/src/shaderc/third_party/glslang/SPIRV/hex_float.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2015-2016 The Khronos Group Inc. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_ |
16 | | #define LIBSPIRV_UTIL_HEX_FLOAT_H_ |
17 | | |
18 | | #include <cassert> |
19 | | #include <cctype> |
20 | | #include <cmath> |
21 | | #include <cstdint> |
22 | | #include <iomanip> |
23 | | #include <limits> |
24 | | #include <sstream> |
25 | | |
26 | | #include "bitutils.h" |
27 | | |
28 | | namespace spvutils { |
29 | | |
30 | | class Float16 { |
31 | | public: |
32 | 0 | Float16(uint16_t v) : val(v) {} |
33 | 955 | Float16() {} |
34 | 0 | static bool isNan(const Float16& val) { |
35 | 0 | return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0); |
36 | 0 | } |
37 | | // Returns true if the given value is any kind of infinity. |
38 | 0 | static bool isInfinity(const Float16& val) { |
39 | 0 | return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0); |
40 | 0 | } |
41 | 0 | Float16(const Float16& other) { val = other.val; } |
42 | 955 | uint16_t get_value() const { return val; } |
43 | | |
44 | | // Returns the maximum normal value. |
45 | 0 | static Float16 max() { return Float16(0x7bff); } |
46 | | // Returns the lowest normal value. |
47 | 0 | static Float16 lowest() { return Float16(0xfbff); } |
48 | | |
49 | | private: |
50 | | uint16_t val; |
51 | | }; |
52 | | |
53 | | class FloatE5M2 { |
54 | | public: |
55 | 0 | FloatE5M2(uint8_t v) : val(v) {} |
56 | 0 | FloatE5M2() {} |
57 | 0 | static bool isNan(const FloatE5M2& val) { |
58 | 0 | return ((val.val & 0x7C) == 0x7C) && ((val.val & 0x3) != 0); |
59 | 0 | } |
60 | | // Returns true if the given value is any kind of infinity. |
61 | 0 | static bool isInfinity(const FloatE5M2& val) { |
62 | 0 | return ((val.val & 0x7C) == 0x7C) && ((val.val & 0x3) == 0); |
63 | 0 | } |
64 | 0 | FloatE5M2(const FloatE5M2& other) { val = other.val; } |
65 | 0 | uint8_t get_value() const { return val; } |
66 | | |
67 | | // Returns the maximum normal value. |
68 | 0 | static FloatE5M2 max() { return FloatE5M2(0x7B); } |
69 | | // Returns the lowest normal value. |
70 | 0 | static FloatE5M2 lowest() { return FloatE5M2(0xFB); } |
71 | | |
72 | | private: |
73 | | uint8_t val; |
74 | | }; |
75 | | |
76 | | class FloatE4M3 { |
77 | | public: |
78 | 0 | FloatE4M3(uint8_t v) : val(v) {} |
79 | 0 | FloatE4M3() {} |
80 | 0 | static bool isNan(const FloatE4M3& val) { |
81 | 0 | return (val.val & 0x7F) == 0x7F; |
82 | 0 | } |
83 | | // Returns true if the given value is any kind of infinity. |
84 | 0 | static bool isInfinity(const FloatE4M3&) { |
85 | 0 | return false; |
86 | 0 | } |
87 | 0 | FloatE4M3(const FloatE4M3& other) { val = other.val; } |
88 | 0 | uint8_t get_value() const { return val; } |
89 | | |
90 | | // Returns the maximum normal value. |
91 | 0 | static FloatE4M3 max() { return FloatE4M3(0x7E); } |
92 | | // Returns the lowest normal value. |
93 | 0 | static FloatE4M3 lowest() { return FloatE4M3(0xFE); } |
94 | | |
95 | | private: |
96 | | uint8_t val; |
97 | | }; |
98 | | |
99 | | // To specialize this type, you must override uint_type to define |
100 | | // an unsigned integer that can fit your floating point type. |
101 | | // You must also add a isNan function that returns true if |
102 | | // a value is Nan. |
103 | | template <typename T> |
104 | | struct FloatProxyTraits { |
105 | | typedef void uint_type; |
106 | | }; |
107 | | |
108 | | template <> |
109 | | struct FloatProxyTraits<float> { |
110 | | typedef uint32_t uint_type; |
111 | 0 | static bool isNan(float f) { return std::isnan(f); } |
112 | | // Returns true if the given value is any kind of infinity. |
113 | 0 | static bool isInfinity(float f) { return std::isinf(f); } |
114 | | // Returns the maximum normal value. |
115 | 0 | static float max() { return std::numeric_limits<float>::max(); } |
116 | | // Returns the lowest normal value. |
117 | 0 | static float lowest() { return std::numeric_limits<float>::lowest(); } |
118 | | }; |
119 | | |
120 | | template <> |
121 | | struct FloatProxyTraits<double> { |
122 | | typedef uint64_t uint_type; |
123 | 0 | static bool isNan(double f) { return std::isnan(f); } |
124 | | // Returns true if the given value is any kind of infinity. |
125 | 0 | static bool isInfinity(double f) { return std::isinf(f); } |
126 | | // Returns the maximum normal value. |
127 | 0 | static double max() { return std::numeric_limits<double>::max(); } |
128 | | // Returns the lowest normal value. |
129 | 0 | static double lowest() { return std::numeric_limits<double>::lowest(); } |
130 | | }; |
131 | | |
132 | | template <> |
133 | | struct FloatProxyTraits<Float16> { |
134 | | typedef uint16_t uint_type; |
135 | 0 | static bool isNan(Float16 f) { return Float16::isNan(f); } |
136 | | // Returns true if the given value is any kind of infinity. |
137 | 0 | static bool isInfinity(Float16 f) { return Float16::isInfinity(f); } |
138 | | // Returns the maximum normal value. |
139 | 0 | static Float16 max() { return Float16::max(); } |
140 | | // Returns the lowest normal value. |
141 | 0 | static Float16 lowest() { return Float16::lowest(); } |
142 | | }; |
143 | | |
144 | | template <> |
145 | | struct FloatProxyTraits<FloatE5M2> { |
146 | | typedef uint8_t uint_type; |
147 | 0 | static bool isNan(FloatE5M2 f) { return FloatE5M2::isNan(f); } |
148 | | // Returns true if the given value is any kind of infinity. |
149 | 0 | static bool isInfinity(FloatE5M2 f) { return FloatE5M2::isInfinity(f); } |
150 | | // Returns the maximum normal value. |
151 | 0 | static FloatE5M2 max() { return FloatE5M2::max(); } |
152 | | // Returns the lowest normal value. |
153 | 0 | static FloatE5M2 lowest() { return FloatE5M2::lowest(); } |
154 | | }; |
155 | | |
156 | | template <> |
157 | | struct FloatProxyTraits<FloatE4M3> { |
158 | | typedef uint8_t uint_type; |
159 | 0 | static bool isNan(FloatE4M3 f) { return FloatE4M3::isNan(f); } |
160 | | // Returns true if the given value is any kind of infinity. |
161 | 0 | static bool isInfinity(FloatE4M3 f) { return FloatE4M3::isInfinity(f); } |
162 | | // Returns the maximum normal value. |
163 | 0 | static FloatE4M3 max() { return FloatE4M3::max(); } |
164 | | // Returns the lowest normal value. |
165 | 0 | static FloatE4M3 lowest() { return FloatE4M3::lowest(); } |
166 | | }; |
167 | | |
168 | | // Since copying a floating point number (especially if it is NaN) |
169 | | // does not guarantee that bits are preserved, this class lets us |
170 | | // store the type and use it as a float when necessary. |
171 | | template <typename T> |
172 | | class FloatProxy { |
173 | | public: |
174 | | typedef typename FloatProxyTraits<T>::uint_type uint_type; |
175 | | |
176 | | // Since this is to act similar to the normal floats, |
177 | | // do not initialize the data by default. |
178 | 750 | FloatProxy() {} spvutils::FloatProxy<spvutils::Float16>::FloatProxy() Line | Count | Source | 178 | 750 | FloatProxy() {} |
Unexecuted instantiation: spvutils::FloatProxy<spvutils::FloatE5M2>::FloatProxy() Unexecuted instantiation: spvutils::FloatProxy<spvutils::FloatE4M3>::FloatProxy() |
179 | | |
180 | | // Intentionally non-explicit. This is a proxy type so |
181 | | // implicit conversions allow us to use it more transparently. |
182 | 955 | FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); } |
183 | | |
184 | | // Intentionally non-explicit. This is a proxy type so |
185 | | // implicit conversions allow us to use it more transparently. |
186 | 1.91k | FloatProxy(uint_type val) { data_ = val; } spvutils::FloatProxy<spvutils::Float16>::FloatProxy(unsigned short) Line | Count | Source | 186 | 1.91k | FloatProxy(uint_type val) { data_ = val; } |
Unexecuted instantiation: spvutils::FloatProxy<spvutils::FloatE5M2>::FloatProxy(unsigned char) Unexecuted instantiation: spvutils::FloatProxy<spvutils::FloatE4M3>::FloatProxy(unsigned char) |
187 | | |
188 | | // This is helpful to have and is guaranteed not to stomp bits. |
189 | 0 | FloatProxy<T> operator-() const { |
190 | 0 | return static_cast<uint_type>(data_ ^ |
191 | 0 | (uint_type(0x1) << (sizeof(T) * 8 - 1))); |
192 | 0 | } Unexecuted instantiation: spvutils::FloatProxy<spvutils::Float16>::operator-() const Unexecuted instantiation: spvutils::FloatProxy<spvutils::FloatE5M2>::operator-() const Unexecuted instantiation: spvutils::FloatProxy<spvutils::FloatE4M3>::operator-() const Unexecuted instantiation: spvutils::FloatProxy<float>::operator-() const |
193 | | |
194 | | // Returns the data as a floating point value. |
195 | 955 | T getAsFloat() const { return BitwiseCast<T>(data_); } spvutils::FloatProxy<spvutils::Float16>::getAsFloat() const Line | Count | Source | 195 | 955 | T getAsFloat() const { return BitwiseCast<T>(data_); } |
Unexecuted instantiation: spvutils::FloatProxy<spvutils::FloatE5M2>::getAsFloat() const Unexecuted instantiation: spvutils::FloatProxy<spvutils::FloatE4M3>::getAsFloat() const Unexecuted instantiation: spvutils::FloatProxy<float>::getAsFloat() const |
196 | | |
197 | | // Returns the raw data. |
198 | | uint_type data() const { return data_; } |
199 | | |
200 | | // Returns true if the value represents any type of NaN. |
201 | | bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); } |
202 | | // Returns true if the value represents any type of infinity. |
203 | 0 | bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); } |
204 | | |
205 | | // Returns the maximum normal value. |
206 | 0 | static FloatProxy<T> max() { |
207 | 0 | return FloatProxy<T>(FloatProxyTraits<T>::max()); |
208 | 0 | } |
209 | | // Returns the lowest normal value. |
210 | 0 | static FloatProxy<T> lowest() { |
211 | 0 | return FloatProxy<T>(FloatProxyTraits<T>::lowest()); |
212 | 0 | } |
213 | | |
214 | | private: |
215 | | uint_type data_; |
216 | | }; |
217 | | |
218 | | template <typename T> |
219 | | bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) { |
220 | | return first.data() == second.data(); |
221 | | } |
222 | | |
223 | | // Reads a FloatProxy value as a normal float from a stream. |
224 | | template <typename T> |
225 | 0 | std::istream& operator>>(std::istream& is, FloatProxy<T>& value) { |
226 | 0 | T float_val; |
227 | 0 | is >> float_val; |
228 | 0 | value = FloatProxy<T>(float_val); |
229 | 0 | return is; |
230 | 0 | } |
231 | | |
232 | | // This is an example traits. It is not meant to be used in practice, but will |
233 | | // be the default for any non-specialized type. |
234 | | template <typename T> |
235 | | struct HexFloatTraits { |
236 | | // Integer type that can store this hex-float. |
237 | | typedef void uint_type; |
238 | | // Signed integer type that can store this hex-float. |
239 | | typedef void int_type; |
240 | | // The numerical type that this HexFloat represents. |
241 | | typedef void underlying_type; |
242 | | // The type needed to construct the underlying type. |
243 | | typedef void native_type; |
244 | | // The number of bits that are actually relevant in the uint_type. |
245 | | // This allows us to deal with, for example, 24-bit values in a 32-bit |
246 | | // integer. |
247 | | static const uint32_t num_used_bits = 0; |
248 | | // Number of bits that represent the exponent. |
249 | | static const uint32_t num_exponent_bits = 0; |
250 | | // Number of bits that represent the fractional part. |
251 | | static const uint32_t num_fraction_bits = 0; |
252 | | // The bias of the exponent. (How much we need to subtract from the stored |
253 | | // value to get the correct value.) |
254 | | static const uint32_t exponent_bias = 0; |
255 | | static bool supportsInfinity() { return true; } |
256 | | }; |
257 | | |
258 | | // Traits for IEEE float. |
259 | | // 1 sign bit, 8 exponent bits, 23 fractional bits. |
260 | | template <> |
261 | | struct HexFloatTraits<FloatProxy<float>> { |
262 | | typedef uint32_t uint_type; |
263 | | typedef int32_t int_type; |
264 | | typedef FloatProxy<float> underlying_type; |
265 | | typedef float native_type; |
266 | | static const uint_type num_used_bits = 32; |
267 | | static const uint_type num_exponent_bits = 8; |
268 | | static const uint_type num_fraction_bits = 23; |
269 | | static const uint_type exponent_bias = 127; |
270 | 0 | static bool supportsInfinity() { return true; } |
271 | | }; |
272 | | |
273 | | // Traits for IEEE double. |
274 | | // 1 sign bit, 11 exponent bits, 52 fractional bits. |
275 | | template <> |
276 | | struct HexFloatTraits<FloatProxy<double>> { |
277 | | typedef uint64_t uint_type; |
278 | | typedef int64_t int_type; |
279 | | typedef FloatProxy<double> underlying_type; |
280 | | typedef double native_type; |
281 | | static const uint_type num_used_bits = 64; |
282 | | static const uint_type num_exponent_bits = 11; |
283 | | static const uint_type num_fraction_bits = 52; |
284 | | static const uint_type exponent_bias = 1023; |
285 | 0 | static bool supportsInfinity() { return true; } |
286 | | }; |
287 | | |
288 | | // Traits for IEEE half. |
289 | | // 1 sign bit, 5 exponent bits, 10 fractional bits. |
290 | | template <> |
291 | | struct HexFloatTraits<FloatProxy<Float16>> { |
292 | | typedef uint16_t uint_type; |
293 | | typedef int16_t int_type; |
294 | | typedef uint16_t underlying_type; |
295 | | typedef uint16_t native_type; |
296 | | static const uint_type num_used_bits = 16; |
297 | | static const uint_type num_exponent_bits = 5; |
298 | | static const uint_type num_fraction_bits = 10; |
299 | | static const uint_type exponent_bias = 15; |
300 | 0 | static bool supportsInfinity() { return true; } |
301 | | }; |
302 | | |
303 | | template <> |
304 | | struct HexFloatTraits<FloatProxy<FloatE5M2>> { |
305 | | typedef uint8_t uint_type; |
306 | | typedef int8_t int_type; |
307 | | typedef uint8_t underlying_type; |
308 | | typedef uint8_t native_type; |
309 | | static const uint_type num_used_bits = 8; |
310 | | static const uint_type num_exponent_bits = 5; |
311 | | static const uint_type num_fraction_bits = 2; |
312 | | static const uint_type exponent_bias = 15; |
313 | 0 | static bool supportsInfinity() { return true; } |
314 | | }; |
315 | | |
316 | | template <> |
317 | | struct HexFloatTraits<FloatProxy<FloatE4M3>> { |
318 | | typedef uint8_t uint_type; |
319 | | typedef int8_t int_type; |
320 | | typedef uint8_t underlying_type; |
321 | | typedef uint8_t native_type; |
322 | | static const uint_type num_used_bits = 8; |
323 | | static const uint_type num_exponent_bits = 4; |
324 | | static const uint_type num_fraction_bits = 3; |
325 | | static const uint_type exponent_bias = 7; |
326 | 0 | static bool supportsInfinity() { return false; } |
327 | | }; |
328 | | |
329 | | enum round_direction { |
330 | | kRoundToZero, |
331 | | kRoundToNearestEven, |
332 | | kRoundToPositiveInfinity, |
333 | | kRoundToNegativeInfinity |
334 | | }; |
335 | | |
336 | | // Template class that houses a floating pointer number. |
337 | | // It exposes a number of constants based on the provided traits to |
338 | | // assist in interpreting the bits of the value. |
339 | | template <typename T, typename Traits = HexFloatTraits<T>> |
340 | | class HexFloat { |
341 | | public: |
342 | | typedef typename Traits::uint_type uint_type; |
343 | | typedef typename Traits::int_type int_type; |
344 | | typedef typename Traits::underlying_type underlying_type; |
345 | | typedef typename Traits::native_type native_type; |
346 | | using Traits_T = Traits; |
347 | | |
348 | 2.86k | explicit HexFloat(T f) : value_(f) {} spvutils::HexFloat<spvutils::FloatProxy<float>, spvutils::HexFloatTraits<spvutils::FloatProxy<float> > >::HexFloat(spvutils::FloatProxy<float>) Line | Count | Source | 348 | 955 | explicit HexFloat(T f) : value_(f) {} |
spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::Float16> > >::HexFloat(spvutils::FloatProxy<spvutils::Float16>) Line | Count | Source | 348 | 1.91k | explicit HexFloat(T f) : value_(f) {} |
Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE5M2>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE5M2> > >::HexFloat(spvutils::FloatProxy<spvutils::FloatE5M2>) Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE4M3>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE4M3> > >::HexFloat(spvutils::FloatProxy<spvutils::FloatE4M3>) |
349 | | |
350 | 955 | T value() const { return value_; } spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::Float16> > >::value() const Line | Count | Source | 350 | 955 | T value() const { return value_; } |
Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE5M2>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE5M2> > >::value() const Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE4M3>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE4M3> > >::value() const |
351 | 0 | void set_value(T f) { value_ = f; } Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::Float16> > >::set_value(spvutils::FloatProxy<spvutils::Float16>) Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE5M2>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE5M2> > >::set_value(spvutils::FloatProxy<spvutils::FloatE5M2>) Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE4M3>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE4M3> > >::set_value(spvutils::FloatProxy<spvutils::FloatE4M3>) Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<float>, spvutils::HexFloatTraits<spvutils::FloatProxy<float> > >::set_value(spvutils::FloatProxy<float>) |
352 | | |
353 | | // These are all written like this because it is convenient to have |
354 | | // compile-time constants for all of these values. |
355 | | |
356 | | // Pass-through values to save typing. |
357 | | static const uint32_t num_used_bits = Traits::num_used_bits; |
358 | | static const uint32_t exponent_bias = Traits::exponent_bias; |
359 | | static const uint32_t num_exponent_bits = Traits::num_exponent_bits; |
360 | | static const uint32_t num_fraction_bits = Traits::num_fraction_bits; |
361 | | |
362 | | // Number of bits to shift left to set the highest relevant bit. |
363 | | static const uint32_t top_bit_left_shift = num_used_bits - 1; |
364 | | // How many nibbles (hex characters) the fractional part takes up. |
365 | | static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4; |
366 | | // If the fractional part does not fit evenly into a hex character (4-bits) |
367 | | // then we have to left-shift to get rid of leading 0s. This is the amount |
368 | | // we have to shift (might be 0). |
369 | | static const uint32_t num_overflow_bits = |
370 | | fraction_nibbles * 4 - num_fraction_bits; |
371 | | |
372 | | // The representation of the fraction, not the actual bits. This |
373 | | // includes the leading bit that is usually implicit. |
374 | | static const uint_type fraction_represent_mask = |
375 | | spvutils::SetBits<uint_type, 0, |
376 | | num_fraction_bits + num_overflow_bits>::get; |
377 | | |
378 | | // The topmost bit in the nibble-aligned fraction. |
379 | | static const uint_type fraction_top_bit = |
380 | | uint_type(1) << (num_fraction_bits + num_overflow_bits - 1); |
381 | | |
382 | | // The least significant bit in the exponent, which is also the bit |
383 | | // immediately to the left of the significand. |
384 | | static const uint_type first_exponent_bit = uint_type(1) |
385 | | << (num_fraction_bits); |
386 | | |
387 | | // The mask for the encoded fraction. It does not include the |
388 | | // implicit bit. |
389 | | static const uint_type fraction_encode_mask = |
390 | | spvutils::SetBits<uint_type, 0, num_fraction_bits>::get; |
391 | | |
392 | | // The bit that is used as a sign. |
393 | | static const uint_type sign_mask = uint_type(1) << top_bit_left_shift; |
394 | | |
395 | | // The bits that represent the exponent. |
396 | | static const uint_type exponent_mask = |
397 | | spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get; |
398 | | |
399 | | // How far left the exponent is shifted. |
400 | | static const uint32_t exponent_left_shift = num_fraction_bits; |
401 | | |
402 | | // How far from the right edge the fraction is shifted. |
403 | | static const uint32_t fraction_right_shift = |
404 | | static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits; |
405 | | |
406 | | // The maximum representable unbiased exponent. |
407 | | static const int_type max_exponent = |
408 | | (exponent_mask >> num_fraction_bits) - exponent_bias; |
409 | | // The minimum representable exponent for normalized numbers. |
410 | | static const int_type min_exponent = -static_cast<int_type>(exponent_bias); |
411 | | |
412 | | // Returns the bits associated with the value. |
413 | 6.35k | uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); } spvutils::HexFloat<spvutils::FloatProxy<float>, spvutils::HexFloatTraits<spvutils::FloatProxy<float> > >::getBits() const Line | Count | Source | 413 | 6.35k | uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); } |
Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::Float16> > >::getBits() const |
414 | | |
415 | | // Returns the bits associated with the value, without the leading sign bit. |
416 | 955 | uint_type getUnsignedBits() const { |
417 | 955 | return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) & |
418 | 955 | ~sign_mask); |
419 | 955 | } |
420 | | |
421 | | // Returns the bits associated with the exponent, shifted to start at the |
422 | | // lsb of the type. |
423 | 1.50k | const uint_type getExponentBits() const { |
424 | 1.50k | return static_cast<uint_type>((getBits() & exponent_mask) >> |
425 | 1.50k | num_fraction_bits); |
426 | 1.50k | } |
427 | | |
428 | | // Returns the exponent in unbiased form. This is the exponent in the |
429 | | // human-friendly form. |
430 | 1.50k | const int_type getUnbiasedExponent() const { |
431 | 1.50k | return static_cast<int_type>(getExponentBits() - exponent_bias); |
432 | 1.50k | } |
433 | | |
434 | | // Returns just the significand bits from the value. |
435 | 1.50k | const uint_type getSignificandBits() const { |
436 | 1.50k | return getBits() & fraction_encode_mask; |
437 | 1.50k | } |
438 | | |
439 | | // If the number was normalized, returns the unbiased exponent. |
440 | | // If the number was denormal, normalize the exponent first. |
441 | 750 | const int_type getUnbiasedNormalizedExponent() const { |
442 | 750 | if ((getBits() & ~sign_mask) == 0) { // special case if everything is 0 |
443 | 0 | return 0; |
444 | 0 | } |
445 | 750 | int_type exp = getUnbiasedExponent(); |
446 | 750 | if (exp == min_exponent) { // We are in denorm land. |
447 | 0 | uint_type significand_bits = getSignificandBits(); |
448 | 0 | while ((significand_bits & (first_exponent_bit >> 1)) == 0) { |
449 | 0 | significand_bits = static_cast<uint_type>(significand_bits << 1); |
450 | 0 | exp = static_cast<int_type>(exp - 1); |
451 | 0 | } |
452 | 0 | significand_bits &= fraction_encode_mask; |
453 | 0 | } |
454 | 750 | return exp; |
455 | 750 | } |
456 | | |
457 | | // Returns the signficand after it has been normalized. |
458 | 750 | const uint_type getNormalizedSignificand() const { |
459 | 750 | int_type unbiased_exponent = getUnbiasedNormalizedExponent(); |
460 | 750 | uint_type significand = getSignificandBits(); |
461 | 750 | for (int_type i = unbiased_exponent; i <= min_exponent; ++i) { |
462 | 0 | significand = static_cast<uint_type>(significand << 1); |
463 | 0 | } |
464 | 750 | significand &= fraction_encode_mask; |
465 | 750 | return significand; |
466 | 750 | } |
467 | | |
468 | | // Returns true if this number represents a negative value. |
469 | 1.70k | bool isNegative() const { return (getBits() & sign_mask) != 0; } spvutils::HexFloat<spvutils::FloatProxy<float>, spvutils::HexFloatTraits<spvutils::FloatProxy<float> > >::isNegative() const Line | Count | Source | 469 | 1.70k | bool isNegative() const { return (getBits() & sign_mask) != 0; } |
Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::Float16> > >::isNegative() const |
470 | | |
471 | | // Sets this HexFloat from the individual components. |
472 | | // Note this assumes EVERY significand is normalized, and has an implicit |
473 | | // leading one. This means that the only way that this method will set 0, |
474 | | // is if you set a number so denormalized that it underflows. |
475 | | // Do not use this method with raw bits extracted from a subnormal number, |
476 | | // since subnormals do not have an implicit leading 1 in the significand. |
477 | | // The significand is also expected to be in the |
478 | | // lowest-most num_fraction_bits of the uint_type. |
479 | | // The exponent is expected to be unbiased, meaning an exponent of |
480 | | // 0 actually means 0. |
481 | | // If underflow_round_up is set, then on underflow, if a number is non-0 |
482 | | // and would underflow, we round up to the smallest denorm. |
483 | | void setFromSignUnbiasedExponentAndNormalizedSignificand( |
484 | | bool negative, int_type exponent, uint_type significand, |
485 | 750 | bool round_denorm_up) { |
486 | 750 | bool significand_is_zero = significand == 0; |
487 | | |
488 | 750 | if (exponent <= min_exponent) { |
489 | | // If this was denormalized, then we have to shift the bit on, meaning |
490 | | // the significand is not zero. |
491 | 0 | significand_is_zero = false; |
492 | 0 | significand |= first_exponent_bit; |
493 | 0 | significand = static_cast<uint_type>(significand >> 1); |
494 | 0 | } |
495 | | |
496 | 750 | while (exponent < min_exponent) { |
497 | 0 | significand = static_cast<uint_type>(significand >> 1); |
498 | 0 | ++exponent; |
499 | 0 | } |
500 | | |
501 | 750 | if (exponent == min_exponent) { |
502 | 0 | if (significand == 0 && !significand_is_zero && round_denorm_up) { |
503 | 0 | significand = static_cast<uint_type>(0x1); |
504 | 0 | } |
505 | 0 | } |
506 | | |
507 | 750 | uint_type new_value = 0; |
508 | 750 | if (negative) { |
509 | 0 | new_value = static_cast<uint_type>(new_value | sign_mask); |
510 | 0 | } |
511 | 750 | exponent = static_cast<int_type>(exponent + exponent_bias); |
512 | 750 | assert(exponent >= 0); |
513 | | |
514 | | // put it all together |
515 | 750 | exponent = static_cast<uint_type>((exponent << exponent_left_shift) & |
516 | 750 | exponent_mask); |
517 | 750 | significand = static_cast<uint_type>(significand & fraction_encode_mask); |
518 | 750 | new_value = static_cast<uint_type>(new_value | (exponent | significand)); |
519 | 750 | value_ = BitwiseCast<T>(new_value); |
520 | 750 | } spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::Float16> > >::setFromSignUnbiasedExponentAndNormalizedSignificand(bool, short, unsigned short, bool) Line | Count | Source | 485 | 750 | bool round_denorm_up) { | 486 | 750 | bool significand_is_zero = significand == 0; | 487 | | | 488 | 750 | if (exponent <= min_exponent) { | 489 | | // If this was denormalized, then we have to shift the bit on, meaning | 490 | | // the significand is not zero. | 491 | 0 | significand_is_zero = false; | 492 | 0 | significand |= first_exponent_bit; | 493 | 0 | significand = static_cast<uint_type>(significand >> 1); | 494 | 0 | } | 495 | | | 496 | 750 | while (exponent < min_exponent) { | 497 | 0 | significand = static_cast<uint_type>(significand >> 1); | 498 | 0 | ++exponent; | 499 | 0 | } | 500 | | | 501 | 750 | if (exponent == min_exponent) { | 502 | 0 | if (significand == 0 && !significand_is_zero && round_denorm_up) { | 503 | 0 | significand = static_cast<uint_type>(0x1); | 504 | 0 | } | 505 | 0 | } | 506 | | | 507 | 750 | uint_type new_value = 0; | 508 | 750 | if (negative) { | 509 | 0 | new_value = static_cast<uint_type>(new_value | sign_mask); | 510 | 0 | } | 511 | 750 | exponent = static_cast<int_type>(exponent + exponent_bias); | 512 | 750 | assert(exponent >= 0); | 513 | | | 514 | | // put it all together | 515 | 750 | exponent = static_cast<uint_type>((exponent << exponent_left_shift) & | 516 | 750 | exponent_mask); | 517 | 750 | significand = static_cast<uint_type>(significand & fraction_encode_mask); | 518 | 750 | new_value = static_cast<uint_type>(new_value | (exponent | significand)); | 519 | 750 | value_ = BitwiseCast<T>(new_value); | 520 | 750 | } |
Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE5M2>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE5M2> > >::setFromSignUnbiasedExponentAndNormalizedSignificand(bool, signed char, unsigned char, bool) Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE4M3>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE4M3> > >::setFromSignUnbiasedExponentAndNormalizedSignificand(bool, signed char, unsigned char, bool) |
521 | | |
522 | | // Increments the significand of this number by the given amount. |
523 | | // If this would spill the significand into the implicit bit, |
524 | | // carry is set to true and the significand is shifted to fit into |
525 | | // the correct location, otherwise carry is set to false. |
526 | | // All significands and to_increment are assumed to be within the bounds |
527 | | // for a valid significand. |
528 | | static uint_type incrementSignificand(uint_type significand, |
529 | 0 | uint_type to_increment, bool* carry) { |
530 | 0 | significand = static_cast<uint_type>(significand + to_increment); |
531 | 0 | *carry = false; |
532 | 0 | if (significand & first_exponent_bit) { |
533 | 0 | *carry = true; |
534 | | // The implicit 1-bit will have carried, so we should zero-out the |
535 | | // top bit and shift back. |
536 | 0 | significand = static_cast<uint_type>(significand & ~first_exponent_bit); |
537 | 0 | significand = static_cast<uint_type>(significand >> 1); |
538 | 0 | } |
539 | 0 | return significand; |
540 | 0 | } |
541 | | |
542 | | // These exist because MSVC throws warnings on negative right-shifts |
543 | | // even if they are not going to be executed. Eg: |
544 | | // constant_number < 0? 0: constant_number |
545 | | // These convert the negative left-shifts into right shifts. |
546 | | |
547 | | template <typename int_type> |
548 | | uint_type negatable_left_shift(int_type N, uint_type val) |
549 | 6 | { |
550 | 6 | if(N >= 0) |
551 | 6 | return val << N; |
552 | | |
553 | 0 | return val >> -N; |
554 | 6 | } |
555 | | |
556 | | template <typename int_type> |
557 | | uint_type negatable_right_shift(int_type N, uint_type val) |
558 | 750 | { |
559 | 750 | if(N >= 0) |
560 | 750 | return val >> N; |
561 | | |
562 | 0 | return val << -N; |
563 | 750 | } |
564 | | |
565 | | // Returns the significand, rounded to fit in a significand in |
566 | | // other_T. This is shifted so that the most significant |
567 | | // bit of the rounded number lines up with the most significant bit |
568 | | // of the returned significand. |
569 | | template <typename other_T> |
570 | | typename other_T::uint_type getRoundedNormalizedSignificand( |
571 | 750 | round_direction dir, bool* carry_bit) { |
572 | 750 | typedef typename other_T::uint_type other_uint_type; |
573 | 750 | static const int_type num_throwaway_bits = |
574 | 750 | static_cast<int_type>(num_fraction_bits) - |
575 | 750 | static_cast<int_type>(other_T::num_fraction_bits); |
576 | | |
577 | 750 | static const uint_type last_significant_bit = |
578 | 750 | (num_throwaway_bits < 0) |
579 | 750 | ? 0 |
580 | 750 | : negatable_left_shift(num_throwaway_bits, 1u); |
581 | 750 | static const uint_type first_rounded_bit = |
582 | 750 | (num_throwaway_bits < 1) |
583 | 750 | ? 0 |
584 | 750 | : negatable_left_shift(num_throwaway_bits - 1, 1u); |
585 | | |
586 | 750 | static const uint_type throwaway_mask_bits = |
587 | 750 | num_throwaway_bits > 0 ? num_throwaway_bits : 0; |
588 | 750 | static const uint_type throwaway_mask = |
589 | 750 | spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get; |
590 | | |
591 | 750 | *carry_bit = false; |
592 | 750 | other_uint_type out_val = 0; |
593 | 750 | uint_type significand = getNormalizedSignificand(); |
594 | | // If we are up-casting, then we just have to shift to the right location. |
595 | 750 | if (num_throwaway_bits <= 0) { |
596 | 0 | out_val = static_cast<other_uint_type>(significand); |
597 | 0 | uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits); |
598 | 0 | out_val = static_cast<other_uint_type>(out_val << shift_amount); |
599 | 0 | return out_val; |
600 | 0 | } |
601 | | |
602 | | // If every non-representable bit is 0, then we don't have any casting to |
603 | | // do. |
604 | 750 | if ((significand & throwaway_mask) == 0) { |
605 | 750 | return static_cast<other_uint_type>( |
606 | 750 | negatable_right_shift(num_throwaway_bits, significand)); |
607 | 750 | } |
608 | | |
609 | 0 | bool round_away_from_zero = false; |
610 | | // We actually have to narrow the significand here, so we have to follow the |
611 | | // rounding rules. |
612 | 0 | switch (dir) { |
613 | 0 | case kRoundToZero: |
614 | 0 | break; |
615 | 0 | case kRoundToPositiveInfinity: |
616 | 0 | round_away_from_zero = !isNegative(); |
617 | 0 | break; |
618 | 0 | case kRoundToNegativeInfinity: |
619 | 0 | round_away_from_zero = isNegative(); |
620 | 0 | break; |
621 | 0 | case kRoundToNearestEven: |
622 | | // Have to round down, round bit is 0 |
623 | 0 | if ((first_rounded_bit & significand) == 0) { |
624 | 0 | break; |
625 | 0 | } |
626 | 0 | if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) { |
627 | | // If any subsequent bit of the rounded portion is non-0 then we round |
628 | | // up. |
629 | 0 | round_away_from_zero = true; |
630 | 0 | break; |
631 | 0 | } |
632 | | // We are exactly half-way between 2 numbers, pick even. |
633 | 0 | if ((significand & last_significant_bit) != 0) { |
634 | | // 1 for our last bit, round up. |
635 | 0 | round_away_from_zero = true; |
636 | 0 | break; |
637 | 0 | } |
638 | 0 | break; |
639 | 0 | } |
640 | | |
641 | 0 | if (round_away_from_zero) { |
642 | 0 | return static_cast<other_uint_type>( |
643 | 0 | negatable_right_shift(num_throwaway_bits, incrementSignificand( |
644 | 0 | significand, last_significant_bit, carry_bit))); |
645 | 0 | } else { |
646 | 0 | return static_cast<other_uint_type>( |
647 | 0 | negatable_right_shift(num_throwaway_bits, significand)); |
648 | 0 | } |
649 | 0 | } spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::Float16> > >::uint_type spvutils::HexFloat<spvutils::FloatProxy<float>, spvutils::HexFloatTraits<spvutils::FloatProxy<float> > >::getRoundedNormalizedSignificand<spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::Float16> > > >(spvutils::round_direction, bool*) Line | Count | Source | 571 | 750 | round_direction dir, bool* carry_bit) { | 572 | 750 | typedef typename other_T::uint_type other_uint_type; | 573 | 750 | static const int_type num_throwaway_bits = | 574 | 750 | static_cast<int_type>(num_fraction_bits) - | 575 | 750 | static_cast<int_type>(other_T::num_fraction_bits); | 576 | | | 577 | 750 | static const uint_type last_significant_bit = | 578 | 750 | (num_throwaway_bits < 0) | 579 | 750 | ? 0 | 580 | 750 | : negatable_left_shift(num_throwaway_bits, 1u); | 581 | 750 | static const uint_type first_rounded_bit = | 582 | 750 | (num_throwaway_bits < 1) | 583 | 750 | ? 0 | 584 | 750 | : negatable_left_shift(num_throwaway_bits - 1, 1u); | 585 | | | 586 | 750 | static const uint_type throwaway_mask_bits = | 587 | 750 | num_throwaway_bits > 0 ? num_throwaway_bits : 0; | 588 | 750 | static const uint_type throwaway_mask = | 589 | 750 | spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get; | 590 | | | 591 | 750 | *carry_bit = false; | 592 | 750 | other_uint_type out_val = 0; | 593 | 750 | uint_type significand = getNormalizedSignificand(); | 594 | | // If we are up-casting, then we just have to shift to the right location. | 595 | 750 | if (num_throwaway_bits <= 0) { | 596 | 0 | out_val = static_cast<other_uint_type>(significand); | 597 | 0 | uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits); | 598 | 0 | out_val = static_cast<other_uint_type>(out_val << shift_amount); | 599 | 0 | return out_val; | 600 | 0 | } | 601 | | | 602 | | // If every non-representable bit is 0, then we don't have any casting to | 603 | | // do. | 604 | 750 | if ((significand & throwaway_mask) == 0) { | 605 | 750 | return static_cast<other_uint_type>( | 606 | 750 | negatable_right_shift(num_throwaway_bits, significand)); | 607 | 750 | } | 608 | | | 609 | 0 | bool round_away_from_zero = false; | 610 | | // We actually have to narrow the significand here, so we have to follow the | 611 | | // rounding rules. | 612 | 0 | switch (dir) { | 613 | 0 | case kRoundToZero: | 614 | 0 | break; | 615 | 0 | case kRoundToPositiveInfinity: | 616 | 0 | round_away_from_zero = !isNegative(); | 617 | 0 | break; | 618 | 0 | case kRoundToNegativeInfinity: | 619 | 0 | round_away_from_zero = isNegative(); | 620 | 0 | break; | 621 | 0 | case kRoundToNearestEven: | 622 | | // Have to round down, round bit is 0 | 623 | 0 | if ((first_rounded_bit & significand) == 0) { | 624 | 0 | break; | 625 | 0 | } | 626 | 0 | if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) { | 627 | | // If any subsequent bit of the rounded portion is non-0 then we round | 628 | | // up. | 629 | 0 | round_away_from_zero = true; | 630 | 0 | break; | 631 | 0 | } | 632 | | // We are exactly half-way between 2 numbers, pick even. | 633 | 0 | if ((significand & last_significant_bit) != 0) { | 634 | | // 1 for our last bit, round up. | 635 | 0 | round_away_from_zero = true; | 636 | 0 | break; | 637 | 0 | } | 638 | 0 | break; | 639 | 0 | } | 640 | | | 641 | 0 | if (round_away_from_zero) { | 642 | 0 | return static_cast<other_uint_type>( | 643 | 0 | negatable_right_shift(num_throwaway_bits, incrementSignificand( | 644 | 0 | significand, last_significant_bit, carry_bit))); | 645 | 0 | } else { | 646 | 0 | return static_cast<other_uint_type>( | 647 | 0 | negatable_right_shift(num_throwaway_bits, significand)); | 648 | 0 | } | 649 | 0 | } |
Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE5M2>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE5M2> > >::uint_type spvutils::HexFloat<spvutils::FloatProxy<float>, spvutils::HexFloatTraits<spvutils::FloatProxy<float> > >::getRoundedNormalizedSignificand<spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE5M2>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE5M2> > > >(spvutils::round_direction, bool*) Unexecuted instantiation: spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE4M3>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE4M3> > >::uint_type spvutils::HexFloat<spvutils::FloatProxy<float>, spvutils::HexFloatTraits<spvutils::FloatProxy<float> > >::getRoundedNormalizedSignificand<spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE4M3>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE4M3> > > >(spvutils::round_direction, bool*) |
650 | | |
651 | | // Casts this value to another HexFloat. If the cast is widening, |
652 | | // then round_dir is ignored. If the cast is narrowing, then |
653 | | // the result is rounded in the direction specified. |
654 | | // This number will retain Nan and Inf values. |
655 | | // It will also saturate to Inf if the number overflows, and |
656 | | // underflow to (0 or min depending on rounding) if the number underflows. |
657 | | template <typename other_T> |
658 | 955 | void castTo(other_T& other, round_direction round_dir) { |
659 | 955 | other = other_T(static_cast<typename other_T::native_type>(0)); |
660 | 955 | bool negate = isNegative(); |
661 | 955 | if (getUnsignedBits() == 0) { |
662 | 205 | if (negate) { |
663 | 0 | other.set_value(-other.value()); |
664 | 0 | } |
665 | 205 | return; |
666 | 205 | } |
667 | 750 | uint_type significand = getSignificandBits(); |
668 | 750 | bool carried = false; |
669 | 750 | typename other_T::uint_type rounded_significand = |
670 | 750 | getRoundedNormalizedSignificand<other_T>(round_dir, &carried); |
671 | | |
672 | 750 | int_type exponent = getUnbiasedExponent(); |
673 | 750 | if (exponent == min_exponent) { |
674 | | // If we are denormal, normalize the exponent, so that we can encode |
675 | | // easily. |
676 | 0 | exponent = static_cast<int_type>(exponent + 1); |
677 | 0 | for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0; |
678 | 0 | check_bit = static_cast<uint_type>(check_bit >> 1)) { |
679 | 0 | exponent = static_cast<int_type>(exponent - 1); |
680 | 0 | if (check_bit & significand) break; |
681 | 0 | } |
682 | 0 | } |
683 | | |
684 | 750 | bool is_nan = |
685 | 750 | (getBits() & exponent_mask) == exponent_mask && significand != 0; |
686 | 750 | bool is_inf = |
687 | 750 | !is_nan && |
688 | 750 | (((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) && other_T::Traits_T::supportsInfinity()) || |
689 | 750 | ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias + 1) && !other_T::Traits_T::supportsInfinity()) || |
690 | 750 | (significand == 0 && (getBits() & exponent_mask) == exponent_mask)); |
691 | | |
692 | | // If we are Nan or Inf we should pass that through. |
693 | 750 | if (is_inf) { |
694 | 0 | if (other_T::Traits_T::supportsInfinity()) { |
695 | | // encode as +/-inf |
696 | 0 | other.set_value(BitwiseCast<typename other_T::underlying_type>( |
697 | 0 | static_cast<typename other_T::uint_type>( |
698 | 0 | (negate ? other_T::sign_mask : 0) | other_T::exponent_mask))); |
699 | 0 | } else { |
700 | | // encode as +/-nan |
701 | 0 | other.set_value(BitwiseCast<typename other_T::underlying_type>( |
702 | 0 | static_cast<typename other_T::uint_type>(negate ? ~0 : ~other_T::sign_mask))); |
703 | 0 | } |
704 | 0 | return; |
705 | 0 | } |
706 | 750 | if (is_nan) { |
707 | 0 | typename other_T::uint_type shifted_significand; |
708 | 0 | shifted_significand = static_cast<typename other_T::uint_type>( |
709 | 0 | negatable_left_shift( |
710 | 0 | static_cast<int_type>(other_T::num_fraction_bits) - |
711 | 0 | static_cast<int_type>(num_fraction_bits), significand)); |
712 | | |
713 | | // We are some sort of Nan. We try to keep the bit-pattern of the Nan |
714 | | // as close as possible. If we had to shift off bits so we are 0, then we |
715 | | // just set the last bit. |
716 | 0 | other.set_value(BitwiseCast<typename other_T::underlying_type>( |
717 | 0 | static_cast<typename other_T::uint_type>( |
718 | 0 | (negate ? other_T::sign_mask : 0) | other_T::exponent_mask | |
719 | 0 | (shifted_significand == 0 ? 0x1 : shifted_significand)))); |
720 | 0 | return; |
721 | 0 | } |
722 | | |
723 | 750 | bool round_underflow_up = |
724 | 750 | isNegative() ? round_dir == kRoundToNegativeInfinity |
725 | 750 | : round_dir == kRoundToPositiveInfinity; |
726 | 750 | typedef typename other_T::int_type other_int_type; |
727 | | // setFromSignUnbiasedExponentAndNormalizedSignificand will |
728 | | // zero out any underflowing value (but retain the sign). |
729 | 750 | other.setFromSignUnbiasedExponentAndNormalizedSignificand( |
730 | 750 | negate, static_cast<other_int_type>(exponent), rounded_significand, |
731 | 750 | round_underflow_up); |
732 | 750 | return; |
733 | 750 | } void spvutils::HexFloat<spvutils::FloatProxy<float>, spvutils::HexFloatTraits<spvutils::FloatProxy<float> > >::castTo<spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::Float16> > > >(spvutils::HexFloat<spvutils::FloatProxy<spvutils::Float16>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::Float16> > >&, spvutils::round_direction) Line | Count | Source | 658 | 955 | void castTo(other_T& other, round_direction round_dir) { | 659 | 955 | other = other_T(static_cast<typename other_T::native_type>(0)); | 660 | 955 | bool negate = isNegative(); | 661 | 955 | if (getUnsignedBits() == 0) { | 662 | 205 | if (negate) { | 663 | 0 | other.set_value(-other.value()); | 664 | 0 | } | 665 | 205 | return; | 666 | 205 | } | 667 | 750 | uint_type significand = getSignificandBits(); | 668 | 750 | bool carried = false; | 669 | 750 | typename other_T::uint_type rounded_significand = | 670 | 750 | getRoundedNormalizedSignificand<other_T>(round_dir, &carried); | 671 | | | 672 | 750 | int_type exponent = getUnbiasedExponent(); | 673 | 750 | if (exponent == min_exponent) { | 674 | | // If we are denormal, normalize the exponent, so that we can encode | 675 | | // easily. | 676 | 0 | exponent = static_cast<int_type>(exponent + 1); | 677 | 0 | for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0; | 678 | 0 | check_bit = static_cast<uint_type>(check_bit >> 1)) { | 679 | 0 | exponent = static_cast<int_type>(exponent - 1); | 680 | 0 | if (check_bit & significand) break; | 681 | 0 | } | 682 | 0 | } | 683 | | | 684 | 750 | bool is_nan = | 685 | 750 | (getBits() & exponent_mask) == exponent_mask && significand != 0; | 686 | 750 | bool is_inf = | 687 | 750 | !is_nan && | 688 | 750 | (((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) && other_T::Traits_T::supportsInfinity()) || | 689 | 750 | ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias + 1) && !other_T::Traits_T::supportsInfinity()) || | 690 | 750 | (significand == 0 && (getBits() & exponent_mask) == exponent_mask)); | 691 | | | 692 | | // If we are Nan or Inf we should pass that through. | 693 | 750 | if (is_inf) { | 694 | 0 | if (other_T::Traits_T::supportsInfinity()) { | 695 | | // encode as +/-inf | 696 | 0 | other.set_value(BitwiseCast<typename other_T::underlying_type>( | 697 | 0 | static_cast<typename other_T::uint_type>( | 698 | 0 | (negate ? other_T::sign_mask : 0) | other_T::exponent_mask))); | 699 | 0 | } else { | 700 | | // encode as +/-nan | 701 | 0 | other.set_value(BitwiseCast<typename other_T::underlying_type>( | 702 | 0 | static_cast<typename other_T::uint_type>(negate ? ~0 : ~other_T::sign_mask))); | 703 | 0 | } | 704 | 0 | return; | 705 | 0 | } | 706 | 750 | if (is_nan) { | 707 | 0 | typename other_T::uint_type shifted_significand; | 708 | 0 | shifted_significand = static_cast<typename other_T::uint_type>( | 709 | 0 | negatable_left_shift( | 710 | 0 | static_cast<int_type>(other_T::num_fraction_bits) - | 711 | 0 | static_cast<int_type>(num_fraction_bits), significand)); | 712 | | | 713 | | // We are some sort of Nan. We try to keep the bit-pattern of the Nan | 714 | | // as close as possible. If we had to shift off bits so we are 0, then we | 715 | | // just set the last bit. | 716 | 0 | other.set_value(BitwiseCast<typename other_T::underlying_type>( | 717 | 0 | static_cast<typename other_T::uint_type>( | 718 | 0 | (negate ? other_T::sign_mask : 0) | other_T::exponent_mask | | 719 | 0 | (shifted_significand == 0 ? 0x1 : shifted_significand)))); | 720 | 0 | return; | 721 | 0 | } | 722 | | | 723 | 750 | bool round_underflow_up = | 724 | 750 | isNegative() ? round_dir == kRoundToNegativeInfinity | 725 | 750 | : round_dir == kRoundToPositiveInfinity; | 726 | 750 | typedef typename other_T::int_type other_int_type; | 727 | | // setFromSignUnbiasedExponentAndNormalizedSignificand will | 728 | | // zero out any underflowing value (but retain the sign). | 729 | 750 | other.setFromSignUnbiasedExponentAndNormalizedSignificand( | 730 | 750 | negate, static_cast<other_int_type>(exponent), rounded_significand, | 731 | 750 | round_underflow_up); | 732 | 750 | return; | 733 | 750 | } |
Unexecuted instantiation: void spvutils::HexFloat<spvutils::FloatProxy<float>, spvutils::HexFloatTraits<spvutils::FloatProxy<float> > >::castTo<spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE5M2>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE5M2> > > >(spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE5M2>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE5M2> > >&, spvutils::round_direction) Unexecuted instantiation: void spvutils::HexFloat<spvutils::FloatProxy<float>, spvutils::HexFloatTraits<spvutils::FloatProxy<float> > >::castTo<spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE4M3>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE4M3> > > >(spvutils::HexFloat<spvutils::FloatProxy<spvutils::FloatE4M3>, spvutils::HexFloatTraits<spvutils::FloatProxy<spvutils::FloatE4M3> > >&, spvutils::round_direction) |
734 | | |
735 | | private: |
736 | | T value_; |
737 | | |
738 | | static_assert(num_used_bits == |
739 | | Traits::num_exponent_bits + Traits::num_fraction_bits + 1, |
740 | | "The number of bits do not fit"); |
741 | | static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match"); |
742 | | }; |
743 | | |
744 | | // Returns 4 bits represented by the hex character. |
745 | 0 | inline uint8_t get_nibble_from_character(int character) { |
746 | 0 | const char* dec = "0123456789"; |
747 | 0 | const char* lower = "abcdef"; |
748 | 0 | const char* upper = "ABCDEF"; |
749 | 0 | const char* p = nullptr; |
750 | 0 | if ((p = strchr(dec, character))) { |
751 | 0 | return static_cast<uint8_t>(p - dec); |
752 | 0 | } else if ((p = strchr(lower, character))) { |
753 | 0 | return static_cast<uint8_t>(p - lower + 0xa); |
754 | 0 | } else if ((p = strchr(upper, character))) { |
755 | 0 | return static_cast<uint8_t>(p - upper + 0xa); |
756 | 0 | } |
757 | 0 |
|
758 | 0 | assert(false && "This was called with a non-hex character"); |
759 | 0 | return 0; |
760 | 0 | } |
761 | | |
762 | | // Outputs the given HexFloat to the stream. |
763 | | template <typename T, typename Traits> |
764 | 0 | std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) { |
765 | 0 | typedef HexFloat<T, Traits> HF; |
766 | 0 | typedef typename HF::uint_type uint_type; |
767 | 0 | typedef typename HF::int_type int_type; |
768 | 0 |
|
769 | 0 | static_assert(HF::num_used_bits != 0, |
770 | 0 | "num_used_bits must be non-zero for a valid float"); |
771 | 0 | static_assert(HF::num_exponent_bits != 0, |
772 | 0 | "num_exponent_bits must be non-zero for a valid float"); |
773 | 0 | static_assert(HF::num_fraction_bits != 0, |
774 | 0 | "num_fractin_bits must be non-zero for a valid float"); |
775 | 0 |
|
776 | 0 | const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value()); |
777 | 0 | const char* const sign = (bits & HF::sign_mask) ? "-" : ""; |
778 | 0 | const uint_type exponent = static_cast<uint_type>( |
779 | 0 | (bits & HF::exponent_mask) >> HF::num_fraction_bits); |
780 | 0 |
|
781 | 0 | uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask) |
782 | 0 | << HF::num_overflow_bits); |
783 | 0 |
|
784 | 0 | const bool is_zero = exponent == 0 && fraction == 0; |
785 | 0 | const bool is_denorm = exponent == 0 && !is_zero; |
786 | 0 |
|
787 | 0 | // exponent contains the biased exponent we have to convert it back into |
788 | 0 | // the normal range. |
789 | 0 | int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias); |
790 | 0 | // If the number is all zeros, then we actually have to NOT shift the |
791 | 0 | // exponent. |
792 | 0 | int_exponent = is_zero ? 0 : int_exponent; |
793 | 0 |
|
794 | 0 | // If we are denorm, then start shifting, and decreasing the exponent until |
795 | 0 | // our leading bit is 1. |
796 | 0 |
|
797 | 0 | if (is_denorm) { |
798 | 0 | while ((fraction & HF::fraction_top_bit) == 0) { |
799 | 0 | fraction = static_cast<uint_type>(fraction << 1); |
800 | 0 | int_exponent = static_cast<int_type>(int_exponent - 1); |
801 | 0 | } |
802 | 0 | // Since this is denormalized, we have to consume the leading 1 since it |
803 | 0 | // will end up being implicit. |
804 | 0 | fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1 |
805 | 0 | fraction &= HF::fraction_represent_mask; |
806 | 0 | } |
807 | 0 |
|
808 | 0 | uint_type fraction_nibbles = HF::fraction_nibbles; |
809 | 0 | // We do not have to display any trailing 0s, since this represents the |
810 | 0 | // fractional part. |
811 | 0 | while (fraction_nibbles > 0 && (fraction & 0xF) == 0) { |
812 | 0 | // Shift off any trailing values; |
813 | 0 | fraction = static_cast<uint_type>(fraction >> 4); |
814 | 0 | --fraction_nibbles; |
815 | 0 | } |
816 | 0 |
|
817 | 0 | const auto saved_flags = os.flags(); |
818 | 0 | const auto saved_fill = os.fill(); |
819 | 0 |
|
820 | 0 | os << sign << "0x" << (is_zero ? '0' : '1'); |
821 | 0 | if (fraction_nibbles) { |
822 | 0 | // Make sure to keep the leading 0s in place, since this is the fractional |
823 | 0 | // part. |
824 | 0 | os << "." << std::setw(static_cast<int>(fraction_nibbles)) |
825 | 0 | << std::setfill('0') << std::hex << fraction; |
826 | 0 | } |
827 | 0 | os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent; |
828 | 0 |
|
829 | 0 | os.flags(saved_flags); |
830 | 0 | os.fill(saved_fill); |
831 | 0 |
|
832 | 0 | return os; |
833 | 0 | } |
834 | | |
835 | | // Returns true if negate_value is true and the next character on the |
836 | | // input stream is a plus or minus sign. In that case we also set the fail bit |
837 | | // on the stream and set the value to the zero value for its type. |
838 | | template <typename T, typename Traits> |
839 | | inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value, |
840 | 0 | HexFloat<T, Traits>& value) { |
841 | 0 | if (negate_value) { |
842 | 0 | auto next_char = is.peek(); |
843 | 0 | if (next_char == '-' || next_char == '+') { |
844 | 0 | // Fail the parse. Emulate standard behaviour by setting the value to |
845 | 0 | // the zero value, and set the fail bit on the stream. |
846 | 0 | value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0)); |
847 | 0 | is.setstate(std::ios_base::failbit); |
848 | 0 | return true; |
849 | 0 | } |
850 | 0 | } |
851 | 0 | return false; |
852 | 0 | } |
853 | | |
854 | | // Parses a floating point number from the given stream and stores it into the |
855 | | // value parameter. |
856 | | // If negate_value is true then the number may not have a leading minus or |
857 | | // plus, and if it successfully parses, then the number is negated before |
858 | | // being stored into the value parameter. |
859 | | // If the value cannot be correctly parsed or overflows the target floating |
860 | | // point type, then set the fail bit on the stream. |
861 | | // TODO(dneto): Promise C++11 standard behavior in how the value is set in |
862 | | // the error case, but only after all target platforms implement it correctly. |
863 | | // In particular, the Microsoft C++ runtime appears to be out of spec. |
864 | | template <typename T, typename Traits> |
865 | | inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value, |
866 | 0 | HexFloat<T, Traits>& value) { |
867 | 0 | if (RejectParseDueToLeadingSign(is, negate_value, value)) { |
868 | 0 | return is; |
869 | 0 | } |
870 | 0 | T val; |
871 | 0 | is >> val; |
872 | 0 | if (negate_value) { |
873 | 0 | val = -val; |
874 | 0 | } |
875 | 0 | value.set_value(val); |
876 | 0 | // In the failure case, map -0.0 to 0.0. |
877 | 0 | if (is.fail() && value.getUnsignedBits() == 0u) { |
878 | 0 | value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0)); |
879 | 0 | } |
880 | 0 | if (val.isInfinity()) { |
881 | 0 | // Fail the parse. Emulate standard behaviour by setting the value to |
882 | 0 | // the closest normal value, and set the fail bit on the stream. |
883 | 0 | value.set_value((value.isNegative() || negate_value) ? T::lowest() |
884 | 0 | : T::max()); |
885 | 0 | is.setstate(std::ios_base::failbit); |
886 | 0 | } |
887 | 0 | return is; |
888 | 0 | } |
889 | | |
890 | | // Specialization of ParseNormalFloat for FloatProxy<Float16> values. |
891 | | // This will parse the float as it were a 32-bit floating point number, |
892 | | // and then round it down to fit into a Float16 value. |
893 | | // The number is rounded towards zero. |
894 | | // If negate_value is true then the number may not have a leading minus or |
895 | | // plus, and if it successfully parses, then the number is negated before |
896 | | // being stored into the value parameter. |
897 | | // If the value cannot be correctly parsed or overflows the target floating |
898 | | // point type, then set the fail bit on the stream. |
899 | | // TODO(dneto): Promise C++11 standard behavior in how the value is set in |
900 | | // the error case, but only after all target platforms implement it correctly. |
901 | | // In particular, the Microsoft C++ runtime appears to be out of spec. |
902 | | template <> |
903 | | inline std::istream& |
904 | | ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>( |
905 | | std::istream& is, bool negate_value, |
906 | 0 | HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) { |
907 | 0 | // First parse as a 32-bit float. |
908 | 0 | HexFloat<FloatProxy<float>> float_val(0.0f); |
909 | 0 | ParseNormalFloat(is, negate_value, float_val); |
910 | 0 |
|
911 | 0 | // Then convert to 16-bit float, saturating at infinities, and |
912 | 0 | // rounding toward zero. |
913 | 0 | float_val.castTo(value, kRoundToZero); |
914 | 0 |
|
915 | 0 | // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the |
916 | 0 | // fail bit and set the lowest or highest value. |
917 | 0 | if (Float16::isInfinity(value.value().getAsFloat())) { |
918 | 0 | value.set_value(value.isNegative() ? Float16::lowest() : Float16::max()); |
919 | 0 | is.setstate(std::ios_base::failbit); |
920 | 0 | } |
921 | 0 | return is; |
922 | 0 | } |
923 | | |
924 | | // Reads a HexFloat from the given stream. |
925 | | // If the float is not encoded as a hex-float then it will be parsed |
926 | | // as a regular float. |
927 | | // This may fail if your stream does not support at least one unget. |
928 | | // Nan values can be encoded with "0x1.<not zero>p+exponent_bias". |
929 | | // This would normally overflow a float and round to |
930 | | // infinity but this special pattern is the exact representation for a NaN, |
931 | | // and therefore is actually encoded as the correct NaN. To encode inf, |
932 | | // either 0x0p+exponent_bias can be specified or any exponent greater than |
933 | | // exponent_bias. |
934 | | // Examples using IEEE 32-bit float encoding. |
935 | | // 0x1.0p+128 (+inf) |
936 | | // -0x1.0p-128 (-inf) |
937 | | // |
938 | | // 0x1.1p+128 (+Nan) |
939 | | // -0x1.1p+128 (-Nan) |
940 | | // |
941 | | // 0x1p+129 (+inf) |
942 | | // -0x1p+129 (-inf) |
943 | | template <typename T, typename Traits> |
944 | | std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) { |
945 | | using HF = HexFloat<T, Traits>; |
946 | | using uint_type = typename HF::uint_type; |
947 | | using int_type = typename HF::int_type; |
948 | | |
949 | | value.set_value(static_cast<typename HF::native_type>(0.f)); |
950 | | |
951 | | if (is.flags() & std::ios::skipws) { |
952 | | // If the user wants to skip whitespace , then we should obey that. |
953 | | while (std::isspace(is.peek())) { |
954 | | is.get(); |
955 | | } |
956 | | } |
957 | | |
958 | | auto next_char = is.peek(); |
959 | | bool negate_value = false; |
960 | | |
961 | | if (next_char != '-' && next_char != '0') { |
962 | | return ParseNormalFloat(is, negate_value, value); |
963 | | } |
964 | | |
965 | | if (next_char == '-') { |
966 | | negate_value = true; |
967 | | is.get(); |
968 | | next_char = is.peek(); |
969 | | } |
970 | | |
971 | | if (next_char == '0') { |
972 | | is.get(); // We may have to unget this. |
973 | | auto maybe_hex_start = is.peek(); |
974 | | if (maybe_hex_start != 'x' && maybe_hex_start != 'X') { |
975 | | is.unget(); |
976 | | return ParseNormalFloat(is, negate_value, value); |
977 | | } else { |
978 | | is.get(); // Throw away the 'x'; |
979 | | } |
980 | | } else { |
981 | | return ParseNormalFloat(is, negate_value, value); |
982 | | } |
983 | | |
984 | | // This "looks" like a hex-float so treat it as one. |
985 | | bool seen_p = false; |
986 | | bool seen_dot = false; |
987 | | uint_type fraction_index = 0; |
988 | | |
989 | | uint_type fraction = 0; |
990 | | int_type exponent = HF::exponent_bias; |
991 | | |
992 | | // Strip off leading zeros so we don't have to special-case them later. |
993 | | while ((next_char = is.peek()) == '0') { |
994 | | is.get(); |
995 | | } |
996 | | |
997 | | bool is_denorm = |
998 | | true; // Assume denorm "representation" until we hear otherwise. |
999 | | // NB: This does not mean the value is actually denorm, |
1000 | | // it just means that it was written 0. |
1001 | | bool bits_written = false; // Stays false until we write a bit. |
1002 | | while (!seen_p && !seen_dot) { |
1003 | | // Handle characters that are left of the fractional part. |
1004 | | if (next_char == '.') { |
1005 | | seen_dot = true; |
1006 | | } else if (next_char == 'p') { |
1007 | | seen_p = true; |
1008 | | } else if (::isxdigit(next_char)) { |
1009 | | // We know this is not denormalized since we have stripped all leading |
1010 | | // zeroes and we are not a ".". |
1011 | | is_denorm = false; |
1012 | | int number = get_nibble_from_character(next_char); |
1013 | | for (int i = 0; i < 4; ++i, number <<= 1) { |
1014 | | uint_type write_bit = (number & 0x8) ? 0x1 : 0x0; |
1015 | | if (bits_written) { |
1016 | | // If we are here the bits represented belong in the fractional |
1017 | | // part of the float, and we have to adjust the exponent accordingly. |
1018 | | fraction = static_cast<uint_type>( |
1019 | | fraction | |
1020 | | static_cast<uint_type>( |
1021 | | write_bit << (HF::top_bit_left_shift - fraction_index++))); |
1022 | | exponent = static_cast<int_type>(exponent + 1); |
1023 | | } |
1024 | | bits_written |= write_bit != 0; |
1025 | | } |
1026 | | } else { |
1027 | | // We have not found our exponent yet, so we have to fail. |
1028 | | is.setstate(std::ios::failbit); |
1029 | | return is; |
1030 | | } |
1031 | | is.get(); |
1032 | | next_char = is.peek(); |
1033 | | } |
1034 | | bits_written = false; |
1035 | | while (seen_dot && !seen_p) { |
1036 | | // Handle only fractional parts now. |
1037 | | if (next_char == 'p') { |
1038 | | seen_p = true; |
1039 | | } else if (::isxdigit(next_char)) { |
1040 | | int number = get_nibble_from_character(next_char); |
1041 | | for (int i = 0; i < 4; ++i, number <<= 1) { |
1042 | | uint_type write_bit = (number & 0x8) ? 0x01 : 0x00; |
1043 | | bits_written |= write_bit != 0; |
1044 | | if (is_denorm && !bits_written) { |
1045 | | // Handle modifying the exponent here this way we can handle |
1046 | | // an arbitrary number of hex values without overflowing our |
1047 | | // integer. |
1048 | | exponent = static_cast<int_type>(exponent - 1); |
1049 | | } else { |
1050 | | fraction = static_cast<uint_type>( |
1051 | | fraction | |
1052 | | static_cast<uint_type>( |
1053 | | write_bit << (HF::top_bit_left_shift - fraction_index++))); |
1054 | | } |
1055 | | } |
1056 | | } else { |
1057 | | // We still have not found our 'p' exponent yet, so this is not a valid |
1058 | | // hex-float. |
1059 | | is.setstate(std::ios::failbit); |
1060 | | return is; |
1061 | | } |
1062 | | is.get(); |
1063 | | next_char = is.peek(); |
1064 | | } |
1065 | | |
1066 | | bool seen_sign = false; |
1067 | | int8_t exponent_sign = 1; |
1068 | | int_type written_exponent = 0; |
1069 | | while (true) { |
1070 | | if ((next_char == '-' || next_char == '+')) { |
1071 | | if (seen_sign) { |
1072 | | is.setstate(std::ios::failbit); |
1073 | | return is; |
1074 | | } |
1075 | | seen_sign = true; |
1076 | | exponent_sign = (next_char == '-') ? -1 : 1; |
1077 | | } else if (::isdigit(next_char)) { |
1078 | | // Hex-floats express their exponent as decimal. |
1079 | | written_exponent = static_cast<int_type>(written_exponent * 10); |
1080 | | written_exponent = |
1081 | | static_cast<int_type>(written_exponent + (next_char - '0')); |
1082 | | } else { |
1083 | | break; |
1084 | | } |
1085 | | is.get(); |
1086 | | next_char = is.peek(); |
1087 | | } |
1088 | | |
1089 | | written_exponent = static_cast<int_type>(written_exponent * exponent_sign); |
1090 | | exponent = static_cast<int_type>(exponent + written_exponent); |
1091 | | |
1092 | | bool is_zero = is_denorm && (fraction == 0); |
1093 | | if (is_denorm && !is_zero) { |
1094 | | fraction = static_cast<uint_type>(fraction << 1); |
1095 | | exponent = static_cast<int_type>(exponent - 1); |
1096 | | } else if (is_zero) { |
1097 | | exponent = 0; |
1098 | | } |
1099 | | |
1100 | | if (exponent <= 0 && !is_zero) { |
1101 | | fraction = static_cast<uint_type>(fraction >> 1); |
1102 | | fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift; |
1103 | | } |
1104 | | |
1105 | | fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask; |
1106 | | |
1107 | | const int_type max_exponent = |
1108 | | SetBits<uint_type, 0, HF::num_exponent_bits>::get; |
1109 | | |
1110 | | // Handle actual denorm numbers |
1111 | | while (exponent < 0 && !is_zero) { |
1112 | | fraction = static_cast<uint_type>(fraction >> 1); |
1113 | | exponent = static_cast<int_type>(exponent + 1); |
1114 | | |
1115 | | fraction &= HF::fraction_encode_mask; |
1116 | | if (fraction == 0) { |
1117 | | // We have underflowed our fraction. We should clamp to zero. |
1118 | | is_zero = true; |
1119 | | exponent = 0; |
1120 | | } |
1121 | | } |
1122 | | |
1123 | | // We have overflowed so we should be inf/-inf. |
1124 | | if (exponent > max_exponent) { |
1125 | | exponent = max_exponent; |
1126 | | fraction = 0; |
1127 | | } |
1128 | | |
1129 | | uint_type output_bits = static_cast<uint_type>( |
1130 | | static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift); |
1131 | | output_bits |= fraction; |
1132 | | |
1133 | | uint_type shifted_exponent = static_cast<uint_type>( |
1134 | | static_cast<uint_type>(exponent << HF::exponent_left_shift) & |
1135 | | HF::exponent_mask); |
1136 | | output_bits |= shifted_exponent; |
1137 | | |
1138 | | T output_float = spvutils::BitwiseCast<T>(output_bits); |
1139 | | value.set_value(output_float); |
1140 | | |
1141 | | return is; |
1142 | | } |
1143 | | |
1144 | | // Writes a FloatProxy value to a stream. |
1145 | | // Zero and normal numbers are printed in the usual notation, but with |
1146 | | // enough digits to fully reproduce the value. Other values (subnormal, |
1147 | | // NaN, and infinity) are printed as a hex float. |
1148 | | template <typename T> |
1149 | | std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) { |
1150 | | auto float_val = value.getAsFloat(); |
1151 | | switch (std::fpclassify(float_val)) { |
1152 | | case FP_ZERO: |
1153 | | case FP_NORMAL: { |
1154 | | auto saved_precision = os.precision(); |
1155 | | os.precision(std::numeric_limits<T>::digits10); |
1156 | | os << float_val; |
1157 | | os.precision(saved_precision); |
1158 | | } break; |
1159 | | default: |
1160 | | os << HexFloat<FloatProxy<T>>(value); |
1161 | | break; |
1162 | | } |
1163 | | return os; |
1164 | | } |
1165 | | |
1166 | | template <> |
1167 | | inline std::ostream& operator<<<Float16>(std::ostream& os, |
1168 | 0 | const FloatProxy<Float16>& value) { |
1169 | 0 | os << HexFloat<FloatProxy<Float16>>(value); |
1170 | 0 | return os; |
1171 | 0 | } |
1172 | | } |
1173 | | |
1174 | | #endif // LIBSPIRV_UTIL_HEX_FLOAT_H_ |