/src/sentencepiece/third_party/protobuf-lite/google/protobuf/map.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Protocol Buffers - Google's data interchange format |
2 | | // Copyright 2008 Google Inc. All rights reserved. |
3 | | // https://developers.google.com/protocol-buffers/ |
4 | | // |
5 | | // Redistribution and use in source and binary forms, with or without |
6 | | // modification, are permitted provided that the following conditions are |
7 | | // met: |
8 | | // |
9 | | // * Redistributions of source code must retain the above copyright |
10 | | // notice, this list of conditions and the following disclaimer. |
11 | | // * Redistributions in binary form must reproduce the above |
12 | | // copyright notice, this list of conditions and the following disclaimer |
13 | | // in the documentation and/or other materials provided with the |
14 | | // distribution. |
15 | | // * Neither the name of Google Inc. nor the names of its |
16 | | // contributors may be used to endorse or promote products derived from |
17 | | // this software without specific prior written permission. |
18 | | // |
19 | | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | | |
31 | | // This file defines the map container and its helpers to support protobuf maps. |
32 | | // |
33 | | // The Map and MapIterator types are provided by this header file. |
34 | | // Please avoid using other types defined here, unless they are public |
35 | | // types within Map or MapIterator, such as Map::value_type. |
36 | | |
37 | | #ifndef GOOGLE_PROTOBUF_MAP_H__ |
38 | | #define GOOGLE_PROTOBUF_MAP_H__ |
39 | | |
40 | | #include <functional> |
41 | | #include <initializer_list> |
42 | | #include <iterator> |
43 | | #include <limits> // To support Visual Studio 2008 |
44 | | #include <map> |
45 | | #include <string> |
46 | | #include <type_traits> |
47 | | #include <utility> |
48 | | |
49 | | #if defined(__cpp_lib_string_view) |
50 | | #include <string_view> |
51 | | #endif // defined(__cpp_lib_string_view) |
52 | | |
53 | | #include <google/protobuf/stubs/common.h> |
54 | | #include <google/protobuf/arena.h> |
55 | | #include <google/protobuf/generated_enum_util.h> |
56 | | #include <google/protobuf/map_type_handler.h> |
57 | | #include <google/protobuf/stubs/hash.h> |
58 | | |
59 | | #ifdef SWIG |
60 | | #error "You cannot SWIG proto headers" |
61 | | #endif |
62 | | |
63 | | #include <google/protobuf/port_def.inc> |
64 | | |
65 | | namespace google { |
66 | | namespace protobuf { |
67 | | |
68 | | template <typename Key, typename T> |
69 | | class Map; |
70 | | |
71 | | class MapIterator; |
72 | | |
73 | | template <typename Enum> |
74 | | struct is_proto_enum; |
75 | | |
76 | | namespace internal { |
77 | | template <typename Derived, typename Key, typename T, |
78 | | WireFormatLite::FieldType key_wire_type, |
79 | | WireFormatLite::FieldType value_wire_type> |
80 | | class MapFieldLite; |
81 | | |
82 | | template <typename Derived, typename Key, typename T, |
83 | | WireFormatLite::FieldType key_wire_type, |
84 | | WireFormatLite::FieldType value_wire_type> |
85 | | class MapField; |
86 | | |
87 | | template <typename Key, typename T> |
88 | | class TypeDefinedMapFieldBase; |
89 | | |
90 | | class DynamicMapField; |
91 | | |
92 | | class GeneratedMessageReflection; |
93 | | |
94 | | // re-implement std::allocator to use arena allocator for memory allocation. |
95 | | // Used for Map implementation. Users should not use this class |
96 | | // directly. |
97 | | template <typename U> |
98 | | class MapAllocator { |
99 | | public: |
100 | | using value_type = U; |
101 | | using pointer = value_type*; |
102 | | using const_pointer = const value_type*; |
103 | | using reference = value_type&; |
104 | | using const_reference = const value_type&; |
105 | | using size_type = size_t; |
106 | | using difference_type = ptrdiff_t; |
107 | | |
108 | | constexpr MapAllocator() : arena_(nullptr) {} |
109 | | explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {} |
110 | | template <typename X> |
111 | | MapAllocator(const MapAllocator<X>& allocator) // NOLINT(runtime/explicit) |
112 | | : arena_(allocator.arena()) {} |
113 | | |
114 | | pointer allocate(size_type n, const void* /* hint */ = nullptr) { |
115 | | // If arena is not given, malloc needs to be called which doesn't |
116 | | // construct element object. |
117 | | if (arena_ == nullptr) { |
118 | | return static_cast<pointer>(::operator new(n * sizeof(value_type))); |
119 | | } else { |
120 | | return reinterpret_cast<pointer>( |
121 | | Arena::CreateArray<uint8>(arena_, n * sizeof(value_type))); |
122 | | } |
123 | | } |
124 | | |
125 | | void deallocate(pointer p, size_type n) { |
126 | | if (arena_ == nullptr) { |
127 | | #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation) |
128 | | ::operator delete(p, n * sizeof(value_type)); |
129 | | #else |
130 | | (void)n; |
131 | | ::operator delete(p); |
132 | | #endif |
133 | | } |
134 | | } |
135 | | |
136 | | #if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \ |
137 | | !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN) |
138 | | template <class NodeType, class... Args> |
139 | | void construct(NodeType* p, Args&&... args) { |
140 | | // Clang 3.6 doesn't compile static casting to void* directly. (Issue |
141 | | // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall |
142 | | // not cast away constness". So first the maybe const pointer is casted to |
143 | | // const void* and after the const void* is const casted. |
144 | | new (const_cast<void*>(static_cast<const void*>(p))) |
145 | | NodeType(std::forward<Args>(args)...); |
146 | | } |
147 | | |
148 | | template <class NodeType> |
149 | | void destroy(NodeType* p) { |
150 | | p->~NodeType(); |
151 | | } |
152 | | #else |
153 | | void construct(pointer p, const_reference t) { new (p) value_type(t); } |
154 | | |
155 | | void destroy(pointer p) { p->~value_type(); } |
156 | | #endif |
157 | | |
158 | | template <typename X> |
159 | | struct rebind { |
160 | | using other = MapAllocator<X>; |
161 | | }; |
162 | | |
163 | | template <typename X> |
164 | | bool operator==(const MapAllocator<X>& other) const { |
165 | | return arena_ == other.arena_; |
166 | | } |
167 | | |
168 | | template <typename X> |
169 | | bool operator!=(const MapAllocator<X>& other) const { |
170 | | return arena_ != other.arena_; |
171 | | } |
172 | | |
173 | | // To support Visual Studio 2008 |
174 | | size_type max_size() const { |
175 | | // parentheses around (std::...:max) prevents macro warning of max() |
176 | | return (std::numeric_limits<size_type>::max)(); |
177 | | } |
178 | | |
179 | | // To support gcc-4.4, which does not properly |
180 | | // support templated friend classes |
181 | | Arena* arena() const { return arena_; } |
182 | | |
183 | | private: |
184 | | using DestructorSkippable_ = void; |
185 | | Arena* arena_; |
186 | | }; |
187 | | |
188 | | template <typename T> |
189 | | using KeyForTree = |
190 | | typename std::conditional<std::is_scalar<T>::value, T, |
191 | | std::reference_wrapper<const T>>::type; |
192 | | |
193 | | // Default case: Not transparent. |
194 | | // We use std::hash<key_type>/std::less<key_type> and all the lookup functions |
195 | | // only accept `key_type`. |
196 | | template <typename key_type> |
197 | | struct TransparentSupport { |
198 | | using hash = std::hash<key_type>; |
199 | | using less = std::less<key_type>; |
200 | | |
201 | | static bool Equals(const key_type& a, const key_type& b) { return a == b; } |
202 | | |
203 | | template <typename K> |
204 | | using key_arg = key_type; |
205 | | }; |
206 | | |
207 | | #if defined(__cpp_lib_string_view) |
208 | | // If std::string_view is available, we add transparent support for std::string |
209 | | // keys. We use std::hash<std::string_view> as it supports the input types we |
210 | | // care about. The lookup functions accept arbitrary `K`. This will include any |
211 | | // key type that is convertible to std::string_view. |
212 | | template <> |
213 | | struct TransparentSupport<std::string> { |
214 | 0 | static std::string_view ImplicitConvert(std::string_view str) { return str; } |
215 | | // If the element is not convertible to std::string_view, try to convert to |
216 | | // std::string first. |
217 | | // The template makes this overload lose resolution when both have the same |
218 | | // rank otherwise. |
219 | | template <typename = void> |
220 | | static std::string_view ImplicitConvert(const std::string& str) { |
221 | | return str; |
222 | | } |
223 | | |
224 | | struct hash : private std::hash<std::string_view> { |
225 | | using is_transparent = void; |
226 | | |
227 | | template <typename T> |
228 | | size_t operator()(const T& str) const { |
229 | | return base()(ImplicitConvert(str)); |
230 | | } |
231 | | |
232 | | private: |
233 | 0 | const std::hash<std::string_view>& base() const { return *this; } |
234 | | }; |
235 | | struct less { |
236 | | using is_transparent = void; |
237 | | |
238 | | template <typename T, typename U> |
239 | | bool operator()(const T& t, const U& u) const { |
240 | | return ImplicitConvert(t) < ImplicitConvert(u); |
241 | | } |
242 | | }; |
243 | | |
244 | | template <typename T, typename U> |
245 | | static bool Equals(const T& t, const U& u) { |
246 | | return ImplicitConvert(t) == ImplicitConvert(u); |
247 | | } |
248 | | |
249 | | template <typename K> |
250 | | using key_arg = K; |
251 | | }; |
252 | | #endif // defined(__cpp_lib_string_view) |
253 | | |
254 | | template <typename Key> |
255 | | using TreeForMap = |
256 | | std::map<KeyForTree<Key>, void*, typename TransparentSupport<Key>::less, |
257 | | MapAllocator<std::pair<const KeyForTree<Key>, void*>>>; |
258 | | |
259 | 0 | inline bool TableEntryIsEmpty(void* const* table, size_t b) { |
260 | 0 | return table[b] == nullptr; |
261 | 0 | } |
262 | 0 | inline bool TableEntryIsNonEmptyList(void* const* table, size_t b) { |
263 | 0 | return table[b] != nullptr && table[b] != table[b ^ 1]; |
264 | 0 | } |
265 | 0 | inline bool TableEntryIsTree(void* const* table, size_t b) { |
266 | 0 | return !TableEntryIsEmpty(table, b) && !TableEntryIsNonEmptyList(table, b); |
267 | 0 | } |
268 | 0 | inline bool TableEntryIsList(void* const* table, size_t b) { |
269 | 0 | return !TableEntryIsTree(table, b); |
270 | 0 | } |
271 | | |
272 | | // This captures all numeric types. |
273 | 0 | inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; } |
274 | 0 | inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) { |
275 | 0 | return StringSpaceUsedExcludingSelfLong(str); |
276 | 0 | } |
277 | | template <typename T, |
278 | | typename = decltype(std::declval<const T&>().SpaceUsedLong())> |
279 | | size_t MapValueSpaceUsedExcludingSelfLong(const T& message) { |
280 | | return message.SpaceUsedLong() - sizeof(T); |
281 | | } |
282 | | |
283 | | constexpr size_t kGlobalEmptyTableSize = 1; |
284 | | PROTOBUF_EXPORT extern void* const kGlobalEmptyTable[kGlobalEmptyTableSize]; |
285 | | |
286 | | // Space used for the table, trees, and nodes. |
287 | | // Does not include the indirect space used. Eg the data of a std::string. |
288 | | template <typename Key> |
289 | | PROTOBUF_NOINLINE size_t SpaceUsedInTable(void** table, size_t num_buckets, |
290 | | size_t num_elements, |
291 | | size_t sizeof_node) { |
292 | | size_t size = 0; |
293 | | // The size of the table. |
294 | | size += sizeof(void*) * num_buckets; |
295 | | // All the nodes. |
296 | | size += sizeof_node * num_elements; |
297 | | // For each tree, count the overhead of the those nodes. |
298 | | // Two buckets at a time because we only care about trees. |
299 | | for (size_t b = 0; b < num_buckets; b += 2) { |
300 | | if (internal::TableEntryIsTree(table, b)) { |
301 | | using Tree = TreeForMap<Key>; |
302 | | Tree* tree = static_cast<Tree*>(table[b]); |
303 | | // Estimated cost of the red-black tree nodes, 3 pointers plus a |
304 | | // bool (plus alignment, so 4 pointers). |
305 | | size += tree->size() * |
306 | | (sizeof(typename Tree::value_type) + sizeof(void*) * 4); |
307 | | } |
308 | | } |
309 | | return size; |
310 | | } |
311 | | |
312 | | template <typename Map, |
313 | | typename = typename std::enable_if< |
314 | | !std::is_scalar<typename Map::key_type>::value || |
315 | | !std::is_scalar<typename Map::mapped_type>::value>::type> |
316 | | size_t SpaceUsedInValues(const Map* map) { |
317 | | size_t size = 0; |
318 | | for (const auto& v : *map) { |
319 | | size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) + |
320 | | internal::MapValueSpaceUsedExcludingSelfLong(v.second); |
321 | | } |
322 | | return size; |
323 | | } |
324 | | |
325 | 0 | inline size_t SpaceUsedInValues(const void*) { return 0; } |
326 | | |
327 | | } // namespace internal |
328 | | |
329 | | // This is the class for Map's internal value_type. Instead of using |
330 | | // std::pair as value_type, we use this class which provides us more control of |
331 | | // its process of construction and destruction. |
332 | | template <typename Key, typename T> |
333 | | struct MapPair { |
334 | | using first_type = const Key; |
335 | | using second_type = T; |
336 | | |
337 | | MapPair(const Key& other_first, const T& other_second) |
338 | | : first(other_first), second(other_second) {} |
339 | | explicit MapPair(const Key& other_first) : first(other_first), second() {} |
340 | | explicit MapPair(Key&& other_first) |
341 | | : first(std::move(other_first)), second() {} |
342 | | MapPair(const MapPair& other) : first(other.first), second(other.second) {} |
343 | | |
344 | | ~MapPair() {} |
345 | | |
346 | | // Implicitly convertible to std::pair of compatible types. |
347 | | template <typename T1, typename T2> |
348 | | operator std::pair<T1, T2>() const { // NOLINT(runtime/explicit) |
349 | | return std::pair<T1, T2>(first, second); |
350 | | } |
351 | | |
352 | | const Key first; |
353 | | T second; |
354 | | |
355 | | private: |
356 | | friend class Arena; |
357 | | friend class Map<Key, T>; |
358 | | }; |
359 | | |
360 | | // Map is an associative container type used to store protobuf map |
361 | | // fields. Each Map instance may or may not use a different hash function, a |
362 | | // different iteration order, and so on. E.g., please don't examine |
363 | | // implementation details to decide if the following would work: |
364 | | // Map<int, int> m0, m1; |
365 | | // m0[0] = m1[0] = m0[1] = m1[1] = 0; |
366 | | // assert(m0.begin()->first == m1.begin()->first); // Bug! |
367 | | // |
368 | | // Map's interface is similar to std::unordered_map, except that Map is not |
369 | | // designed to play well with exceptions. |
370 | | template <typename Key, typename T> |
371 | | class Map { |
372 | | public: |
373 | | using key_type = Key; |
374 | | using mapped_type = T; |
375 | | using value_type = MapPair<Key, T>; |
376 | | |
377 | | using pointer = value_type*; |
378 | | using const_pointer = const value_type*; |
379 | | using reference = value_type&; |
380 | | using const_reference = const value_type&; |
381 | | |
382 | | using size_type = size_t; |
383 | | using hasher = typename internal::TransparentSupport<Key>::hash; |
384 | | |
385 | | constexpr Map() : elements_(nullptr) {} |
386 | | explicit Map(Arena* arena) : elements_(arena) {} |
387 | | |
388 | | Map(const Map& other) : Map() { insert(other.begin(), other.end()); } |
389 | | |
390 | | Map(Map&& other) noexcept : Map() { |
391 | | if (other.arena() != nullptr) { |
392 | | *this = other; |
393 | | } else { |
394 | | swap(other); |
395 | | } |
396 | | } |
397 | | |
398 | | Map& operator=(Map&& other) noexcept { |
399 | | if (this != &other) { |
400 | | if (arena() != other.arena()) { |
401 | | *this = other; |
402 | | } else { |
403 | | swap(other); |
404 | | } |
405 | | } |
406 | | return *this; |
407 | | } |
408 | | |
409 | | template <class InputIt> |
410 | | Map(const InputIt& first, const InputIt& last) : Map() { |
411 | | insert(first, last); |
412 | | } |
413 | | |
414 | | ~Map() {} |
415 | | |
416 | | private: |
417 | | using Allocator = internal::MapAllocator<void*>; |
418 | | |
419 | | // InnerMap is a generic hash-based map. It doesn't contain any |
420 | | // protocol-buffer-specific logic. It is a chaining hash map with the |
421 | | // additional feature that some buckets can be converted to use an ordered |
422 | | // container. This ensures O(lg n) bounds on find, insert, and erase, while |
423 | | // avoiding the overheads of ordered containers most of the time. |
424 | | // |
425 | | // The implementation doesn't need the full generality of unordered_map, |
426 | | // and it doesn't have it. More bells and whistles can be added as needed. |
427 | | // Some implementation details: |
428 | | // 1. The hash function has type hasher and the equality function |
429 | | // equal_to<Key>. We inherit from hasher to save space |
430 | | // (empty-base-class optimization). |
431 | | // 2. The number of buckets is a power of two. |
432 | | // 3. Buckets are converted to trees in pairs: if we convert bucket b then |
433 | | // buckets b and b^1 will share a tree. Invariant: buckets b and b^1 have |
434 | | // the same non-null value iff they are sharing a tree. (An alternative |
435 | | // implementation strategy would be to have a tag bit per bucket.) |
436 | | // 4. As is typical for hash_map and such, the Keys and Values are always |
437 | | // stored in linked list nodes. Pointers to elements are never invalidated |
438 | | // until the element is deleted. |
439 | | // 5. The trees' payload type is pointer to linked-list node. Tree-converting |
440 | | // a bucket doesn't copy Key-Value pairs. |
441 | | // 6. Once we've tree-converted a bucket, it is never converted back. However, |
442 | | // the items a tree contains may wind up assigned to trees or lists upon a |
443 | | // rehash. |
444 | | // 7. The code requires no C++ features from C++14 or later. |
445 | | // 8. Mutations to a map do not invalidate the map's iterators, pointers to |
446 | | // elements, or references to elements. |
447 | | // 9. Except for erase(iterator), any non-const method can reorder iterators. |
448 | | // 10. InnerMap uses KeyForTree<Key> when using the Tree representation, which |
449 | | // is either `Key`, if Key is a scalar, or `reference_wrapper<const Key>` |
450 | | // otherwise. This avoids unnecessary copies of string keys, for example. |
451 | | class InnerMap : private hasher { |
452 | | public: |
453 | | explicit constexpr InnerMap(Arena* arena) |
454 | | : hasher(), |
455 | | num_elements_(0), |
456 | | num_buckets_(internal::kGlobalEmptyTableSize), |
457 | | seed_(0), |
458 | | index_of_first_non_null_(internal::kGlobalEmptyTableSize), |
459 | | table_(const_cast<void**>(internal::kGlobalEmptyTable)), |
460 | | alloc_(arena) {} |
461 | | |
462 | | ~InnerMap() { |
463 | | if (alloc_.arena() == nullptr && |
464 | | num_buckets_ != internal::kGlobalEmptyTableSize) { |
465 | | clear(); |
466 | | Dealloc<void*>(table_, num_buckets_); |
467 | | } |
468 | | } |
469 | | |
470 | | private: |
471 | | enum { kMinTableSize = 8 }; |
472 | | |
473 | | // Linked-list nodes, as one would expect for a chaining hash table. |
474 | | struct Node { |
475 | | value_type kv; |
476 | | Node* next; |
477 | | }; |
478 | | |
479 | | // Trees. The payload type is a copy of Key, so that we can query the tree |
480 | | // with Keys that are not in any particular data structure. |
481 | | // The value is a void* pointing to Node. We use void* instead of Node* to |
482 | | // avoid code bloat. That way there is only one instantiation of the tree |
483 | | // class per key type. |
484 | | using Tree = internal::TreeForMap<Key>; |
485 | | using TreeIterator = typename Tree::iterator; |
486 | | |
487 | | static Node* NodeFromTreeIterator(TreeIterator it) { |
488 | | return static_cast<Node*>(it->second); |
489 | | } |
490 | | |
491 | | // iterator and const_iterator are instantiations of iterator_base. |
492 | | template <typename KeyValueType> |
493 | | class iterator_base { |
494 | | public: |
495 | | using reference = KeyValueType&; |
496 | | using pointer = KeyValueType*; |
497 | | |
498 | | // Invariants: |
499 | | // node_ is always correct. This is handy because the most common |
500 | | // operations are operator* and operator-> and they only use node_. |
501 | | // When node_ is set to a non-null value, all the other non-const fields |
502 | | // are updated to be correct also, but those fields can become stale |
503 | | // if the underlying map is modified. When those fields are needed they |
504 | | // are rechecked, and updated if necessary. |
505 | | iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {} |
506 | | |
507 | | explicit iterator_base(const InnerMap* m) : m_(m) { |
508 | | SearchFrom(m->index_of_first_non_null_); |
509 | | } |
510 | | |
511 | | // Any iterator_base can convert to any other. This is overkill, and we |
512 | | // rely on the enclosing class to use it wisely. The standard "iterator |
513 | | // can convert to const_iterator" is OK but the reverse direction is not. |
514 | | template <typename U> |
515 | | explicit iterator_base(const iterator_base<U>& it) |
516 | | : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {} |
517 | | |
518 | | iterator_base(Node* n, const InnerMap* m, size_type index) |
519 | | : node_(n), m_(m), bucket_index_(index) {} |
520 | | |
521 | | iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index) |
522 | | : node_(NodeFromTreeIterator(tree_it)), m_(m), bucket_index_(index) { |
523 | | // Invariant: iterators that use buckets with trees have an even |
524 | | // bucket_index_. |
525 | | GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u); |
526 | | } |
527 | | |
528 | | // Advance through buckets, looking for the first that isn't empty. |
529 | | // If nothing non-empty is found then leave node_ == nullptr. |
530 | | void SearchFrom(size_type start_bucket) { |
531 | | GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ || |
532 | | m_->table_[m_->index_of_first_non_null_] != nullptr); |
533 | | node_ = nullptr; |
534 | | for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_; |
535 | | bucket_index_++) { |
536 | | if (m_->TableEntryIsNonEmptyList(bucket_index_)) { |
537 | | node_ = static_cast<Node*>(m_->table_[bucket_index_]); |
538 | | break; |
539 | | } else if (m_->TableEntryIsTree(bucket_index_)) { |
540 | | Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]); |
541 | | GOOGLE_DCHECK(!tree->empty()); |
542 | | node_ = NodeFromTreeIterator(tree->begin()); |
543 | | break; |
544 | | } |
545 | | } |
546 | | } |
547 | | |
548 | | reference operator*() const { return node_->kv; } |
549 | | pointer operator->() const { return &(operator*()); } |
550 | | |
551 | | friend bool operator==(const iterator_base& a, const iterator_base& b) { |
552 | | return a.node_ == b.node_; |
553 | | } |
554 | | friend bool operator!=(const iterator_base& a, const iterator_base& b) { |
555 | | return a.node_ != b.node_; |
556 | | } |
557 | | |
558 | | iterator_base& operator++() { |
559 | | if (node_->next == nullptr) { |
560 | | TreeIterator tree_it; |
561 | | const bool is_list = revalidate_if_necessary(&tree_it); |
562 | | if (is_list) { |
563 | | SearchFrom(bucket_index_ + 1); |
564 | | } else { |
565 | | GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u); |
566 | | Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]); |
567 | | if (++tree_it == tree->end()) { |
568 | | SearchFrom(bucket_index_ + 2); |
569 | | } else { |
570 | | node_ = NodeFromTreeIterator(tree_it); |
571 | | } |
572 | | } |
573 | | } else { |
574 | | node_ = node_->next; |
575 | | } |
576 | | return *this; |
577 | | } |
578 | | |
579 | | iterator_base operator++(int /* unused */) { |
580 | | iterator_base tmp = *this; |
581 | | ++*this; |
582 | | return tmp; |
583 | | } |
584 | | |
585 | | // Assumes node_ and m_ are correct and non-null, but other fields may be |
586 | | // stale. Fix them as needed. Then return true iff node_ points to a |
587 | | // Node in a list. If false is returned then *it is modified to be |
588 | | // a valid iterator for node_. |
589 | | bool revalidate_if_necessary(TreeIterator* it) { |
590 | | GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr); |
591 | | // Force bucket_index_ to be in range. |
592 | | bucket_index_ &= (m_->num_buckets_ - 1); |
593 | | // Common case: the bucket we think is relevant points to node_. |
594 | | if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true; |
595 | | // Less common: the bucket is a linked list with node_ somewhere in it, |
596 | | // but not at the head. |
597 | | if (m_->TableEntryIsNonEmptyList(bucket_index_)) { |
598 | | Node* l = static_cast<Node*>(m_->table_[bucket_index_]); |
599 | | while ((l = l->next) != nullptr) { |
600 | | if (l == node_) { |
601 | | return true; |
602 | | } |
603 | | } |
604 | | } |
605 | | // Well, bucket_index_ still might be correct, but probably |
606 | | // not. Revalidate just to be sure. This case is rare enough that we |
607 | | // don't worry about potential optimizations, such as having a custom |
608 | | // find-like method that compares Node* instead of the key. |
609 | | iterator_base i(m_->find(node_->kv.first, it)); |
610 | | bucket_index_ = i.bucket_index_; |
611 | | return m_->TableEntryIsList(bucket_index_); |
612 | | } |
613 | | |
614 | | Node* node_; |
615 | | const InnerMap* m_; |
616 | | size_type bucket_index_; |
617 | | }; |
618 | | |
619 | | public: |
620 | | using iterator = iterator_base<value_type>; |
621 | | using const_iterator = iterator_base<const value_type>; |
622 | | |
623 | | Arena* arena() const { return alloc_.arena(); } |
624 | | |
625 | | void Swap(InnerMap* other) { |
626 | | std::swap(num_elements_, other->num_elements_); |
627 | | std::swap(num_buckets_, other->num_buckets_); |
628 | | std::swap(seed_, other->seed_); |
629 | | std::swap(index_of_first_non_null_, other->index_of_first_non_null_); |
630 | | std::swap(table_, other->table_); |
631 | | std::swap(alloc_, other->alloc_); |
632 | | } |
633 | | |
634 | | iterator begin() { return iterator(this); } |
635 | | iterator end() { return iterator(); } |
636 | | const_iterator begin() const { return const_iterator(this); } |
637 | | const_iterator end() const { return const_iterator(); } |
638 | | |
639 | | void clear() { |
640 | | for (size_type b = 0; b < num_buckets_; b++) { |
641 | | if (TableEntryIsNonEmptyList(b)) { |
642 | | Node* node = static_cast<Node*>(table_[b]); |
643 | | table_[b] = nullptr; |
644 | | do { |
645 | | Node* next = node->next; |
646 | | DestroyNode(node); |
647 | | node = next; |
648 | | } while (node != nullptr); |
649 | | } else if (TableEntryIsTree(b)) { |
650 | | Tree* tree = static_cast<Tree*>(table_[b]); |
651 | | GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0); |
652 | | table_[b] = table_[b + 1] = nullptr; |
653 | | typename Tree::iterator tree_it = tree->begin(); |
654 | | do { |
655 | | Node* node = NodeFromTreeIterator(tree_it); |
656 | | typename Tree::iterator next = tree_it; |
657 | | ++next; |
658 | | tree->erase(tree_it); |
659 | | DestroyNode(node); |
660 | | tree_it = next; |
661 | | } while (tree_it != tree->end()); |
662 | | DestroyTree(tree); |
663 | | b++; |
664 | | } |
665 | | } |
666 | | num_elements_ = 0; |
667 | | index_of_first_non_null_ = num_buckets_; |
668 | | } |
669 | | |
670 | | const hasher& hash_function() const { return *this; } |
671 | | |
672 | | static size_type max_size() { |
673 | | return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28); |
674 | | } |
675 | | size_type size() const { return num_elements_; } |
676 | | bool empty() const { return size() == 0; } |
677 | | |
678 | | template <typename K> |
679 | | iterator find(const K& k) { |
680 | | return iterator(FindHelper(k).first); |
681 | | } |
682 | | |
683 | | template <typename K> |
684 | | const_iterator find(const K& k) const { |
685 | | return FindHelper(k).first; |
686 | | } |
687 | | |
688 | | // Insert the key into the map, if not present. In that case, the value will |
689 | | // be value initialized. |
690 | | template <typename K> |
691 | | std::pair<iterator, bool> insert(K&& k) { |
692 | | std::pair<const_iterator, size_type> p = FindHelper(k); |
693 | | // Case 1: key was already present. |
694 | | if (p.first.node_ != nullptr) |
695 | | return std::make_pair(iterator(p.first), false); |
696 | | // Case 2: insert. |
697 | | if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) { |
698 | | p = FindHelper(k); |
699 | | } |
700 | | const size_type b = p.second; // bucket number |
701 | | Node* node; |
702 | | // If K is not key_type, make the conversion to key_type explicit. |
703 | | using TypeToInit = typename std::conditional< |
704 | | std::is_same<typename std::decay<K>::type, key_type>::value, K&&, |
705 | | key_type>::type; |
706 | | if (alloc_.arena() == nullptr) { |
707 | | node = new Node{value_type(static_cast<TypeToInit>(std::forward<K>(k))), |
708 | | nullptr}; |
709 | | } else { |
710 | | node = Alloc<Node>(1); |
711 | | Arena::CreateInArenaStorage( |
712 | | const_cast<Key*>(&node->kv.first), alloc_.arena(), |
713 | | static_cast<TypeToInit>(std::forward<K>(k))); |
714 | | Arena::CreateInArenaStorage(&node->kv.second, alloc_.arena()); |
715 | | } |
716 | | |
717 | | iterator result = InsertUnique(b, node); |
718 | | ++num_elements_; |
719 | | return std::make_pair(result, true); |
720 | | } |
721 | | |
722 | | template <typename K> |
723 | | value_type& operator[](K&& k) { |
724 | | return *insert(std::forward<K>(k)).first; |
725 | | } |
726 | | |
727 | | void erase(iterator it) { |
728 | | GOOGLE_DCHECK_EQ(it.m_, this); |
729 | | typename Tree::iterator tree_it; |
730 | | const bool is_list = it.revalidate_if_necessary(&tree_it); |
731 | | size_type b = it.bucket_index_; |
732 | | Node* const item = it.node_; |
733 | | if (is_list) { |
734 | | GOOGLE_DCHECK(TableEntryIsNonEmptyList(b)); |
735 | | Node* head = static_cast<Node*>(table_[b]); |
736 | | head = EraseFromLinkedList(item, head); |
737 | | table_[b] = static_cast<void*>(head); |
738 | | } else { |
739 | | GOOGLE_DCHECK(TableEntryIsTree(b)); |
740 | | Tree* tree = static_cast<Tree*>(table_[b]); |
741 | | tree->erase(tree_it); |
742 | | if (tree->empty()) { |
743 | | // Force b to be the minimum of b and b ^ 1. This is important |
744 | | // only because we want index_of_first_non_null_ to be correct. |
745 | | b &= ~static_cast<size_type>(1); |
746 | | DestroyTree(tree); |
747 | | table_[b] = table_[b + 1] = nullptr; |
748 | | } |
749 | | } |
750 | | DestroyNode(item); |
751 | | --num_elements_; |
752 | | if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) { |
753 | | while (index_of_first_non_null_ < num_buckets_ && |
754 | | table_[index_of_first_non_null_] == nullptr) { |
755 | | ++index_of_first_non_null_; |
756 | | } |
757 | | } |
758 | | } |
759 | | |
760 | | size_t SpaceUsedInternal() const { |
761 | | return internal::SpaceUsedInTable<Key>(table_, num_buckets_, |
762 | | num_elements_, sizeof(Node)); |
763 | | } |
764 | | |
765 | | private: |
766 | | const_iterator find(const Key& k, TreeIterator* it) const { |
767 | | return FindHelper(k, it).first; |
768 | | } |
769 | | template <typename K> |
770 | | std::pair<const_iterator, size_type> FindHelper(const K& k) const { |
771 | | return FindHelper(k, nullptr); |
772 | | } |
773 | | template <typename K> |
774 | | std::pair<const_iterator, size_type> FindHelper(const K& k, |
775 | | TreeIterator* it) const { |
776 | | size_type b = BucketNumber(k); |
777 | | if (TableEntryIsNonEmptyList(b)) { |
778 | | Node* node = static_cast<Node*>(table_[b]); |
779 | | do { |
780 | | if (internal::TransparentSupport<Key>::Equals(node->kv.first, k)) { |
781 | | return std::make_pair(const_iterator(node, this, b), b); |
782 | | } else { |
783 | | node = node->next; |
784 | | } |
785 | | } while (node != nullptr); |
786 | | } else if (TableEntryIsTree(b)) { |
787 | | GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]); |
788 | | b &= ~static_cast<size_t>(1); |
789 | | Tree* tree = static_cast<Tree*>(table_[b]); |
790 | | auto tree_it = tree->find(k); |
791 | | if (tree_it != tree->end()) { |
792 | | if (it != nullptr) *it = tree_it; |
793 | | return std::make_pair(const_iterator(tree_it, this, b), b); |
794 | | } |
795 | | } |
796 | | return std::make_pair(end(), b); |
797 | | } |
798 | | |
799 | | // Insert the given Node in bucket b. If that would make bucket b too big, |
800 | | // and bucket b is not a tree, create a tree for buckets b and b^1 to share. |
801 | | // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct |
802 | | // bucket. num_elements_ is not modified. |
803 | | iterator InsertUnique(size_type b, Node* node) { |
804 | | GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ || |
805 | | table_[index_of_first_non_null_] != nullptr); |
806 | | // In practice, the code that led to this point may have already |
807 | | // determined whether we are inserting into an empty list, a short list, |
808 | | // or whatever. But it's probably cheap enough to recompute that here; |
809 | | // it's likely that we're inserting into an empty or short list. |
810 | | iterator result; |
811 | | GOOGLE_DCHECK(find(node->kv.first) == end()); |
812 | | if (TableEntryIsEmpty(b)) { |
813 | | result = InsertUniqueInList(b, node); |
814 | | } else if (TableEntryIsNonEmptyList(b)) { |
815 | | if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) { |
816 | | TreeConvert(b); |
817 | | result = InsertUniqueInTree(b, node); |
818 | | GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1)); |
819 | | } else { |
820 | | // Insert into a pre-existing list. This case cannot modify |
821 | | // index_of_first_non_null_, so we skip the code to update it. |
822 | | return InsertUniqueInList(b, node); |
823 | | } |
824 | | } else { |
825 | | // Insert into a pre-existing tree. This case cannot modify |
826 | | // index_of_first_non_null_, so we skip the code to update it. |
827 | | return InsertUniqueInTree(b, node); |
828 | | } |
829 | | // parentheses around (std::min) prevents macro expansion of min(...) |
830 | | index_of_first_non_null_ = |
831 | | (std::min)(index_of_first_non_null_, result.bucket_index_); |
832 | | return result; |
833 | | } |
834 | | |
835 | | // Returns whether we should insert after the head of the list. For |
836 | | // non-optimized builds, we randomly decide whether to insert right at the |
837 | | // head of the list or just after the head. This helps add a little bit of |
838 | | // non-determinism to the map ordering. |
839 | | bool ShouldInsertAfterHead(void* node) { |
840 | | #ifdef NDEBUG |
841 | | (void) node; |
842 | | return false; |
843 | | #else |
844 | | // Doing modulo with a prime mixes the bits more. |
845 | | return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6; |
846 | | #endif |
847 | | } |
848 | | |
849 | | // Helper for InsertUnique. Handles the case where bucket b is a |
850 | | // not-too-long linked list. |
851 | | iterator InsertUniqueInList(size_type b, Node* node) { |
852 | | if (table_[b] != nullptr && ShouldInsertAfterHead(node)) { |
853 | | Node* first = static_cast<Node*>(table_[b]); |
854 | | node->next = first->next; |
855 | | first->next = node; |
856 | | return iterator(node, this, b); |
857 | | } |
858 | | |
859 | | node->next = static_cast<Node*>(table_[b]); |
860 | | table_[b] = static_cast<void*>(node); |
861 | | return iterator(node, this, b); |
862 | | } |
863 | | |
864 | | // Helper for InsertUnique. Handles the case where bucket b points to a |
865 | | // Tree. |
866 | | iterator InsertUniqueInTree(size_type b, Node* node) { |
867 | | GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]); |
868 | | // Maintain the invariant that node->next is null for all Nodes in Trees. |
869 | | node->next = nullptr; |
870 | | return iterator( |
871 | | static_cast<Tree*>(table_[b])->insert({node->kv.first, node}).first, |
872 | | this, b & ~static_cast<size_t>(1)); |
873 | | } |
874 | | |
875 | | // Returns whether it did resize. Currently this is only used when |
876 | | // num_elements_ increases, though it could be used in other situations. |
877 | | // It checks for load too low as well as load too high: because any number |
878 | | // of erases can occur between inserts, the load could be as low as 0 here. |
879 | | // Resizing to a lower size is not always helpful, but failing to do so can |
880 | | // destroy the expected big-O bounds for some operations. By having the |
881 | | // policy that sometimes we resize down as well as up, clients can easily |
882 | | // keep O(size()) = O(number of buckets) if they want that. |
883 | | bool ResizeIfLoadIsOutOfRange(size_type new_size) { |
884 | | const size_type kMaxMapLoadTimes16 = 12; // controls RAM vs CPU tradeoff |
885 | | const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16; |
886 | | const size_type lo_cutoff = hi_cutoff / 4; |
887 | | // We don't care how many elements are in trees. If a lot are, |
888 | | // we may resize even though there are many empty buckets. In |
889 | | // practice, this seems fine. |
890 | | if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) { |
891 | | if (num_buckets_ <= max_size() / 2) { |
892 | | Resize(num_buckets_ * 2); |
893 | | return true; |
894 | | } |
895 | | } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff && |
896 | | num_buckets_ > kMinTableSize)) { |
897 | | size_type lg2_of_size_reduction_factor = 1; |
898 | | // It's possible we want to shrink a lot here... size() could even be 0. |
899 | | // So, estimate how much to shrink by making sure we don't shrink so |
900 | | // much that we would need to grow the table after a few inserts. |
901 | | const size_type hypothetical_size = new_size * 5 / 4 + 1; |
902 | | while ((hypothetical_size << lg2_of_size_reduction_factor) < |
903 | | hi_cutoff) { |
904 | | ++lg2_of_size_reduction_factor; |
905 | | } |
906 | | size_type new_num_buckets = std::max<size_type>( |
907 | | kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor); |
908 | | if (new_num_buckets != num_buckets_) { |
909 | | Resize(new_num_buckets); |
910 | | return true; |
911 | | } |
912 | | } |
913 | | return false; |
914 | | } |
915 | | |
916 | | // Resize to the given number of buckets. |
917 | | void Resize(size_t new_num_buckets) { |
918 | | if (num_buckets_ == internal::kGlobalEmptyTableSize) { |
919 | | // This is the global empty array. |
920 | | // Just overwrite with a new one. No need to transfer or free anything. |
921 | | num_buckets_ = index_of_first_non_null_ = kMinTableSize; |
922 | | table_ = CreateEmptyTable(num_buckets_); |
923 | | seed_ = Seed(); |
924 | | return; |
925 | | } |
926 | | |
927 | | GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize); |
928 | | void** const old_table = table_; |
929 | | const size_type old_table_size = num_buckets_; |
930 | | num_buckets_ = new_num_buckets; |
931 | | table_ = CreateEmptyTable(num_buckets_); |
932 | | const size_type start = index_of_first_non_null_; |
933 | | index_of_first_non_null_ = num_buckets_; |
934 | | for (size_type i = start; i < old_table_size; i++) { |
935 | | if (internal::TableEntryIsNonEmptyList(old_table, i)) { |
936 | | TransferList(old_table, i); |
937 | | } else if (internal::TableEntryIsTree(old_table, i)) { |
938 | | TransferTree(old_table, i++); |
939 | | } |
940 | | } |
941 | | Dealloc<void*>(old_table, old_table_size); |
942 | | } |
943 | | |
944 | | void TransferList(void* const* table, size_type index) { |
945 | | Node* node = static_cast<Node*>(table[index]); |
946 | | do { |
947 | | Node* next = node->next; |
948 | | InsertUnique(BucketNumber(node->kv.first), node); |
949 | | node = next; |
950 | | } while (node != nullptr); |
951 | | } |
952 | | |
953 | | void TransferTree(void* const* table, size_type index) { |
954 | | Tree* tree = static_cast<Tree*>(table[index]); |
955 | | typename Tree::iterator tree_it = tree->begin(); |
956 | | do { |
957 | | InsertUnique(BucketNumber(std::cref(tree_it->first).get()), |
958 | | NodeFromTreeIterator(tree_it)); |
959 | | } while (++tree_it != tree->end()); |
960 | | DestroyTree(tree); |
961 | | } |
962 | | |
963 | | Node* EraseFromLinkedList(Node* item, Node* head) { |
964 | | if (head == item) { |
965 | | return head->next; |
966 | | } else { |
967 | | head->next = EraseFromLinkedList(item, head->next); |
968 | | return head; |
969 | | } |
970 | | } |
971 | | |
972 | | bool TableEntryIsEmpty(size_type b) const { |
973 | | return internal::TableEntryIsEmpty(table_, b); |
974 | | } |
975 | | bool TableEntryIsNonEmptyList(size_type b) const { |
976 | | return internal::TableEntryIsNonEmptyList(table_, b); |
977 | | } |
978 | | bool TableEntryIsTree(size_type b) const { |
979 | | return internal::TableEntryIsTree(table_, b); |
980 | | } |
981 | | bool TableEntryIsList(size_type b) const { |
982 | | return internal::TableEntryIsList(table_, b); |
983 | | } |
984 | | |
985 | | void TreeConvert(size_type b) { |
986 | | GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1)); |
987 | | Tree* tree = |
988 | | Arena::Create<Tree>(alloc_.arena(), typename Tree::key_compare(), |
989 | | typename Tree::allocator_type(alloc_)); |
990 | | size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree); |
991 | | GOOGLE_DCHECK_EQ(count, tree->size()); |
992 | | table_[b] = table_[b ^ 1] = static_cast<void*>(tree); |
993 | | } |
994 | | |
995 | | // Copy a linked list in the given bucket to a tree. |
996 | | // Returns the number of things it copied. |
997 | | size_type CopyListToTree(size_type b, Tree* tree) { |
998 | | size_type count = 0; |
999 | | Node* node = static_cast<Node*>(table_[b]); |
1000 | | while (node != nullptr) { |
1001 | | tree->insert({node->kv.first, node}); |
1002 | | ++count; |
1003 | | Node* next = node->next; |
1004 | | node->next = nullptr; |
1005 | | node = next; |
1006 | | } |
1007 | | return count; |
1008 | | } |
1009 | | |
1010 | | // Return whether table_[b] is a linked list that seems awfully long. |
1011 | | // Requires table_[b] to point to a non-empty linked list. |
1012 | | bool TableEntryIsTooLong(size_type b) { |
1013 | | const size_type kMaxLength = 8; |
1014 | | size_type count = 0; |
1015 | | Node* node = static_cast<Node*>(table_[b]); |
1016 | | do { |
1017 | | ++count; |
1018 | | node = node->next; |
1019 | | } while (node != nullptr); |
1020 | | // Invariant: no linked list ever is more than kMaxLength in length. |
1021 | | GOOGLE_DCHECK_LE(count, kMaxLength); |
1022 | | return count >= kMaxLength; |
1023 | | } |
1024 | | |
1025 | | template <typename K> |
1026 | | size_type BucketNumber(const K& k) const { |
1027 | | // We xor the hash value against the random seed so that we effectively |
1028 | | // have a random hash function. |
1029 | | uint64 h = hash_function()(k) ^ seed_; |
1030 | | |
1031 | | // We use the multiplication method to determine the bucket number from |
1032 | | // the hash value. The constant kPhi (suggested by Knuth) is roughly |
1033 | | // (sqrt(5) - 1) / 2 * 2^64. |
1034 | | constexpr uint64 kPhi = uint64{0x9e3779b97f4a7c15}; |
1035 | | return ((kPhi * h) >> 32) & (num_buckets_ - 1); |
1036 | | } |
1037 | | |
1038 | | // Return a power of two no less than max(kMinTableSize, n). |
1039 | | // Assumes either n < kMinTableSize or n is a power of two. |
1040 | | size_type TableSize(size_type n) { |
1041 | | return n < static_cast<size_type>(kMinTableSize) |
1042 | | ? static_cast<size_type>(kMinTableSize) |
1043 | | : n; |
1044 | | } |
1045 | | |
1046 | | // Use alloc_ to allocate an array of n objects of type U. |
1047 | | template <typename U> |
1048 | | U* Alloc(size_type n) { |
1049 | | using alloc_type = typename Allocator::template rebind<U>::other; |
1050 | | return alloc_type(alloc_).allocate(n); |
1051 | | } |
1052 | | |
1053 | | // Use alloc_ to deallocate an array of n objects of type U. |
1054 | | template <typename U> |
1055 | | void Dealloc(U* t, size_type n) { |
1056 | | using alloc_type = typename Allocator::template rebind<U>::other; |
1057 | | alloc_type(alloc_).deallocate(t, n); |
1058 | | } |
1059 | | |
1060 | | void DestroyNode(Node* node) { |
1061 | | if (alloc_.arena() == nullptr) { |
1062 | | delete node; |
1063 | | } |
1064 | | } |
1065 | | |
1066 | | void DestroyTree(Tree* tree) { |
1067 | | if (alloc_.arena() == nullptr) { |
1068 | | delete tree; |
1069 | | } |
1070 | | } |
1071 | | |
1072 | | void** CreateEmptyTable(size_type n) { |
1073 | | GOOGLE_DCHECK(n >= kMinTableSize); |
1074 | | GOOGLE_DCHECK_EQ(n & (n - 1), 0); |
1075 | | void** result = Alloc<void*>(n); |
1076 | | memset(result, 0, n * sizeof(result[0])); |
1077 | | return result; |
1078 | | } |
1079 | | |
1080 | | // Return a randomish value. |
1081 | | size_type Seed() const { |
1082 | | // We get a little bit of randomness from the address of the map. The |
1083 | | // lower bits are not very random, due to alignment, so we discard them |
1084 | | // and shift the higher bits into their place. |
1085 | | size_type s = reinterpret_cast<uintptr_t>(this) >> 12; |
1086 | | #if defined(__x86_64__) && defined(__GNUC__) && \ |
1087 | | !defined(GOOGLE_PROTOBUF_NO_RDTSC) |
1088 | | uint32 hi, lo; |
1089 | | asm volatile("rdtsc" : "=a"(lo), "=d"(hi)); |
1090 | | s += ((static_cast<uint64>(hi) << 32) | lo); |
1091 | | #endif |
1092 | | return s; |
1093 | | } |
1094 | | |
1095 | | friend class Arena; |
1096 | | using InternalArenaConstructable_ = void; |
1097 | | using DestructorSkippable_ = void; |
1098 | | |
1099 | | size_type num_elements_; |
1100 | | size_type num_buckets_; |
1101 | | size_type seed_; |
1102 | | size_type index_of_first_non_null_; |
1103 | | void** table_; // an array with num_buckets_ entries |
1104 | | Allocator alloc_; |
1105 | | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap); |
1106 | | }; // end of class InnerMap |
1107 | | |
1108 | | template <typename LookupKey> |
1109 | | using key_arg = typename internal::TransparentSupport< |
1110 | | key_type>::template key_arg<LookupKey>; |
1111 | | |
1112 | | public: |
1113 | | // Iterators |
1114 | | class const_iterator { |
1115 | | using InnerIt = typename InnerMap::const_iterator; |
1116 | | |
1117 | | public: |
1118 | | using iterator_category = std::forward_iterator_tag; |
1119 | | using value_type = typename Map::value_type; |
1120 | | using difference_type = ptrdiff_t; |
1121 | | using pointer = const value_type*; |
1122 | | using reference = const value_type&; |
1123 | | |
1124 | | const_iterator() {} |
1125 | | explicit const_iterator(const InnerIt& it) : it_(it) {} |
1126 | | |
1127 | | const_reference operator*() const { return *it_; } |
1128 | | const_pointer operator->() const { return &(operator*()); } |
1129 | | |
1130 | | const_iterator& operator++() { |
1131 | | ++it_; |
1132 | | return *this; |
1133 | | } |
1134 | | const_iterator operator++(int) { return const_iterator(it_++); } |
1135 | | |
1136 | | friend bool operator==(const const_iterator& a, const const_iterator& b) { |
1137 | | return a.it_ == b.it_; |
1138 | | } |
1139 | | friend bool operator!=(const const_iterator& a, const const_iterator& b) { |
1140 | | return !(a == b); |
1141 | | } |
1142 | | |
1143 | | private: |
1144 | | InnerIt it_; |
1145 | | }; |
1146 | | |
1147 | | class iterator { |
1148 | | using InnerIt = typename InnerMap::iterator; |
1149 | | |
1150 | | public: |
1151 | | using iterator_category = std::forward_iterator_tag; |
1152 | | using value_type = typename Map::value_type; |
1153 | | using difference_type = ptrdiff_t; |
1154 | | using pointer = value_type*; |
1155 | | using reference = value_type&; |
1156 | | |
1157 | | iterator() {} |
1158 | | explicit iterator(const InnerIt& it) : it_(it) {} |
1159 | | |
1160 | | reference operator*() const { return *it_; } |
1161 | | pointer operator->() const { return &(operator*()); } |
1162 | | |
1163 | | iterator& operator++() { |
1164 | | ++it_; |
1165 | | return *this; |
1166 | | } |
1167 | | iterator operator++(int) { return iterator(it_++); } |
1168 | | |
1169 | | // Allow implicit conversion to const_iterator. |
1170 | | operator const_iterator() const { // NOLINT(runtime/explicit) |
1171 | | return const_iterator(typename InnerMap::const_iterator(it_)); |
1172 | | } |
1173 | | |
1174 | | friend bool operator==(const iterator& a, const iterator& b) { |
1175 | | return a.it_ == b.it_; |
1176 | | } |
1177 | | friend bool operator!=(const iterator& a, const iterator& b) { |
1178 | | return !(a == b); |
1179 | | } |
1180 | | |
1181 | | private: |
1182 | | friend class Map; |
1183 | | |
1184 | | InnerIt it_; |
1185 | | }; |
1186 | | |
1187 | | iterator begin() { return iterator(elements_.begin()); } |
1188 | | iterator end() { return iterator(elements_.end()); } |
1189 | | const_iterator begin() const { return const_iterator(elements_.begin()); } |
1190 | | const_iterator end() const { return const_iterator(elements_.end()); } |
1191 | | const_iterator cbegin() const { return begin(); } |
1192 | | const_iterator cend() const { return end(); } |
1193 | | |
1194 | | // Capacity |
1195 | | size_type size() const { return elements_.size(); } |
1196 | | bool empty() const { return size() == 0; } |
1197 | | |
1198 | | // Element access |
1199 | | template <typename K = key_type> |
1200 | | T& operator[](const key_arg<K>& key) { |
1201 | | return elements_[key].second; |
1202 | | } |
1203 | | template < |
1204 | | typename K = key_type, |
1205 | | // Disable for integral types to reduce code bloat. |
1206 | | typename = typename std::enable_if<!std::is_integral<K>::value>::type> |
1207 | | T& operator[](key_arg<K>&& key) { |
1208 | | return elements_[std::forward<K>(key)].second; |
1209 | | } |
1210 | | |
1211 | | template <typename K = key_type> |
1212 | | const T& at(const key_arg<K>& key) const { |
1213 | | const_iterator it = find(key); |
1214 | | GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key); |
1215 | | return it->second; |
1216 | | } |
1217 | | |
1218 | | template <typename K = key_type> |
1219 | | T& at(const key_arg<K>& key) { |
1220 | | iterator it = find(key); |
1221 | | GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key); |
1222 | | return it->second; |
1223 | | } |
1224 | | |
1225 | | // Lookup |
1226 | | template <typename K = key_type> |
1227 | | size_type count(const key_arg<K>& key) const { |
1228 | | return find(key) == end() ? 0 : 1; |
1229 | | } |
1230 | | |
1231 | | template <typename K = key_type> |
1232 | | const_iterator find(const key_arg<K>& key) const { |
1233 | | return const_iterator(elements_.find(key)); |
1234 | | } |
1235 | | template <typename K = key_type> |
1236 | | iterator find(const key_arg<K>& key) { |
1237 | | return iterator(elements_.find(key)); |
1238 | | } |
1239 | | |
1240 | | template <typename K = key_type> |
1241 | | bool contains(const key_arg<K>& key) const { |
1242 | | return find(key) != end(); |
1243 | | } |
1244 | | |
1245 | | template <typename K = key_type> |
1246 | | std::pair<const_iterator, const_iterator> equal_range( |
1247 | | const key_arg<K>& key) const { |
1248 | | const_iterator it = find(key); |
1249 | | if (it == end()) { |
1250 | | return std::pair<const_iterator, const_iterator>(it, it); |
1251 | | } else { |
1252 | | const_iterator begin = it++; |
1253 | | return std::pair<const_iterator, const_iterator>(begin, it); |
1254 | | } |
1255 | | } |
1256 | | |
1257 | | template <typename K = key_type> |
1258 | | std::pair<iterator, iterator> equal_range(const key_arg<K>& key) { |
1259 | | iterator it = find(key); |
1260 | | if (it == end()) { |
1261 | | return std::pair<iterator, iterator>(it, it); |
1262 | | } else { |
1263 | | iterator begin = it++; |
1264 | | return std::pair<iterator, iterator>(begin, it); |
1265 | | } |
1266 | | } |
1267 | | |
1268 | | // insert |
1269 | | std::pair<iterator, bool> insert(const value_type& value) { |
1270 | | std::pair<typename InnerMap::iterator, bool> p = |
1271 | | elements_.insert(value.first); |
1272 | | if (p.second) { |
1273 | | p.first->second = value.second; |
1274 | | } |
1275 | | return std::pair<iterator, bool>(iterator(p.first), p.second); |
1276 | | } |
1277 | | template <class InputIt> |
1278 | | void insert(InputIt first, InputIt last) { |
1279 | | for (InputIt it = first; it != last; ++it) { |
1280 | | iterator exist_it = find(it->first); |
1281 | | if (exist_it == end()) { |
1282 | | operator[](it->first) = it->second; |
1283 | | } |
1284 | | } |
1285 | | } |
1286 | | void insert(std::initializer_list<value_type> values) { |
1287 | | insert(values.begin(), values.end()); |
1288 | | } |
1289 | | |
1290 | | // Erase and clear |
1291 | | template <typename K = key_type> |
1292 | | size_type erase(const key_arg<K>& key) { |
1293 | | iterator it = find(key); |
1294 | | if (it == end()) { |
1295 | | return 0; |
1296 | | } else { |
1297 | | erase(it); |
1298 | | return 1; |
1299 | | } |
1300 | | } |
1301 | | iterator erase(iterator pos) { |
1302 | | iterator i = pos++; |
1303 | | elements_.erase(i.it_); |
1304 | | return pos; |
1305 | | } |
1306 | | void erase(iterator first, iterator last) { |
1307 | | while (first != last) { |
1308 | | first = erase(first); |
1309 | | } |
1310 | | } |
1311 | | void clear() { elements_.clear(); } |
1312 | | |
1313 | | // Assign |
1314 | | Map& operator=(const Map& other) { |
1315 | | if (this != &other) { |
1316 | | clear(); |
1317 | | insert(other.begin(), other.end()); |
1318 | | } |
1319 | | return *this; |
1320 | | } |
1321 | | |
1322 | | void swap(Map& other) { |
1323 | | if (arena() == other.arena()) { |
1324 | | elements_.Swap(&other.elements_); |
1325 | | } else { |
1326 | | // TODO(zuguang): optimize this. The temporary copy can be allocated |
1327 | | // in the same arena as the other message, and the "other = copy" can |
1328 | | // be replaced with the fast-path swap above. |
1329 | | Map copy = *this; |
1330 | | *this = other; |
1331 | | other = copy; |
1332 | | } |
1333 | | } |
1334 | | |
1335 | | // Access to hasher. Currently this returns a copy, but it may |
1336 | | // be modified to return a const reference in the future. |
1337 | | hasher hash_function() const { return elements_.hash_function(); } |
1338 | | |
1339 | | size_t SpaceUsedExcludingSelfLong() const { |
1340 | | if (empty()) return 0; |
1341 | | return elements_.SpaceUsedInternal() + internal::SpaceUsedInValues(this); |
1342 | | } |
1343 | | |
1344 | | private: |
1345 | | Arena* arena() const { return elements_.arena(); } |
1346 | | InnerMap elements_; |
1347 | | |
1348 | | friend class Arena; |
1349 | | using InternalArenaConstructable_ = void; |
1350 | | using DestructorSkippable_ = void; |
1351 | | template <typename Derived, typename K, typename V, |
1352 | | internal::WireFormatLite::FieldType key_wire_type, |
1353 | | internal::WireFormatLite::FieldType value_wire_type> |
1354 | | friend class internal::MapFieldLite; |
1355 | | }; |
1356 | | |
1357 | | } // namespace protobuf |
1358 | | } // namespace google |
1359 | | |
1360 | | #include <google/protobuf/port_undef.inc> |
1361 | | |
1362 | | #endif // GOOGLE_PROTOBUF_MAP_H__ |