Coverage Report

Created: 2025-09-27 06:43

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/zerotrie-0.2.2/src/builder/mod.rs
Line
Count
Source
1
// This file is part of ICU4X. For terms of use, please see the file
2
// called LICENSE at the top level of the ICU4X source tree
3
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5
//! # ZeroTrie Builder
6
//!
7
//! There are two implementations of the ZeroTrie Builder:
8
//!
9
//! - [konst::ZeroTrieBuilderConst] allows for human-readable const construction
10
//! - [nonconst::ZeroTrieBuilder] has the full feaure set but requires `alloc`
11
//!
12
//! The two builders follow the same algorithm but have different capabilities.
13
//!
14
//! ## Builder Algorithm Overview
15
//!
16
//! The tries are built backwards, from the last node to the first node. The key step of the
17
//! algorithm is **determining what is the next node to prepend.**
18
//!
19
//! In the simple case of [`ZeroTrieSimpleAscii`], all nodes are binary-search, so if the input
20
//! strings are provided in lexicographic order, there is a simple, deterministic method for
21
//! identifying the next node. This insight is what enables us to make the const builder.
22
//!
23
//! The builder works with the following intermediate state variables:
24
//!
25
//! - `prefix_len` indicates the byte index we are currently processing.
26
//! - `i` and `j` bracket a window of strings in the input that share the same prefix.
27
//! - `current_len` is the length in bytes of the current self-contained trie.
28
//! - `lengths_stack` contains metadata for branch nodes.
29
//!
30
//! What follows is a verbal explanation of the build steps for a trie containing:
31
//!
32
//! - "" → 11
33
//! - "ad" → 22
34
//! - "adef" → 33
35
//! - "adghk" → 44
36
//!
37
//! When a node is prepended, it is shown in **boldface**.
38
//!
39
//! 1. Initialize the builder by setting `i=3`, `j=4`, `prefix_len=5` (the last string),
40
//!    `current_len=0`, and `lengths_stack` empty. Start the main loop.
41
//! 2. Top of loop. The string at `i` is equal in length to `prefix_len`, so we prepend
42
//!    our first node: a **value node 44**, which requires a 2-byte varint. Increase
43
//!    `current_len` to 2.
44
//! 3. Reduce `prefix_len` to 4, read our `key_ascii="k"`, and recalculate `i` and `j`
45
//!    _(this calculation is a long chunk of code in the builder impls)_. Since there is no
46
//!    other string with the prefix "adgh", `i` and `j` stay the same, we prepend an
47
//!    **ASCII node "k"**, increase `current_len` to 3, and continue the main loop.
48
//! 4. Top of loop. The string at `i` is of length 5, but `prefix_len` is 4, so there is
49
//!    no value node to prepend.
50
//! 5. Reduce `prefix_len` to 3, read our `key_ascii="h"`, and recalculate `i` and `j`.
51
//!    There are no other strings sharing the prefix "abg", so we prepend an
52
//!    **ASCII node "h"**, increase `current_len` to 4, and continue the main loop.
53
//! 6. Top of loop. There is still no value node to prepend.
54
//! 7. Reduce `prefix_len` to 2, read our `key_ascii="g"`, and recalculate `i` and `j`.
55
//!    We find that `i=1` and `j=4`, the range of strings sharing the prefix "ad". Since
56
//!    `i` or `j` changed, proceed to evaluate the branch node.
57
//! 8. The last branch byte `ascii_j` for this prefix is "g", which is the same as `key_ascii`,
58
//!    so we are the _last_ target of a branch node. Push an entry onto `lengths_stack`:
59
//!    `BranchMeta { ascii: "g", cumulative_length: 4, local_length: 4, count: 1 }`.
60
//! 9. The first branch byte `ascii_i` for this prefix is "e", which is NOT equal to `key_ascii`,
61
//!    so we are _not the first_ target of a branch node. We therefore start evaluating the
62
//!    string preceding where we were at the top of the current loop. We set `i=2`, `j=3`,
63
//!    `prefix_len=4` (length of the string at `i`), and continue the main loop.
64
//! 10. Top of loop. Since the string at `i` is equal in length to `prefix_len`, we prepend a
65
//!     **value node 33** (which requires a 2-byte varint) and increase `current_len` to 2.
66
//! 11. Reduce `prefix_len` to 3, read our `key_ascii="f"`, and recalculate `i` and `j`.
67
//!     They stay the same, so we prepend an **ASCII node "f"**, increase `current_len` to 3,
68
//!     and continue the main loop.
69
//! 12. Top of loop. No value node this time.
70
//! 13. Reduce `prefix_len` to 2, read our `key_ascii="e"`, and recalculate `i` and `j`.
71
//!     They go back to `i=1` and `j=4`.
72
//! 14. The last branch byte `ascii_j` for this prefix is "g", which is NOT equal to `key_ascii`,
73
//!     so we are _not the last_ target of a branch node. We peek at the entry at the front of
74
//!     the lengths stack and use it to push another entry onto the stack:
75
//!     `BranchMeta { ascii: "e", cumulative_length: 7, local_length: 3, count: 2 }`
76
//! 15. The first branch byte `ascii_i` for this prefix is "e", which is the same as `key_ascii`,
77
//!     wo we are the _first_ target of a branch node. We can therefore proceed to prepend the
78
//!     metadata for the branch node. We peek at the top of the stack and find that there are 2
79
//!     tries reachable from this branch and they have a total byte length of 5. We then pull off
80
//!     2 entries from the stack into a local variable `branch_metas`. From here, we write out
81
//!     the **offset table**, **lookup table**, and **branch head node**, which are determined
82
//!     from the metadata entries. We set `current_len` to the length of the two tries plus the
83
//!     metadata, which happens to be 11. Then we return to the top of the main loop.
84
//! 16. Top of loop. The string at `i` is length 2, which is the same as `prefix_len`, so we
85
//!     prepend a **value node 22** (2-byte varint) and increase `current_len` to 13.
86
//! 17. Reduce `prefix_len` to 1, read our `key_ascii="d"`, and recalculate `i` and `j`.
87
//!     They stay the same, so we prepend an **ASCII node "d"**, increase `current_len` to 14,
88
//!     and continue the main loop.
89
//! 18. Top of loop. No value node this time.
90
//! 19. Reduce `prefix_len` to 0, read our `key_ascii="a"`, and recalculate `i` and `j`.
91
//!     They change to `i=0` and `j=4`, since all strings have the empty string as a prefix.
92
//!     However, `ascii_i` and `ascii_j` both equal `key_ascii`, so we prepend **ASCII node "a"**,
93
//!     increase `current_len` to 15, and continue the main loop.
94
//! 16. Top of loop. The string at `i` is length 0, which is the same as `prefix_len`, so we
95
//!     prepend a **value node 11** and increase `current_len` to 16.
96
//! 17. We can no longer reduce `prefix_len`, so our trie is complete.
97
//!
98
//! ## Perfect Hash Reordering
99
//!
100
//! When the PHF is added to the mix, the main change is that the strings are no longer in sorted
101
//! order when they are in the trie. To resolve this issue, when adding a branch node, the target
102
//! tries are rearranged in-place in the buffer to be in the correct order for the PHF.
103
//!
104
//! ## Example
105
//!
106
//! Here is the output of the trie described above.
107
//!
108
//! ```
109
//! use zerotrie::ZeroTrieSimpleAscii;
110
//!
111
//! const DATA: [(&str, usize); 4] =
112
//!     [("", 11), ("ad", 22), ("adef", 33), ("adghk", 44)];
113
//!
114
//! // As demonstrated above, the required capacity for this trie is 16 bytes
115
//! const TRIE: ZeroTrieSimpleAscii<[u8; 16]> =
116
//!     ZeroTrieSimpleAscii::from_sorted_str_tuples(&DATA);
117
//!
118
//! assert_eq!(
119
//!     TRIE.as_bytes(),
120
//!     &[
121
//!         0x8B, // value node 11
122
//!         b'a', // ASCII node 'a'
123
//!         b'd', // ASCII node 'd'
124
//!         0x90, // value node 22 lead byte
125
//!         0x06, // value node 22 trail byte
126
//!         0xC2, // branch node 2
127
//!         b'e', // first target of branch
128
//!         b'g', // second target of branch
129
//!         3,    // offset
130
//!         b'f', // ASCII node 'f'
131
//!         0x90, // value node 33 lead byte
132
//!         0x11, // value node 33 trail byte
133
//!         b'h', // ASCII node 'h'
134
//!         b'k', // ASCII node 'k'
135
//!         0x90, // value node 44 lead byte
136
//!         0x1C, // value node 44 trail byte
137
//!     ]
138
//! );
139
//!
140
//! assert_eq!(TRIE.get(b""), Some(11));
141
//! assert_eq!(TRIE.get(b"ad"), Some(22));
142
//! assert_eq!(TRIE.get(b"adef"), Some(33));
143
//! assert_eq!(TRIE.get(b"adghk"), Some(44));
144
//! assert_eq!(TRIE.get(b"unknown"), None);
145
//! ```
146
147
mod branch_meta;
148
pub(crate) mod bytestr;
149
pub(crate) mod konst;
150
#[cfg(feature = "litemap")]
151
mod litemap;
152
#[cfg(feature = "alloc")]
153
pub(crate) mod nonconst;
154
155
use bytestr::ByteStr;
156
157
use super::ZeroTrieSimpleAscii;
158
159
impl<const N: usize> ZeroTrieSimpleAscii<[u8; N]> {
160
    /// **Const Constructor:** Creates an [`ZeroTrieSimpleAscii`] from a sorted slice of keys and values.
161
    ///
162
    /// This function needs to know the exact length of the resulting trie at compile time. To
163
    /// figure out `N`, first set `N` to be too large (say 0xFFFF), then look at the resulting
164
    /// compile error which will tell you how to set `N`, like this:
165
    ///
166
    /// > the evaluated program panicked at 'Buffer too large. Size needed: 17'
167
    ///
168
    /// That error message says you need to set `N` to 17.
169
    ///
170
    /// Also see [`Self::from_sorted_str_tuples`].
171
    ///
172
    /// # Panics
173
    ///
174
    /// Panics if `items` is not sorted or if `N` is not correct.
175
    ///
176
    /// # Examples
177
    ///
178
    /// Create a `const` ZeroTrieSimpleAscii at compile time:
179
    ///
180
    /// ```
181
    /// use zerotrie::ZeroTrieSimpleAscii;
182
    ///
183
    /// // The required capacity for this trie happens to be 17 bytes
184
    /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> =
185
    ///     ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
186
    ///         (b"bar", 2),
187
    ///         (b"bazzoo", 3),
188
    ///         (b"foo", 1),
189
    ///     ]);
190
    ///
191
    /// assert_eq!(TRIE.get(b"foo"), Some(1));
192
    /// assert_eq!(TRIE.get(b"bar"), Some(2));
193
    /// assert_eq!(TRIE.get(b"bazzoo"), Some(3));
194
    /// assert_eq!(TRIE.get(b"unknown"), None);
195
    /// ```
196
    ///
197
    /// Panics if strings are not sorted:
198
    ///
199
    /// ```compile_fail
200
    /// # use zerotrie::ZeroTrieSimpleAscii;
201
    /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
202
    ///     (b"foo", 1),
203
    ///     (b"bar", 2),
204
    ///     (b"bazzoo", 3),
205
    /// ]);
206
    /// ```
207
    ///
208
    /// Panics if capacity is too small:
209
    ///
210
    /// ```compile_fail
211
    /// # use zerotrie::ZeroTrieSimpleAscii;
212
    /// const TRIE: ZeroTrieSimpleAscii<[u8; 15]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
213
    ///     (b"bar", 2),
214
    ///     (b"bazzoo", 3),
215
    ///     (b"foo", 1),
216
    /// ]);
217
    /// ```
218
    ///
219
    /// Panics if capacity is too large:
220
    ///
221
    /// ```compile_fail
222
    /// # use zerotrie::ZeroTrieSimpleAscii;
223
    /// const TRIE: ZeroTrieSimpleAscii<[u8; 20]> = ZeroTrieSimpleAscii::from_sorted_u8_tuples(&[
224
    ///     (b"bar", 2),
225
    ///     (b"bazzoo", 3),
226
    ///     (b"foo", 1),
227
    /// ]);
228
    /// ```
229
0
    pub const fn from_sorted_u8_tuples(tuples: &[(&[u8], usize)]) -> Self {
230
        use konst::*;
231
0
        let byte_str_slice = ByteStr::from_byte_slice_with_value(tuples);
232
0
        let result = ZeroTrieBuilderConst::<N>::from_tuple_slice::<100>(byte_str_slice);
233
0
        match result {
234
0
            Ok(s) => Self::from_store(s.build_or_panic()),
235
0
            Err(_) => panic!("Failed to build ZeroTrie"),
236
        }
237
0
    }
238
239
    /// **Const Constructor:** Creates an [`ZeroTrieSimpleAscii`] from a sorted slice of keys and values.
240
    ///
241
    /// This function needs to know the exact length of the resulting trie at compile time. To
242
    /// figure out `N`, first set `N` to be too large (say 0xFFFF), then look at the resulting
243
    /// compile error which will tell you how to set `N`, like this:
244
    ///
245
    /// > the evaluated program panicked at 'Buffer too large. Size needed: 17'
246
    ///
247
    /// That error message says you need to set `N` to 17.
248
    ///
249
    /// Also see [`Self::from_sorted_u8_tuples`].
250
    ///
251
    /// # Panics
252
    ///
253
    /// Panics if `items` is not sorted, if `N` is not correct, or if any of the strings contain
254
    /// non-ASCII characters.
255
    ///
256
    /// # Examples
257
    ///
258
    /// Create a `const` ZeroTrieSimpleAscii at compile time:
259
    ///
260
    /// ```
261
    /// use zerotrie::ZeroTrieSimpleAscii;
262
    ///
263
    /// // The required capacity for this trie happens to be 17 bytes
264
    /// const TRIE: ZeroTrieSimpleAscii<[u8; 17]> =
265
    ///     ZeroTrieSimpleAscii::from_sorted_str_tuples(&[
266
    ///         ("bar", 2),
267
    ///         ("bazzoo", 3),
268
    ///         ("foo", 1),
269
    ///     ]);
270
    ///
271
    /// assert_eq!(TRIE.get(b"foo"), Some(1));
272
    /// assert_eq!(TRIE.get(b"bar"), Some(2));
273
    /// assert_eq!(TRIE.get(b"bazzoo"), Some(3));
274
    /// assert_eq!(TRIE.get(b"unknown"), None);
275
    /// ```
276
    ///
277
    /// Panics if the strings are not ASCII:
278
    ///
279
    /// ```compile_fail
280
    /// # use zerotrie::ZeroTrieSimpleAscii;
281
    /// const TRIE: ZeroTrieSimpleAscii<[u8; 100]> = ZeroTrieSimpleAscii::from_sorted_str_tuples(&[
282
    ///     ("bár", 2),
283
    ///     ("båzzöo", 3),
284
    ///     ("foo", 1),
285
    /// ]);
286
    /// ```
287
0
    pub const fn from_sorted_str_tuples(tuples: &[(&str, usize)]) -> Self {
288
        use konst::*;
289
0
        let byte_str_slice = ByteStr::from_str_slice_with_value(tuples);
290
        // 100 is the value of `K`, the size of the lengths stack. If compile errors are
291
        // encountered, this number may need to be increased.
292
0
        let result = ZeroTrieBuilderConst::<N>::from_tuple_slice::<100>(byte_str_slice);
293
0
        match result {
294
0
            Ok(s) => Self::from_store(s.build_or_panic()),
295
0
            Err(_) => panic!("Failed to build ZeroTrie"),
296
        }
297
0
    }
298
}