Coverage Report

Created: 2025-09-05 06:52

/src/serenity/Userland/Libraries/LibCrypto/Curves/Ed25519.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
3
 *
4
 * SPDX-License-Identifier: BSD-2-Clause
5
 */
6
7
#include <AK/Random.h>
8
#include <LibCrypto/Curves/Curve25519.h>
9
#include <LibCrypto/Curves/Ed25519.h>
10
#include <LibCrypto/Hash/SHA2.h>
11
12
namespace Crypto::Curves {
13
14
// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
15
ErrorOr<ByteBuffer> Ed25519::generate_private_key()
16
0
{
17
    // The private key is 32 octets (256 bits, corresponding to b) of
18
    // cryptographically secure random data.  See [RFC4086] for a discussion
19
    // about randomness.
20
21
0
    auto buffer = TRY(ByteBuffer::create_uninitialized(key_size()));
22
0
    fill_with_random(buffer);
23
0
    return buffer;
24
0
}
25
26
// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.5
27
ErrorOr<ByteBuffer> Ed25519::generate_public_key(ReadonlyBytes private_key)
28
0
{
29
    // The 32-byte public key is generated by the following steps.
30
31
    // 1. Hash the 32-byte private key using SHA-512, storing the digest in a 64-octet large buffer, denoted h.
32
    // Only the lower 32 bytes are used for generating the public key.
33
0
    auto digest = Crypto::Hash::SHA512::hash(private_key);
34
35
    // NOTE: we do these steps in the opposite order (since its easier to modify s)
36
    // 3. Interpret the buffer as the little-endian integer, forming a secret scalar s.
37
0
    memcpy(s, digest.data, 32);
38
39
    // 2. Prune the buffer:
40
    // The lowest three bits of the first octet are cleared,
41
0
    s[0] &= 0xF8;
42
    // the highest bit of the last octet is cleared,
43
0
    s[31] &= 0x7F;
44
    // and the second highest bit of the last octet is set.
45
0
    s[31] |= 0x40;
46
47
    // Perform a fixed-base scalar multiplication [s]B.
48
0
    point_multiply_scalar(&sb, s, &BASE_POINT);
49
50
    // 4.  The public key A is the encoding of the point [s]B.
51
    // First, encode the y-coordinate (in the range 0 <= y < p) as a little-endian string of 32 octets.
52
    // The most significant bit of the final octet is always zero.
53
    // To form the encoding of the point [s]B, copy the least significant bit of the x coordinate
54
    // to the most significant bit of the final octet.  The result is the public key.
55
0
    auto public_key = TRY(ByteBuffer::create_uninitialized(key_size()));
56
0
    encode_point(&sb, public_key.data());
57
58
0
    return public_key;
59
0
}
60
61
// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.6
62
ErrorOr<ByteBuffer> Ed25519::sign(ReadonlyBytes public_key, ReadonlyBytes private_key, ReadonlyBytes message)
63
0
{
64
    // 1. Hash the private key, 32 octets, using SHA-512.
65
    // Let h denote the resulting digest.
66
0
    auto h = Crypto::Hash::SHA512::hash(private_key);
67
68
    // Construct the secret scalar s from the first half of the digest,
69
0
    memcpy(s, h.data, 32);
70
    // NOTE: This is done later in step 4, but we can also do it here.
71
0
    s[0] &= 0xF8;
72
0
    s[31] &= 0x7F;
73
0
    s[31] |= 0x40;
74
75
    // and the corresponding public key A, as described in the previous section.
76
    // NOTE: The public key A is taken as input to this function.
77
78
    // Let prefix denote the second half of the hash digest, h[32],...,h[63].
79
0
    memcpy(p, h.data + 32, 32);
80
81
    // 2. Compute SHA-512(dom2(F, C) || p || PH(M)), where M is the message to be signed.
82
0
    Crypto::Hash::SHA512 hash;
83
    // NOTE: dom2(F, C) is a blank octet string when signing or verifying Ed25519
84
0
    hash.update(p, 32);
85
    // NOTE: PH(M) = M
86
0
    hash.update(message.data(), message.size());
87
88
    // Interpret the 64-octet digest as a little-endian integer r.
89
    // For efficiency, do this by first reducing r modulo L, the group order of B.
90
0
    auto digest = hash.digest();
91
0
    barrett_reduce(r, digest.data);
92
93
    // 3.  Compute the point [r]B.
94
0
    point_multiply_scalar(&rb, r, &BASE_POINT);
95
96
0
    auto R = TRY(ByteBuffer::create_uninitialized(32));
97
    // Let the string R be the encoding of this point
98
0
    encode_point(&rb, R.data());
99
100
    // 4. Compute SHA512(dom2(F, C) || R || A || PH(M)),
101
    // NOTE: We can reuse hash here, since digest() calls reset()
102
    // NOTE: dom2(F, C) is a blank octet string when signing or verifying Ed25519
103
0
    hash.update(R.data(), R.size());
104
    // NOTE: A == public_key
105
0
    hash.update(public_key.data(), public_key.size());
106
    // NOTE: PH(M) = M
107
0
    hash.update(message.data(), message.size());
108
109
0
    digest = hash.digest();
110
    // and interpret the 64-octet digest as a little-endian integer k.
111
0
    memcpy(k, digest.data, 64);
112
113
    // 5. Compute S = (r + k * s) mod L. For efficiency, again reduce k modulo L first.
114
0
    barrett_reduce(p, k);
115
0
    multiply(k, k + 32, p, s, 32);
116
0
    barrett_reduce(p, k);
117
0
    add(s, p, r, 32);
118
119
    // modular reduction
120
0
    auto reduced_s = TRY(ByteBuffer::create_uninitialized(32));
121
0
    auto is_negative = subtract(p, s, Curve25519::BASE_POINT_L_ORDER, 32);
122
0
    select(reduced_s.data(), p, s, is_negative, 32);
123
124
    // 6.  Form the signature of the concatenation of R (32 octets) and the little-endian encoding of S
125
    // (32 octets; the three most significant bits of the final octet are always zero).
126
0
    auto signature = TRY(ByteBuffer::copy(R));
127
0
    signature.append(reduced_s);
128
129
0
    return signature;
130
0
}
131
132
// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.7
133
bool Ed25519::verify(ReadonlyBytes public_key, ReadonlyBytes signature, ReadonlyBytes message)
134
0
{
135
0
    auto not_valid = false;
136
137
    // 1. To verify a signature on a message M using public key A,
138
    // with F being 0 for Ed25519ctx, 1 for Ed25519ph, and if Ed25519ctx or Ed25519ph is being used, C being the context
139
    // first split the signature into two 32-octet halves.
140
    // If any of the decodings fail (including S being out of range), the signature is invalid.
141
142
    // NOTE: We dont care about F, since we dont implement Ed25519ctx or Ed25519PH
143
    // NOTE: C is the internal state, so its not a parameter
144
145
0
    auto half_signature_size = signature_size() / 2;
146
147
    // Decode the first half as a point R
148
0
    memcpy(r, signature.data(), half_signature_size);
149
150
    // and the second half as an integer S, in the range  0 <= s < L.
151
0
    memcpy(s, signature.data() + half_signature_size, half_signature_size);
152
153
    // NOTE: Ed25519 and Ed448 signatures are not malleable due to the verification check that decoded S is smaller than l.
154
    // Without this check, one can add a multiple of l into a scalar part and still pass signature verification,
155
    // resulting in malleable signatures.
156
0
    auto is_negative = subtract(p, s, Curve25519::BASE_POINT_L_ORDER, half_signature_size);
157
0
    not_valid |= 1 ^ is_negative;
158
159
    // Decode the public key A as point A'.
160
0
    not_valid |= decode_point(&ka, public_key.data());
161
162
    // 2. Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret the 64-octet digest as a little-endian integer k.
163
0
    Crypto::Hash::SHA512 hash;
164
    // NOTE: dom2(F, C) is a blank octet string when signing or verifying Ed25519
165
0
    hash.update(r, half_signature_size);
166
    // NOTE: A == public_key
167
0
    hash.update(public_key.data(), key_size());
168
    // NOTE: PH(M) = M
169
0
    hash.update(message.data(), message.size());
170
171
0
    auto digest = hash.digest();
172
0
    auto k = digest.data;
173
174
    // 3.  Check the group equation [8][S]B = [8]R + [8][k]A'.
175
    // It's sufficient, but not required, to instead check [S]B = R + [k]A'.
176
    // NOTE: For efficiency, do this by first reducing k modulo L.
177
0
    barrett_reduce(k, k);
178
179
    // NOTE: We check [S]B - [k]A' == R
180
0
    Curve25519::modular_subtract(ka.x, Curve25519::ZERO, ka.x);
181
0
    Curve25519::modular_subtract(ka.t, Curve25519::ZERO, ka.t);
182
0
    point_multiply_scalar(&sb, s, &BASE_POINT);
183
0
    point_multiply_scalar(&ka, k, &ka);
184
0
    point_add(&ka, &sb, &ka);
185
0
    encode_point(&ka, p);
186
187
0
    not_valid |= compare(p, r, half_signature_size);
188
189
0
    return !not_valid;
190
0
}
191
192
void Ed25519::point_double(Ed25519Point* result, Ed25519Point const* point)
193
0
{
194
0
    Curve25519::modular_square(a, point->x);
195
0
    Curve25519::modular_square(b, point->y);
196
0
    Curve25519::modular_square(c, point->z);
197
0
    Curve25519::modular_add(c, c, c);
198
0
    Curve25519::modular_add(e, a, b);
199
0
    Curve25519::modular_add(f, point->x, point->y);
200
0
    Curve25519::modular_square(f, f);
201
0
    Curve25519::modular_subtract(f, e, f);
202
0
    Curve25519::modular_subtract(g, a, b);
203
0
    Curve25519::modular_add(h, c, g);
204
0
    Curve25519::modular_multiply(result->x, f, h);
205
0
    Curve25519::modular_multiply(result->y, e, g);
206
0
    Curve25519::modular_multiply(result->z, g, h);
207
0
    Curve25519::modular_multiply(result->t, e, f);
208
0
}
209
210
void Ed25519::point_multiply_scalar(Ed25519Point* result, u8 const* scalar, Ed25519Point const* point)
211
0
{
212
    // Set U to the neutral element (0, 1, 1, 0)
213
0
    Curve25519::set(u.x, 0);
214
0
    Curve25519::set(u.y, 1);
215
0
    Curve25519::set(u.z, 1);
216
0
    Curve25519::set(u.t, 0);
217
218
0
    for (i32 i = Curve25519::BITS - 1; i >= 0; i--) {
219
0
        u8 b = (scalar[i / 8] >> (i % 8)) & 1;
220
221
        // Compute U = 2 * U
222
0
        point_double(&u, &u);
223
        // Compute V = U + P
224
0
        point_add(&v, &u, point);
225
226
        // If b is set, then U = V
227
0
        Curve25519::select(u.x, u.x, v.x, b);
228
0
        Curve25519::select(u.y, u.y, v.y, b);
229
0
        Curve25519::select(u.z, u.z, v.z, b);
230
0
        Curve25519::select(u.t, u.t, v.t, b);
231
0
    }
232
233
0
    Curve25519::copy(result->x, u.x);
234
0
    Curve25519::copy(result->y, u.y);
235
0
    Curve25519::copy(result->z, u.z);
236
0
    Curve25519::copy(result->t, u.t);
237
0
}
238
239
// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.2
240
void Ed25519::encode_point(Ed25519Point* point, u8* data)
241
0
{
242
    // Retrieve affine representation
243
0
    Curve25519::modular_multiply_inverse(point->z, point->z);
244
0
    Curve25519::modular_multiply(point->x, point->x, point->z);
245
0
    Curve25519::modular_multiply(point->y, point->y, point->z);
246
0
    Curve25519::set(point->z, 1);
247
0
    Curve25519::modular_multiply(point->t, point->x, point->y);
248
249
    // First, encode the y-coordinate (in the range 0 <= y < p) as a little-endian string of 32 octets.
250
    // The most significant bit of the final octet is always zero.
251
0
    Curve25519::export_state(point->y, data);
252
253
    // To form the encoding of the point [s]B,
254
    // copy the least significant bit of the x coordinate to the most significant bit of the final octet.
255
0
    data[31] |= (point->x[0] & 1) << 7;
256
0
}
257
258
void Ed25519::barrett_reduce(u8* result, u8 const* input)
259
0
{
260
    // Barrett reduction b = 2^8 && k = 32
261
0
    u8 is_negative;
262
0
    u8 u[33];
263
0
    u8 v[33];
264
265
0
    multiply(NULL, u, input + 31, Curve25519::BARRETT_REDUCTION_QUOTIENT, 33);
266
0
    multiply(v, NULL, u, Curve25519::BASE_POINT_L_ORDER, 33);
267
268
0
    subtract(u, input, v, 33);
269
270
0
    is_negative = subtract(v, u, Curve25519::BASE_POINT_L_ORDER, 33);
271
0
    select(u, v, u, is_negative, 33);
272
0
    is_negative = subtract(v, u, Curve25519::BASE_POINT_L_ORDER, 33);
273
0
    select(u, v, u, is_negative, 33);
274
275
0
    copy(result, u, 32);
276
0
}
277
278
void Ed25519::multiply(u8* result_low, u8* result_high, u8 const* a, u8 const* b, u8 n)
279
0
{
280
    // Comba's algorithm
281
0
    u32 temp = 0;
282
0
    for (u32 i = 0; i < n; i++) {
283
0
        for (u32 j = 0; j <= i; j++) {
284
0
            temp += (uint16_t)a[j] * b[i - j];
285
0
        }
286
287
0
        if (result_low != NULL) {
288
0
            result_low[i] = temp & 0xFF;
289
0
        }
290
291
0
        temp >>= 8;
292
0
    }
293
294
0
    if (result_high != NULL) {
295
0
        for (u32 i = n; i < (2 * n); i++) {
296
0
            for (u32 j = i + 1 - n; j < n; j++) {
297
0
                temp += (uint16_t)a[j] * b[i - j];
298
0
            }
299
300
0
            result_high[i - n] = temp & 0xFF;
301
0
            temp >>= 8;
302
0
        }
303
0
    }
304
0
}
305
306
void Ed25519::add(u8* result, u8 const* a, u8 const* b, u8 n)
307
0
{
308
    // Compute R = A + B
309
0
    u16 temp = 0;
310
0
    for (u8 i = 0; i < n; i++) {
311
0
        temp += a[i];
312
0
        temp += b[i];
313
0
        result[i] = temp & 0xFF;
314
0
        temp >>= 8;
315
0
    }
316
0
}
317
318
u8 Ed25519::subtract(u8* result, u8 const* a, u8 const* b, u8 n)
319
0
{
320
0
    i16 temp = 0;
321
322
    // Compute R = A - B
323
0
    for (i8 i = 0; i < n; i++) {
324
0
        temp += a[i];
325
0
        temp -= b[i];
326
0
        result[i] = temp & 0xFF;
327
0
        temp >>= 8;
328
0
    }
329
330
    // Return 1 if the result of the subtraction is negative
331
0
    return temp & 1;
332
0
}
333
334
void Ed25519::select(u8* r, u8 const* a, u8 const* b, u8 c, u8 n)
335
0
{
336
0
    u8 mask = c - 1;
337
0
    for (u8 i = 0; i < n; i++) {
338
0
        r[i] = (a[i] & mask) | (b[i] & ~mask);
339
0
    }
340
0
}
341
342
// https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.3
343
u32 Ed25519::decode_point(Ed25519Point* point, u8 const* data)
344
0
{
345
0
    u32 u[8];
346
0
    u32 v[8];
347
0
    u32 ret;
348
0
    u64 temp = 19;
349
350
    // 1. First, interpret the string as an integer in little-endian representation.
351
    // Bit 255 of this number is the least significant bit of the x-coordinate and denote this value x_0.
352
0
    u8 x0 = data[31] >> 7;
353
354
    // The y-coordinate is recovered simply by clearing this bit.
355
0
    Curve25519::import_state(point->y, data);
356
0
    point->y[7] &= 0x7FFFFFFF;
357
358
    // Compute U = Y + 19
359
0
    for (u32 i = 0; i < 8; i++) {
360
0
        temp += point->y[i];
361
0
        u[i] = temp & 0xFFFFFFFF;
362
0
        temp >>= 32;
363
0
    }
364
365
    // If the resulting value is >= p, decoding fails.
366
0
    ret = (u[7] >> 31) & 1;
367
368
    // 2. To recover the x-coordinate, the curve equation implies x^2 = (y^2 - 1) / (d y^2 + 1) (mod p).
369
    // The denominator is always non-zero mod p.
370
    // Let u = y^2 - 1 and v = d * y^2 + 1
371
0
    Curve25519::modular_square(v, point->y);
372
0
    Curve25519::modular_subtract_single(u, v, 1);
373
0
    Curve25519::modular_multiply(v, v, Curve25519::CURVE_D);
374
0
    Curve25519::modular_add_single(v, v, 1);
375
376
    // 3. Compute u = sqrt(u / v)
377
0
    ret |= Curve25519::modular_square_root(u, u, v);
378
379
    // If x = 0, and x_0 = 1, decoding fails.
380
0
    ret |= (Curve25519::compare(u, Curve25519::ZERO) ^ 1) & x0;
381
382
    // 4.  Finally, use the x_0 bit to select the right square root.
383
0
    Curve25519::modular_subtract(v, Curve25519::ZERO, u);
384
0
    Curve25519::select(point->x, u, v, (x0 ^ u[0]) & 1);
385
0
    Curve25519::set(point->z, 1);
386
0
    Curve25519::modular_multiply(point->t, point->x, point->y);
387
388
    // Return 0 if the point has been successfully decoded, else 1
389
0
    return ret;
390
0
}
391
392
void Ed25519::point_add(Ed25519Point* result, Ed25519Point const* p, Ed25519Point const* q)
393
0
{
394
    // Compute R = P + Q
395
0
    Curve25519::modular_add(c, p->y, p->x);
396
0
    Curve25519::modular_add(d, q->y, q->x);
397
0
    Curve25519::modular_multiply(a, c, d);
398
0
    Curve25519::modular_subtract(c, p->y, p->x);
399
0
    Curve25519::modular_subtract(d, q->y, q->x);
400
0
    Curve25519::modular_multiply(b, c, d);
401
0
    Curve25519::modular_multiply(c, p->z, q->z);
402
0
    Curve25519::modular_add(c, c, c);
403
0
    Curve25519::modular_multiply(d, p->t, q->t);
404
0
    Curve25519::modular_multiply(d, d, Curve25519::CURVE_D_2);
405
0
    Curve25519::modular_add(e, a, b);
406
0
    Curve25519::modular_subtract(f, a, b);
407
0
    Curve25519::modular_add(g, c, d);
408
0
    Curve25519::modular_subtract(h, c, d);
409
0
    Curve25519::modular_multiply(result->x, f, h);
410
0
    Curve25519::modular_multiply(result->y, e, g);
411
0
    Curve25519::modular_multiply(result->z, g, h);
412
0
    Curve25519::modular_multiply(result->t, e, f);
413
0
}
414
415
u8 Ed25519::compare(u8 const* a, u8 const* b, u8 n)
416
0
{
417
0
    u8 mask = 0;
418
0
    for (u32 i = 0; i < n; i++) {
419
0
        mask |= a[i] ^ b[i];
420
0
    }
421
422
    // Return 0 if A = B, else 1
423
0
    return ((u8)(mask | (~mask + 1))) >> 7;
424
0
}
425
426
void Ed25519::copy(u8* a, u8 const* b, u32 n)
427
0
{
428
0
    for (u32 i = 0; i < n; i++) {
429
0
        a[i] = b[i];
430
0
    }
431
0
}
432
433
}