Coverage Report

Created: 2025-11-11 06:40

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/sentencepiece/third_party/protobuf-lite/strutil.cc
Line
Count
Source
1
// Protocol Buffers - Google's data interchange format
2
// Copyright 2008 Google Inc.  All rights reserved.
3
// https://developers.google.com/protocol-buffers/
4
//
5
// Redistribution and use in source and binary forms, with or without
6
// modification, are permitted provided that the following conditions are
7
// met:
8
//
9
//     * Redistributions of source code must retain the above copyright
10
// notice, this list of conditions and the following disclaimer.
11
//     * Redistributions in binary form must reproduce the above
12
// copyright notice, this list of conditions and the following disclaimer
13
// in the documentation and/or other materials provided with the
14
// distribution.
15
//     * Neither the name of Google Inc. nor the names of its
16
// contributors may be used to endorse or promote products derived from
17
// this software without specific prior written permission.
18
//
19
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31
// from google3/strings/strutil.cc
32
33
#include <google/protobuf/stubs/strutil.h>
34
35
#include <errno.h>
36
#include <float.h>    // FLT_DIG and DBL_DIG
37
#include <limits.h>
38
#include <stdio.h>
39
#include <cmath>
40
#include <iterator>
41
#include <limits>
42
43
#include <google/protobuf/stubs/logging.h>
44
#include <google/protobuf/stubs/stl_util.h>
45
46
#ifdef _WIN32
47
// MSVC has only _snprintf, not snprintf.
48
//
49
// MinGW has both snprintf and _snprintf, but they appear to be different
50
// functions.  The former is buggy.  When invoked like so:
51
//   char buffer[32];
52
//   snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
53
// it prints "1.23000e+10".  This is plainly wrong:  %g should never print
54
// trailing zeros after the decimal point.  For some reason this bug only
55
// occurs with some input values, not all.  In any case, _snprintf does the
56
// right thing, so we use it.
57
#define snprintf _snprintf
58
#endif
59
60
namespace google {
61
namespace protobuf {
62
63
// These are defined as macros on some platforms.  #undef them so that we can
64
// redefine them.
65
#undef isxdigit
66
#undef isprint
67
68
// The definitions of these in ctype.h change based on locale.  Since our
69
// string manipulation is all in relation to the protocol buffer and C++
70
// languages, we always want to use the C locale.  So, we re-define these
71
// exactly as we want them.
72
0
inline bool isxdigit(char c) {
73
0
  return ('0' <= c && c <= '9') ||
74
0
         ('a' <= c && c <= 'f') ||
75
0
         ('A' <= c && c <= 'F');
76
0
}
77
78
0
inline bool isprint(char c) {
79
0
  return c >= 0x20 && c <= 0x7E;
80
0
}
81
82
// ----------------------------------------------------------------------
83
// ReplaceCharacters
84
//    Replaces any occurrence of the character 'remove' (or the characters
85
//    in 'remove') with the character 'replacewith'.
86
// ----------------------------------------------------------------------
87
0
void ReplaceCharacters(std::string *s, const char *remove, char replacewith) {
88
0
  const char *str_start = s->c_str();
89
0
  const char *str = str_start;
90
0
  for (str = strpbrk(str, remove);
91
0
       str != nullptr;
92
0
       str = strpbrk(str + 1, remove)) {
93
0
    (*s)[str - str_start] = replacewith;
94
0
  }
95
0
}
96
97
0
void StripWhitespace(std::string *str) {
98
0
  int str_length = str->length();
99
100
  // Strip off leading whitespace.
101
0
  int first = 0;
102
0
  while (first < str_length && ascii_isspace(str->at(first))) {
103
0
    ++first;
104
0
  }
105
  // If entire string is white space.
106
0
  if (first == str_length) {
107
0
    str->clear();
108
0
    return;
109
0
  }
110
0
  if (first > 0) {
111
0
    str->erase(0, first);
112
0
    str_length -= first;
113
0
  }
114
115
  // Strip off trailing whitespace.
116
0
  int last = str_length - 1;
117
0
  while (last >= 0 && ascii_isspace(str->at(last))) {
118
0
    --last;
119
0
  }
120
0
  if (last != (str_length - 1) && last >= 0) {
121
0
    str->erase(last + 1, std::string::npos);
122
0
  }
123
0
}
124
125
// ----------------------------------------------------------------------
126
// StringReplace()
127
//    Replace the "old" pattern with the "new" pattern in a string,
128
//    and append the result to "res".  If replace_all is false,
129
//    it only replaces the first instance of "old."
130
// ----------------------------------------------------------------------
131
132
void StringReplace(const std::string &s, const std::string &oldsub,
133
                   const std::string &newsub, bool replace_all,
134
0
                   std::string *res) {
135
0
  if (oldsub.empty()) {
136
0
    res->append(s);  // if empty, append the given string.
137
0
    return;
138
0
  }
139
140
0
  std::string::size_type start_pos = 0;
141
0
  std::string::size_type pos;
142
0
  do {
143
0
    pos = s.find(oldsub, start_pos);
144
0
    if (pos == std::string::npos) {
145
0
      break;
146
0
    }
147
0
    res->append(s, start_pos, pos - start_pos);
148
0
    res->append(newsub);
149
0
    start_pos = pos + oldsub.size();  // start searching again after the "old"
150
0
  } while (replace_all);
151
0
  res->append(s, start_pos, s.length() - start_pos);
152
0
}
153
154
// ----------------------------------------------------------------------
155
// StringReplace()
156
//    Give me a string and two patterns "old" and "new", and I replace
157
//    the first instance of "old" in the string with "new", if it
158
//    exists.  If "global" is true; call this repeatedly until it
159
//    fails.  RETURN a new string, regardless of whether the replacement
160
//    happened or not.
161
// ----------------------------------------------------------------------
162
163
std::string StringReplace(const std::string &s, const std::string &oldsub,
164
0
                          const std::string &newsub, bool replace_all) {
165
0
  std::string ret;
166
0
  StringReplace(s, oldsub, newsub, replace_all, &ret);
167
0
  return ret;
168
0
}
169
170
// ----------------------------------------------------------------------
171
// SplitStringUsing()
172
//    Split a string using a character delimiter. Append the components
173
//    to 'result'.
174
//
175
// Note: For multi-character delimiters, this routine will split on *ANY* of
176
// the characters in the string, not the entire string as a single delimiter.
177
// ----------------------------------------------------------------------
178
template <typename ITR>
179
static inline void SplitStringToIteratorUsing(StringPiece full,
180
0
                                              const char *delim, ITR &result) {
181
  // Optimize the common case where delim is a single character.
182
0
  if (delim[0] != '\0' && delim[1] == '\0') {
183
0
    char c = delim[0];
184
0
    const char* p = full.data();
185
0
    const char* end = p + full.size();
186
0
    while (p != end) {
187
0
      if (*p == c) {
188
0
        ++p;
189
0
      } else {
190
0
        const char* start = p;
191
0
        while (++p != end && *p != c);
192
0
        *result++ = std::string(start, p - start);
193
0
      }
194
0
    }
195
0
    return;
196
0
  }
197
198
0
  std::string::size_type begin_index, end_index;
199
0
  begin_index = full.find_first_not_of(delim);
200
0
  while (begin_index != std::string::npos) {
201
0
    end_index = full.find_first_of(delim, begin_index);
202
0
    if (end_index == std::string::npos) {
203
0
      *result++ = std::string(full.substr(begin_index));
204
0
      return;
205
0
    }
206
0
    *result++ =
207
0
        std::string(full.substr(begin_index, (end_index - begin_index)));
208
0
    begin_index = full.find_first_not_of(delim, end_index);
209
0
  }
210
0
}
211
212
void SplitStringUsing(StringPiece full, const char *delim,
213
0
                      std::vector<std::string> *result) {
214
0
  std::back_insert_iterator<std::vector<std::string> > it(*result);
215
0
  SplitStringToIteratorUsing(full, delim, it);
216
0
}
217
218
// Split a string using a character delimiter. Append the components
219
// to 'result'.  If there are consecutive delimiters, this function
220
// will return corresponding empty strings. The string is split into
221
// at most the specified number of pieces greedily. This means that the
222
// last piece may possibly be split further. To split into as many pieces
223
// as possible, specify 0 as the number of pieces.
224
//
225
// If "full" is the empty string, yields an empty string as the only value.
226
//
227
// If "pieces" is negative for some reason, it returns the whole string
228
// ----------------------------------------------------------------------
229
template <typename ITR>
230
static inline void SplitStringToIteratorAllowEmpty(StringPiece full,
231
                                                   const char *delim,
232
0
                                                   int pieces, ITR &result) {
233
0
  std::string::size_type begin_index, end_index;
234
0
  begin_index = 0;
235
236
0
  for (int i = 0; (i < pieces-1) || (pieces == 0); i++) {
237
0
    end_index = full.find_first_of(delim, begin_index);
238
0
    if (end_index == std::string::npos) {
239
0
      *result++ = std::string(full.substr(begin_index));
240
0
      return;
241
0
    }
242
0
    *result++ =
243
0
        std::string(full.substr(begin_index, (end_index - begin_index)));
244
0
    begin_index = end_index + 1;
245
0
  }
246
0
  *result++ = std::string(full.substr(begin_index));
247
0
}
248
249
void SplitStringAllowEmpty(StringPiece full, const char *delim,
250
0
                           std::vector<std::string> *result) {
251
0
  std::back_insert_iterator<std::vector<std::string> > it(*result);
252
0
  SplitStringToIteratorAllowEmpty(full, delim, 0, it);
253
0
}
254
255
// ----------------------------------------------------------------------
256
// JoinStrings()
257
//    This merges a vector of string components with delim inserted
258
//    as separaters between components.
259
//
260
// ----------------------------------------------------------------------
261
template <class ITERATOR>
262
static void JoinStringsIterator(const ITERATOR &start, const ITERATOR &end,
263
0
                                const char *delim, std::string *result) {
264
0
  GOOGLE_CHECK(result != nullptr);
265
0
  result->clear();
266
0
  int delim_length = strlen(delim);
267
268
  // Precompute resulting length so we can reserve() memory in one shot.
269
0
  int length = 0;
270
0
  for (ITERATOR iter = start; iter != end; ++iter) {
271
0
    if (iter != start) {
272
0
      length += delim_length;
273
0
    }
274
0
    length += iter->size();
275
0
  }
276
0
  result->reserve(length);
277
278
  // Now combine everything.
279
0
  for (ITERATOR iter = start; iter != end; ++iter) {
280
0
    if (iter != start) {
281
0
      result->append(delim, delim_length);
282
0
    }
283
0
    result->append(iter->data(), iter->size());
284
0
  }
285
0
}
286
287
void JoinStrings(const std::vector<std::string> &components, const char *delim,
288
0
                 std::string *result) {
289
0
  JoinStringsIterator(components.begin(), components.end(), delim, result);
290
0
}
291
292
// ----------------------------------------------------------------------
293
// UnescapeCEscapeSequences()
294
//    This does all the unescaping that C does: \ooo, \r, \n, etc
295
//    Returns length of resulting string.
296
//    The implementation of \x parses any positive number of hex digits,
297
//    but it is an error if the value requires more than 8 bits, and the
298
//    result is truncated to 8 bits.
299
//
300
//    The second call stores its errors in a supplied string vector.
301
//    If the string vector pointer is nullptr, it reports the errors with LOG().
302
// ----------------------------------------------------------------------
303
304
0
#define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))
305
306
// Protocol buffers doesn't ever care about errors, but I don't want to remove
307
// the code.
308
0
#define LOG_STRING(LEVEL, VECTOR) GOOGLE_LOG_IF(LEVEL, false)
309
310
0
int UnescapeCEscapeSequences(const char* source, char* dest) {
311
0
  return UnescapeCEscapeSequences(source, dest, nullptr);
312
0
}
313
314
int UnescapeCEscapeSequences(const char *source, char *dest,
315
0
                             std::vector<std::string> *errors) {
316
0
  GOOGLE_DCHECK(errors == nullptr) << "Error reporting not implemented.";
317
318
0
  char* d = dest;
319
0
  const char* p = source;
320
321
  // Small optimization for case where source = dest and there's no escaping
322
0
  while ( p == d && *p != '\0' && *p != '\\' )
323
0
    p++, d++;
324
325
0
  while (*p != '\0') {
326
0
    if (*p != '\\') {
327
0
      *d++ = *p++;
328
0
    } else {
329
0
      switch ( *++p ) {                    // skip past the '\\'
330
0
        case '\0':
331
0
          LOG_STRING(ERROR, errors) << "String cannot end with \\";
332
0
          *d = '\0';
333
0
          return d - dest;   // we're done with p
334
0
        case 'a':  *d++ = '\a';  break;
335
0
        case 'b':  *d++ = '\b';  break;
336
0
        case 'f':  *d++ = '\f';  break;
337
0
        case 'n':  *d++ = '\n';  break;
338
0
        case 'r':  *d++ = '\r';  break;
339
0
        case 't':  *d++ = '\t';  break;
340
0
        case 'v':  *d++ = '\v';  break;
341
0
        case '\\': *d++ = '\\';  break;
342
0
        case '?':  *d++ = '\?';  break;    // \?  Who knew?
343
0
        case '\'': *d++ = '\'';  break;
344
0
        case '"':  *d++ = '\"';  break;
345
0
        case '0': case '1': case '2': case '3':  // octal digit: 1 to 3 digits
346
0
        case '4': case '5': case '6': case '7': {
347
0
          char ch = *p - '0';
348
0
          if ( IS_OCTAL_DIGIT(p[1]) )
349
0
            ch = ch * 8 + *++p - '0';
350
0
          if ( IS_OCTAL_DIGIT(p[1]) )      // safe (and easy) to do this twice
351
0
            ch = ch * 8 + *++p - '0';      // now points at last digit
352
0
          *d++ = ch;
353
0
          break;
354
0
        }
355
0
        case 'x': case 'X': {
356
0
          if (!isxdigit(p[1])) {
357
0
            if (p[1] == '\0') {
358
0
              LOG_STRING(ERROR, errors) << "String cannot end with \\x";
359
0
            } else {
360
0
              LOG_STRING(ERROR, errors) <<
361
0
                "\\x cannot be followed by non-hex digit: \\" << *p << p[1];
362
0
            }
363
0
            break;
364
0
          }
365
0
          unsigned int ch = 0;
366
0
          const char *hex_start = p;
367
0
          while (isxdigit(p[1]))  // arbitrarily many hex digits
368
0
            ch = (ch << 4) + hex_digit_to_int(*++p);
369
0
          if (ch > 0xFF)
370
0
            LOG_STRING(ERROR, errors)
371
0
                << "Value of "
372
0
                << "\\" << std::string(hex_start, p + 1 - hex_start)
373
0
                << " exceeds 8 bits";
374
0
          *d++ = ch;
375
0
          break;
376
0
        }
377
#if 0  // TODO(kenton):  Support \u and \U?  Requires runetochar().
378
        case 'u': {
379
          // \uhhhh => convert 4 hex digits to UTF-8
380
          char32 rune = 0;
381
          const char *hex_start = p;
382
          for (int i = 0; i < 4; ++i) {
383
            if (isxdigit(p[1])) {  // Look one char ahead.
384
              rune = (rune << 4) + hex_digit_to_int(*++p);  // Advance p.
385
            } else {
386
              LOG_STRING(ERROR, errors)
387
                << "\\u must be followed by 4 hex digits: \\"
388
                <<  std::string(hex_start, p+1-hex_start);
389
              break;
390
            }
391
          }
392
          d += runetochar(d, &rune);
393
          break;
394
        }
395
        case 'U': {
396
          // \Uhhhhhhhh => convert 8 hex digits to UTF-8
397
          char32 rune = 0;
398
          const char *hex_start = p;
399
          for (int i = 0; i < 8; ++i) {
400
            if (isxdigit(p[1])) {  // Look one char ahead.
401
              // Don't change rune until we're sure this
402
              // is within the Unicode limit, but do advance p.
403
              char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
404
              if (newrune > 0x10FFFF) {
405
                LOG_STRING(ERROR, errors)
406
                  << "Value of \\"
407
                  << std::string(hex_start, p + 1 - hex_start)
408
                  << " exceeds Unicode limit (0x10FFFF)";
409
                break;
410
              } else {
411
                rune = newrune;
412
              }
413
            } else {
414
              LOG_STRING(ERROR, errors)
415
                << "\\U must be followed by 8 hex digits: \\"
416
                <<  std::string(hex_start, p+1-hex_start);
417
              break;
418
            }
419
          }
420
          d += runetochar(d, &rune);
421
          break;
422
        }
423
#endif
424
0
        default:
425
0
          LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
426
0
      }
427
0
      p++;                                 // read past letter we escaped
428
0
    }
429
0
  }
430
0
  *d = '\0';
431
0
  return d - dest;
432
0
}
433
434
// ----------------------------------------------------------------------
435
// UnescapeCEscapeString()
436
//    This does the same thing as UnescapeCEscapeSequences, but creates
437
//    a new string. The caller does not need to worry about allocating
438
//    a dest buffer. This should be used for non performance critical
439
//    tasks such as printing debug messages. It is safe for src and dest
440
//    to be the same.
441
//
442
//    The second call stores its errors in a supplied string vector.
443
//    If the string vector pointer is nullptr, it reports the errors with LOG().
444
//
445
//    In the first and second calls, the length of dest is returned. In the
446
//    the third call, the new string is returned.
447
// ----------------------------------------------------------------------
448
0
int UnescapeCEscapeString(const std::string &src, std::string *dest) {
449
0
  return UnescapeCEscapeString(src, dest, nullptr);
450
0
}
451
452
int UnescapeCEscapeString(const std::string &src, std::string *dest,
453
0
                          std::vector<std::string> *errors) {
454
0
  std::unique_ptr<char[]> unescaped(new char[src.size() + 1]);
455
0
  int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors);
456
0
  GOOGLE_CHECK(dest);
457
0
  dest->assign(unescaped.get(), len);
458
0
  return len;
459
0
}
460
461
0
std::string UnescapeCEscapeString(const std::string &src) {
462
0
  std::unique_ptr<char[]> unescaped(new char[src.size() + 1]);
463
0
  int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), nullptr);
464
0
  return std::string(unescaped.get(), len);
465
0
}
466
467
// ----------------------------------------------------------------------
468
// CEscapeString()
469
// CHexEscapeString()
470
//    Copies 'src' to 'dest', escaping dangerous characters using
471
//    C-style escape sequences. This is very useful for preparing query
472
//    flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
473
//    hexadecimal rather than octal sequences.
474
//    Returns the number of bytes written to 'dest' (not including the \0)
475
//    or -1 if there was insufficient space.
476
//
477
//    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
478
// ----------------------------------------------------------------------
479
int CEscapeInternal(const char* src, int src_len, char* dest,
480
0
                    int dest_len, bool use_hex, bool utf8_safe) {
481
0
  const char* src_end = src + src_len;
482
0
  int used = 0;
483
0
  bool last_hex_escape = false; // true if last output char was \xNN
484
485
0
  for (; src < src_end; src++) {
486
0
    if (dest_len - used < 2)   // Need space for two letter escape
487
0
      return -1;
488
489
0
    bool is_hex_escape = false;
490
0
    switch (*src) {
491
0
      case '\n': dest[used++] = '\\'; dest[used++] = 'n';  break;
492
0
      case '\r': dest[used++] = '\\'; dest[used++] = 'r';  break;
493
0
      case '\t': dest[used++] = '\\'; dest[used++] = 't';  break;
494
0
      case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
495
0
      case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
496
0
      case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
497
0
      default:
498
        // Note that if we emit \xNN and the src character after that is a hex
499
        // digit then that digit must be escaped too to prevent it being
500
        // interpreted as part of the character code by C.
501
0
        if ((!utf8_safe || static_cast<uint8>(*src) < 0x80) &&
502
0
            (!isprint(*src) ||
503
0
             (last_hex_escape && isxdigit(*src)))) {
504
0
          if (dest_len - used < 4) // need space for 4 letter escape
505
0
            return -1;
506
0
          sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"),
507
0
                  static_cast<uint8>(*src));
508
0
          is_hex_escape = use_hex;
509
0
          used += 4;
510
0
        } else {
511
0
          dest[used++] = *src; break;
512
0
        }
513
0
    }
514
0
    last_hex_escape = is_hex_escape;
515
0
  }
516
517
0
  if (dest_len - used < 1)   // make sure that there is room for \0
518
0
    return -1;
519
520
0
  dest[used] = '\0';   // doesn't count towards return value though
521
0
  return used;
522
0
}
523
524
// Calculates the length of the C-style escaped version of 'src'.
525
// Assumes that non-printable characters are escaped using octal sequences, and
526
// that UTF-8 bytes are not handled specially.
527
0
static inline size_t CEscapedLength(StringPiece src) {
528
0
  static char c_escaped_len[256] = {
529
0
    4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4,  // \t, \n, \r
530
0
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
531
0
    1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,  // ", '
532
0
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  // '0'..'9'
533
0
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  // 'A'..'O'
534
0
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1,  // 'P'..'Z', '\'
535
0
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  // 'a'..'o'
536
0
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4,  // 'p'..'z', DEL
537
0
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
538
0
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
539
0
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
540
0
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
541
0
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
542
0
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
543
0
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
544
0
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
545
0
  };
546
547
0
  size_t escaped_len = 0;
548
0
  for (int i = 0; i < src.size(); ++i) {
549
0
    unsigned char c = static_cast<unsigned char>(src[i]);
550
0
    escaped_len += c_escaped_len[c];
551
0
  }
552
0
  return escaped_len;
553
0
}
554
555
// ----------------------------------------------------------------------
556
// Escapes 'src' using C-style escape sequences, and appends the escaped string
557
// to 'dest'. This version is faster than calling CEscapeInternal as it computes
558
// the required space using a lookup table, and also does not do any special
559
// handling for Hex or UTF-8 characters.
560
// ----------------------------------------------------------------------
561
0
void CEscapeAndAppend(StringPiece src, std::string *dest) {
562
0
  size_t escaped_len = CEscapedLength(src);
563
0
  if (escaped_len == src.size()) {
564
0
    dest->append(src.data(), src.size());
565
0
    return;
566
0
  }
567
568
0
  size_t cur_dest_len = dest->size();
569
0
  dest->resize(cur_dest_len + escaped_len);
570
0
  char* append_ptr = &(*dest)[cur_dest_len];
571
572
0
  for (int i = 0; i < src.size(); ++i) {
573
0
    unsigned char c = static_cast<unsigned char>(src[i]);
574
0
    switch (c) {
575
0
      case '\n': *append_ptr++ = '\\'; *append_ptr++ = 'n'; break;
576
0
      case '\r': *append_ptr++ = '\\'; *append_ptr++ = 'r'; break;
577
0
      case '\t': *append_ptr++ = '\\'; *append_ptr++ = 't'; break;
578
0
      case '\"': *append_ptr++ = '\\'; *append_ptr++ = '\"'; break;
579
0
      case '\'': *append_ptr++ = '\\'; *append_ptr++ = '\''; break;
580
0
      case '\\': *append_ptr++ = '\\'; *append_ptr++ = '\\'; break;
581
0
      default:
582
0
        if (!isprint(c)) {
583
0
          *append_ptr++ = '\\';
584
0
          *append_ptr++ = '0' + c / 64;
585
0
          *append_ptr++ = '0' + (c % 64) / 8;
586
0
          *append_ptr++ = '0' + c % 8;
587
0
        } else {
588
0
          *append_ptr++ = c;
589
0
        }
590
0
        break;
591
0
    }
592
0
  }
593
0
}
594
595
0
std::string CEscape(const std::string &src) {
596
0
  std::string dest;
597
0
  CEscapeAndAppend(src, &dest);
598
0
  return dest;
599
0
}
600
601
namespace strings {
602
603
0
std::string Utf8SafeCEscape(const std::string &src) {
604
0
  const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
605
0
  std::unique_ptr<char[]> dest(new char[dest_length]);
606
0
  const int len = CEscapeInternal(src.data(), src.size(),
607
0
                                  dest.get(), dest_length, false, true);
608
0
  GOOGLE_DCHECK_GE(len, 0);
609
0
  return std::string(dest.get(), len);
610
0
}
611
612
0
std::string CHexEscape(const std::string &src) {
613
0
  const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
614
0
  std::unique_ptr<char[]> dest(new char[dest_length]);
615
0
  const int len = CEscapeInternal(src.data(), src.size(),
616
0
                                  dest.get(), dest_length, true, false);
617
0
  GOOGLE_DCHECK_GE(len, 0);
618
0
  return std::string(dest.get(), len);
619
0
}
620
621
}  // namespace strings
622
623
// ----------------------------------------------------------------------
624
// strto32_adaptor()
625
// strtou32_adaptor()
626
//    Implementation of strto[u]l replacements that have identical
627
//    overflow and underflow characteristics for both ILP-32 and LP-64
628
//    platforms, including errno preservation in error-free calls.
629
// ----------------------------------------------------------------------
630
631
0
int32 strto32_adaptor(const char *nptr, char **endptr, int base) {
632
0
  const int saved_errno = errno;
633
0
  errno = 0;
634
0
  const long result = strtol(nptr, endptr, base);
635
0
  if (errno == ERANGE && result == LONG_MIN) {
636
0
    return kint32min;
637
0
  } else if (errno == ERANGE && result == LONG_MAX) {
638
0
    return kint32max;
639
0
  } else if (errno == 0 && result < kint32min) {
640
0
    errno = ERANGE;
641
0
    return kint32min;
642
0
  } else if (errno == 0 && result > kint32max) {
643
0
    errno = ERANGE;
644
0
    return kint32max;
645
0
  }
646
0
  if (errno == 0)
647
0
    errno = saved_errno;
648
0
  return static_cast<int32>(result);
649
0
}
650
651
0
uint32 strtou32_adaptor(const char *nptr, char **endptr, int base) {
652
0
  const int saved_errno = errno;
653
0
  errno = 0;
654
0
  const unsigned long result = strtoul(nptr, endptr, base);
655
0
  if (errno == ERANGE && result == ULONG_MAX) {
656
0
    return kuint32max;
657
0
  } else if (errno == 0 && result > kuint32max) {
658
0
    errno = ERANGE;
659
0
    return kuint32max;
660
0
  }
661
0
  if (errno == 0)
662
0
    errno = saved_errno;
663
0
  return static_cast<uint32>(result);
664
0
}
665
666
inline bool safe_parse_sign(std::string *text /*inout*/,
667
0
                            bool *negative_ptr /*output*/) {
668
0
  const char* start = text->data();
669
0
  const char* end = start + text->size();
670
671
  // Consume whitespace.
672
0
  while (start < end && (start[0] == ' ')) {
673
0
    ++start;
674
0
  }
675
0
  while (start < end && (end[-1] == ' ')) {
676
0
    --end;
677
0
  }
678
0
  if (start >= end) {
679
0
    return false;
680
0
  }
681
682
  // Consume sign.
683
0
  *negative_ptr = (start[0] == '-');
684
0
  if (*negative_ptr || start[0] == '+') {
685
0
    ++start;
686
0
    if (start >= end) {
687
0
      return false;
688
0
    }
689
0
  }
690
0
  *text = text->substr(start - text->data(), end - start);
691
0
  return true;
692
0
}
693
694
template <typename IntType>
695
0
bool safe_parse_positive_int(std::string text, IntType *value_p) {
696
0
  int base = 10;
697
0
  IntType value = 0;
698
0
  const IntType vmax = std::numeric_limits<IntType>::max();
699
0
  assert(vmax > 0);
700
0
  assert(vmax >= base);
701
0
  const IntType vmax_over_base = vmax / base;
702
0
  const char* start = text.data();
703
0
  const char* end = start + text.size();
704
  // loop over digits
705
0
  for (; start < end; ++start) {
706
0
    unsigned char c = static_cast<unsigned char>(start[0]);
707
0
    int digit = c - '0';
708
0
    if (digit >= base || digit < 0) {
709
0
      *value_p = value;
710
0
      return false;
711
0
    }
712
0
    if (value > vmax_over_base) {
713
0
      *value_p = vmax;
714
0
      return false;
715
0
    }
716
0
    value *= base;
717
0
    if (value > vmax - digit) {
718
0
      *value_p = vmax;
719
0
      return false;
720
0
    }
721
0
    value += digit;
722
0
  }
723
0
  *value_p = value;
724
0
  return true;
725
0
}
Unexecuted instantiation: bool google::protobuf::safe_parse_positive_int<int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, int*)
Unexecuted instantiation: bool google::protobuf::safe_parse_positive_int<unsigned int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, unsigned int*)
Unexecuted instantiation: bool google::protobuf::safe_parse_positive_int<long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, long*)
Unexecuted instantiation: bool google::protobuf::safe_parse_positive_int<unsigned long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, unsigned long*)
726
727
template <typename IntType>
728
0
bool safe_parse_negative_int(const std::string &text, IntType *value_p) {
729
0
  int base = 10;
730
0
  IntType value = 0;
731
0
  const IntType vmin = std::numeric_limits<IntType>::min();
732
0
  assert(vmin < 0);
733
0
  assert(vmin <= 0 - base);
734
0
  IntType vmin_over_base = vmin / base;
735
  // 2003 c++ standard [expr.mul]
736
  // "... the sign of the remainder is implementation-defined."
737
  // Although (vmin/base)*base + vmin%base is always vmin.
738
  // 2011 c++ standard tightens the spec but we cannot rely on it.
739
0
  if (vmin % base > 0) {
740
0
    vmin_over_base += 1;
741
0
  }
742
0
  const char* start = text.data();
743
0
  const char* end = start + text.size();
744
  // loop over digits
745
0
  for (; start < end; ++start) {
746
0
    unsigned char c = static_cast<unsigned char>(start[0]);
747
0
    int digit = c - '0';
748
0
    if (digit >= base || digit < 0) {
749
0
      *value_p = value;
750
0
      return false;
751
0
    }
752
0
    if (value < vmin_over_base) {
753
0
      *value_p = vmin;
754
0
      return false;
755
0
    }
756
0
    value *= base;
757
0
    if (value < vmin + digit) {
758
0
      *value_p = vmin;
759
0
      return false;
760
0
    }
761
0
    value -= digit;
762
0
  }
763
0
  *value_p = value;
764
0
  return true;
765
0
}
Unexecuted instantiation: bool google::protobuf::safe_parse_negative_int<int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, int*)
Unexecuted instantiation: bool google::protobuf::safe_parse_negative_int<long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, long*)
766
767
template <typename IntType>
768
0
bool safe_int_internal(std::string text, IntType *value_p) {
769
0
  *value_p = 0;
770
0
  bool negative;
771
0
  if (!safe_parse_sign(&text, &negative)) {
772
0
    return false;
773
0
  }
774
0
  if (!negative) {
775
0
    return safe_parse_positive_int(text, value_p);
776
0
  } else {
777
0
    return safe_parse_negative_int(text, value_p);
778
0
  }
779
0
}
Unexecuted instantiation: bool google::protobuf::safe_int_internal<int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, int*)
Unexecuted instantiation: bool google::protobuf::safe_int_internal<long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, long*)
780
781
template <typename IntType>
782
0
bool safe_uint_internal(std::string text, IntType *value_p) {
783
0
  *value_p = 0;
784
0
  bool negative;
785
0
  if (!safe_parse_sign(&text, &negative) || negative) {
786
0
    return false;
787
0
  }
788
0
  return safe_parse_positive_int(text, value_p);
789
0
}
Unexecuted instantiation: bool google::protobuf::safe_uint_internal<unsigned int>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, unsigned int*)
Unexecuted instantiation: bool google::protobuf::safe_uint_internal<unsigned long>(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, unsigned long*)
790
791
// ----------------------------------------------------------------------
792
// FastIntToBuffer()
793
// FastInt64ToBuffer()
794
// FastHexToBuffer()
795
// FastHex64ToBuffer()
796
// FastHex32ToBuffer()
797
// ----------------------------------------------------------------------
798
799
// Offset into buffer where FastInt64ToBuffer places the end of string
800
// null character.  Also used by FastInt64ToBufferLeft.
801
static const int kFastInt64ToBufferOffset = 21;
802
803
0
char *FastInt64ToBuffer(int64 i, char* buffer) {
804
  // We could collapse the positive and negative sections, but that
805
  // would be slightly slower for positive numbers...
806
  // 22 bytes is enough to store -2**64, -18446744073709551616.
807
0
  char* p = buffer + kFastInt64ToBufferOffset;
808
0
  *p-- = '\0';
809
0
  if (i >= 0) {
810
0
    do {
811
0
      *p-- = '0' + i % 10;
812
0
      i /= 10;
813
0
    } while (i > 0);
814
0
    return p + 1;
815
0
  } else {
816
    // On different platforms, % and / have different behaviors for
817
    // negative numbers, so we need to jump through hoops to make sure
818
    // we don't divide negative numbers.
819
0
    if (i > -10) {
820
0
      i = -i;
821
0
      *p-- = '0' + i;
822
0
      *p = '-';
823
0
      return p;
824
0
    } else {
825
      // Make sure we aren't at MIN_INT, in which case we can't say i = -i
826
0
      i = i + 10;
827
0
      i = -i;
828
0
      *p-- = '0' + i % 10;
829
      // Undo what we did a moment ago
830
0
      i = i / 10 + 1;
831
0
      do {
832
0
        *p-- = '0' + i % 10;
833
0
        i /= 10;
834
0
      } while (i > 0);
835
0
      *p = '-';
836
0
      return p;
837
0
    }
838
0
  }
839
0
}
840
841
// Offset into buffer where FastInt32ToBuffer places the end of string
842
// null character.  Also used by FastInt32ToBufferLeft
843
static const int kFastInt32ToBufferOffset = 11;
844
845
// Yes, this is a duplicate of FastInt64ToBuffer.  But, we need this for the
846
// compiler to generate 32 bit arithmetic instructions.  It's much faster, at
847
// least with 32 bit binaries.
848
0
char *FastInt32ToBuffer(int32 i, char* buffer) {
849
  // We could collapse the positive and negative sections, but that
850
  // would be slightly slower for positive numbers...
851
  // 12 bytes is enough to store -2**32, -4294967296.
852
0
  char* p = buffer + kFastInt32ToBufferOffset;
853
0
  *p-- = '\0';
854
0
  if (i >= 0) {
855
0
    do {
856
0
      *p-- = '0' + i % 10;
857
0
      i /= 10;
858
0
    } while (i > 0);
859
0
    return p + 1;
860
0
  } else {
861
    // On different platforms, % and / have different behaviors for
862
    // negative numbers, so we need to jump through hoops to make sure
863
    // we don't divide negative numbers.
864
0
    if (i > -10) {
865
0
      i = -i;
866
0
      *p-- = '0' + i;
867
0
      *p = '-';
868
0
      return p;
869
0
    } else {
870
      // Make sure we aren't at MIN_INT, in which case we can't say i = -i
871
0
      i = i + 10;
872
0
      i = -i;
873
0
      *p-- = '0' + i % 10;
874
      // Undo what we did a moment ago
875
0
      i = i / 10 + 1;
876
0
      do {
877
0
        *p-- = '0' + i % 10;
878
0
        i /= 10;
879
0
      } while (i > 0);
880
0
      *p = '-';
881
0
      return p;
882
0
    }
883
0
  }
884
0
}
885
886
0
char *FastHexToBuffer(int i, char* buffer) {
887
0
  GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i;
888
889
0
  static const char *hexdigits = "0123456789abcdef";
890
0
  char *p = buffer + 21;
891
0
  *p-- = '\0';
892
0
  do {
893
0
    *p-- = hexdigits[i & 15];   // mod by 16
894
0
    i >>= 4;                    // divide by 16
895
0
  } while (i > 0);
896
0
  return p + 1;
897
0
}
898
899
0
char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) {
900
0
  static const char *hexdigits = "0123456789abcdef";
901
0
  buffer[num_byte] = '\0';
902
0
  for (int i = num_byte - 1; i >= 0; i--) {
903
#ifdef _M_X64
904
    // MSVC x64 platform has a bug optimizing the uint32(value) in the #else
905
    // block. Given that the uint32 cast was to improve performance on 32-bit
906
    // platforms, we use 64-bit '&' directly.
907
    buffer[i] = hexdigits[value & 0xf];
908
#else
909
0
    buffer[i] = hexdigits[uint32(value) & 0xf];
910
0
#endif
911
0
    value >>= 4;
912
0
  }
913
0
  return buffer;
914
0
}
915
916
0
char *FastHex64ToBuffer(uint64 value, char* buffer) {
917
0
  return InternalFastHexToBuffer(value, buffer, 16);
918
0
}
919
920
0
char *FastHex32ToBuffer(uint32 value, char* buffer) {
921
0
  return InternalFastHexToBuffer(value, buffer, 8);
922
0
}
923
924
// ----------------------------------------------------------------------
925
// FastInt32ToBufferLeft()
926
// FastUInt32ToBufferLeft()
927
// FastInt64ToBufferLeft()
928
// FastUInt64ToBufferLeft()
929
//
930
// Like the Fast*ToBuffer() functions above, these are intended for speed.
931
// Unlike the Fast*ToBuffer() functions, however, these functions write
932
// their output to the beginning of the buffer (hence the name, as the
933
// output is left-aligned).  The caller is responsible for ensuring that
934
// the buffer has enough space to hold the output.
935
//
936
// Returns a pointer to the end of the string (i.e. the null character
937
// terminating the string).
938
// ----------------------------------------------------------------------
939
940
static const char two_ASCII_digits[100][2] = {
941
  {'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'},
942
  {'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'},
943
  {'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'},
944
  {'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'},
945
  {'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'},
946
  {'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'},
947
  {'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'},
948
  {'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'},
949
  {'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'},
950
  {'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'},
951
  {'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'},
952
  {'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'},
953
  {'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'},
954
  {'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'},
955
  {'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'},
956
  {'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'},
957
  {'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'},
958
  {'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'},
959
  {'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'},
960
  {'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'}
961
};
962
963
0
char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
964
0
  uint32 digits;
965
0
  const char *ASCII_digits = nullptr;
966
  // The idea of this implementation is to trim the number of divides to as few
967
  // as possible by using multiplication and subtraction rather than mod (%),
968
  // and by outputting two digits at a time rather than one.
969
  // The huge-number case is first, in the hopes that the compiler will output
970
  // that case in one branch-free block of code, and only output conditional
971
  // branches into it from below.
972
0
  if (u >= 1000000000) {  // >= 1,000,000,000
973
0
    digits = u / 100000000;  // 100,000,000
974
0
    ASCII_digits = two_ASCII_digits[digits];
975
0
    buffer[0] = ASCII_digits[0];
976
0
    buffer[1] = ASCII_digits[1];
977
0
    buffer += 2;
978
0
sublt100_000_000:
979
0
    u -= digits * 100000000;  // 100,000,000
980
0
lt100_000_000:
981
0
    digits = u / 1000000;  // 1,000,000
982
0
    ASCII_digits = two_ASCII_digits[digits];
983
0
    buffer[0] = ASCII_digits[0];
984
0
    buffer[1] = ASCII_digits[1];
985
0
    buffer += 2;
986
0
sublt1_000_000:
987
0
    u -= digits * 1000000;  // 1,000,000
988
0
lt1_000_000:
989
0
    digits = u / 10000;  // 10,000
990
0
    ASCII_digits = two_ASCII_digits[digits];
991
0
    buffer[0] = ASCII_digits[0];
992
0
    buffer[1] = ASCII_digits[1];
993
0
    buffer += 2;
994
0
sublt10_000:
995
0
    u -= digits * 10000;  // 10,000
996
0
lt10_000:
997
0
    digits = u / 100;
998
0
    ASCII_digits = two_ASCII_digits[digits];
999
0
    buffer[0] = ASCII_digits[0];
1000
0
    buffer[1] = ASCII_digits[1];
1001
0
    buffer += 2;
1002
0
sublt100:
1003
0
    u -= digits * 100;
1004
0
lt100:
1005
0
    digits = u;
1006
0
    ASCII_digits = two_ASCII_digits[digits];
1007
0
    buffer[0] = ASCII_digits[0];
1008
0
    buffer[1] = ASCII_digits[1];
1009
0
    buffer += 2;
1010
0
done:
1011
0
    *buffer = 0;
1012
0
    return buffer;
1013
0
  }
1014
1015
0
  if (u < 100) {
1016
0
    digits = u;
1017
0
    if (u >= 10) goto lt100;
1018
0
    *buffer++ = '0' + digits;
1019
0
    goto done;
1020
0
  }
1021
0
  if (u  <  10000) {   // 10,000
1022
0
    if (u >= 1000) goto lt10_000;
1023
0
    digits = u / 100;
1024
0
    *buffer++ = '0' + digits;
1025
0
    goto sublt100;
1026
0
  }
1027
0
  if (u  <  1000000) {   // 1,000,000
1028
0
    if (u >= 100000) goto lt1_000_000;
1029
0
    digits = u / 10000;  //    10,000
1030
0
    *buffer++ = '0' + digits;
1031
0
    goto sublt10_000;
1032
0
  }
1033
0
  if (u  <  100000000) {   // 100,000,000
1034
0
    if (u >= 10000000) goto lt100_000_000;
1035
0
    digits = u / 1000000;  //   1,000,000
1036
0
    *buffer++ = '0' + digits;
1037
0
    goto sublt1_000_000;
1038
0
  }
1039
  // we already know that u < 1,000,000,000
1040
0
  digits = u / 100000000;   // 100,000,000
1041
0
  *buffer++ = '0' + digits;
1042
0
  goto sublt100_000_000;
1043
0
}
1044
1045
0
char* FastInt32ToBufferLeft(int32 i, char* buffer) {
1046
0
  uint32 u = 0;
1047
0
  if (i < 0) {
1048
0
    *buffer++ = '-';
1049
0
    u -= i;
1050
0
  } else {
1051
0
    u = i;
1052
0
  }
1053
0
  return FastUInt32ToBufferLeft(u, buffer);
1054
0
}
1055
1056
0
char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
1057
0
  int digits;
1058
0
  const char *ASCII_digits = nullptr;
1059
1060
0
  uint32 u = static_cast<uint32>(u64);
1061
0
  if (u == u64) return FastUInt32ToBufferLeft(u, buffer);
1062
1063
0
  uint64 top_11_digits = u64 / 1000000000;
1064
0
  buffer = FastUInt64ToBufferLeft(top_11_digits, buffer);
1065
0
  u = u64 - (top_11_digits * 1000000000);
1066
1067
0
  digits = u / 10000000;  // 10,000,000
1068
0
  GOOGLE_DCHECK_LT(digits, 100);
1069
0
  ASCII_digits = two_ASCII_digits[digits];
1070
0
  buffer[0] = ASCII_digits[0];
1071
0
  buffer[1] = ASCII_digits[1];
1072
0
  buffer += 2;
1073
0
  u -= digits * 10000000;  // 10,000,000
1074
0
  digits = u / 100000;  // 100,000
1075
0
  ASCII_digits = two_ASCII_digits[digits];
1076
0
  buffer[0] = ASCII_digits[0];
1077
0
  buffer[1] = ASCII_digits[1];
1078
0
  buffer += 2;
1079
0
  u -= digits * 100000;  // 100,000
1080
0
  digits = u / 1000;  // 1,000
1081
0
  ASCII_digits = two_ASCII_digits[digits];
1082
0
  buffer[0] = ASCII_digits[0];
1083
0
  buffer[1] = ASCII_digits[1];
1084
0
  buffer += 2;
1085
0
  u -= digits * 1000;  // 1,000
1086
0
  digits = u / 10;
1087
0
  ASCII_digits = two_ASCII_digits[digits];
1088
0
  buffer[0] = ASCII_digits[0];
1089
0
  buffer[1] = ASCII_digits[1];
1090
0
  buffer += 2;
1091
0
  u -= digits * 10;
1092
0
  digits = u;
1093
0
  *buffer++ = '0' + digits;
1094
0
  *buffer = 0;
1095
0
  return buffer;
1096
0
}
1097
1098
0
char* FastInt64ToBufferLeft(int64 i, char* buffer) {
1099
0
  uint64 u = 0;
1100
0
  if (i < 0) {
1101
0
    *buffer++ = '-';
1102
0
    u -= i;
1103
0
  } else {
1104
0
    u = i;
1105
0
  }
1106
0
  return FastUInt64ToBufferLeft(u, buffer);
1107
0
}
1108
1109
// ----------------------------------------------------------------------
1110
// SimpleItoa()
1111
//    Description: converts an integer to a string.
1112
//
1113
//    Return value: string
1114
// ----------------------------------------------------------------------
1115
1116
0
std::string SimpleItoa(int i) {
1117
0
  char buffer[kFastToBufferSize];
1118
0
  return (sizeof(i) == 4) ?
1119
0
    FastInt32ToBuffer(i, buffer) :
1120
0
    FastInt64ToBuffer(i, buffer);
1121
0
}
1122
1123
0
std::string SimpleItoa(unsigned int i) {
1124
0
  char buffer[kFastToBufferSize];
1125
0
  return std::string(buffer, (sizeof(i) == 4)
1126
0
                                 ? FastUInt32ToBufferLeft(i, buffer)
1127
0
                                 : FastUInt64ToBufferLeft(i, buffer));
1128
0
}
1129
1130
0
std::string SimpleItoa(long i) {
1131
0
  char buffer[kFastToBufferSize];
1132
0
  return (sizeof(i) == 4) ?
1133
0
    FastInt32ToBuffer(i, buffer) :
1134
0
    FastInt64ToBuffer(i, buffer);
1135
0
}
1136
1137
0
std::string SimpleItoa(unsigned long i) {
1138
0
  char buffer[kFastToBufferSize];
1139
0
  return std::string(buffer, (sizeof(i) == 4)
1140
0
                                 ? FastUInt32ToBufferLeft(i, buffer)
1141
0
                                 : FastUInt64ToBufferLeft(i, buffer));
1142
0
}
1143
1144
0
std::string SimpleItoa(long long i) {
1145
0
  char buffer[kFastToBufferSize];
1146
0
  return (sizeof(i) == 4) ?
1147
0
    FastInt32ToBuffer(i, buffer) :
1148
0
    FastInt64ToBuffer(i, buffer);
1149
0
}
1150
1151
0
std::string SimpleItoa(unsigned long long i) {
1152
0
  char buffer[kFastToBufferSize];
1153
0
  return std::string(buffer, (sizeof(i) == 4)
1154
0
                                 ? FastUInt32ToBufferLeft(i, buffer)
1155
0
                                 : FastUInt64ToBufferLeft(i, buffer));
1156
0
}
1157
1158
// ----------------------------------------------------------------------
1159
// SimpleDtoa()
1160
// SimpleFtoa()
1161
// DoubleToBuffer()
1162
// FloatToBuffer()
1163
//    We want to print the value without losing precision, but we also do
1164
//    not want to print more digits than necessary.  This turns out to be
1165
//    trickier than it sounds.  Numbers like 0.2 cannot be represented
1166
//    exactly in binary.  If we print 0.2 with a very large precision,
1167
//    e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
1168
//    On the other hand, if we set the precision too low, we lose
1169
//    significant digits when printing numbers that actually need them.
1170
//    It turns out there is no precision value that does the right thing
1171
//    for all numbers.
1172
//
1173
//    Our strategy is to first try printing with a precision that is never
1174
//    over-precise, then parse the result with strtod() to see if it
1175
//    matches.  If not, we print again with a precision that will always
1176
//    give a precise result, but may use more digits than necessary.
1177
//
1178
//    An arguably better strategy would be to use the algorithm described
1179
//    in "How to Print Floating-Point Numbers Accurately" by Steele &
1180
//    White, e.g. as implemented by David M. Gay's dtoa().  It turns out,
1181
//    however, that the following implementation is about as fast as
1182
//    DMG's code.  Furthermore, DMG's code locks mutexes, which means it
1183
//    will not scale well on multi-core machines.  DMG's code is slightly
1184
//    more accurate (in that it will never use more digits than
1185
//    necessary), but this is probably irrelevant for most users.
1186
//
1187
//    Rob Pike and Ken Thompson also have an implementation of dtoa() in
1188
//    third_party/fmt/fltfmt.cc.  Their implementation is similar to this
1189
//    one in that it makes guesses and then uses strtod() to check them.
1190
//    Their implementation is faster because they use their own code to
1191
//    generate the digits in the first place rather than use snprintf(),
1192
//    thus avoiding format string parsing overhead.  However, this makes
1193
//    it considerably more complicated than the following implementation,
1194
//    and it is embedded in a larger library.  If speed turns out to be
1195
//    an issue, we could re-implement this in terms of their
1196
//    implementation.
1197
// ----------------------------------------------------------------------
1198
1199
0
std::string SimpleDtoa(double value) {
1200
0
  char buffer[kDoubleToBufferSize];
1201
0
  return DoubleToBuffer(value, buffer);
1202
0
}
1203
1204
0
std::string SimpleFtoa(float value) {
1205
0
  char buffer[kFloatToBufferSize];
1206
0
  return FloatToBuffer(value, buffer);
1207
0
}
1208
1209
0
static inline bool IsValidFloatChar(char c) {
1210
0
  return ('0' <= c && c <= '9') ||
1211
0
         c == 'e' || c == 'E' ||
1212
0
         c == '+' || c == '-';
1213
0
}
1214
1215
0
void DelocalizeRadix(char* buffer) {
1216
  // Fast check:  if the buffer has a normal decimal point, assume no
1217
  // translation is needed.
1218
0
  if (strchr(buffer, '.') != nullptr) return;
1219
1220
  // Find the first unknown character.
1221
0
  while (IsValidFloatChar(*buffer)) ++buffer;
1222
1223
0
  if (*buffer == '\0') {
1224
    // No radix character found.
1225
0
    return;
1226
0
  }
1227
1228
  // We are now pointing at the locale-specific radix character.  Replace it
1229
  // with '.'.
1230
0
  *buffer = '.';
1231
0
  ++buffer;
1232
1233
0
  if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
1234
    // It appears the radix was a multi-byte character.  We need to remove the
1235
    // extra bytes.
1236
0
    char* target = buffer;
1237
0
    do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
1238
0
    memmove(target, buffer, strlen(buffer) + 1);
1239
0
  }
1240
0
}
1241
1242
0
char* DoubleToBuffer(double value, char* buffer) {
1243
  // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
1244
  // platforms these days.  Just in case some system exists where DBL_DIG
1245
  // is significantly larger -- and risks overflowing our buffer -- we have
1246
  // this assert.
1247
0
  GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big);
1248
1249
0
  if (value == std::numeric_limits<double>::infinity()) {
1250
0
    strcpy(buffer, "inf");
1251
0
    return buffer;
1252
0
  } else if (value == -std::numeric_limits<double>::infinity()) {
1253
0
    strcpy(buffer, "-inf");
1254
0
    return buffer;
1255
0
  } else if (std::isnan(value)) {
1256
0
    strcpy(buffer, "nan");
1257
0
    return buffer;
1258
0
  }
1259
1260
0
  int snprintf_result =
1261
0
    snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
1262
1263
  // The snprintf should never overflow because the buffer is significantly
1264
  // larger than the precision we asked for.
1265
0
  GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
1266
1267
  // We need to make parsed_value volatile in order to force the compiler to
1268
  // write it out to the stack.  Otherwise, it may keep the value in a
1269
  // register, and if it does that, it may keep it as a long double instead
1270
  // of a double.  This long double may have extra bits that make it compare
1271
  // unequal to "value" even though it would be exactly equal if it were
1272
  // truncated to a double.
1273
0
  volatile double parsed_value = internal::NoLocaleStrtod(buffer, nullptr);
1274
0
  if (parsed_value != value) {
1275
0
    int snprintf_result =
1276
0
      snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);
1277
1278
    // Should never overflow; see above.
1279
0
    GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
1280
0
  }
1281
1282
0
  DelocalizeRadix(buffer);
1283
0
  return buffer;
1284
0
}
1285
1286
0
static int memcasecmp(const char *s1, const char *s2, size_t len) {
1287
0
  const unsigned char *us1 = reinterpret_cast<const unsigned char *>(s1);
1288
0
  const unsigned char *us2 = reinterpret_cast<const unsigned char *>(s2);
1289
1290
0
  for ( int i = 0; i < len; i++ ) {
1291
0
    const int diff =
1292
0
      static_cast<int>(static_cast<unsigned char>(ascii_tolower(us1[i]))) -
1293
0
      static_cast<int>(static_cast<unsigned char>(ascii_tolower(us2[i])));
1294
0
    if (diff != 0) return diff;
1295
0
  }
1296
0
  return 0;
1297
0
}
1298
1299
0
inline bool CaseEqual(StringPiece s1, StringPiece s2) {
1300
0
  if (s1.size() != s2.size()) return false;
1301
0
  return memcasecmp(s1.data(), s2.data(), s1.size()) == 0;
1302
0
}
1303
1304
0
bool safe_strtob(StringPiece str, bool* value) {
1305
0
  GOOGLE_CHECK(value != nullptr) << "nullptr output boolean given.";
1306
0
  if (CaseEqual(str, "true") || CaseEqual(str, "t") ||
1307
0
      CaseEqual(str, "yes") || CaseEqual(str, "y") ||
1308
0
      CaseEqual(str, "1")) {
1309
0
    *value = true;
1310
0
    return true;
1311
0
  }
1312
0
  if (CaseEqual(str, "false") || CaseEqual(str, "f") ||
1313
0
      CaseEqual(str, "no") || CaseEqual(str, "n") ||
1314
0
      CaseEqual(str, "0")) {
1315
0
    *value = false;
1316
0
    return true;
1317
0
  }
1318
0
  return false;
1319
0
}
1320
1321
0
bool safe_strtof(const char* str, float* value) {
1322
0
  char* endptr;
1323
0
  errno = 0;  // errno only gets set on errors
1324
#if defined(_WIN32) || defined (__hpux)  // has no strtof()
1325
  *value = internal::NoLocaleStrtod(str, &endptr);
1326
#else
1327
0
  *value = strtof(str, &endptr);
1328
0
#endif
1329
0
  return *str != 0 && *endptr == 0 && errno == 0;
1330
0
}
1331
1332
0
bool safe_strtod(const char* str, double* value) {
1333
0
  char* endptr;
1334
0
  *value = internal::NoLocaleStrtod(str, &endptr);
1335
0
  if (endptr != str) {
1336
0
    while (ascii_isspace(*endptr)) ++endptr;
1337
0
  }
1338
  // Ignore range errors from strtod.  The values it
1339
  // returns on underflow and overflow are the right
1340
  // fallback in a robust setting.
1341
0
  return *str != '\0' && *endptr == '\0';
1342
0
}
1343
1344
0
bool safe_strto32(const std::string &str, int32 *value) {
1345
0
  return safe_int_internal(str, value);
1346
0
}
1347
1348
0
bool safe_strtou32(const std::string &str, uint32 *value) {
1349
0
  return safe_uint_internal(str, value);
1350
0
}
1351
1352
0
bool safe_strto64(const std::string &str, int64 *value) {
1353
0
  return safe_int_internal(str, value);
1354
0
}
1355
1356
0
bool safe_strtou64(const std::string &str, uint64 *value) {
1357
0
  return safe_uint_internal(str, value);
1358
0
}
1359
1360
0
char* FloatToBuffer(float value, char* buffer) {
1361
  // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
1362
  // platforms these days.  Just in case some system exists where FLT_DIG
1363
  // is significantly larger -- and risks overflowing our buffer -- we have
1364
  // this assert.
1365
0
  GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big);
1366
1367
0
  if (value == std::numeric_limits<double>::infinity()) {
1368
0
    strcpy(buffer, "inf");
1369
0
    return buffer;
1370
0
  } else if (value == -std::numeric_limits<double>::infinity()) {
1371
0
    strcpy(buffer, "-inf");
1372
0
    return buffer;
1373
0
  } else if (std::isnan(value)) {
1374
0
    strcpy(buffer, "nan");
1375
0
    return buffer;
1376
0
  }
1377
1378
0
  int snprintf_result =
1379
0
    snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
1380
1381
  // The snprintf should never overflow because the buffer is significantly
1382
  // larger than the precision we asked for.
1383
0
  GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
1384
1385
0
  float parsed_value;
1386
0
  if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
1387
0
    int snprintf_result =
1388
0
      snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+3, value);
1389
1390
    // Should never overflow; see above.
1391
0
    GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
1392
0
  }
1393
1394
0
  DelocalizeRadix(buffer);
1395
0
  return buffer;
1396
0
}
1397
1398
namespace strings {
1399
1400
0
AlphaNum::AlphaNum(strings::Hex hex) {
1401
0
  char *const end = &digits[kFastToBufferSize];
1402
0
  char *writer = end;
1403
0
  uint64 value = hex.value;
1404
0
  uint64 width = hex.spec;
1405
  // We accomplish minimum width by OR'ing in 0x10000 to the user's value,
1406
  // where 0x10000 is the smallest hex number that is as wide as the user
1407
  // asked for.
1408
0
  uint64 mask = ((static_cast<uint64>(1) << (width - 1) * 4)) | value;
1409
0
  static const char hexdigits[] = "0123456789abcdef";
1410
0
  do {
1411
0
    *--writer = hexdigits[value & 0xF];
1412
0
    value >>= 4;
1413
0
    mask >>= 4;
1414
0
  } while (mask != 0);
1415
0
  piece_data_ = writer;
1416
0
  piece_size_ = end - writer;
1417
0
}
1418
1419
}  // namespace strings
1420
1421
// ----------------------------------------------------------------------
1422
// StrCat()
1423
//    This merges the given strings or integers, with no delimiter.  This
1424
//    is designed to be the fastest possible way to construct a string out
1425
//    of a mix of raw C strings, C++ strings, and integer values.
1426
// ----------------------------------------------------------------------
1427
1428
// Append is merely a version of memcpy that returns the address of the byte
1429
// after the area just overwritten.  It comes in multiple flavors to minimize
1430
// call overhead.
1431
0
static char *Append1(char *out, const AlphaNum &x) {
1432
0
  if (x.size() > 0) {
1433
0
    memcpy(out, x.data(), x.size());
1434
0
    out += x.size();
1435
0
  }
1436
0
  return out;
1437
0
}
1438
1439
0
static char *Append2(char *out, const AlphaNum &x1, const AlphaNum &x2) {
1440
0
  if (x1.size() > 0) {
1441
0
    memcpy(out, x1.data(), x1.size());
1442
0
    out += x1.size();
1443
0
  }
1444
0
  if (x2.size() > 0) {
1445
0
    memcpy(out, x2.data(), x2.size());
1446
0
    out += x2.size();
1447
0
  }
1448
0
  return out;
1449
0
}
1450
1451
static char *Append4(char *out, const AlphaNum &x1, const AlphaNum &x2,
1452
0
                     const AlphaNum &x3, const AlphaNum &x4) {
1453
0
  if (x1.size() > 0) {
1454
0
    memcpy(out, x1.data(), x1.size());
1455
0
    out += x1.size();
1456
0
  }
1457
0
  if (x2.size() > 0) {
1458
0
    memcpy(out, x2.data(), x2.size());
1459
0
    out += x2.size();
1460
0
  }
1461
0
  if (x3.size() > 0) {
1462
0
    memcpy(out, x3.data(), x3.size());
1463
0
    out += x3.size();
1464
0
  }
1465
0
  if (x4.size() > 0) {
1466
0
    memcpy(out, x4.data(), x4.size());
1467
0
    out += x4.size();
1468
0
  }
1469
0
  return out;
1470
0
}
1471
1472
0
std::string StrCat(const AlphaNum &a, const AlphaNum &b) {
1473
0
  std::string result;
1474
0
  result.resize(a.size() + b.size());
1475
0
  char *const begin = &*result.begin();
1476
0
  char *out = Append2(begin, a, b);
1477
0
  GOOGLE_DCHECK_EQ(out, begin + result.size());
1478
0
  return result;
1479
0
}
1480
1481
0
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) {
1482
0
  std::string result;
1483
0
  result.resize(a.size() + b.size() + c.size());
1484
0
  char *const begin = &*result.begin();
1485
0
  char *out = Append2(begin, a, b);
1486
0
  out = Append1(out, c);
1487
0
  GOOGLE_DCHECK_EQ(out, begin + result.size());
1488
0
  return result;
1489
0
}
1490
1491
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
1492
0
                   const AlphaNum &d) {
1493
0
  std::string result;
1494
0
  result.resize(a.size() + b.size() + c.size() + d.size());
1495
0
  char *const begin = &*result.begin();
1496
0
  char *out = Append4(begin, a, b, c, d);
1497
0
  GOOGLE_DCHECK_EQ(out, begin + result.size());
1498
0
  return result;
1499
0
}
1500
1501
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
1502
0
                   const AlphaNum &d, const AlphaNum &e) {
1503
0
  std::string result;
1504
0
  result.resize(a.size() + b.size() + c.size() + d.size() + e.size());
1505
0
  char *const begin = &*result.begin();
1506
0
  char *out = Append4(begin, a, b, c, d);
1507
0
  out = Append1(out, e);
1508
0
  GOOGLE_DCHECK_EQ(out, begin + result.size());
1509
0
  return result;
1510
0
}
1511
1512
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
1513
0
                   const AlphaNum &d, const AlphaNum &e, const AlphaNum &f) {
1514
0
  std::string result;
1515
0
  result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
1516
0
                f.size());
1517
0
  char *const begin = &*result.begin();
1518
0
  char *out = Append4(begin, a, b, c, d);
1519
0
  out = Append2(out, e, f);
1520
0
  GOOGLE_DCHECK_EQ(out, begin + result.size());
1521
0
  return result;
1522
0
}
1523
1524
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
1525
                   const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
1526
0
                   const AlphaNum &g) {
1527
0
  std::string result;
1528
0
  result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
1529
0
                f.size() + g.size());
1530
0
  char *const begin = &*result.begin();
1531
0
  char *out = Append4(begin, a, b, c, d);
1532
0
  out = Append2(out, e, f);
1533
0
  out = Append1(out, g);
1534
0
  GOOGLE_DCHECK_EQ(out, begin + result.size());
1535
0
  return result;
1536
0
}
1537
1538
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
1539
                   const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
1540
0
                   const AlphaNum &g, const AlphaNum &h) {
1541
0
  std::string result;
1542
0
  result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
1543
0
                f.size() + g.size() + h.size());
1544
0
  char *const begin = &*result.begin();
1545
0
  char *out = Append4(begin, a, b, c, d);
1546
0
  out = Append4(out, e, f, g, h);
1547
0
  GOOGLE_DCHECK_EQ(out, begin + result.size());
1548
0
  return result;
1549
0
}
1550
1551
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
1552
                   const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
1553
0
                   const AlphaNum &g, const AlphaNum &h, const AlphaNum &i) {
1554
0
  std::string result;
1555
0
  result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
1556
0
                f.size() + g.size() + h.size() + i.size());
1557
0
  char *const begin = &*result.begin();
1558
0
  char *out = Append4(begin, a, b, c, d);
1559
0
  out = Append4(out, e, f, g, h);
1560
0
  out = Append1(out, i);
1561
0
  GOOGLE_DCHECK_EQ(out, begin + result.size());
1562
0
  return result;
1563
0
}
1564
1565
// It's possible to call StrAppend with a char * pointer that is partway into
1566
// the string we're appending to.  However the results of this are random.
1567
// Therefore, check for this in debug mode.  Use unsigned math so we only have
1568
// to do one comparison.
1569
#define GOOGLE_DCHECK_NO_OVERLAP(dest, src) \
1570
0
    GOOGLE_DCHECK_GT(uintptr_t((src).data() - (dest).data()), \
1571
0
                     uintptr_t((dest).size()))
1572
1573
0
void StrAppend(std::string *result, const AlphaNum &a) {
1574
0
  GOOGLE_DCHECK_NO_OVERLAP(*result, a);
1575
0
  result->append(a.data(), a.size());
1576
0
}
1577
1578
0
void StrAppend(std::string *result, const AlphaNum &a, const AlphaNum &b) {
1579
0
  GOOGLE_DCHECK_NO_OVERLAP(*result, a);
1580
0
  GOOGLE_DCHECK_NO_OVERLAP(*result, b);
1581
0
  std::string::size_type old_size = result->size();
1582
0
  result->resize(old_size + a.size() + b.size());
1583
0
  char *const begin = &*result->begin();
1584
0
  char *out = Append2(begin + old_size, a, b);
1585
0
  GOOGLE_DCHECK_EQ(out, begin + result->size());
1586
0
}
1587
1588
void StrAppend(std::string *result, const AlphaNum &a, const AlphaNum &b,
1589
0
               const AlphaNum &c) {
1590
0
  GOOGLE_DCHECK_NO_OVERLAP(*result, a);
1591
0
  GOOGLE_DCHECK_NO_OVERLAP(*result, b);
1592
0
  GOOGLE_DCHECK_NO_OVERLAP(*result, c);
1593
0
  std::string::size_type old_size = result->size();
1594
0
  result->resize(old_size + a.size() + b.size() + c.size());
1595
0
  char *const begin = &*result->begin();
1596
0
  char *out = Append2(begin + old_size, a, b);
1597
0
  out = Append1(out, c);
1598
0
  GOOGLE_DCHECK_EQ(out, begin + result->size());
1599
0
}
1600
1601
void StrAppend(std::string *result, const AlphaNum &a, const AlphaNum &b,
1602
0
               const AlphaNum &c, const AlphaNum &d) {
1603
0
  GOOGLE_DCHECK_NO_OVERLAP(*result, a);
1604
0
  GOOGLE_DCHECK_NO_OVERLAP(*result, b);
1605
0
  GOOGLE_DCHECK_NO_OVERLAP(*result, c);
1606
0
  GOOGLE_DCHECK_NO_OVERLAP(*result, d);
1607
0
  std::string::size_type old_size = result->size();
1608
0
  result->resize(old_size + a.size() + b.size() + c.size() + d.size());
1609
0
  char *const begin = &*result->begin();
1610
0
  char *out = Append4(begin + old_size, a, b, c, d);
1611
0
  GOOGLE_DCHECK_EQ(out, begin + result->size());
1612
0
}
1613
1614
int GlobalReplaceSubstring(const std::string &substring,
1615
0
                           const std::string &replacement, std::string *s) {
1616
0
  GOOGLE_CHECK(s != nullptr);
1617
0
  if (s->empty() || substring.empty())
1618
0
    return 0;
1619
0
  std::string tmp;
1620
0
  int num_replacements = 0;
1621
0
  int pos = 0;
1622
0
  for (int match_pos = s->find(substring.data(), pos, substring.length());
1623
0
       match_pos != std::string::npos; pos = match_pos + substring.length(),
1624
0
           match_pos = s->find(substring.data(), pos, substring.length())) {
1625
0
    ++num_replacements;
1626
    // Append the original content before the match.
1627
0
    tmp.append(*s, pos, match_pos - pos);
1628
    // Append the replacement for the match.
1629
0
    tmp.append(replacement.begin(), replacement.end());
1630
0
  }
1631
  // Append the content after the last match. If no replacements were made, the
1632
  // original string is left untouched.
1633
0
  if (num_replacements > 0) {
1634
0
    tmp.append(*s, pos, s->length() - pos);
1635
0
    s->swap(tmp);
1636
0
  }
1637
0
  return num_replacements;
1638
0
}
1639
1640
0
int CalculateBase64EscapedLen(int input_len, bool do_padding) {
1641
  // Base64 encodes three bytes of input at a time. If the input is not
1642
  // divisible by three, we pad as appropriate.
1643
  //
1644
  // (from http://tools.ietf.org/html/rfc3548)
1645
  // Special processing is performed if fewer than 24 bits are available
1646
  // at the end of the data being encoded.  A full encoding quantum is
1647
  // always completed at the end of a quantity.  When fewer than 24 input
1648
  // bits are available in an input group, zero bits are added (on the
1649
  // right) to form an integral number of 6-bit groups.  Padding at the
1650
  // end of the data is performed using the '=' character.  Since all base
1651
  // 64 input is an integral number of octets, only the following cases
1652
  // can arise:
1653
1654
1655
  // Base64 encodes each three bytes of input into four bytes of output.
1656
0
  int len = (input_len / 3) * 4;
1657
1658
0
  if (input_len % 3 == 0) {
1659
    // (from http://tools.ietf.org/html/rfc3548)
1660
    // (1) the final quantum of encoding input is an integral multiple of 24
1661
    // bits; here, the final unit of encoded output will be an integral
1662
    // multiple of 4 characters with no "=" padding,
1663
0
  } else if (input_len % 3 == 1) {
1664
    // (from http://tools.ietf.org/html/rfc3548)
1665
    // (2) the final quantum of encoding input is exactly 8 bits; here, the
1666
    // final unit of encoded output will be two characters followed by two
1667
    // "=" padding characters, or
1668
0
    len += 2;
1669
0
    if (do_padding) {
1670
0
      len += 2;
1671
0
    }
1672
0
  } else {  // (input_len % 3 == 2)
1673
    // (from http://tools.ietf.org/html/rfc3548)
1674
    // (3) the final quantum of encoding input is exactly 16 bits; here, the
1675
    // final unit of encoded output will be three characters followed by one
1676
    // "=" padding character.
1677
0
    len += 3;
1678
0
    if (do_padding) {
1679
0
      len += 1;
1680
0
    }
1681
0
  }
1682
1683
0
  assert(len >= input_len);  // make sure we didn't overflow
1684
0
  return len;
1685
0
}
1686
1687
// Base64Escape does padding, so this calculation includes padding.
1688
0
int CalculateBase64EscapedLen(int input_len) {
1689
0
  return CalculateBase64EscapedLen(input_len, true);
1690
0
}
1691
1692
// ----------------------------------------------------------------------
1693
// int Base64Unescape() - base64 decoder
1694
// int Base64Escape() - base64 encoder
1695
// int WebSafeBase64Unescape() - Google's variation of base64 decoder
1696
// int WebSafeBase64Escape() - Google's variation of base64 encoder
1697
//
1698
// Check out
1699
// http://tools.ietf.org/html/rfc2045 for formal description, but what we
1700
// care about is that...
1701
//   Take the encoded stuff in groups of 4 characters and turn each
1702
//   character into a code 0 to 63 thus:
1703
//           A-Z map to 0 to 25
1704
//           a-z map to 26 to 51
1705
//           0-9 map to 52 to 61
1706
//           +(- for WebSafe) maps to 62
1707
//           /(_ for WebSafe) maps to 63
1708
//   There will be four numbers, all less than 64 which can be represented
1709
//   by a 6 digit binary number (aaaaaa, bbbbbb, cccccc, dddddd respectively).
1710
//   Arrange the 6 digit binary numbers into three bytes as such:
1711
//   aaaaaabb bbbbcccc ccdddddd
1712
//   Equals signs (one or two) are used at the end of the encoded block to
1713
//   indicate that the text was not an integer multiple of three bytes long.
1714
// ----------------------------------------------------------------------
1715
1716
int Base64UnescapeInternal(const char *src_param, int szsrc,
1717
                           char *dest, int szdest,
1718
0
                           const signed char* unbase64) {
1719
0
  static const char kPad64Equals = '=';
1720
0
  static const char kPad64Dot = '.';
1721
1722
0
  int decode = 0;
1723
0
  int destidx = 0;
1724
0
  int state = 0;
1725
0
  unsigned int ch = 0;
1726
0
  unsigned int temp = 0;
1727
1728
  // If "char" is signed by default, using *src as an array index results in
1729
  // accessing negative array elements. Treat the input as a pointer to
1730
  // unsigned char to avoid this.
1731
0
  const unsigned char *src = reinterpret_cast<const unsigned char*>(src_param);
1732
1733
  // The GET_INPUT macro gets the next input character, skipping
1734
  // over any whitespace, and stopping when we reach the end of the
1735
  // string or when we read any non-data character.  The arguments are
1736
  // an arbitrary identifier (used as a label for goto) and the number
1737
  // of data bytes that must remain in the input to avoid aborting the
1738
  // loop.
1739
0
#define GET_INPUT(label, remain)                 \
1740
0
  label:                                         \
1741
0
    --szsrc;                                     \
1742
0
    ch = *src++;                                 \
1743
0
    decode = unbase64[ch];                       \
1744
0
    if (decode < 0) {                            \
1745
0
      if (ascii_isspace(ch) && szsrc >= remain)  \
1746
0
        goto label;                              \
1747
0
      state = 4 - remain;                        \
1748
0
      break;                                     \
1749
0
    }
1750
1751
  // if dest is null, we're just checking to see if it's legal input
1752
  // rather than producing output.  (I suspect this could just be done
1753
  // with a regexp...).  We duplicate the loop so this test can be
1754
  // outside it instead of in every iteration.
1755
1756
0
  if (dest) {
1757
    // This loop consumes 4 input bytes and produces 3 output bytes
1758
    // per iteration.  We can't know at the start that there is enough
1759
    // data left in the string for a full iteration, so the loop may
1760
    // break out in the middle; if so 'state' will be set to the
1761
    // number of input bytes read.
1762
1763
0
    while (szsrc >= 4)  {
1764
      // We'll start by optimistically assuming that the next four
1765
      // bytes of the string (src[0..3]) are four good data bytes
1766
      // (that is, no nulls, whitespace, padding chars, or illegal
1767
      // chars).  We need to test src[0..2] for nulls individually
1768
      // before constructing temp to preserve the property that we
1769
      // never read past a null in the string (no matter how long
1770
      // szsrc claims the string is).
1771
1772
0
      if (!src[0] || !src[1] || !src[2] ||
1773
0
          (temp = ((unsigned(unbase64[src[0]]) << 18) |
1774
0
                   (unsigned(unbase64[src[1]]) << 12) |
1775
0
                   (unsigned(unbase64[src[2]]) << 6) |
1776
0
                   (unsigned(unbase64[src[3]])))) & 0x80000000) {
1777
        // Iff any of those four characters was bad (null, illegal,
1778
        // whitespace, padding), then temp's high bit will be set
1779
        // (because unbase64[] is -1 for all bad characters).
1780
        //
1781
        // We'll back up and resort to the slower decoder, which knows
1782
        // how to handle those cases.
1783
1784
0
        GET_INPUT(first, 4);
1785
0
        temp = decode;
1786
0
        GET_INPUT(second, 3);
1787
0
        temp = (temp << 6) | decode;
1788
0
        GET_INPUT(third, 2);
1789
0
        temp = (temp << 6) | decode;
1790
0
        GET_INPUT(fourth, 1);
1791
0
        temp = (temp << 6) | decode;
1792
0
      } else {
1793
        // We really did have four good data bytes, so advance four
1794
        // characters in the string.
1795
1796
0
        szsrc -= 4;
1797
0
        src += 4;
1798
0
        decode = -1;
1799
0
        ch = '\0';
1800
0
      }
1801
1802
      // temp has 24 bits of input, so write that out as three bytes.
1803
1804
0
      if (destidx+3 > szdest) return -1;
1805
0
      dest[destidx+2] = temp;
1806
0
      temp >>= 8;
1807
0
      dest[destidx+1] = temp;
1808
0
      temp >>= 8;
1809
0
      dest[destidx] = temp;
1810
0
      destidx += 3;
1811
0
    }
1812
0
  } else {
1813
0
    while (szsrc >= 4)  {
1814
0
      if (!src[0] || !src[1] || !src[2] ||
1815
0
          (temp = ((unsigned(unbase64[src[0]]) << 18) |
1816
0
                   (unsigned(unbase64[src[1]]) << 12) |
1817
0
                   (unsigned(unbase64[src[2]]) << 6) |
1818
0
                   (unsigned(unbase64[src[3]])))) & 0x80000000) {
1819
0
        GET_INPUT(first_no_dest, 4);
1820
0
        GET_INPUT(second_no_dest, 3);
1821
0
        GET_INPUT(third_no_dest, 2);
1822
0
        GET_INPUT(fourth_no_dest, 1);
1823
0
      } else {
1824
0
        szsrc -= 4;
1825
0
        src += 4;
1826
0
        decode = -1;
1827
0
        ch = '\0';
1828
0
      }
1829
0
      destidx += 3;
1830
0
    }
1831
0
  }
1832
1833
0
#undef GET_INPUT
1834
1835
  // if the loop terminated because we read a bad character, return
1836
  // now.
1837
0
  if (decode < 0 && ch != '\0' &&
1838
0
      ch != kPad64Equals && ch != kPad64Dot && !ascii_isspace(ch))
1839
0
    return -1;
1840
1841
0
  if (ch == kPad64Equals || ch == kPad64Dot) {
1842
    // if we stopped by hitting an '=' or '.', un-read that character -- we'll
1843
    // look at it again when we count to check for the proper number of
1844
    // equals signs at the end.
1845
0
    ++szsrc;
1846
0
    --src;
1847
0
  } else {
1848
    // This loop consumes 1 input byte per iteration.  It's used to
1849
    // clean up the 0-3 input bytes remaining when the first, faster
1850
    // loop finishes.  'temp' contains the data from 'state' input
1851
    // characters read by the first loop.
1852
0
    while (szsrc > 0)  {
1853
0
      --szsrc;
1854
0
      ch = *src++;
1855
0
      decode = unbase64[ch];
1856
0
      if (decode < 0) {
1857
0
        if (ascii_isspace(ch)) {
1858
0
          continue;
1859
0
        } else if (ch == '\0') {
1860
0
          break;
1861
0
        } else if (ch == kPad64Equals || ch == kPad64Dot) {
1862
          // back up one character; we'll read it again when we check
1863
          // for the correct number of pad characters at the end.
1864
0
          ++szsrc;
1865
0
          --src;
1866
0
          break;
1867
0
        } else {
1868
0
          return -1;
1869
0
        }
1870
0
      }
1871
1872
      // Each input character gives us six bits of output.
1873
0
      temp = (temp << 6) | decode;
1874
0
      ++state;
1875
0
      if (state == 4) {
1876
        // If we've accumulated 24 bits of output, write that out as
1877
        // three bytes.
1878
0
        if (dest) {
1879
0
          if (destidx+3 > szdest) return -1;
1880
0
          dest[destidx+2] = temp;
1881
0
          temp >>= 8;
1882
0
          dest[destidx+1] = temp;
1883
0
          temp >>= 8;
1884
0
          dest[destidx] = temp;
1885
0
        }
1886
0
        destidx += 3;
1887
0
        state = 0;
1888
0
        temp = 0;
1889
0
      }
1890
0
    }
1891
0
  }
1892
1893
  // Process the leftover data contained in 'temp' at the end of the input.
1894
0
  int expected_equals = 0;
1895
0
  switch (state) {
1896
0
    case 0:
1897
      // Nothing left over; output is a multiple of 3 bytes.
1898
0
      break;
1899
1900
0
    case 1:
1901
      // Bad input; we have 6 bits left over.
1902
0
      return -1;
1903
1904
0
    case 2:
1905
      // Produce one more output byte from the 12 input bits we have left.
1906
0
      if (dest) {
1907
0
        if (destidx+1 > szdest) return -1;
1908
0
        temp >>= 4;
1909
0
        dest[destidx] = temp;
1910
0
      }
1911
0
      ++destidx;
1912
0
      expected_equals = 2;
1913
0
      break;
1914
1915
0
    case 3:
1916
      // Produce two more output bytes from the 18 input bits we have left.
1917
0
      if (dest) {
1918
0
        if (destidx+2 > szdest) return -1;
1919
0
        temp >>= 2;
1920
0
        dest[destidx+1] = temp;
1921
0
        temp >>= 8;
1922
0
        dest[destidx] = temp;
1923
0
      }
1924
0
      destidx += 2;
1925
0
      expected_equals = 1;
1926
0
      break;
1927
1928
0
    default:
1929
      // state should have no other values at this point.
1930
0
      GOOGLE_LOG(FATAL) << "This can't happen; base64 decoder state = " << state;
1931
0
  }
1932
1933
  // The remainder of the string should be all whitespace, mixed with
1934
  // exactly 0 equals signs, or exactly 'expected_equals' equals
1935
  // signs.  (Always accepting 0 equals signs is a google extension
1936
  // not covered in the RFC, as is accepting dot as the pad character.)
1937
1938
0
  int equals = 0;
1939
0
  while (szsrc > 0 && *src) {
1940
0
    if (*src == kPad64Equals || *src == kPad64Dot)
1941
0
      ++equals;
1942
0
    else if (!ascii_isspace(*src))
1943
0
      return -1;
1944
0
    --szsrc;
1945
0
    ++src;
1946
0
  }
1947
1948
0
  return (equals == 0 || equals == expected_equals) ? destidx : -1;
1949
0
}
1950
1951
// The arrays below were generated by the following code
1952
// #include <sys/time.h>
1953
// #include <stdlib.h>
1954
// #include <string.h>
1955
// #include <stdio.h>
1956
// main()
1957
// {
1958
//   static const char Base64[] =
1959
//     "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
1960
//   const char *pos;
1961
//   int idx, i, j;
1962
//   printf("    ");
1963
//   for (i = 0; i < 255; i += 8) {
1964
//     for (j = i; j < i + 8; j++) {
1965
//       pos = strchr(Base64, j);
1966
//       if ((pos == nullptr) || (j == 0))
1967
//         idx = -1;
1968
//       else
1969
//         idx = pos - Base64;
1970
//       if (idx == -1)
1971
//         printf(" %2d,     ", idx);
1972
//       else
1973
//         printf(" %2d/""*%c*""/,", idx, j);
1974
//     }
1975
//     printf("\n    ");
1976
//   }
1977
// }
1978
//
1979
// where the value of "Base64[]" was replaced by one of the base-64 conversion
1980
// tables from the functions below.
1981
static const signed char kUnBase64[] = {
1982
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
1983
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
1984
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
1985
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
1986
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
1987
  -1,      -1,      -1,      62/*+*/, -1,      -1,      -1,      63/*/ */,
1988
  52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
1989
  60/*8*/, 61/*9*/, -1,      -1,      -1,      -1,      -1,      -1,
1990
  -1,       0/*A*/,  1/*B*/,  2/*C*/,  3/*D*/,  4/*E*/,  5/*F*/,  6/*G*/,
1991
   7/*H*/,  8/*I*/,  9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
1992
  15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
1993
  23/*X*/, 24/*Y*/, 25/*Z*/, -1,      -1,      -1,      -1,      -1,
1994
  -1,      26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
1995
  33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
1996
  41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
1997
  49/*x*/, 50/*y*/, 51/*z*/, -1,      -1,      -1,      -1,      -1,
1998
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
1999
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2000
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2001
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2002
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2003
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2004
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2005
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2006
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2007
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2008
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2009
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2010
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2011
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2012
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2013
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1
2014
};
2015
static const signed char kUnWebSafeBase64[] = {
2016
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2017
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2018
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2019
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2020
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2021
  -1,      -1,      -1,      -1,      -1,      62/*-*/, -1,      -1,
2022
  52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
2023
  60/*8*/, 61/*9*/, -1,      -1,      -1,      -1,      -1,      -1,
2024
  -1,       0/*A*/,  1/*B*/,  2/*C*/,  3/*D*/,  4/*E*/,  5/*F*/,  6/*G*/,
2025
   7/*H*/,  8/*I*/,  9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
2026
  15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
2027
  23/*X*/, 24/*Y*/, 25/*Z*/, -1,      -1,      -1,      -1,      63/*_*/,
2028
  -1,      26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
2029
  33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
2030
  41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
2031
  49/*x*/, 50/*y*/, 51/*z*/, -1,      -1,      -1,      -1,      -1,
2032
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2033
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2034
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2035
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2036
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2037
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2038
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2039
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2040
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2041
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2042
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2043
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2044
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2045
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2046
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
2047
  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1
2048
};
2049
2050
0
int WebSafeBase64Unescape(const char *src, int szsrc, char *dest, int szdest) {
2051
0
  return Base64UnescapeInternal(src, szsrc, dest, szdest, kUnWebSafeBase64);
2052
0
}
2053
2054
static bool Base64UnescapeInternal(const char *src, int slen, std::string *dest,
2055
0
                                   const signed char *unbase64) {
2056
  // Determine the size of the output string.  Base64 encodes every 3 bytes into
2057
  // 4 characters.  any leftover chars are added directly for good measure.
2058
  // This is documented in the base64 RFC: http://tools.ietf.org/html/rfc3548
2059
0
  const int dest_len = 3 * (slen / 4) + (slen % 4);
2060
2061
0
  dest->resize(dest_len);
2062
2063
  // We are getting the destination buffer by getting the beginning of the
2064
  // string and converting it into a char *.
2065
0
  const int len = Base64UnescapeInternal(src, slen, string_as_array(dest),
2066
0
                                         dest_len, unbase64);
2067
0
  if (len < 0) {
2068
0
    dest->clear();
2069
0
    return false;
2070
0
  }
2071
2072
  // could be shorter if there was padding
2073
0
  GOOGLE_DCHECK_LE(len, dest_len);
2074
0
  dest->erase(len);
2075
2076
0
  return true;
2077
0
}
2078
2079
0
bool Base64Unescape(StringPiece src, std::string *dest) {
2080
0
  return Base64UnescapeInternal(src.data(), src.size(), dest, kUnBase64);
2081
0
}
2082
2083
0
bool WebSafeBase64Unescape(StringPiece src, std::string *dest) {
2084
0
  return Base64UnescapeInternal(src.data(), src.size(), dest, kUnWebSafeBase64);
2085
0
}
2086
2087
int Base64EscapeInternal(const unsigned char *src, int szsrc,
2088
                         char *dest, int szdest, const char *base64,
2089
0
                         bool do_padding) {
2090
0
  static const char kPad64 = '=';
2091
2092
0
  if (szsrc <= 0) return 0;
2093
2094
0
  if (szsrc * 4 > szdest * 3) return 0;
2095
2096
0
  char *cur_dest = dest;
2097
0
  const unsigned char *cur_src = src;
2098
2099
0
  char *limit_dest = dest + szdest;
2100
0
  const unsigned char *limit_src = src + szsrc;
2101
2102
  // Three bytes of data encodes to four characters of cyphertext.
2103
  // So we can pump through three-byte chunks atomically.
2104
0
  while (cur_src < limit_src - 3) {  // keep going as long as we have >= 32 bits
2105
0
    uint32 in = BigEndian::Load32(cur_src) >> 8;
2106
2107
0
    cur_dest[0] = base64[in >> 18];
2108
0
    in &= 0x3FFFF;
2109
0
    cur_dest[1] = base64[in >> 12];
2110
0
    in &= 0xFFF;
2111
0
    cur_dest[2] = base64[in >> 6];
2112
0
    in &= 0x3F;
2113
0
    cur_dest[3] = base64[in];
2114
2115
0
    cur_dest += 4;
2116
0
    cur_src += 3;
2117
0
  }
2118
  // To save time, we didn't update szdest or szsrc in the loop.  So do it now.
2119
0
  szdest = limit_dest - cur_dest;
2120
0
  szsrc = limit_src - cur_src;
2121
2122
  /* now deal with the tail (<=3 bytes) */
2123
0
  switch (szsrc) {
2124
0
    case 0:
2125
      // Nothing left; nothing more to do.
2126
0
      break;
2127
0
    case 1: {
2128
      // One byte left: this encodes to two characters, and (optionally)
2129
      // two pad characters to round out the four-character cypherblock.
2130
0
      if ((szdest -= 2) < 0) return 0;
2131
0
      uint32 in = cur_src[0];
2132
0
      cur_dest[0] = base64[in >> 2];
2133
0
      in &= 0x3;
2134
0
      cur_dest[1] = base64[in << 4];
2135
0
      cur_dest += 2;
2136
0
      if (do_padding) {
2137
0
        if ((szdest -= 2) < 0) return 0;
2138
0
        cur_dest[0] = kPad64;
2139
0
        cur_dest[1] = kPad64;
2140
0
        cur_dest += 2;
2141
0
      }
2142
0
      break;
2143
0
    }
2144
0
    case 2: {
2145
      // Two bytes left: this encodes to three characters, and (optionally)
2146
      // one pad character to round out the four-character cypherblock.
2147
0
      if ((szdest -= 3) < 0) return 0;
2148
0
      uint32 in = BigEndian::Load16(cur_src);
2149
0
      cur_dest[0] = base64[in >> 10];
2150
0
      in &= 0x3FF;
2151
0
      cur_dest[1] = base64[in >> 4];
2152
0
      in &= 0x00F;
2153
0
      cur_dest[2] = base64[in << 2];
2154
0
      cur_dest += 3;
2155
0
      if (do_padding) {
2156
0
        if ((szdest -= 1) < 0) return 0;
2157
0
        cur_dest[0] = kPad64;
2158
0
        cur_dest += 1;
2159
0
      }
2160
0
      break;
2161
0
    }
2162
0
    case 3: {
2163
      // Three bytes left: same as in the big loop above.  We can't do this in
2164
      // the loop because the loop above always reads 4 bytes, and the fourth
2165
      // byte is past the end of the input.
2166
0
      if ((szdest -= 4) < 0) return 0;
2167
0
      uint32 in = (cur_src[0] << 16) + BigEndian::Load16(cur_src + 1);
2168
0
      cur_dest[0] = base64[in >> 18];
2169
0
      in &= 0x3FFFF;
2170
0
      cur_dest[1] = base64[in >> 12];
2171
0
      in &= 0xFFF;
2172
0
      cur_dest[2] = base64[in >> 6];
2173
0
      in &= 0x3F;
2174
0
      cur_dest[3] = base64[in];
2175
0
      cur_dest += 4;
2176
0
      break;
2177
0
    }
2178
0
    default:
2179
      // Should not be reached: blocks of 4 bytes are handled
2180
      // in the while loop before this switch statement.
2181
0
      GOOGLE_LOG(FATAL) << "Logic problem? szsrc = " << szsrc;
2182
0
      break;
2183
0
  }
2184
0
  return (cur_dest - dest);
2185
0
}
2186
2187
static const char kBase64Chars[] =
2188
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
2189
2190
static const char kWebSafeBase64Chars[] =
2191
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
2192
2193
0
int Base64Escape(const unsigned char *src, int szsrc, char *dest, int szdest) {
2194
0
  return Base64EscapeInternal(src, szsrc, dest, szdest, kBase64Chars, true);
2195
0
}
2196
int WebSafeBase64Escape(const unsigned char *src, int szsrc, char *dest,
2197
0
                        int szdest, bool do_padding) {
2198
0
  return Base64EscapeInternal(src, szsrc, dest, szdest,
2199
0
                              kWebSafeBase64Chars, do_padding);
2200
0
}
2201
2202
void Base64EscapeInternal(const unsigned char *src, int szsrc,
2203
                          std::string *dest, bool do_padding,
2204
0
                          const char *base64_chars) {
2205
0
  const int calc_escaped_size =
2206
0
    CalculateBase64EscapedLen(szsrc, do_padding);
2207
0
  dest->resize(calc_escaped_size);
2208
0
  const int escaped_len = Base64EscapeInternal(src, szsrc,
2209
0
                                               string_as_array(dest),
2210
0
                                               dest->size(),
2211
0
                                               base64_chars,
2212
0
                                               do_padding);
2213
0
  GOOGLE_DCHECK_EQ(calc_escaped_size, escaped_len);
2214
0
  dest->erase(escaped_len);
2215
0
}
2216
2217
void Base64Escape(const unsigned char *src, int szsrc, std::string *dest,
2218
0
                  bool do_padding) {
2219
0
  Base64EscapeInternal(src, szsrc, dest, do_padding, kBase64Chars);
2220
0
}
2221
2222
void WebSafeBase64Escape(const unsigned char *src, int szsrc, std::string *dest,
2223
0
                         bool do_padding) {
2224
0
  Base64EscapeInternal(src, szsrc, dest, do_padding, kWebSafeBase64Chars);
2225
0
}
2226
2227
0
void Base64Escape(StringPiece src, std::string *dest) {
2228
0
  Base64Escape(reinterpret_cast<const unsigned char*>(src.data()),
2229
0
               src.size(), dest, true);
2230
0
}
2231
2232
0
void WebSafeBase64Escape(StringPiece src, std::string *dest) {
2233
0
  WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()),
2234
0
                      src.size(), dest, false);
2235
0
}
2236
2237
0
void WebSafeBase64EscapeWithPadding(StringPiece src, std::string *dest) {
2238
0
  WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()),
2239
0
                      src.size(), dest, true);
2240
0
}
2241
2242
// Helper to append a Unicode code point to a string as UTF8, without bringing
2243
// in any external dependencies.
2244
0
int EncodeAsUTF8Char(uint32 code_point, char* output) {
2245
0
  uint32 tmp = 0;
2246
0
  int len = 0;
2247
0
  if (code_point <= 0x7f) {
2248
0
    tmp = code_point;
2249
0
    len = 1;
2250
0
  } else if (code_point <= 0x07ff) {
2251
0
    tmp = 0x0000c080 |
2252
0
        ((code_point & 0x07c0) << 2) |
2253
0
        (code_point & 0x003f);
2254
0
    len = 2;
2255
0
  } else if (code_point <= 0xffff) {
2256
0
    tmp = 0x00e08080 |
2257
0
        ((code_point & 0xf000) << 4) |
2258
0
        ((code_point & 0x0fc0) << 2) |
2259
0
        (code_point & 0x003f);
2260
0
    len = 3;
2261
0
  } else {
2262
    // UTF-16 is only defined for code points up to 0x10FFFF, and UTF-8 is
2263
    // normally only defined up to there as well.
2264
0
    tmp = 0xf0808080 |
2265
0
        ((code_point & 0x1c0000) << 6) |
2266
0
        ((code_point & 0x03f000) << 4) |
2267
0
        ((code_point & 0x000fc0) << 2) |
2268
0
        (code_point & 0x003f);
2269
0
    len = 4;
2270
0
  }
2271
0
  tmp = ghtonl(tmp);
2272
0
  memcpy(output, reinterpret_cast<const char*>(&tmp) + sizeof(tmp) - len, len);
2273
0
  return len;
2274
0
}
2275
2276
// Table of UTF-8 character lengths, based on first byte
2277
static const unsigned char kUTF8LenTbl[256] = {
2278
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2279
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2280
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2281
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2282
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2283
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2284
2285
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2286
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2287
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
2288
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2289
    2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2290
    3, 3, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
2291
2292
// Return length of a single UTF-8 source character
2293
0
int UTF8FirstLetterNumBytes(const char* src, int len) {
2294
0
  if (len == 0) {
2295
0
    return 0;
2296
0
  }
2297
0
  return kUTF8LenTbl[*reinterpret_cast<const uint8*>(src)];
2298
0
}
2299
2300
// ----------------------------------------------------------------------
2301
// CleanStringLineEndings()
2302
//   Clean up a multi-line string to conform to Unix line endings.
2303
//   Reads from src and appends to dst, so usually dst should be empty.
2304
//
2305
//   If there is no line ending at the end of a non-empty string, it can
2306
//   be added automatically.
2307
//
2308
//   Four different types of input are correctly handled:
2309
//
2310
//     - Unix/Linux files: line ending is LF: pass through unchanged
2311
//
2312
//     - DOS/Windows files: line ending is CRLF: convert to LF
2313
//
2314
//     - Legacy Mac files: line ending is CR: convert to LF
2315
//
2316
//     - Garbled files: random line endings: convert gracefully
2317
//                      lonely CR, lonely LF, CRLF: convert to LF
2318
//
2319
//   @param src The multi-line string to convert
2320
//   @param dst The converted string is appended to this string
2321
//   @param auto_end_last_line Automatically terminate the last line
2322
//
2323
//   Limitations:
2324
//
2325
//     This does not do the right thing for CRCRLF files created by
2326
//     broken programs that do another Unix->DOS conversion on files
2327
//     that are already in CRLF format.  For this, a two-pass approach
2328
//     brute-force would be needed that
2329
//
2330
//       (1) determines the presence of LF (first one is ok)
2331
//       (2) if yes, removes any CR, else convert every CR to LF
2332
2333
void CleanStringLineEndings(const std::string &src, std::string *dst,
2334
0
                            bool auto_end_last_line) {
2335
0
  if (dst->empty()) {
2336
0
    dst->append(src);
2337
0
    CleanStringLineEndings(dst, auto_end_last_line);
2338
0
  } else {
2339
0
    std::string tmp = src;
2340
0
    CleanStringLineEndings(&tmp, auto_end_last_line);
2341
0
    dst->append(tmp);
2342
0
  }
2343
0
}
2344
2345
0
void CleanStringLineEndings(std::string *str, bool auto_end_last_line) {
2346
0
  ptrdiff_t output_pos = 0;
2347
0
  bool r_seen = false;
2348
0
  ptrdiff_t len = str->size();
2349
2350
0
  char *p = &(*str)[0];
2351
2352
0
  for (ptrdiff_t input_pos = 0; input_pos < len;) {
2353
0
    if (!r_seen && input_pos + 8 < len) {
2354
0
      uint64_t v = GOOGLE_UNALIGNED_LOAD64(p + input_pos);
2355
      // Loop over groups of 8 bytes at a time until we come across
2356
      // a word that has a byte whose value is less than or equal to
2357
      // '\r' (i.e. could contain a \n (0x0a) or a \r (0x0d) ).
2358
      //
2359
      // We use a has_less macro that quickly tests a whole 64-bit
2360
      // word to see if any of the bytes has a value < N.
2361
      //
2362
      // For more details, see:
2363
      //   http://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
2364
0
#define has_less(x, n) (((x) - ~0ULL / 255 * (n)) & ~(x) & ~0ULL / 255 * 128)
2365
0
      if (!has_less(v, '\r' + 1)) {
2366
0
#undef has_less
2367
        // No byte in this word has a value that could be a \r or a \n
2368
0
        if (output_pos != input_pos) {
2369
0
          GOOGLE_UNALIGNED_STORE64(p + output_pos, v);
2370
0
        }
2371
0
        input_pos += 8;
2372
0
        output_pos += 8;
2373
0
        continue;
2374
0
      }
2375
0
    }
2376
0
    std::string::const_reference in = p[input_pos];
2377
0
    if (in == '\r') {
2378
0
      if (r_seen) p[output_pos++] = '\n';
2379
0
      r_seen = true;
2380
0
    } else if (in == '\n') {
2381
0
      if (input_pos != output_pos)
2382
0
        p[output_pos++] = '\n';
2383
0
      else
2384
0
        output_pos++;
2385
0
      r_seen = false;
2386
0
    } else {
2387
0
      if (r_seen) p[output_pos++] = '\n';
2388
0
      r_seen = false;
2389
0
      if (input_pos != output_pos)
2390
0
        p[output_pos++] = in;
2391
0
      else
2392
0
        output_pos++;
2393
0
    }
2394
0
    input_pos++;
2395
0
  }
2396
0
  if (r_seen ||
2397
0
      (auto_end_last_line && output_pos > 0 && p[output_pos - 1] != '\n')) {
2398
0
    str->resize(output_pos + 1);
2399
0
    str->operator[](output_pos) = '\n';
2400
0
  } else if (output_pos < len) {
2401
0
    str->resize(output_pos);
2402
0
  }
2403
0
}
2404
2405
namespace internal {
2406
2407
// ----------------------------------------------------------------------
2408
// NoLocaleStrtod()
2409
//   This code will make you cry.
2410
// ----------------------------------------------------------------------
2411
2412
namespace {
2413
2414
// Returns a string identical to *input except that the character pointed to
2415
// by radix_pos (which should be '.') is replaced with the locale-specific
2416
// radix character.
2417
0
std::string LocalizeRadix(const char *input, const char *radix_pos) {
2418
  // Determine the locale-specific radix character by calling sprintf() to
2419
  // print the number 1.5, then stripping off the digits.  As far as I can
2420
  // tell, this is the only portable, thread-safe way to get the C library
2421
  // to divuldge the locale's radix character.  No, localeconv() is NOT
2422
  // thread-safe.
2423
0
  char temp[16];
2424
0
  int size = snprintf(temp, sizeof(temp), "%.1f", 1.5);
2425
0
  GOOGLE_CHECK_EQ(temp[0], '1');
2426
0
  GOOGLE_CHECK_EQ(temp[size - 1], '5');
2427
0
  GOOGLE_CHECK_LE(size, 6);
2428
2429
  // Now replace the '.' in the input with it.
2430
0
  std::string result;
2431
0
  result.reserve(strlen(input) + size - 3);
2432
0
  result.append(input, radix_pos);
2433
0
  result.append(temp + 1, size - 2);
2434
0
  result.append(radix_pos + 1);
2435
0
  return result;
2436
0
}
2437
2438
}  // namespace
2439
2440
0
double NoLocaleStrtod(const char *str, char **endptr) {
2441
  // We cannot simply set the locale to "C" temporarily with setlocale()
2442
  // as this is not thread-safe.  Instead, we try to parse in the current
2443
  // locale first.  If parsing stops at a '.' character, then this is a
2444
  // pretty good hint that we're actually in some other locale in which
2445
  // '.' is not the radix character.
2446
2447
0
  char *temp_endptr;
2448
0
  double result = strtod(str, &temp_endptr);
2449
0
  if (endptr != NULL) *endptr = temp_endptr;
2450
0
  if (*temp_endptr != '.') return result;
2451
2452
  // Parsing halted on a '.'.  Perhaps we're in a different locale?  Let's
2453
  // try to replace the '.' with a locale-specific radix character and
2454
  // try again.
2455
0
  std::string localized = LocalizeRadix(str, temp_endptr);
2456
0
  const char *localized_cstr = localized.c_str();
2457
0
  char *localized_endptr;
2458
0
  result = strtod(localized_cstr, &localized_endptr);
2459
0
  if ((localized_endptr - localized_cstr) > (temp_endptr - str)) {
2460
    // This attempt got further, so replacing the decimal must have helped.
2461
    // Update endptr to point at the right location.
2462
0
    if (endptr != NULL) {
2463
      // size_diff is non-zero if the localized radix has multiple bytes.
2464
0
      int size_diff = localized.size() - strlen(str);
2465
      // const_cast is necessary to match the strtod() interface.
2466
0
      *endptr = const_cast<char *>(
2467
0
          str + (localized_endptr - localized_cstr - size_diff));
2468
0
    }
2469
0
  }
2470
2471
0
  return result;
2472
0
}
2473
2474
}  // namespace internal
2475
2476
}  // namespace protobuf
2477
}  // namespace google