NumPy namespace but not in numpy.linalg
20def cross(x1: ndarray, x2: ndarray, /, xp, *, axis: int = -1, **kwargs) -> ndarray:
21 return xp.cross(x1, x2, axis=axis, **kwargs)
23def outer(x1: ndarray, x2: ndarray, /, xp, **kwargs) -> ndarray:
24 return xp.outer(x1, x2, **kwargs)
26class EighResult(NamedTuple):
27 eigenvalues: ndarray
28 eigenvectors: ndarray
30class QRResult(NamedTuple):
31 Q: ndarray
32 R: ndarray
34class SlogdetResult(NamedTuple):
35 sign: ndarray
36 logabsdet: ndarray
38class SVDResult(NamedTuple):
39 U: ndarray
40 S: ndarray
41 Vh: ndarray
43# These functions are the same as their NumPy counterparts except they return
44# a namedtuple.
45def eigh(x: ndarray, /, xp, **kwargs) -> EighResult:
46 return EighResult(*xp.linalg.eigh(x, **kwargs))
48def qr(x: ndarray, /, xp, *, mode: Literal['reduced', 'complete'] = 'reduced',
49 **kwargs) -> QRResult:
50 return QRResult(*xp.linalg.qr(x, mode=mode, **kwargs))
52def slogdet(x: ndarray, /, xp, **kwargs) -> SlogdetResult:
53 return SlogdetResult(*xp.linalg.slogdet(x, **kwargs))
55def svd(x: ndarray, /, xp, *, full_matrices: bool = True, **kwargs) -> SVDResult:
56 return SVDResult(*xp.linalg.svd(x, full_matrices=full_matrices, **kwargs))
58# These functions have additional keyword arguments
60# The upper keyword argument is new from NumPy
61def cholesky(x: ndarray, /, xp, *, upper: bool = False, **kwargs) -> ndarray:
62 L = xp.linalg.cholesky(x, **kwargs)
63 if upper:
64 U = get_xp(xp)(matrix_transpose)(L)
65 if get_xp(xp)(isdtype)(U.dtype, 'complex floating'):
66 U = xp.conj(U)
67 return U
68 return L
70# The rtol keyword argument of matrix_rank() and pinv() is new from NumPy.
71# Note that it has a different semantic meaning from tol and rcond.
72def matrix_rank(x: ndarray,
73 /,
74 xp,
75 *,
76 rtol: Optional[Union[float, ndarray]] = None,
77 **kwargs) -> ndarray:
78 # this is different from xp.linalg.matrix_rank, which supports 1
79 # dimensional arrays.
80 if x.ndim < 2:
81 raise xp.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional")
82 S = get_xp(xp)(svdvals)(x, **kwargs)
83 if rtol is None:
84 tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * xp.finfo(S.dtype).eps
85 else:
86 # this is different from xp.linalg.matrix_rank, which does not
87 # multiply the tolerance by the largest singular value.
88 tol = S.max(axis=-1, keepdims=True)*xp.asarray(rtol)[..., xp.newaxis]
89 return xp.count_nonzero(S > tol, axis=-1)
91def pinv(x: ndarray, /, xp, *, rtol: Optional[Union[float, ndarray]] = None, **kwargs) -> ndarray:
92 # this is different from xp.linalg.pinv, which does not multiply the
93 # default tolerance by max(M, N).
94 if rtol is None:
95 rtol = max(x.shape[-2:]) * xp.finfo(x.dtype).eps
96 return xp.linalg.pinv(x, rcond=rtol, **kwargs)
98# These functions are new in the array API spec
100def matrix_norm(x: ndarray, /, xp, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> ndarray:
101 return xp.linalg.norm(x, axis=(-2, -1), keepdims=keepdims, ord=ord)
103# svdvals is not in NumPy (but it is in SciPy). It is equivalent to
104# xp.linalg.svd(compute_uv=False).
105def svdvals(x: ndarray, /, xp) -> Union[ndarray, Tuple[ndarray, ...]]:
106 return xp.linalg.svd(x, compute_uv=False)
108def vector_norm(x: ndarray, /, xp, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> ndarray:
109 # xp.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or
110 # when axis=None and the input is 2-D, so to force a vector norm, we make
111 # it so the input is 1-D (for axis=None), or reshape so that norm is done
112 # on a single dimension.
113 if axis is None:
114 # Note: xp.linalg.norm() doesn't handle 0-D arrays
115 _x = x.ravel()
116 _axis = 0
117 elif isinstance(axis, tuple):
118 # Note: The axis argument supports any number of axes, whereas
119 # xp.linalg.norm() only supports a single axis for vector norm.
120 normalized_axis = normalize_axis_tuple(axis, x.ndim)
121 rest = tuple(i for i in range(x.ndim) if i not in normalized_axis)
122 newshape = axis + rest
123 _x = xp.transpose(x, newshape).reshape(
124 (math.prod([x.shape[i] for i in axis]), *[x.shape[i] for i in rest]))
125 _axis = 0
126 else:
127 _x = x
128 _axis = axis
130 res = xp.linalg.norm(_x, axis=_axis, ord=ord)
132 if keepdims:
133 # We can't reuse xp.linalg.norm(keepdims) because of the reshape hacks
134 # above to avoid matrix norm logic.
135 shape = list(x.shape)
136 _axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim)
137 for i in _axis:
138 shape[i] = 1
139 res = xp.reshape(res, tuple(shape))
141 return res
143# xp.diagonal and xp.trace operate on the first two axes whereas these
144# operates on the last two
146def diagonal(x: ndarray, /, xp, *, offset: int = 0, **kwargs) -> ndarray:
147 return xp.diagonal(x, offset=offset, axis1=-2, axis2=-1, **kwargs)
149def trace(x: ndarray, /, xp, *, offset: int = 0, dtype=None, **kwargs) -> ndarray:
150 if dtype is None:
151 if x.dtype == xp.float32:
152 dtype = xp.float64
153 elif x.dtype == xp.complex64:
154 dtype = xp.complex128
155 return xp.asarray(xp.trace(x, offset=offset, dtype=dtype, axis1=-2, axis2=-1, **kwargs))
157__all__ = ['cross', 'matmul', 'outer', 'tensordot', 'EighResult',
158 'QRResult', 'SlogdetResult', 'SVDResult', 'eigh', 'qr', 'slogdet',
159 'svd', 'cholesky', 'matrix_rank', 'pinv', 'matrix_norm',
160 'matrix_transpose', 'svdvals', 'vecdot', 'vector_norm', 'diagonal',
161 'trace']