/src/serenity/Userland/Libraries/LibCrypto/PK/RSA.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org> |
3 | | * |
4 | | * SPDX-License-Identifier: BSD-2-Clause |
5 | | */ |
6 | | |
7 | | #include <AK/Debug.h> |
8 | | #include <AK/Random.h> |
9 | | #include <AK/ScopeGuard.h> |
10 | | #include <LibCrypto/ASN1/ASN1.h> |
11 | | #include <LibCrypto/ASN1/DER.h> |
12 | | #include <LibCrypto/ASN1/PEM.h> |
13 | | #include <LibCrypto/PK/RSA.h> |
14 | | |
15 | | namespace Crypto { |
16 | | namespace PK { |
17 | | |
18 | | static constexpr Array<int, 7> pkcs8_rsa_key_oid { 1, 2, 840, 113549, 1, 1, 1 }; |
19 | | |
20 | | RSA::KeyPairType RSA::parse_rsa_key(ReadonlyBytes der) |
21 | 28 | { |
22 | | // we are going to assign to at least one of these |
23 | 28 | KeyPairType keypair; |
24 | | |
25 | 28 | ASN1::Decoder decoder(der); |
26 | | // There are four possible (supported) formats: |
27 | | // PKCS#1 private key |
28 | | // PKCS#1 public key |
29 | | // PKCS#8 private key |
30 | | // PKCS#8 public key |
31 | | |
32 | | // They're all a single sequence, so let's check that first |
33 | 28 | { |
34 | 28 | auto result = decoder.peek(); |
35 | 28 | if (result.is_error()) { |
36 | | // Bad data. |
37 | 2 | dbgln_if(RSA_PARSE_DEBUG, "RSA key parse failed: {}", result.error()); |
38 | 2 | return keypair; |
39 | 2 | } |
40 | 26 | auto tag = result.value(); |
41 | 26 | if (tag.kind != ASN1::Kind::Sequence) { |
42 | 6 | dbgln_if(RSA_PARSE_DEBUG, "RSA key parse failed: Expected a Sequence but got {}", ASN1::kind_name(tag.kind)); |
43 | 6 | return keypair; |
44 | 6 | } |
45 | 26 | } |
46 | | |
47 | | // Then enter the sequence |
48 | 20 | { |
49 | 20 | auto error = decoder.enter(); |
50 | 20 | if (error.has_value()) { |
51 | | // Something was weird with the input. |
52 | 1 | dbgln_if(RSA_PARSE_DEBUG, "RSA key parse failed: {}", error.value()); |
53 | 1 | return keypair; |
54 | 1 | } |
55 | 20 | } |
56 | | |
57 | 19 | bool has_read_error = false; |
58 | | |
59 | 19 | auto const check_if_pkcs8_rsa_key = [&] { |
60 | | // see if it's a sequence: |
61 | 19 | auto tag_result = decoder.peek(); |
62 | 19 | if (tag_result.is_error()) { |
63 | | // Decode error :shrug: |
64 | 1 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: {}", tag_result.error()); |
65 | 1 | return false; |
66 | 1 | } |
67 | | |
68 | 18 | auto tag = tag_result.value(); |
69 | 18 | if (tag.kind != ASN1::Kind::Sequence) { |
70 | | // We don't know what this is, but it sure isn't a PKCS#8 key. |
71 | 9 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: Expected a Sequence but got {}", ASN1::kind_name(tag.kind)); |
72 | 9 | return false; |
73 | 9 | } |
74 | | |
75 | | // It's a sequence, now let's see if it's actually an RSA key. |
76 | 9 | auto error = decoder.enter(); |
77 | 9 | if (error.has_value()) { |
78 | | // Shenanigans! |
79 | 1 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: {}", error.value()); |
80 | 1 | return false; |
81 | 1 | } |
82 | | |
83 | 8 | ScopeGuard leave { [&] { |
84 | 8 | auto error = decoder.leave(); |
85 | 8 | if (error.has_value()) { |
86 | 0 | dbgln_if(RSA_PARSE_DEBUG, "RSA key parse failed: {}", error.value()); |
87 | 0 | has_read_error = true; |
88 | 0 | } |
89 | 8 | } }; |
90 | | |
91 | | // Now let's read the OID. |
92 | 8 | auto oid_result = decoder.read<Vector<int>>(); |
93 | 8 | if (oid_result.is_error()) { |
94 | 8 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: {}", oid_result.error()); |
95 | 8 | return false; |
96 | 8 | } |
97 | | |
98 | 0 | auto oid = oid_result.release_value(); |
99 | | // Now let's check that the OID matches "RSA key" |
100 | 0 | if (oid != pkcs8_rsa_key_oid) { |
101 | | // Oh well. not an RSA key at all. |
102 | 0 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: Not an RSA key"); |
103 | 0 | return false; |
104 | 0 | } |
105 | | |
106 | 0 | return true; |
107 | 0 | }; |
108 | | |
109 | 19 | auto integer_result = decoder.read<UnsignedBigInteger>(); |
110 | | |
111 | 19 | if (!integer_result.is_error()) { |
112 | 0 | auto first_integer = integer_result.release_value(); |
113 | | |
114 | | // It's either a PKCS#1 key, or a PKCS#8 private key. |
115 | | // Check for the PKCS#8 private key right away. |
116 | 0 | if (check_if_pkcs8_rsa_key()) { |
117 | 0 | if (has_read_error) |
118 | 0 | return keypair; |
119 | | // Now read the private key, which is actually an octet string containing the PKCS#1 encoded private key. |
120 | 0 | auto data_result = decoder.read<StringView>(); |
121 | 0 | if (data_result.is_error()) { |
122 | 0 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 private key parse failed: {}", data_result.error()); |
123 | 0 | return keypair; |
124 | 0 | } |
125 | 0 | return parse_rsa_key(data_result.value().bytes()); |
126 | 0 | } |
127 | | |
128 | 0 | if (has_read_error) |
129 | 0 | return keypair; |
130 | | |
131 | | // It's not a PKCS#8 key, so it's a PKCS#1 key (or something we don't support) |
132 | | // if the first integer is zero or one, it's a private key. |
133 | 0 | if (first_integer == 0) { |
134 | | // This is a private key, parse the rest. |
135 | 0 | auto modulus_result = decoder.read<UnsignedBigInteger>(); |
136 | 0 | if (modulus_result.is_error()) { |
137 | 0 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#1 private key parse failed: {}", modulus_result.error()); |
138 | 0 | return keypair; |
139 | 0 | } |
140 | 0 | auto modulus = modulus_result.release_value(); |
141 | |
|
142 | 0 | auto public_exponent_result = decoder.read<UnsignedBigInteger>(); |
143 | 0 | if (public_exponent_result.is_error()) { |
144 | 0 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#1 private key parse failed: {}", public_exponent_result.error()); |
145 | 0 | return keypair; |
146 | 0 | } |
147 | 0 | auto public_exponent = public_exponent_result.release_value(); |
148 | |
|
149 | 0 | auto private_exponent_result = decoder.read<UnsignedBigInteger>(); |
150 | 0 | if (private_exponent_result.is_error()) { |
151 | 0 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#1 private key parse failed: {}", private_exponent_result.error()); |
152 | 0 | return keypair; |
153 | 0 | } |
154 | 0 | auto private_exponent = private_exponent_result.release_value(); |
155 | | |
156 | | // Drop the rest of the fields on the floor, we don't use them. |
157 | | // FIXME: Actually use them... |
158 | 0 | keypair.private_key = { modulus, move(private_exponent), public_exponent }; |
159 | 0 | keypair.public_key = { move(modulus), move(public_exponent) }; |
160 | |
|
161 | 0 | return keypair; |
162 | 0 | } else if (first_integer == 1) { |
163 | | // This is a multi-prime key, we don't support that. |
164 | 0 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#1 private key parse failed: Multi-prime key not supported"); |
165 | 0 | return keypair; |
166 | 0 | } else { |
167 | 0 | auto&& modulus = move(first_integer); |
168 | | |
169 | | // Try reading a public key, `first_integer` is the modulus. |
170 | 0 | auto public_exponent_result = decoder.read<UnsignedBigInteger>(); |
171 | 0 | if (public_exponent_result.is_error()) { |
172 | | // Bad public key. |
173 | 0 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#1 public key parse failed: {}", public_exponent_result.error()); |
174 | 0 | return keypair; |
175 | 0 | } |
176 | | |
177 | 0 | auto public_exponent = public_exponent_result.release_value(); |
178 | 0 | keypair.public_key.set(move(modulus), move(public_exponent)); |
179 | |
|
180 | 0 | return keypair; |
181 | 0 | } |
182 | |
|
183 | 19 | } else { |
184 | | // It wasn't a PKCS#1 key, let's try our luck with PKCS#8. |
185 | 19 | if (!check_if_pkcs8_rsa_key()) |
186 | 19 | return keypair; |
187 | | |
188 | 0 | if (has_read_error) |
189 | 0 | return keypair; |
190 | | |
191 | | // Now we have a bit string, which contains the PKCS#1 encoded public key. |
192 | 0 | auto data_result = decoder.read<BitmapView>(); |
193 | 0 | if (data_result.is_error()) { |
194 | 0 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#8 public key parse failed: {}", data_result.error()); |
195 | 0 | return keypair; |
196 | 0 | } |
197 | | |
198 | | // Now just read it as a PKCS#1 DER. |
199 | 0 | auto data = data_result.release_value(); |
200 | | // FIXME: This is pretty awkward, maybe just generate a zero'd out ByteBuffer from the parser instead? |
201 | 0 | auto padded_data_result = ByteBuffer::create_zeroed(data.size_in_bytes()); |
202 | 0 | if (padded_data_result.is_error()) { |
203 | 0 | dbgln_if(RSA_PARSE_DEBUG, "RSA PKCS#1 key parse failed: Not enough memory"); |
204 | 0 | return keypair; |
205 | 0 | } |
206 | 0 | auto padded_data = padded_data_result.release_value(); |
207 | 0 | padded_data.overwrite(0, data.data(), data.size_in_bytes()); |
208 | |
|
209 | 0 | return parse_rsa_key(padded_data.bytes()); |
210 | 0 | } |
211 | 19 | } |
212 | | |
213 | | void RSA::encrypt(ReadonlyBytes in, Bytes& out) |
214 | 0 | { |
215 | 0 | dbgln_if(CRYPTO_DEBUG, "in size: {}", in.size()); |
216 | 0 | auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size()); |
217 | 0 | if (!(in_integer < m_public_key.modulus())) { |
218 | 0 | dbgln("value too large for key"); |
219 | 0 | out = {}; |
220 | 0 | return; |
221 | 0 | } |
222 | 0 | auto exp = NumberTheory::ModularPower(in_integer, m_public_key.public_exponent(), m_public_key.modulus()); |
223 | 0 | auto size = exp.export_data(out); |
224 | 0 | auto outsize = out.size(); |
225 | 0 | if (size != outsize) { |
226 | 0 | dbgln("POSSIBLE RSA BUG!!! Size mismatch: {} requested but {} bytes generated", outsize, size); |
227 | 0 | out = out.slice(outsize - size, size); |
228 | 0 | } |
229 | 0 | } |
230 | | |
231 | | void RSA::decrypt(ReadonlyBytes in, Bytes& out) |
232 | 0 | { |
233 | | // FIXME: Actually use the private key properly |
234 | |
|
235 | 0 | auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size()); |
236 | 0 | auto exp = NumberTheory::ModularPower(in_integer, m_private_key.private_exponent(), m_private_key.modulus()); |
237 | 0 | auto size = exp.export_data(out); |
238 | |
|
239 | 0 | auto align = m_private_key.length(); |
240 | 0 | auto aligned_size = (size + align - 1) / align * align; |
241 | |
|
242 | 0 | for (auto i = size; i < aligned_size; ++i) |
243 | 0 | out[out.size() - i - 1] = 0; // zero the non-aligned values |
244 | 0 | out = out.slice(out.size() - aligned_size, aligned_size); |
245 | 0 | } |
246 | | |
247 | | void RSA::sign(ReadonlyBytes in, Bytes& out) |
248 | 0 | { |
249 | 0 | auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size()); |
250 | 0 | auto exp = NumberTheory::ModularPower(in_integer, m_private_key.private_exponent(), m_private_key.modulus()); |
251 | 0 | auto size = exp.export_data(out); |
252 | 0 | out = out.slice(out.size() - size, size); |
253 | 0 | } |
254 | | |
255 | | void RSA::verify(ReadonlyBytes in, Bytes& out) |
256 | 0 | { |
257 | 0 | auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size()); |
258 | 0 | auto exp = NumberTheory::ModularPower(in_integer, m_public_key.public_exponent(), m_public_key.modulus()); |
259 | 0 | auto size = exp.export_data(out); |
260 | 0 | out = out.slice(out.size() - size, size); |
261 | 0 | } |
262 | | |
263 | | void RSA::import_private_key(ReadonlyBytes bytes, bool pem) |
264 | 0 | { |
265 | 0 | ByteBuffer buffer; |
266 | 0 | if (pem) { |
267 | 0 | buffer = decode_pem(bytes); |
268 | 0 | bytes = buffer; |
269 | 0 | } |
270 | |
|
271 | 0 | auto key = parse_rsa_key(bytes); |
272 | 0 | if (!key.private_key.length()) { |
273 | 0 | dbgln("We expected to see a private key, but we found none"); |
274 | 0 | VERIFY_NOT_REACHED(); |
275 | 0 | } |
276 | 0 | m_private_key = key.private_key; |
277 | 0 | } |
278 | | |
279 | | void RSA::import_public_key(ReadonlyBytes bytes, bool pem) |
280 | 0 | { |
281 | 0 | ByteBuffer buffer; |
282 | 0 | if (pem) { |
283 | 0 | buffer = decode_pem(bytes); |
284 | 0 | bytes = buffer; |
285 | 0 | } |
286 | |
|
287 | 0 | auto key = parse_rsa_key(bytes); |
288 | 0 | if (!key.public_key.length()) { |
289 | 0 | dbgln("We expected to see a public key, but we found none"); |
290 | 0 | VERIFY_NOT_REACHED(); |
291 | 0 | } |
292 | 0 | m_public_key = key.public_key; |
293 | 0 | } |
294 | | |
295 | | template<typename HashFunction> |
296 | | void RSA_EMSA_PSS<HashFunction>::sign(ReadonlyBytes in, Bytes& out) |
297 | | { |
298 | | // -- encode via EMSA_PSS |
299 | | auto mod_bits = m_rsa.private_key().modulus().trimmed_length() * sizeof(u32) * 8; |
300 | | |
301 | | Vector<u8, 2048> EM; |
302 | | EM.resize(mod_bits); |
303 | | auto EM_buf = Bytes { EM }; |
304 | | m_emsa_pss.encode(in, EM_buf, mod_bits - 1); |
305 | | |
306 | | // -- sign via RSA |
307 | | m_rsa.sign(EM_buf, out); |
308 | | } |
309 | | |
310 | | template<typename HashFunction> |
311 | | VerificationConsistency RSA_EMSA_PSS<HashFunction>::verify(ReadonlyBytes in) |
312 | | { |
313 | | auto mod_bytes = m_rsa.public_key().modulus().trimmed_length() * sizeof(u32); |
314 | | if (in.size() != mod_bytes) |
315 | | return VerificationConsistency::Inconsistent; |
316 | | |
317 | | Vector<u8, 256> EM; |
318 | | EM.resize(mod_bytes); |
319 | | auto EM_buf = Bytes { EM }; |
320 | | |
321 | | // -- verify via RSA |
322 | | m_rsa.verify(in, EM_buf); |
323 | | |
324 | | // -- verify via EMSA_PSS |
325 | | return m_emsa_pss.verify(in, EM, mod_bytes * 8 - 1); |
326 | | } |
327 | | |
328 | | void RSA_PKCS1_EME::encrypt(ReadonlyBytes in, Bytes& out) |
329 | 0 | { |
330 | 0 | auto mod_len = (m_public_key.modulus().trimmed_length() * sizeof(u32) * 8 + 7) / 8; |
331 | 0 | dbgln_if(CRYPTO_DEBUG, "key size: {}", mod_len); |
332 | 0 | if (in.size() > mod_len - 11) { |
333 | 0 | dbgln("message too long :("); |
334 | 0 | out = out.trim(0); |
335 | 0 | return; |
336 | 0 | } |
337 | 0 | if (out.size() < mod_len) { |
338 | 0 | dbgln("output buffer too small"); |
339 | 0 | return; |
340 | 0 | } |
341 | | |
342 | 0 | auto ps_length = mod_len - in.size() - 3; |
343 | 0 | Vector<u8, 8096> ps; |
344 | 0 | ps.resize(ps_length); |
345 | |
|
346 | 0 | fill_with_random(ps.data(), ps_length); |
347 | | // since fill_with_random can create zeros (shocking!) |
348 | | // we have to go through and un-zero the zeros |
349 | 0 | for (size_t i = 0; i < ps_length; ++i) |
350 | 0 | while (!ps[i]) |
351 | 0 | fill_with_random(ps.span().offset(i), 1); |
352 | |
|
353 | 0 | u8 paddings[] { 0x00, 0x02 }; |
354 | |
|
355 | 0 | out.overwrite(0, paddings, 2); |
356 | 0 | out.overwrite(2, ps.data(), ps_length); |
357 | 0 | out.overwrite(2 + ps_length, paddings, 1); |
358 | 0 | out.overwrite(3 + ps_length, in.data(), in.size()); |
359 | 0 | out = out.trim(3 + ps_length + in.size()); // should be a single block |
360 | |
|
361 | 0 | dbgln_if(CRYPTO_DEBUG, "padded output size: {} buffer size: {}", 3 + ps_length + in.size(), out.size()); |
362 | |
|
363 | 0 | RSA::encrypt(out, out); |
364 | 0 | } |
365 | | void RSA_PKCS1_EME::decrypt(ReadonlyBytes in, Bytes& out) |
366 | 0 | { |
367 | 0 | auto mod_len = (m_public_key.modulus().trimmed_length() * sizeof(u32) * 8 + 7) / 8; |
368 | 0 | if (in.size() != mod_len) { |
369 | 0 | dbgln("decryption error: wrong amount of data: {}", in.size()); |
370 | 0 | out = out.trim(0); |
371 | 0 | return; |
372 | 0 | } |
373 | | |
374 | 0 | RSA::decrypt(in, out); |
375 | |
|
376 | 0 | if (out.size() < RSA::output_size()) { |
377 | 0 | dbgln("decryption error: not enough data after decryption: {}", out.size()); |
378 | 0 | out = out.trim(0); |
379 | 0 | return; |
380 | 0 | } |
381 | | |
382 | 0 | if (out[0] != 0x00) { |
383 | 0 | dbgln("invalid padding byte 0 : {}", out[0]); |
384 | 0 | return; |
385 | 0 | } |
386 | | |
387 | 0 | if (out[1] != 0x02) { |
388 | 0 | dbgln("invalid padding byte 1 : {}", out[1]); |
389 | 0 | return; |
390 | 0 | } |
391 | | |
392 | 0 | size_t offset = 2; |
393 | 0 | while (offset < out.size() && out[offset]) |
394 | 0 | ++offset; |
395 | |
|
396 | 0 | if (offset == out.size()) { |
397 | 0 | dbgln("garbage data, no zero to split padding"); |
398 | 0 | return; |
399 | 0 | } |
400 | | |
401 | 0 | ++offset; |
402 | |
|
403 | 0 | if (offset - 3 < 8) { |
404 | 0 | dbgln("PS too small"); |
405 | 0 | return; |
406 | 0 | } |
407 | | |
408 | 0 | out = out.slice(offset, out.size() - offset); |
409 | 0 | } |
410 | | |
411 | | void RSA_PKCS1_EME::sign(ReadonlyBytes, Bytes&) |
412 | 0 | { |
413 | 0 | dbgln("FIXME: RSA_PKCS_EME::sign"); |
414 | 0 | } |
415 | | void RSA_PKCS1_EME::verify(ReadonlyBytes, Bytes&) |
416 | 0 | { |
417 | 0 | dbgln("FIXME: RSA_PKCS_EME::verify"); |
418 | 0 | } |
419 | | } |
420 | | } |