/src/shaderc/third_party/glslang/glslang/HLSL/hlslParseHelper.cpp
Line | Count | Source |
1 | | // |
2 | | // Copyright (C) 2017-2018 Google, Inc. |
3 | | // Copyright (C) 2017 LunarG, Inc. |
4 | | // |
5 | | // All rights reserved. |
6 | | // |
7 | | // Redistribution and use in source and binary forms, with or without |
8 | | // modification, are permitted provided that the following conditions |
9 | | // are met: |
10 | | // |
11 | | // Redistributions of source code must retain the above copyright |
12 | | // notice, this list of conditions and the following disclaimer. |
13 | | // |
14 | | // Redistributions in binary form must reproduce the above |
15 | | // copyright notice, this list of conditions and the following |
16 | | // disclaimer in the documentation and/or other materials provided |
17 | | // with the distribution. |
18 | | // |
19 | | // Neither the name of 3Dlabs Inc. Ltd. nor the names of its |
20 | | // contributors may be used to endorse or promote products derived |
21 | | // from this software without specific prior written permission. |
22 | | // |
23 | | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
24 | | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
25 | | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
26 | | // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
27 | | // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
28 | | // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
29 | | // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
30 | | // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
31 | | // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
32 | | // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
33 | | // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
34 | | // POSSIBILITY OF SUCH DAMAGE. |
35 | | // |
36 | | |
37 | | #include "hlslParseHelper.h" |
38 | | #include "hlslScanContext.h" |
39 | | #include "hlslGrammar.h" |
40 | | #include "hlslAttributes.h" |
41 | | |
42 | | #include "../Include/Common.h" |
43 | | #include "../MachineIndependent/Scan.h" |
44 | | #include "../MachineIndependent/preprocessor/PpContext.h" |
45 | | |
46 | | #include <algorithm> |
47 | | #include <functional> |
48 | | #include <cctype> |
49 | | #include <array> |
50 | | #include <set> |
51 | | |
52 | | namespace glslang { |
53 | | |
54 | | HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins, |
55 | | int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language, |
56 | | TInfoSink& infoSink, |
57 | | const TString sourceEntryPointName, |
58 | | bool forwardCompatible, EShMessages messages) : |
59 | 31.6k | TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink, |
60 | 31.6k | forwardCompatible, messages, &sourceEntryPointName), |
61 | 31.6k | annotationNestingLevel(0), |
62 | 31.6k | inputPatch(nullptr), |
63 | 31.6k | nextInLocation(0), nextOutLocation(0), |
64 | 31.6k | entryPointFunction(nullptr), |
65 | 31.6k | entryPointFunctionBody(nullptr), |
66 | 31.6k | gsStreamOutput(nullptr), |
67 | 31.6k | clipDistanceOutput(nullptr), |
68 | 31.6k | cullDistanceOutput(nullptr), |
69 | 31.6k | clipDistanceInput(nullptr), |
70 | 31.6k | cullDistanceInput(nullptr), |
71 | 31.6k | parsingEntrypointParameters(false) |
72 | 31.6k | { |
73 | 31.6k | globalUniformDefaults.clear(); |
74 | 31.6k | globalUniformDefaults.layoutMatrix = ElmRowMajor; |
75 | 31.6k | globalUniformDefaults.layoutPacking = ElpStd140; |
76 | | |
77 | 31.6k | globalBufferDefaults.clear(); |
78 | 31.6k | globalBufferDefaults.layoutMatrix = ElmRowMajor; |
79 | 31.6k | globalBufferDefaults.layoutPacking = ElpStd430; |
80 | | |
81 | 31.6k | globalInputDefaults.clear(); |
82 | 31.6k | globalOutputDefaults.clear(); |
83 | | |
84 | 31.6k | clipSemanticNSizeIn.fill(0); |
85 | 31.6k | cullSemanticNSizeIn.fill(0); |
86 | 31.6k | clipSemanticNSizeOut.fill(0); |
87 | 31.6k | cullSemanticNSizeOut.fill(0); |
88 | | |
89 | | // "Shaders in the transform |
90 | | // feedback capturing mode have an initial global default of |
91 | | // layout(xfb_buffer = 0) out;" |
92 | 31.6k | if (language == EShLangVertex || |
93 | 24.0k | language == EShLangTessControl || |
94 | 20.9k | language == EShLangTessEvaluation || |
95 | 19.1k | language == EShLangGeometry) |
96 | 14.2k | globalOutputDefaults.layoutXfbBuffer = 0; |
97 | | |
98 | 31.6k | if (language == EShLangGeometry) |
99 | 1.72k | globalOutputDefaults.layoutStream = 0; |
100 | 31.6k | } |
101 | | |
102 | | HlslParseContext::~HlslParseContext() |
103 | 31.6k | { |
104 | 31.6k | } |
105 | | |
106 | | void HlslParseContext::initializeExtensionBehavior() |
107 | 4.35k | { |
108 | 4.35k | TParseContextBase::initializeExtensionBehavior(); |
109 | | |
110 | | // HLSL allows #line by default. |
111 | 4.35k | extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable; |
112 | 4.35k | } |
113 | | |
114 | | void HlslParseContext::setLimits(const TBuiltInResource& r) |
115 | 4.35k | { |
116 | 4.35k | resources = r; |
117 | 4.35k | intermediate.setLimits(resources); |
118 | 4.35k | } |
119 | | |
120 | | // |
121 | | // Parse an array of strings using the parser in HlslRules. |
122 | | // |
123 | | // Returns true for successful acceptance of the shader, false if any errors. |
124 | | // |
125 | | bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError) |
126 | 3.73k | { |
127 | 3.73k | currentScanner = &input; |
128 | 3.73k | ppContext.setInput(input, versionWillBeError); |
129 | | |
130 | 3.73k | HlslScanContext scanContext(*this, ppContext); |
131 | 3.73k | HlslGrammar grammar(scanContext, *this); |
132 | 3.73k | if (!grammar.parse()) { |
133 | | // Print a message formated such that if you click on the message it will take you right to |
134 | | // the line through most UIs. |
135 | 1.97k | const glslang::TSourceLoc& sourceLoc = input.getSourceLoc(); |
136 | 1.97k | infoSink.info << sourceLoc.getFilenameStr() << "(" << sourceLoc.line << "): error at column " << sourceLoc.column |
137 | 1.97k | << ", HLSL parsing failed.\n"; |
138 | 1.97k | ++numErrors; |
139 | 1.97k | return false; |
140 | 1.97k | } |
141 | | |
142 | 1.75k | finish(); |
143 | | |
144 | 1.75k | return numErrors == 0; |
145 | 3.73k | } |
146 | | |
147 | | // |
148 | | // Return true if this l-value node should be converted in some manner. |
149 | | // For instance: turning a load aggregate into a store in an l-value. |
150 | | // |
151 | | bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const |
152 | 2.14k | { |
153 | 2.14k | if (node == nullptr || node->getAsTyped() == nullptr) |
154 | 8 | return false; |
155 | | |
156 | 2.13k | const TIntermAggregate* lhsAsAggregate = node->getAsAggregate(); |
157 | 2.13k | const TIntermBinary* lhsAsBinary = node->getAsBinaryNode(); |
158 | | |
159 | | // If it's a swizzled/indexed aggregate, look at the left node instead. |
160 | 2.13k | if (lhsAsBinary != nullptr && |
161 | 470 | (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) |
162 | 210 | lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate(); |
163 | 2.13k | if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad) |
164 | 164 | return true; |
165 | | |
166 | 1.97k | return false; |
167 | 2.13k | } |
168 | | |
169 | | void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName, |
170 | | TTypeList* newTypeList) |
171 | 2.36k | { |
172 | 2.36k | newTypeList = nullptr; |
173 | 2.36k | correctUniform(memberType.getQualifier()); |
174 | 2.36k | if (memberType.isStruct()) { |
175 | 36 | auto it = ioTypeMap.find(memberType.getStruct()); |
176 | 36 | if (it != ioTypeMap.end() && it->second.uniform) |
177 | 0 | newTypeList = it->second.uniform; |
178 | 36 | } |
179 | 2.36k | TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList); |
180 | 2.36k | } |
181 | | |
182 | | // |
183 | | // Return a TLayoutFormat corresponding to the given texture type. |
184 | | // |
185 | | TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType) |
186 | 87.6k | { |
187 | 87.6k | if (txType.isStruct()) { |
188 | | // TODO: implement. |
189 | 0 | error(loc, "unimplemented: structure type in image or buffer", "", ""); |
190 | 0 | return ElfNone; |
191 | 0 | } |
192 | | |
193 | 87.6k | const int components = txType.getVectorSize(); |
194 | 87.6k | const TBasicType txBasicType = txType.getBasicType(); |
195 | | |
196 | 87.6k | const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat { |
197 | 87.6k | if (intermediate.getNoStorageFormat()) |
198 | 0 | return ElfNone; |
199 | | |
200 | 87.6k | return components == 1 ? v1 : |
201 | 87.6k | components == 2 ? v2 : v4; |
202 | 87.6k | }; |
203 | | |
204 | 87.6k | switch (txBasicType) { |
205 | 29.4k | case EbtFloat: return selectFormat(ElfR32f, ElfRg32f, ElfRgba32f); |
206 | 29.1k | case EbtInt: return selectFormat(ElfR32i, ElfRg32i, ElfRgba32i); |
207 | 29.1k | case EbtUint: return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui); |
208 | 0 | default: |
209 | 0 | error(loc, "unknown basic type in image format", "", ""); |
210 | 0 | return ElfNone; |
211 | 87.6k | } |
212 | 87.6k | } |
213 | | |
214 | | // |
215 | | // Both test and if necessary, spit out an error, to see if the node is really |
216 | | // an l-value that can be operated on this way. |
217 | | // |
218 | | // Returns true if there was an error. |
219 | | // |
220 | | bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node) |
221 | 1.10k | { |
222 | 1.10k | if (shouldConvertLValue(node)) { |
223 | | // if we're writing to a texture, it must be an RW form. |
224 | |
|
225 | 0 | TIntermAggregate* lhsAsAggregate = node->getAsAggregate(); |
226 | 0 | TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped(); |
227 | |
|
228 | 0 | if (!object->getType().getSampler().isImage()) { |
229 | 0 | error(loc, "operator[] on a non-RW texture must be an r-value", "", ""); |
230 | 0 | return true; |
231 | 0 | } |
232 | 0 | } |
233 | | |
234 | | // We tolerate samplers as l-values, even though they are nominally |
235 | | // illegal, because we expect a later optimization to eliminate them. |
236 | 1.10k | if (node->getType().getBasicType() == EbtSampler) { |
237 | 2 | intermediate.setNeedsLegalization(); |
238 | 2 | return false; |
239 | 2 | } |
240 | | |
241 | | // Let the base class check errors |
242 | 1.09k | return TParseContextBase::lValueErrorCheck(loc, op, node); |
243 | 1.10k | } |
244 | | |
245 | | // |
246 | | // This function handles l-value conversions and verifications. It uses, but is not synonymous |
247 | | // with lValueErrorCheck. That function accepts an l-value directly, while this one must be |
248 | | // given the surrounding tree - e.g, with an assignment, so we can convert the assign into a |
249 | | // series of other image operations. |
250 | | // |
251 | | // Most things are passed through unmodified, except for error checking. |
252 | | // |
253 | | TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node) |
254 | 1.10k | { |
255 | 1.10k | if (node == nullptr) |
256 | 100 | return nullptr; |
257 | | |
258 | 1.00k | TIntermBinary* nodeAsBinary = node->getAsBinaryNode(); |
259 | 1.00k | TIntermUnary* nodeAsUnary = node->getAsUnaryNode(); |
260 | 1.00k | TIntermAggregate* sequence = nullptr; |
261 | | |
262 | 1.00k | TIntermTyped* lhs = nodeAsUnary ? nodeAsUnary->getOperand() : |
263 | 1.00k | nodeAsBinary ? nodeAsBinary->getLeft() : |
264 | 846 | nullptr; |
265 | | |
266 | | // Early bail out if there is no conversion to apply |
267 | 1.00k | if (!shouldConvertLValue(lhs)) { |
268 | 864 | if (lhs != nullptr) |
269 | 856 | if (lValueErrorCheck(loc, op, lhs)) |
270 | 18 | return nullptr; |
271 | 846 | return node; |
272 | 864 | } |
273 | | |
274 | | // *** If we get here, we're going to apply some conversion to an l-value. |
275 | | |
276 | | // Helper to create a load. |
277 | 140 | const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) { |
278 | 42 | TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad); |
279 | 42 | loadOp->setLoc(loc); |
280 | 42 | loadOp->getSequence().push_back(object); |
281 | 42 | loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode())); |
282 | 42 | loadOp->setType(derefType); |
283 | | |
284 | 42 | sequence = intermediate.growAggregate(sequence, |
285 | 42 | intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc), |
286 | 42 | loc); |
287 | 42 | }; |
288 | | |
289 | | // Helper to create a store. |
290 | 140 | const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) { |
291 | 140 | TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore); |
292 | 140 | storeOp->getSequence().push_back(object); |
293 | 140 | storeOp->getSequence().push_back(coord); |
294 | 140 | storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp)); |
295 | 140 | storeOp->setLoc(loc); |
296 | 140 | storeOp->setType(TType(EbtVoid)); |
297 | | |
298 | 140 | sequence = intermediate.growAggregate(sequence, storeOp); |
299 | 140 | }; |
300 | | |
301 | | // Helper to create an assign. |
302 | 154 | const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) { |
303 | 154 | sequence = intermediate.growAggregate(sequence, |
304 | 154 | intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()), |
305 | 154 | loc); |
306 | 154 | }; |
307 | | |
308 | | // Helper to complete sequence by adding trailing variable, so we evaluate to the right value. |
309 | 140 | const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* { |
310 | | // Add a trailing use of the temp, so the sequence returns the proper value. |
311 | 140 | sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp)); |
312 | 140 | sequence->setOperator(EOpSequence); |
313 | 140 | sequence->setLoc(loc); |
314 | 140 | sequence->setType(derefType); |
315 | | |
316 | 140 | return sequence; |
317 | 140 | }; |
318 | | |
319 | | // Helper to add unary op |
320 | 140 | const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) { |
321 | 0 | sequence = intermediate.growAggregate(sequence, |
322 | 0 | intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc, |
323 | 0 | rhsTmp->getType()), |
324 | 0 | loc); |
325 | 0 | }; |
326 | | |
327 | | // Return true if swizzle or index writes all components of the given variable. |
328 | 140 | const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool { |
329 | 112 | if (swizzle == nullptr) // not a swizzle or index |
330 | 90 | return true; |
331 | | |
332 | | // Track which components are being set. |
333 | 22 | std::array<bool, 4> compIsSet; |
334 | 22 | compIsSet.fill(false); |
335 | | |
336 | 22 | const TIntermConstantUnion* asConst = swizzle->getRight()->getAsConstantUnion(); |
337 | 22 | const TIntermAggregate* asAggregate = swizzle->getRight()->getAsAggregate(); |
338 | | |
339 | | // This could be either a direct index, or a swizzle. |
340 | 22 | if (asConst) { |
341 | 0 | compIsSet[asConst->getConstArray()[0].getIConst()] = true; |
342 | 22 | } else if (asAggregate) { |
343 | 22 | const TIntermSequence& seq = asAggregate->getSequence(); |
344 | 88 | for (int comp=0; comp<int(seq.size()); ++comp) |
345 | 66 | compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true; |
346 | 22 | } else { |
347 | 0 | assert(0); |
348 | 0 | } |
349 | | |
350 | | // Return true if all components are being set by the index or swizzle |
351 | 22 | return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(), |
352 | 66 | [](bool isSet) { return isSet; } ); |
353 | 112 | }; |
354 | | |
355 | | // Create swizzle matching input swizzle |
356 | 140 | const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* { |
357 | 112 | if (swizzle) |
358 | 22 | return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType()); |
359 | 90 | else |
360 | 90 | return var; |
361 | 112 | }; |
362 | | |
363 | 140 | TIntermBinary* lhsAsBinary = lhs->getAsBinaryNode(); |
364 | 140 | TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate(); |
365 | 140 | bool lhsIsSwizzle = false; |
366 | | |
367 | | // If it's a swizzled L-value, remember the swizzle, and use the LHS. |
368 | 140 | if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) { |
369 | 22 | lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate(); |
370 | 22 | lhsIsSwizzle = true; |
371 | 22 | } |
372 | | |
373 | 140 | TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped(); |
374 | 140 | TIntermTyped* coord = lhsAsAggregate->getSequence()[1]->getAsTyped(); |
375 | | |
376 | 140 | const TSampler& texSampler = object->getType().getSampler(); |
377 | | |
378 | 140 | TType objDerefType; |
379 | 140 | getTextureReturnType(texSampler, objDerefType); |
380 | | |
381 | 140 | if (nodeAsBinary) { |
382 | 140 | TIntermTyped* rhs = nodeAsBinary->getRight(); |
383 | 140 | const TOperator assignOp = nodeAsBinary->getOp(); |
384 | | |
385 | 140 | bool isModifyOp = false; |
386 | | |
387 | 140 | switch (assignOp) { |
388 | 6 | case EOpAddAssign: |
389 | 12 | case EOpSubAssign: |
390 | 12 | case EOpMulAssign: |
391 | 12 | case EOpVectorTimesMatrixAssign: |
392 | 18 | case EOpVectorTimesScalarAssign: |
393 | 18 | case EOpMatrixTimesScalarAssign: |
394 | 18 | case EOpMatrixTimesMatrixAssign: |
395 | 22 | case EOpDivAssign: |
396 | 26 | case EOpModAssign: |
397 | 30 | case EOpAndAssign: |
398 | 34 | case EOpInclusiveOrAssign: |
399 | 34 | case EOpExclusiveOrAssign: |
400 | 38 | case EOpLeftShiftAssign: |
401 | 42 | case EOpRightShiftAssign: |
402 | 42 | isModifyOp = true; |
403 | 42 | [[fallthrough]]; |
404 | 140 | case EOpAssign: |
405 | 140 | { |
406 | | // Since this is an lvalue, we'll convert an image load to a sequence like this |
407 | | // (to still provide the value): |
408 | | // OpSequence |
409 | | // OpImageStore(object, lhs, rhs) |
410 | | // rhs |
411 | | // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS, |
412 | | // so we'll convert instead to this: |
413 | | // OpSequence |
414 | | // rhsTmp = rhs |
415 | | // OpImageStore(object, coord, rhsTmp) |
416 | | // rhsTmp |
417 | | // If this is a read-modify-write op, like +=, we issue: |
418 | | // OpSequence |
419 | | // coordtmp = load's param1 |
420 | | // rhsTmp = OpImageLoad(object, coordTmp) |
421 | | // rhsTmp op= rhs |
422 | | // OpImageStore(object, coordTmp, rhsTmp) |
423 | | // rhsTmp |
424 | | // |
425 | | // If the lvalue is swizzled, we apply that when writing the temp variable, like so: |
426 | | // ... |
427 | | // rhsTmp.some_swizzle = ... |
428 | | // For partial writes, an error is generated. |
429 | | |
430 | 140 | TIntermSymbol* rhsTmp = rhs->getAsSymbolNode(); |
431 | 140 | TIntermTyped* coordTmp = coord; |
432 | | |
433 | 140 | if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) { |
434 | 112 | rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType); |
435 | | |
436 | | // Partial updates not yet supported |
437 | 112 | if (!writesAllComponents(rhsTmp, lhsAsBinary)) { |
438 | 0 | error(loc, "unimplemented: partial image updates", "", ""); |
439 | 0 | } |
440 | | |
441 | | // Assign storeTemp = rhs |
442 | 112 | if (isModifyOp) { |
443 | | // We have to make a temp var for the coordinate, to avoid evaluating it twice. |
444 | 42 | coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType()); |
445 | 42 | makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] |
446 | 42 | makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp) |
447 | 42 | } |
448 | | |
449 | | // rhsTmp op= rhs. |
450 | 112 | makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs); |
451 | 112 | } |
452 | | |
453 | 140 | makeStore(object, coordTmp, rhsTmp); // add a store |
454 | 140 | return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence |
455 | 42 | } |
456 | | |
457 | 0 | default: |
458 | 0 | break; |
459 | 140 | } |
460 | 140 | } |
461 | | |
462 | 0 | if (nodeAsUnary) { |
463 | 0 | const TOperator assignOp = nodeAsUnary->getOp(); |
464 | |
|
465 | 0 | switch (assignOp) { |
466 | 0 | case EOpPreIncrement: |
467 | 0 | case EOpPreDecrement: |
468 | 0 | { |
469 | | // We turn this into: |
470 | | // OpSequence |
471 | | // coordtmp = load's param1 |
472 | | // rhsTmp = OpImageLoad(object, coordTmp) |
473 | | // rhsTmp op |
474 | | // OpImageStore(object, coordTmp, rhsTmp) |
475 | | // rhsTmp |
476 | |
|
477 | 0 | TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType); |
478 | 0 | TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType()); |
479 | |
|
480 | 0 | makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] |
481 | 0 | makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp) |
482 | 0 | makeUnary(assignOp, rhsTmp); // op rhsTmp |
483 | 0 | makeStore(object, coordTmp, rhsTmp); // OpImageStore(object, coordTmp, rhsTmp) |
484 | 0 | return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence |
485 | 0 | } |
486 | | |
487 | 0 | case EOpPostIncrement: |
488 | 0 | case EOpPostDecrement: |
489 | 0 | { |
490 | | // We turn this into: |
491 | | // OpSequence |
492 | | // coordtmp = load's param1 |
493 | | // rhsTmp1 = OpImageLoad(object, coordTmp) |
494 | | // rhsTmp2 = rhsTmp1 |
495 | | // rhsTmp2 op |
496 | | // OpImageStore(object, coordTmp, rhsTmp2) |
497 | | // rhsTmp1 (pre-op value) |
498 | 0 | TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre", objDerefType); |
499 | 0 | TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType); |
500 | 0 | TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType()); |
501 | |
|
502 | 0 | makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1] |
503 | 0 | makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp) |
504 | 0 | makeBinary(EOpAssign, rhsTmp2, rhsTmp1); // rhsTmp2 = rhsTmp1 |
505 | 0 | makeUnary(assignOp, rhsTmp2); // rhsTmp op |
506 | 0 | makeStore(object, coordTmp, rhsTmp2); // OpImageStore(object, coordTmp, rhsTmp2) |
507 | 0 | return finishSequence(rhsTmp1, objDerefType); // return rhsTmp from sequence |
508 | 0 | } |
509 | | |
510 | 0 | default: |
511 | 0 | break; |
512 | 0 | } |
513 | 0 | } |
514 | | |
515 | 0 | if (lhs) |
516 | 0 | if (lValueErrorCheck(loc, op, lhs)) |
517 | 0 | return nullptr; |
518 | | |
519 | 0 | return node; |
520 | 0 | } |
521 | | |
522 | | void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens) |
523 | 196 | { |
524 | 196 | if (pragmaCallback) |
525 | 140 | pragmaCallback(loc.line, tokens); |
526 | | |
527 | 196 | if (tokens.size() == 0) |
528 | 12 | return; |
529 | | |
530 | | // These pragmas are case insensitive in HLSL, so we'll compare in lower case. |
531 | 184 | TVector<TString> lowerTokens = tokens; |
532 | | |
533 | 2.45k | for (auto it = lowerTokens.begin(); it != lowerTokens.end(); ++it) |
534 | 2.26k | std::transform(it->begin(), it->end(), it->begin(), ::tolower); |
535 | | |
536 | | // Handle pack_matrix |
537 | 184 | if (tokens.size() == 4 && lowerTokens[0] == "pack_matrix" && tokens[1] == "(" && tokens[3] == ")") { |
538 | | // Note that HLSL semantic order is Mrc, not Mcr like SPIR-V, so we reverse the sense. |
539 | | // Row major becomes column major and vice versa. |
540 | | |
541 | 56 | if (lowerTokens[2] == "row_major") { |
542 | 21 | globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmColumnMajor; |
543 | 35 | } else if (lowerTokens[2] == "column_major") { |
544 | 13 | globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor; |
545 | 22 | } else { |
546 | | // unknown majorness strings are treated as (HLSL column major)==(SPIR-V row major) |
547 | 22 | warn(loc, "unknown pack_matrix pragma value", tokens[2].c_str(), ""); |
548 | 22 | globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor; |
549 | 22 | } |
550 | 56 | return; |
551 | 56 | } |
552 | | |
553 | | // Handle once |
554 | 128 | if (lowerTokens[0] == "once") { |
555 | 0 | warn(loc, "not implemented", "#pragma once", ""); |
556 | 0 | return; |
557 | 0 | } |
558 | 128 | } |
559 | | |
560 | | // |
561 | | // Look at a '.' matrix selector string and change it into components |
562 | | // for a matrix. There are two types: |
563 | | // |
564 | | // _21 second row, first column (one based) |
565 | | // _m21 third row, second column (zero based) |
566 | | // |
567 | | // Returns true if there is no error. |
568 | | // |
569 | | bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows, |
570 | | TSwizzleSelectors<TMatrixSelector>& components) |
571 | 10 | { |
572 | 10 | int startPos[MaxSwizzleSelectors]; |
573 | 10 | int numComps = 0; |
574 | 10 | TString compString = fields; |
575 | | |
576 | | // Find where each component starts, |
577 | | // recording the first character position after the '_'. |
578 | 54 | for (size_t c = 0; c < compString.size(); ++c) { |
579 | 44 | if (compString[c] == '_') { |
580 | 0 | if (numComps >= MaxSwizzleSelectors) { |
581 | 0 | error(loc, "matrix component swizzle has too many components", compString.c_str(), ""); |
582 | 0 | return false; |
583 | 0 | } |
584 | 0 | if (c > compString.size() - 3 || |
585 | 0 | ((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) { |
586 | 0 | error(loc, "matrix component swizzle missing", compString.c_str(), ""); |
587 | 0 | return false; |
588 | 0 | } |
589 | 0 | startPos[numComps++] = (int)c + 1; |
590 | 0 | } |
591 | 44 | } |
592 | | |
593 | | // Process each component |
594 | 10 | for (int i = 0; i < numComps; ++i) { |
595 | 0 | int pos = startPos[i]; |
596 | 0 | int bias = -1; |
597 | 0 | if (compString[pos] == 'm' || compString[pos] == 'M') { |
598 | 0 | bias = 0; |
599 | 0 | ++pos; |
600 | 0 | } |
601 | 0 | TMatrixSelector comp; |
602 | 0 | comp.coord1 = compString[pos+0] - '0' + bias; |
603 | 0 | comp.coord2 = compString[pos+1] - '0' + bias; |
604 | 0 | if (comp.coord1 < 0 || comp.coord1 >= cols) { |
605 | 0 | error(loc, "matrix row component out of range", compString.c_str(), ""); |
606 | 0 | return false; |
607 | 0 | } |
608 | 0 | if (comp.coord2 < 0 || comp.coord2 >= rows) { |
609 | 0 | error(loc, "matrix column component out of range", compString.c_str(), ""); |
610 | 0 | return false; |
611 | 0 | } |
612 | 0 | components.push_back(comp); |
613 | 0 | } |
614 | | |
615 | 10 | return true; |
616 | 10 | } |
617 | | |
618 | | // If the 'comps' express a column of a matrix, |
619 | | // return the column. Column means the first coords all match. |
620 | | // |
621 | | // Otherwise, return -1. |
622 | | // |
623 | | int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector) |
624 | 10 | { |
625 | 10 | int col = -1; |
626 | | |
627 | | // right number of comps? |
628 | 10 | if (selector.size() != rows) |
629 | 10 | return -1; |
630 | | |
631 | | // all comps in the same column? |
632 | | // rows in order? |
633 | 0 | col = selector[0].coord1; |
634 | 0 | for (int i = 0; i < rows; ++i) { |
635 | 0 | if (col != selector[i].coord1) |
636 | 0 | return -1; |
637 | 0 | if (i != selector[i].coord2) |
638 | 0 | return -1; |
639 | 0 | } |
640 | | |
641 | 0 | return col; |
642 | 0 | } |
643 | | |
644 | | // |
645 | | // Handle seeing a variable identifier in the grammar. |
646 | | // |
647 | | TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string) |
648 | 22.2k | { |
649 | 22.2k | int thisDepth; |
650 | 22.2k | TSymbol* symbol = symbolTable.find(*string, thisDepth); |
651 | 22.2k | if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) { |
652 | 2 | error(loc, "expected symbol, not user-defined type", string->c_str(), ""); |
653 | 2 | return nullptr; |
654 | 2 | } |
655 | | |
656 | 22.2k | const TVariable* variable = nullptr; |
657 | 22.2k | const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr; |
658 | 22.2k | TIntermTyped* node = nullptr; |
659 | 22.2k | if (anon) { |
660 | | // It was a member of an anonymous container, which could be a 'this' structure. |
661 | | |
662 | | // Create a subtree for its dereference. |
663 | 1.86k | if (thisDepth > 0) { |
664 | 2 | variable = getImplicitThis(thisDepth); |
665 | 2 | if (variable == nullptr) |
666 | 0 | error(loc, "cannot access member variables (static member function?)", "this", ""); |
667 | 2 | } |
668 | 1.86k | if (variable == nullptr) |
669 | 1.86k | variable = anon->getAnonContainer().getAsVariable(); |
670 | | |
671 | 1.86k | TIntermTyped* container = intermediate.addSymbol(*variable, loc); |
672 | 1.86k | TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc); |
673 | 1.86k | node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc); |
674 | | |
675 | 1.86k | node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type); |
676 | 1.86k | if (node->getType().hiddenMember()) |
677 | 18 | error(loc, "member of nameless block was not redeclared", string->c_str(), ""); |
678 | 20.3k | } else { |
679 | | // Not a member of an anonymous container. |
680 | | |
681 | | // The symbol table search was done in the lexical phase. |
682 | | // See if it was a variable. |
683 | 20.3k | variable = symbol ? symbol->getAsVariable() : nullptr; |
684 | 20.3k | if (variable) { |
685 | 18.0k | if ((variable->getType().getBasicType() == EbtBlock || |
686 | 17.5k | variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) { |
687 | 0 | error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), ""); |
688 | 0 | variable = nullptr; |
689 | 0 | } |
690 | 18.0k | } else { |
691 | 2.35k | if (symbol) |
692 | 0 | error(loc, "variable name expected", string->c_str(), ""); |
693 | 2.35k | } |
694 | | |
695 | | // Recovery, if it wasn't found or was not a variable. |
696 | 20.3k | if (variable == nullptr) { |
697 | 2.35k | error(loc, "unknown variable", string->c_str(), ""); |
698 | 2.35k | variable = new TVariable(string, TType(EbtVoid)); |
699 | 2.35k | } |
700 | | |
701 | 20.3k | if (variable->getType().getQualifier().isFrontEndConstant()) |
702 | 634 | node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc); |
703 | 19.7k | else |
704 | 19.7k | node = intermediate.addSymbol(*variable, loc); |
705 | 20.3k | } |
706 | | |
707 | 22.2k | if (variable->getType().getQualifier().isIo()) |
708 | 4.01k | intermediate.addIoAccessed(*string); |
709 | | |
710 | 22.2k | return node; |
711 | 22.2k | } |
712 | | |
713 | | // |
714 | | // Handle operator[] on any objects it applies to. Currently: |
715 | | // Textures |
716 | | // Buffers |
717 | | // |
718 | | TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) |
719 | 734 | { |
720 | | // handle r-value operator[] on textures and images. l-values will be processed later. |
721 | 734 | if (base->getType().getBasicType() == EbtSampler && !base->isArray()) { |
722 | 302 | const TSampler& sampler = base->getType().getSampler(); |
723 | 302 | if (sampler.isImage() || sampler.isTexture()) { |
724 | 302 | if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) { |
725 | | // The first operator[] to a .mips[] sequence is the mip level. We'll remember it. |
726 | 34 | mipsOperatorMipArg.back().mipLevel = index; |
727 | 34 | return base; // next [] index is to the same base. |
728 | 268 | } else { |
729 | 268 | TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch); |
730 | | |
731 | 268 | TType sampReturnType; |
732 | 268 | getTextureReturnType(sampler, sampReturnType); |
733 | | |
734 | 268 | load->setType(sampReturnType); |
735 | 268 | load->setLoc(loc); |
736 | 268 | load->getSequence().push_back(base); |
737 | 268 | load->getSequence().push_back(index); |
738 | | |
739 | | // Textures need a MIP. If we saw one go by, use it. Otherwise, use zero. |
740 | 268 | if (sampler.isTexture()) { |
741 | 30 | if (! mipsOperatorMipArg.empty()) { |
742 | 24 | load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel); |
743 | 24 | mipsOperatorMipArg.pop_back(); |
744 | 24 | } else { |
745 | 6 | load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true)); |
746 | 6 | } |
747 | 30 | } |
748 | | |
749 | 268 | return load; |
750 | 268 | } |
751 | 302 | } |
752 | 302 | } |
753 | | |
754 | | // Handle operator[] on structured buffers: this indexes into the array element of the buffer. |
755 | | // indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO). |
756 | 432 | TIntermTyped* sbArray = indexStructBufferContent(loc, base); |
757 | 432 | if (sbArray != nullptr) { |
758 | | // Now we'll apply the [] index to that array |
759 | 64 | const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; |
760 | | |
761 | 64 | TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc); |
762 | 64 | const TType derefType(sbArray->getType(), 0); |
763 | 64 | element->setType(derefType); |
764 | 64 | return element; |
765 | 64 | } |
766 | | |
767 | 368 | return nullptr; |
768 | 432 | } |
769 | | |
770 | | // |
771 | | // Cast index value to a uint if it isn't already (for operator[], load indexes, etc) |
772 | | TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index) |
773 | 994 | { |
774 | 994 | const TBasicType indexBasicType = index->getType().getBasicType(); |
775 | 994 | const int vecSize = index->getType().getVectorSize(); |
776 | | |
777 | | // We can use int types directly as the index |
778 | 994 | if (indexBasicType == EbtInt || indexBasicType == EbtUint || |
779 | 34 | indexBasicType == EbtInt64 || indexBasicType == EbtUint64) |
780 | 960 | return index; |
781 | | |
782 | | // Cast index to unsigned integer if it isn't one. |
783 | 34 | return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index); |
784 | 994 | } |
785 | | |
786 | | // |
787 | | // Handle seeing a base[index] dereference in the grammar. |
788 | | // |
789 | | TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) |
790 | 740 | { |
791 | 740 | index = makeIntegerIndex(index); |
792 | | |
793 | 740 | if (index == nullptr) { |
794 | 6 | error(loc, " unknown index type ", "", ""); |
795 | 6 | return nullptr; |
796 | 6 | } |
797 | | |
798 | 734 | TIntermTyped* result = handleBracketOperator(loc, base, index); |
799 | | |
800 | 734 | if (result != nullptr) |
801 | 366 | return result; // it was handled as an operator[] |
802 | | |
803 | 368 | bool flattened = false; |
804 | 368 | int indexValue = 0; |
805 | 368 | if (index->getQualifier().isFrontEndConstant()) |
806 | 254 | indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst(); |
807 | | |
808 | 368 | variableCheck(base); |
809 | 368 | if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) { |
810 | 110 | if (base->getAsSymbolNode()) |
811 | 82 | error(loc, " left of '[' is not of type array, matrix, or vector ", |
812 | 82 | base->getAsSymbolNode()->getName().c_str(), ""); |
813 | 28 | else |
814 | 28 | error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", ""); |
815 | 258 | } else if (base->getType().getQualifier().isFrontEndConstant() && |
816 | 30 | index->getQualifier().isFrontEndConstant()) { |
817 | | // both base and index are front-end constants |
818 | 24 | checkIndex(loc, base->getType(), indexValue); |
819 | 24 | return intermediate.foldDereference(base, indexValue, loc); |
820 | 234 | } else { |
821 | | // at least one of base and index is variable... |
822 | | |
823 | 234 | if (index->getQualifier().isFrontEndConstant()) |
824 | 140 | checkIndex(loc, base->getType(), indexValue); |
825 | | |
826 | 234 | if (base->getType().isScalarOrVec1()) |
827 | 0 | result = base; |
828 | 234 | else if (base->getAsSymbolNode() && wasFlattened(base)) { |
829 | 0 | if (index->getQualifier().storage != EvqConst) |
830 | 0 | error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), ""); |
831 | |
|
832 | 0 | result = flattenAccess(base, indexValue); |
833 | 0 | flattened = (result != base); |
834 | 234 | } else { |
835 | 234 | if (index->getQualifier().isFrontEndConstant()) { |
836 | 140 | if (base->getType().isUnsizedArray()) |
837 | 0 | base->getWritableType().updateImplicitArraySize(indexValue + 1); |
838 | 140 | else |
839 | 140 | checkIndex(loc, base->getType(), indexValue); |
840 | 140 | result = intermediate.addIndex(EOpIndexDirect, base, index, loc); |
841 | 140 | } else |
842 | 94 | result = intermediate.addIndex(EOpIndexIndirect, base, index, loc); |
843 | 234 | } |
844 | 234 | } |
845 | | |
846 | 344 | if (result == nullptr) { |
847 | | // Insert dummy error-recovery result |
848 | 110 | result = intermediate.addConstantUnion(0.0, EbtFloat, loc); |
849 | 234 | } else { |
850 | | // If the array reference was flattened, it has the correct type. E.g, if it was |
851 | | // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps. |
852 | | // In that case, we preserve the qualifiers. |
853 | 234 | if (!flattened) { |
854 | | // Insert valid dereferenced result |
855 | 234 | TType newType(base->getType(), 0); // dereferenced type |
856 | 234 | if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst) |
857 | 6 | newType.getQualifier().storage = EvqConst; |
858 | 228 | else |
859 | 228 | newType.getQualifier().storage = EvqTemporary; |
860 | 234 | result->setType(newType); |
861 | 234 | } |
862 | 234 | } |
863 | | |
864 | 344 | return result; |
865 | 368 | } |
866 | | |
867 | | // Handle seeing a binary node with a math operation. |
868 | | TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, |
869 | | TIntermTyped* left, TIntermTyped* right) |
870 | 402 | { |
871 | 402 | TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc); |
872 | 402 | if (result == nullptr) |
873 | 20 | binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString()); |
874 | | |
875 | 402 | return result; |
876 | 402 | } |
877 | | |
878 | | // Handle seeing a unary node with a math operation. |
879 | | TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, |
880 | | TIntermTyped* childNode) |
881 | 320 | { |
882 | 320 | TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc); |
883 | | |
884 | 320 | if (result) |
885 | 320 | return result; |
886 | 0 | else |
887 | 0 | unaryOpError(loc, str, childNode->getCompleteString()); |
888 | | |
889 | 0 | return childNode; |
890 | 320 | } |
891 | | // |
892 | | // Return true if the name is a struct buffer method |
893 | | // |
894 | | bool HlslParseContext::isStructBufferMethod(const TString& name) const |
895 | 664 | { |
896 | 664 | return |
897 | 664 | name == "GetDimensions" || |
898 | 652 | name == "Load" || |
899 | 620 | name == "Load2" || |
900 | 608 | name == "Load3" || |
901 | 596 | name == "Load4" || |
902 | 588 | name == "Store" || |
903 | 578 | name == "Store2" || |
904 | 570 | name == "Store3" || |
905 | 558 | name == "Store4" || |
906 | 548 | name == "InterlockedAdd" || |
907 | 428 | name == "InterlockedAnd" || |
908 | 312 | name == "InterlockedCompareExchange" || |
909 | 264 | name == "InterlockedCompareStore" || |
910 | 260 | name == "InterlockedExchange" || |
911 | 242 | name == "InterlockedMax" || |
912 | 226 | name == "InterlockedMin" || |
913 | 198 | name == "InterlockedOr" || |
914 | 162 | name == "InterlockedXor" || |
915 | 126 | name == "IncrementCounter" || |
916 | 110 | name == "DecrementCounter" || |
917 | 96 | name == "Append" || |
918 | 80 | name == "Consume"; |
919 | 664 | } |
920 | | |
921 | | // |
922 | | // Handle seeing a base.field dereference in the grammar, where 'field' is a |
923 | | // swizzle or member variable. |
924 | | // |
925 | | TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field) |
926 | 890 | { |
927 | 890 | variableCheck(base); |
928 | | |
929 | 890 | if (base->isArray()) { |
930 | 4 | error(loc, "cannot apply to an array:", ".", field.c_str()); |
931 | 4 | return base; |
932 | 4 | } |
933 | | |
934 | 886 | TIntermTyped* result = base; |
935 | | |
936 | 886 | if (base->getType().getBasicType() == EbtSampler) { |
937 | | // Handle .mips[mipid][pos] operation on textures |
938 | 84 | const TSampler& sampler = base->getType().getSampler(); |
939 | 84 | if (sampler.isTexture() && field == "mips") { |
940 | | // Push a null to signify that we expect a mip level under operator[] next. |
941 | 34 | mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr)); |
942 | | // Keep 'result' pointing to 'base', since we expect an operator[] to go by next. |
943 | 50 | } else { |
944 | 50 | if (field == "mips") |
945 | 0 | error(loc, "unexpected texture type for .mips[][] operator:", |
946 | 0 | base->getType().getCompleteString().c_str(), ""); |
947 | 50 | else |
948 | 50 | error(loc, "unexpected operator on texture type:", field.c_str(), |
949 | 50 | base->getType().getCompleteString().c_str()); |
950 | 50 | } |
951 | 802 | } else if (base->isVector() || base->isScalar()) { |
952 | 488 | TSwizzleSelectors<TVectorSelector> selectors; |
953 | 488 | parseSwizzleSelector(loc, field, base->getVectorSize(), selectors); |
954 | | |
955 | 488 | if (base->isScalar()) { |
956 | 40 | if (selectors.size() == 1) |
957 | 40 | return result; |
958 | 0 | else { |
959 | 0 | TType type(base->getBasicType(), EvqTemporary, selectors.size()); |
960 | 0 | return addConstructor(loc, base, type); |
961 | 0 | } |
962 | 40 | } |
963 | | // Use EOpIndexDirect (below) with vec1.x so that it remains l-value (Test/hlsl.swizzle.vec1.comp) |
964 | 448 | if (base->getVectorSize() == 1 && selectors.size() > 1) { |
965 | 6 | TType scalarType(base->getBasicType(), EvqTemporary, 1); |
966 | 6 | TType vectorType(base->getBasicType(), EvqTemporary, selectors.size()); |
967 | 6 | return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType); |
968 | 6 | } |
969 | | |
970 | 442 | if (base->getType().getQualifier().isFrontEndConstant()) |
971 | 2 | result = intermediate.foldSwizzle(base, selectors, loc); |
972 | 440 | else { |
973 | 440 | if (selectors.size() == 1) { |
974 | 238 | TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc); |
975 | 238 | result = intermediate.addIndex(EOpIndexDirect, base, index, loc); |
976 | 238 | result->setType(TType(base->getBasicType(), EvqTemporary)); |
977 | 238 | } else { |
978 | 202 | TIntermTyped* index = intermediate.addSwizzle(selectors, loc); |
979 | 202 | result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc); |
980 | 202 | result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, |
981 | 202 | selectors.size())); |
982 | 202 | } |
983 | 440 | } |
984 | 442 | } else if (base->isMatrix()) { |
985 | 10 | TSwizzleSelectors<TMatrixSelector> selectors; |
986 | 10 | if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors)) |
987 | 0 | return result; |
988 | | |
989 | 10 | if (selectors.size() == 1) { |
990 | | // Representable by m[c][r] |
991 | 0 | if (base->getType().getQualifier().isFrontEndConstant()) { |
992 | 0 | result = intermediate.foldDereference(base, selectors[0].coord1, loc); |
993 | 0 | result = intermediate.foldDereference(result, selectors[0].coord2, loc); |
994 | 0 | } else { |
995 | 0 | result = intermediate.addIndex(EOpIndexDirect, base, |
996 | 0 | intermediate.addConstantUnion(selectors[0].coord1, loc), |
997 | 0 | loc); |
998 | 0 | TType dereferencedCol(base->getType(), 0); |
999 | 0 | result->setType(dereferencedCol); |
1000 | 0 | result = intermediate.addIndex(EOpIndexDirect, result, |
1001 | 0 | intermediate.addConstantUnion(selectors[0].coord2, loc), |
1002 | 0 | loc); |
1003 | 0 | TType dereferenced(dereferencedCol, 0); |
1004 | 0 | result->setType(dereferenced); |
1005 | 0 | } |
1006 | 10 | } else { |
1007 | 10 | int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors); |
1008 | 10 | if (column >= 0) { |
1009 | | // Representable by m[c] |
1010 | 0 | if (base->getType().getQualifier().isFrontEndConstant()) |
1011 | 0 | result = intermediate.foldDereference(base, column, loc); |
1012 | 0 | else { |
1013 | 0 | result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc), |
1014 | 0 | loc); |
1015 | 0 | TType dereferenced(base->getType(), 0); |
1016 | 0 | result->setType(dereferenced); |
1017 | 0 | } |
1018 | 10 | } else { |
1019 | | // general case, not a column, not a single component |
1020 | 10 | TIntermTyped* index = intermediate.addSwizzle(selectors, loc); |
1021 | 10 | result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc); |
1022 | 10 | result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, |
1023 | 10 | selectors.size())); |
1024 | 10 | } |
1025 | 10 | } |
1026 | 304 | } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) { |
1027 | 304 | const TTypeList* fields = base->getType().getStruct(); |
1028 | 304 | bool fieldFound = false; |
1029 | 304 | int member; |
1030 | 554 | for (member = 0; member < (int)fields->size(); ++member) { |
1031 | 508 | if ((*fields)[member].type->getFieldName() == field) { |
1032 | 258 | fieldFound = true; |
1033 | 258 | break; |
1034 | 258 | } |
1035 | 508 | } |
1036 | 304 | if (fieldFound) { |
1037 | 258 | if (base->getAsSymbolNode() && wasFlattened(base)) { |
1038 | 0 | result = flattenAccess(base, member); |
1039 | 258 | } else { |
1040 | 258 | if (base->getType().getQualifier().storage == EvqConst) |
1041 | 10 | result = intermediate.foldDereference(base, member, loc); |
1042 | 248 | else { |
1043 | 248 | TIntermTyped* index = intermediate.addConstantUnion(member, loc); |
1044 | 248 | result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc); |
1045 | 248 | result->setType(*(*fields)[member].type); |
1046 | 248 | } |
1047 | 258 | } |
1048 | 258 | } else |
1049 | 46 | error(loc, "no such field in structure", field.c_str(), ""); |
1050 | 304 | } else |
1051 | 0 | error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str()); |
1052 | | |
1053 | 840 | return result; |
1054 | 886 | } |
1055 | | |
1056 | | // |
1057 | | // Return true if the field should be treated as a built-in method. |
1058 | | // Return false otherwise. |
1059 | | // |
1060 | | bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field) |
1061 | 1.39k | { |
1062 | 1.39k | if (base == nullptr) |
1063 | 0 | return false; |
1064 | | |
1065 | 1.39k | variableCheck(base); |
1066 | | |
1067 | 1.39k | if (base->getType().getBasicType() == EbtSampler) { |
1068 | 976 | return true; |
1069 | 976 | } else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) { |
1070 | 308 | return true; |
1071 | 308 | } else if (field == "Append" || |
1072 | 100 | field == "RestartStrip") { |
1073 | | // We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but |
1074 | | // the code is around in the shader source. |
1075 | 12 | return true; |
1076 | 12 | } else |
1077 | 96 | return false; |
1078 | 1.39k | } |
1079 | | |
1080 | | // Independently establish a built-in that is a member of a structure. |
1081 | | // 'arraySizes' are what's desired for the independent built-in, whatever |
1082 | | // the higher-level source/expression of them was. |
1083 | | void HlslParseContext::splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes* arraySizes, |
1084 | | const TQualifier& outerQualifier) |
1085 | 0 | { |
1086 | | // Because of arrays of structs, we might be asked more than once, |
1087 | | // but the arraySizes passed in should have captured the whole thing |
1088 | | // the first time. |
1089 | | // However, clip/cull rely on multiple updates. |
1090 | 0 | if (!isClipOrCullDistance(memberType)) |
1091 | 0 | if (splitBuiltIns.find(tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)) != |
1092 | 0 | splitBuiltIns.end()) |
1093 | 0 | return; |
1094 | | |
1095 | 0 | TVariable* ioVar = makeInternalVariable(baseName + "." + memberType.getFieldName(), memberType); |
1096 | |
|
1097 | 0 | if (arraySizes != nullptr && !memberType.isArray()) |
1098 | 0 | ioVar->getWritableType().copyArraySizes(*arraySizes); |
1099 | |
|
1100 | 0 | splitBuiltIns[tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)] = ioVar; |
1101 | 0 | if (!isClipOrCullDistance(ioVar->getType())) |
1102 | 0 | trackLinkage(*ioVar); |
1103 | | |
1104 | | // Merge qualifier from the user structure |
1105 | 0 | mergeQualifiers(ioVar->getWritableType().getQualifier(), outerQualifier); |
1106 | | |
1107 | | // Fix the builtin type if needed (e.g, some types require fixed array sizes, no matter how the |
1108 | | // shader declared them). This is done after mergeQualifiers(), in case fixBuiltInIoType looks |
1109 | | // at the qualifier to determine e.g, in or out qualifications. |
1110 | 0 | fixBuiltInIoType(ioVar->getWritableType()); |
1111 | | |
1112 | | // But, not location, we're losing that |
1113 | 0 | ioVar->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd; |
1114 | 0 | } |
1115 | | |
1116 | | // Split a type into |
1117 | | // 1. a struct of non-I/O members |
1118 | | // 2. a collection of independent I/O variables |
1119 | | void HlslParseContext::split(const TVariable& variable) |
1120 | 0 | { |
1121 | | // Create a new variable: |
1122 | 0 | const TType& clonedType = *variable.getType().clone(); |
1123 | 0 | const TType& splitType = split(clonedType, variable.getName(), clonedType.getQualifier()); |
1124 | 0 | splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType); |
1125 | 0 | } |
1126 | | |
1127 | | // Recursive implementation of split(). |
1128 | | // Returns reference to the modified type. |
1129 | | const TType& HlslParseContext::split(const TType& type, const TString& name, const TQualifier& outerQualifier) |
1130 | 0 | { |
1131 | 0 | if (type.isStruct()) { |
1132 | 0 | TTypeList* userStructure = type.getWritableStruct(); |
1133 | 0 | for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) { |
1134 | 0 | if (ioType->type->isBuiltIn()) { |
1135 | | // move out the built-in |
1136 | 0 | splitBuiltIn(name, *ioType->type, type.getArraySizes(), outerQualifier); |
1137 | 0 | ioType = userStructure->erase(ioType); |
1138 | 0 | } else { |
1139 | 0 | split(*ioType->type, name + "." + ioType->type->getFieldName(), outerQualifier); |
1140 | 0 | ++ioType; |
1141 | 0 | } |
1142 | 0 | } |
1143 | 0 | } |
1144 | |
|
1145 | 0 | return type; |
1146 | 0 | } |
1147 | | |
1148 | | // Is this an aggregate that should be flattened? |
1149 | | // Can be applied to intermediate levels of type in a hierarchy. |
1150 | | // Some things like flattening uniform arrays are only about the top level |
1151 | | // of the aggregate, triggered on 'topLevel'. |
1152 | | bool HlslParseContext::shouldFlatten(const TType& type, TStorageQualifier qualifier, bool topLevel) const |
1153 | 36.9k | { |
1154 | 36.9k | switch (qualifier) { |
1155 | 30 | case EvqVaryingIn: |
1156 | 1.56k | case EvqVaryingOut: |
1157 | 1.56k | return type.isStruct() || type.isArray(); |
1158 | 4.67k | case EvqUniform: |
1159 | 4.67k | return (type.isArray() && intermediate.getFlattenUniformArrays() && topLevel) || |
1160 | 4.67k | (type.isStruct() && type.containsOpaque()); |
1161 | 30.7k | default: |
1162 | 30.7k | return false; |
1163 | 36.9k | }; |
1164 | 0 | } |
1165 | | |
1166 | | // Top level variable flattening: construct data |
1167 | | void HlslParseContext::flatten(const TVariable& variable, bool linkage, bool arrayed) |
1168 | 364 | { |
1169 | 364 | const TType& type = variable.getType(); |
1170 | | |
1171 | | // If it's a standalone built-in, there is nothing to flatten |
1172 | 364 | if (type.isBuiltIn() && !type.isStruct()) |
1173 | 0 | return; |
1174 | | |
1175 | | |
1176 | 364 | auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(), |
1177 | 364 | TFlattenData(type.getQualifier().layoutBinding, |
1178 | 364 | type.getQualifier().layoutLocation))); |
1179 | | |
1180 | 364 | if (type.isStruct() && type.getStruct()->size()==0) |
1181 | 2 | return; |
1182 | | // if flattening arrayed io struct, array each member of dereferenced type |
1183 | 362 | if (arrayed) { |
1184 | 152 | const TType dereferencedType(type, 0); |
1185 | 152 | flatten(variable, dereferencedType, entry.first->second, variable.getName(), linkage, |
1186 | 152 | type.getQualifier(), type.getArraySizes()); |
1187 | 210 | } else { |
1188 | 210 | flatten(variable, type, entry.first->second, variable.getName(), linkage, |
1189 | 210 | type.getQualifier(), nullptr); |
1190 | 210 | } |
1191 | 362 | } |
1192 | | |
1193 | | // Recursively flatten the given variable at the provided type, building the flattenData as we go. |
1194 | | // |
1195 | | // This is mutually recursive with flattenStruct and flattenArray. |
1196 | | // We are going to flatten an arbitrarily nested composite structure into a linear sequence of |
1197 | | // members, and later on, we want to turn a path through the tree structure into a final |
1198 | | // location in this linear sequence. |
1199 | | // |
1200 | | // If the tree was N-ary, that can be directly calculated. However, we are dealing with |
1201 | | // arbitrary numbers - perhaps a struct of 7 members containing an array of 3. Thus, we must |
1202 | | // build a data structure to allow the sequence of bracket and dot operators on arrays and |
1203 | | // structs to arrive at the proper member. |
1204 | | // |
1205 | | // To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers. |
1206 | | // The leaves are the indexes into the flattened member array. |
1207 | | // Each level will have the next location for the Nth item stored sequentially, so for instance: |
1208 | | // |
1209 | | // struct { float2 a[2]; int b; float4 c[3] }; |
1210 | | // |
1211 | | // This will produce the following flattened tree: |
1212 | | // Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 |
1213 | | // (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5} |
1214 | | // |
1215 | | // Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse: |
1216 | | // (0+2) = 8 --> (8+1) = 12 --> 12 = 4 |
1217 | | // |
1218 | | // so the 4th flattened member in traversal order is ours. |
1219 | | // |
1220 | | int HlslParseContext::flatten(const TVariable& variable, const TType& type, |
1221 | | TFlattenData& flattenData, TString name, bool linkage, |
1222 | | const TQualifier& outerQualifier, |
1223 | | const TArraySizes* builtInArraySizes) |
1224 | 362 | { |
1225 | | // If something is an arrayed struct, the array flattener will recursively call flatten() |
1226 | | // to then flatten the struct, so this is an "if else": we don't do both. |
1227 | 362 | if (type.isArray()) |
1228 | 0 | return flattenArray(variable, type, flattenData, name, linkage, outerQualifier); |
1229 | 362 | else if (type.isStruct()) |
1230 | 362 | return flattenStruct(variable, type, flattenData, name, linkage, outerQualifier, builtInArraySizes); |
1231 | 0 | else { |
1232 | 0 | assert(0); // should never happen |
1233 | 0 | return -1; |
1234 | 0 | } |
1235 | 362 | } |
1236 | | |
1237 | | // Add a single flattened member to the flattened data being tracked for the composite |
1238 | | // Returns true for the final flattening level. |
1239 | | int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData, |
1240 | | const TString& memberName, bool linkage, |
1241 | | const TQualifier& outerQualifier, |
1242 | | const TArraySizes* builtInArraySizes) |
1243 | 474 | { |
1244 | 474 | if (!shouldFlatten(type, outerQualifier.storage, false)) { |
1245 | | // This is as far as we flatten. Insert the variable. |
1246 | 474 | TVariable* memberVariable = makeInternalVariable(memberName, type); |
1247 | 474 | mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier()); |
1248 | | |
1249 | 474 | if (flattenData.nextBinding != TQualifier::layoutBindingEnd) |
1250 | 0 | memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++; |
1251 | | |
1252 | 474 | if (memberVariable->getType().isBuiltIn()) { |
1253 | | // inherited locations are nonsensical for built-ins (TODO: what if semantic had a number) |
1254 | 0 | memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd; |
1255 | 474 | } else { |
1256 | | // inherited locations must be auto bumped, not replicated |
1257 | 474 | if (flattenData.nextLocation != TQualifier::layoutLocationEnd) { |
1258 | 0 | memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation; |
1259 | 0 | flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType(), language); |
1260 | 0 | nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation); |
1261 | 0 | } |
1262 | 474 | } |
1263 | | |
1264 | | // Only propagate arraysizes here for arrayed io |
1265 | 474 | if (variable.getType().getQualifier().isArrayedIo(language) && builtInArraySizes != nullptr) |
1266 | 162 | memberVariable->getWritableType().copyArraySizes(*builtInArraySizes); |
1267 | | |
1268 | 474 | flattenData.offsets.push_back(static_cast<int>(flattenData.members.size())); |
1269 | 474 | flattenData.members.push_back(memberVariable); |
1270 | | |
1271 | 474 | if (linkage) |
1272 | 60 | trackLinkage(*memberVariable); |
1273 | | |
1274 | 474 | return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference |
1275 | 474 | } else { |
1276 | | // Further recursion required |
1277 | 0 | return flatten(variable, type, flattenData, memberName, linkage, outerQualifier, builtInArraySizes); |
1278 | 0 | } |
1279 | 474 | } |
1280 | | |
1281 | | // Figure out the mapping between an aggregate's top members and an |
1282 | | // equivalent set of individual variables. |
1283 | | // |
1284 | | // Assumes shouldFlatten() or equivalent was called first. |
1285 | | int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type, |
1286 | | TFlattenData& flattenData, TString name, bool linkage, |
1287 | | const TQualifier& outerQualifier, |
1288 | | const TArraySizes* builtInArraySizes) |
1289 | 362 | { |
1290 | 362 | assert(type.isStruct()); |
1291 | | |
1292 | 362 | auto members = *type.getStruct(); |
1293 | | |
1294 | | // Reserve space for this tree level. |
1295 | 362 | int start = static_cast<int>(flattenData.offsets.size()); |
1296 | 362 | int pos = start; |
1297 | 362 | flattenData.offsets.resize(int(pos + members.size()), -1); |
1298 | | |
1299 | 836 | for (int member = 0; member < (int)members.size(); ++member) { |
1300 | 474 | TType& dereferencedType = *members[member].type; |
1301 | 474 | if (dereferencedType.isBuiltIn()) |
1302 | 0 | splitBuiltIn(variable.getName(), dereferencedType, builtInArraySizes, outerQualifier); |
1303 | 474 | else { |
1304 | 474 | const int mpos = addFlattenedMember(variable, dereferencedType, flattenData, |
1305 | 474 | name + "." + dereferencedType.getFieldName(), |
1306 | 474 | linkage, outerQualifier, |
1307 | 474 | builtInArraySizes == nullptr && dereferencedType.isArray() |
1308 | 474 | ? dereferencedType.getArraySizes() |
1309 | 474 | : builtInArraySizes); |
1310 | 474 | flattenData.offsets[pos++] = mpos; |
1311 | 474 | } |
1312 | 474 | } |
1313 | | |
1314 | 362 | return start; |
1315 | 362 | } |
1316 | | |
1317 | | // Figure out mapping between an array's members and an |
1318 | | // equivalent set of individual variables. |
1319 | | // |
1320 | | // Assumes shouldFlatten() or equivalent was called first. |
1321 | | int HlslParseContext::flattenArray(const TVariable& variable, const TType& type, |
1322 | | TFlattenData& flattenData, TString name, bool linkage, |
1323 | | const TQualifier& outerQualifier) |
1324 | 0 | { |
1325 | 0 | assert(type.isSizedArray()); |
1326 | |
|
1327 | 0 | const int size = type.getOuterArraySize(); |
1328 | 0 | const TType dereferencedType(type, 0); |
1329 | |
|
1330 | 0 | if (name.empty()) |
1331 | 0 | name = variable.getName(); |
1332 | | |
1333 | | // Reserve space for this tree level. |
1334 | 0 | int start = static_cast<int>(flattenData.offsets.size()); |
1335 | 0 | int pos = start; |
1336 | 0 | flattenData.offsets.resize(int(pos + size), -1); |
1337 | |
|
1338 | 0 | for (int element=0; element < size; ++element) { |
1339 | 0 | char elementNumBuf[20]; // sufficient for MAXINT |
1340 | 0 | snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element); |
1341 | 0 | const int mpos = addFlattenedMember(variable, dereferencedType, flattenData, |
1342 | 0 | name + elementNumBuf, linkage, outerQualifier, |
1343 | 0 | type.getArraySizes()); |
1344 | |
|
1345 | 0 | flattenData.offsets[pos++] = mpos; |
1346 | 0 | } |
1347 | |
|
1348 | 0 | return start; |
1349 | 0 | } |
1350 | | |
1351 | | // Return true if we have flattened this node. |
1352 | | bool HlslParseContext::wasFlattened(const TIntermTyped* node) const |
1353 | 47.2k | { |
1354 | 47.2k | return node != nullptr && node->getAsSymbolNode() != nullptr && |
1355 | 27.7k | wasFlattened(node->getAsSymbolNode()->getId()); |
1356 | 47.2k | } |
1357 | | |
1358 | | // Return true if we have split this structure |
1359 | | bool HlslParseContext::wasSplit(const TIntermTyped* node) const |
1360 | 34.0k | { |
1361 | 34.0k | return node != nullptr && node->getAsSymbolNode() != nullptr && |
1362 | 16.9k | wasSplit(node->getAsSymbolNode()->getId()); |
1363 | 34.0k | } |
1364 | | |
1365 | | // Turn an access into an aggregate that was flattened to instead be |
1366 | | // an access to the individual variable the member was flattened to. |
1367 | | // Assumes wasFlattened() or equivalent was called first. |
1368 | | TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member) |
1369 | 0 | { |
1370 | 0 | const TType dereferencedType(base->getType(), member); // dereferenced type |
1371 | 0 | const TIntermSymbol& symbolNode = *base->getAsSymbolNode(); |
1372 | 0 | TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, base->getQualifier().storage, |
1373 | 0 | dereferencedType, symbolNode.getFlattenSubset()); |
1374 | |
|
1375 | 0 | return flattened ? flattened : base; |
1376 | 0 | } |
1377 | | TIntermTyped* HlslParseContext::flattenAccess(long long uniqueId, int member, TStorageQualifier outerStorage, |
1378 | | const TType& dereferencedType, int subset) |
1379 | 0 | { |
1380 | 0 | const auto flattenData = flattenMap.find(uniqueId); |
1381 | |
|
1382 | 0 | if (flattenData == flattenMap.end()) |
1383 | 0 | return nullptr; |
1384 | | |
1385 | | // Calculate new cumulative offset from the packed tree |
1386 | 0 | int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member]; |
1387 | |
|
1388 | 0 | TIntermSymbol* subsetSymbol; |
1389 | 0 | if (!shouldFlatten(dereferencedType, outerStorage, false)) { |
1390 | | // Finished flattening: create symbol for variable |
1391 | 0 | member = flattenData->second.offsets[newSubset]; |
1392 | 0 | const TVariable* memberVariable = flattenData->second.members[member]; |
1393 | 0 | subsetSymbol = intermediate.addSymbol(*memberVariable); |
1394 | 0 | subsetSymbol->setFlattenSubset(-1); |
1395 | 0 | } else { |
1396 | | |
1397 | | // If this is not the final flattening, accumulate the position and return |
1398 | | // an object of the partially dereferenced type. |
1399 | 0 | subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", getLanguage(), dereferencedType); |
1400 | 0 | subsetSymbol->setFlattenSubset(newSubset); |
1401 | 0 | } |
1402 | |
|
1403 | 0 | return subsetSymbol; |
1404 | 0 | } |
1405 | | |
1406 | | // For finding where the first leaf is in a subtree of a multi-level aggregate |
1407 | | // that is just getting a subset assigned. Follows the same logic as flattenAccess, |
1408 | | // but logically going down the "left-most" tree branch each step of the way. |
1409 | | // |
1410 | | // Returns the offset into the first leaf of the subset. |
1411 | | int HlslParseContext::findSubtreeOffset(const TIntermNode& node) const |
1412 | 652 | { |
1413 | 652 | const TIntermSymbol* sym = node.getAsSymbolNode(); |
1414 | 652 | if (sym == nullptr) |
1415 | 460 | return 0; |
1416 | 192 | if (!sym->isArray() && !sym->isStruct()) |
1417 | 0 | return 0; |
1418 | 192 | int subset = sym->getFlattenSubset(); |
1419 | 192 | if (subset == -1) |
1420 | 192 | return 0; |
1421 | | |
1422 | | // Getting this far means a partial aggregate is identified by the flatten subset. |
1423 | | // Find the first leaf of the subset. |
1424 | | |
1425 | 0 | const auto flattenData = flattenMap.find(sym->getId()); |
1426 | 0 | if (flattenData == flattenMap.end()) |
1427 | 0 | return 0; |
1428 | | |
1429 | 0 | return findSubtreeOffset(sym->getType(), subset, flattenData->second.offsets); |
1430 | | |
1431 | 0 | do { |
1432 | 0 | subset = flattenData->second.offsets[subset]; |
1433 | 0 | } while (true); |
1434 | 0 | } |
1435 | | // Recursively do the desent |
1436 | | int HlslParseContext::findSubtreeOffset(const TType& type, int subset, const TVector<int>& offsets) const |
1437 | 0 | { |
1438 | 0 | if (!type.isArray() && !type.isStruct()) |
1439 | 0 | return offsets[subset]; |
1440 | 0 | TType derefType(type, 0); |
1441 | 0 | return findSubtreeOffset(derefType, offsets[subset], offsets); |
1442 | 0 | } |
1443 | | |
1444 | | // Find and return the split IO TVariable for id, or nullptr if none. |
1445 | | TVariable* HlslParseContext::getSplitNonIoVar(long long id) const |
1446 | 0 | { |
1447 | 0 | const auto splitNonIoVar = splitNonIoVars.find(id); |
1448 | 0 | if (splitNonIoVar == splitNonIoVars.end()) |
1449 | 0 | return nullptr; |
1450 | | |
1451 | 0 | return splitNonIoVar->second; |
1452 | 0 | } |
1453 | | |
1454 | | // Pass through to base class after remembering built-in mappings. |
1455 | | void HlslParseContext::trackLinkage(TSymbol& symbol) |
1456 | 8.44k | { |
1457 | 8.44k | TBuiltInVariable biType = symbol.getType().getQualifier().builtIn; |
1458 | | |
1459 | 8.44k | if (biType != EbvNone) |
1460 | 408 | builtInTessLinkageSymbols[biType] = symbol.clone(); |
1461 | | |
1462 | 8.44k | TParseContextBase::trackLinkage(symbol); |
1463 | 8.44k | } |
1464 | | |
1465 | | |
1466 | | // Returns true if the built-in is a clip or cull distance variable. |
1467 | | bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn) |
1468 | 36.0k | { |
1469 | 36.0k | return builtIn == EbvClipDistance || builtIn == EbvCullDistance; |
1470 | 36.0k | } |
1471 | | |
1472 | | // Some types require fixed array sizes in SPIR-V, but can be scalars or |
1473 | | // arrays of sizes SPIR-V doesn't allow. For example, tessellation factors. |
1474 | | // This creates the right size. A conversion is performed when the internal |
1475 | | // type is copied to or from the external type. This corrects the externally |
1476 | | // facing input or output type to abide downstream semantics. |
1477 | | void HlslParseContext::fixBuiltInIoType(TType& type) |
1478 | 1.43k | { |
1479 | 1.43k | int requiredArraySize = 0; |
1480 | 1.43k | int requiredVectorSize = 0; |
1481 | | |
1482 | 1.43k | switch (type.getQualifier().builtIn) { |
1483 | 0 | case EbvTessLevelOuter: requiredArraySize = 4; break; |
1484 | 0 | case EbvTessLevelInner: requiredArraySize = 2; break; |
1485 | | |
1486 | 0 | case EbvSampleMask: |
1487 | 0 | { |
1488 | | // Promote scalar to array of size 1. Leave existing arrays alone. |
1489 | 0 | if (!type.isArray()) |
1490 | 0 | requiredArraySize = 1; |
1491 | 0 | break; |
1492 | 0 | } |
1493 | | |
1494 | 0 | case EbvWorkGroupId: requiredVectorSize = 3; break; |
1495 | 0 | case EbvGlobalInvocationId: requiredVectorSize = 3; break; |
1496 | 0 | case EbvLocalInvocationId: requiredVectorSize = 3; break; |
1497 | 0 | case EbvTessCoord: requiredVectorSize = 3; break; |
1498 | | |
1499 | 1.43k | default: |
1500 | 1.43k | if (isClipOrCullDistance(type)) { |
1501 | 24 | const int loc = type.getQualifier().layoutLocation; |
1502 | | |
1503 | 24 | if (type.getQualifier().builtIn == EbvClipDistance) { |
1504 | 16 | if (type.getQualifier().storage == EvqVaryingIn) |
1505 | 16 | clipSemanticNSizeIn[loc] = type.getVectorSize(); |
1506 | 0 | else |
1507 | 0 | clipSemanticNSizeOut[loc] = type.getVectorSize(); |
1508 | 16 | } else { |
1509 | 8 | if (type.getQualifier().storage == EvqVaryingIn) |
1510 | 8 | cullSemanticNSizeIn[loc] = type.getVectorSize(); |
1511 | 0 | else |
1512 | 0 | cullSemanticNSizeOut[loc] = type.getVectorSize(); |
1513 | 8 | } |
1514 | 24 | } |
1515 | | |
1516 | 1.43k | return; |
1517 | 1.43k | } |
1518 | | |
1519 | | // Alter or set vector size as needed. |
1520 | 0 | if (requiredVectorSize > 0) { |
1521 | 0 | TType newType(type.getBasicType(), type.getQualifier().storage, requiredVectorSize); |
1522 | 0 | newType.getQualifier() = type.getQualifier(); |
1523 | |
|
1524 | 0 | type.shallowCopy(newType); |
1525 | 0 | } |
1526 | | |
1527 | | // Alter or set array size as needed. |
1528 | 0 | if (requiredArraySize > 0) { |
1529 | 0 | if (!type.isArray() || type.getOuterArraySize() != requiredArraySize) { |
1530 | 0 | TArraySizes* arraySizes = new TArraySizes; |
1531 | 0 | arraySizes->addInnerSize(requiredArraySize); |
1532 | 0 | type.transferArraySizes(arraySizes); |
1533 | 0 | } |
1534 | 0 | } |
1535 | 0 | } |
1536 | | |
1537 | | // Variables that correspond to the user-interface in and out of a stage |
1538 | | // (not the built-in interface) are |
1539 | | // - assigned locations |
1540 | | // - registered as a linkage node (part of the stage's external interface). |
1541 | | // Assumes it is called in the order in which locations should be assigned. |
1542 | | void HlslParseContext::assignToInterface(TVariable& variable) |
1543 | 952 | { |
1544 | 1.04k | const auto assignLocation = [&](TVariable& variable) { |
1545 | 1.04k | TType& type = variable.getWritableType(); |
1546 | 1.04k | if (!type.isStruct() || type.getStruct()->size() > 0) { |
1547 | 1.04k | TQualifier& qualifier = type.getQualifier(); |
1548 | 1.04k | if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) { |
1549 | 1.04k | if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) { |
1550 | | // Strip off the outer array dimension for those having an extra one. |
1551 | 952 | int size; |
1552 | 952 | if (type.isArray() && qualifier.isArrayedIo(language)) { |
1553 | 470 | TType elementType(type, 0); |
1554 | 470 | size = intermediate.computeTypeLocationSize(elementType, language); |
1555 | 470 | } else |
1556 | 482 | size = intermediate.computeTypeLocationSize(type, language); |
1557 | | |
1558 | 952 | if (qualifier.storage == EvqVaryingIn) { |
1559 | 90 | variable.getWritableType().getQualifier().layoutLocation = nextInLocation; |
1560 | 90 | nextInLocation += size; |
1561 | 862 | } else { |
1562 | 862 | variable.getWritableType().getQualifier().layoutLocation = nextOutLocation; |
1563 | 862 | nextOutLocation += size; |
1564 | 862 | } |
1565 | 952 | } |
1566 | 1.04k | trackLinkage(variable); |
1567 | 1.04k | } |
1568 | 1.04k | } |
1569 | 1.04k | }; |
1570 | | |
1571 | 952 | if (wasFlattened(variable.getUniqueId())) { |
1572 | 326 | auto& memberList = flattenMap[variable.getUniqueId()].members; |
1573 | 740 | for (auto member = memberList.begin(); member != memberList.end(); ++member) |
1574 | 414 | assignLocation(**member); |
1575 | 626 | } else if (wasSplit(variable.getUniqueId())) { |
1576 | 0 | TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId()); |
1577 | 0 | assignLocation(*splitIoVar); |
1578 | 626 | } else { |
1579 | 626 | assignLocation(variable); |
1580 | 626 | } |
1581 | 952 | } |
1582 | | |
1583 | | // |
1584 | | // Handle seeing a function declarator in the grammar. This is the precursor |
1585 | | // to recognizing a function prototype or function definition. |
1586 | | // |
1587 | | void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype) |
1588 | 6.12M | { |
1589 | | // |
1590 | | // Multiple declarations of the same function name are allowed. |
1591 | | // |
1592 | | // If this is a definition, the definition production code will check for redefinitions |
1593 | | // (we don't know at this point if it's a definition or not). |
1594 | | // |
1595 | 6.12M | bool builtIn; |
1596 | 6.12M | TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn); |
1597 | 6.12M | const TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr; |
1598 | | |
1599 | 6.12M | if (prototype) { |
1600 | | // All built-in functions are defined, even though they don't have a body. |
1601 | | // Count their prototype as a definition instead. |
1602 | 6.12M | if (symbolTable.atBuiltInLevel()) |
1603 | 6.12M | function.setDefined(); |
1604 | 100 | else { |
1605 | 100 | if (prevDec && ! builtIn) |
1606 | 18 | symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const |
1607 | 100 | function.setPrototyped(); |
1608 | 100 | } |
1609 | 6.12M | } |
1610 | | |
1611 | | // This insert won't actually insert it if it's a duplicate signature, but it will still check for |
1612 | | // other forms of name collisions. |
1613 | 6.12M | if (! symbolTable.insert(function)) |
1614 | 0 | error(loc, "function name is redeclaration of existing name", function.getName().c_str(), ""); |
1615 | 6.12M | } |
1616 | | |
1617 | | // For struct buffers with counters, we must pass the counter buffer as hidden parameter. |
1618 | | // This adds the hidden parameter to the parameter list in 'paramNodes' if needed. |
1619 | | // Otherwise, it's a no-op |
1620 | | void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param, |
1621 | | TIntermAggregate*& paramNodes) |
1622 | 2.72k | { |
1623 | 2.72k | if (! hasStructBuffCounter(*param.type)) |
1624 | 2.71k | return; |
1625 | | |
1626 | 18 | const TString counterBlockName(intermediate.addCounterBufferName(*param.name)); |
1627 | | |
1628 | 18 | TType counterType; |
1629 | 18 | counterBufferType(loc, counterType); |
1630 | 18 | TVariable *variable = makeInternalVariable(counterBlockName, counterType); |
1631 | | |
1632 | 18 | if (! symbolTable.insert(*variable)) |
1633 | 0 | error(loc, "redefinition", variable->getName().c_str(), ""); |
1634 | | |
1635 | 18 | paramNodes = intermediate.growAggregate(paramNodes, |
1636 | 18 | intermediate.addSymbol(*variable, loc), |
1637 | 18 | loc); |
1638 | 18 | } |
1639 | | |
1640 | | // |
1641 | | // Handle seeing the function prototype in front of a function definition in the grammar. |
1642 | | // The body is handled after this function returns. |
1643 | | // |
1644 | | // Returns an aggregate of parameter-symbol nodes. |
1645 | | // |
1646 | | TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function, |
1647 | | const TAttributes& attributes, |
1648 | | TIntermNode*& entryPointTree) |
1649 | 2.17k | { |
1650 | 2.17k | currentCaller = function.getMangledName(); |
1651 | 2.17k | TSymbol* symbol = symbolTable.find(function.getMangledName()); |
1652 | 2.17k | TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr; |
1653 | | |
1654 | 2.17k | if (prevDec == nullptr) |
1655 | 0 | error(loc, "can't find function", function.getName().c_str(), ""); |
1656 | | // Note: 'prevDec' could be 'function' if this is the first time we've seen function |
1657 | | // as it would have just been put in the symbol table. Otherwise, we're looking up |
1658 | | // an earlier occurrence. |
1659 | | |
1660 | 2.17k | if (prevDec && prevDec->isDefined()) { |
1661 | | // Then this function already has a body. |
1662 | 124 | error(loc, "function already has a body", function.getName().c_str(), ""); |
1663 | 124 | } |
1664 | 2.17k | if (prevDec && ! prevDec->isDefined()) { |
1665 | 2.05k | prevDec->setDefined(); |
1666 | | |
1667 | | // Remember the return type for later checking for RETURN statements. |
1668 | 2.05k | currentFunctionType = &(prevDec->getType()); |
1669 | 2.05k | } else |
1670 | 124 | currentFunctionType = new TType(EbtVoid); |
1671 | 2.17k | functionReturnsValue = false; |
1672 | | |
1673 | | // Entry points need different I/O and other handling, transform it so the |
1674 | | // rest of this function doesn't care. |
1675 | 2.17k | entryPointTree = transformEntryPoint(loc, function, attributes); |
1676 | | |
1677 | | // |
1678 | | // New symbol table scope for body of function plus its arguments |
1679 | | // |
1680 | 2.17k | pushScope(); |
1681 | | |
1682 | | // |
1683 | | // Insert parameters into the symbol table. |
1684 | | // If the parameter has no name, it's not an error, just don't insert it |
1685 | | // (could be used for unused args). |
1686 | | // |
1687 | | // Also, accumulate the list of parameters into the AST, so lower level code |
1688 | | // knows where to find parameters. |
1689 | | // |
1690 | 2.17k | TIntermAggregate* paramNodes = new TIntermAggregate; |
1691 | 4.93k | for (int i = 0; i < function.getParamCount(); i++) { |
1692 | 2.75k | TParameter& param = function[i]; |
1693 | 2.75k | if (param.name != nullptr) { |
1694 | 2.72k | TVariable *variable = new TVariable(param.name, *param.type); |
1695 | | |
1696 | 2.72k | if (i == 0 && function.hasImplicitThis()) { |
1697 | | // Anonymous 'this' members are already in a symbol-table level, |
1698 | | // and we need to know what function parameter to map them to. |
1699 | 24 | symbolTable.makeInternalVariable(*variable); |
1700 | 24 | pushImplicitThis(variable); |
1701 | 24 | } |
1702 | | |
1703 | | // Insert the parameters with name in the symbol table. |
1704 | 2.72k | if (! symbolTable.insert(*variable)) |
1705 | 18 | error(loc, "redefinition", variable->getName().c_str(), ""); |
1706 | | |
1707 | | // Add parameters to the AST list. |
1708 | 2.72k | if (shouldFlatten(variable->getType(), variable->getType().getQualifier().storage, true)) { |
1709 | | // Expand the AST parameter nodes (but not the name mangling or symbol table view) |
1710 | | // for structures that need to be flattened. |
1711 | 0 | flatten(*variable, false); |
1712 | 0 | const TTypeList* structure = variable->getType().getStruct(); |
1713 | 0 | for (int mem = 0; mem < (int)structure->size(); ++mem) { |
1714 | 0 | paramNodes = intermediate.growAggregate(paramNodes, |
1715 | 0 | flattenAccess(variable->getUniqueId(), mem, |
1716 | 0 | variable->getType().getQualifier().storage, |
1717 | 0 | *(*structure)[mem].type), |
1718 | 0 | loc); |
1719 | 0 | } |
1720 | 2.72k | } else { |
1721 | | // Add the parameter to the AST |
1722 | 2.72k | paramNodes = intermediate.growAggregate(paramNodes, |
1723 | 2.72k | intermediate.addSymbol(*variable, loc), |
1724 | 2.72k | loc); |
1725 | 2.72k | } |
1726 | | |
1727 | | // Add hidden AST parameter for struct buffer counters, if needed. |
1728 | 2.72k | addStructBufferHiddenCounterParam(loc, param, paramNodes); |
1729 | 2.72k | } else |
1730 | 24 | paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc); |
1731 | 2.75k | } |
1732 | 2.17k | if (function.hasIllegalImplicitThis()) |
1733 | 4 | pushImplicitThis(nullptr); |
1734 | | |
1735 | 2.17k | intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc); |
1736 | 2.17k | loopNestingLevel = 0; |
1737 | 2.17k | controlFlowNestingLevel = 0; |
1738 | 2.17k | postEntryPointReturn = false; |
1739 | | |
1740 | 2.17k | return paramNodes; |
1741 | 2.17k | } |
1742 | | |
1743 | | // Handle all [attrib] attribute for the shader entry point |
1744 | | void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributes& attributes) |
1745 | 838 | { |
1746 | 868 | for (auto it = attributes.begin(); it != attributes.end(); ++it) { |
1747 | 30 | switch (it->name) { |
1748 | 0 | case EatNumThreads: |
1749 | 0 | { |
1750 | 0 | const TIntermSequence& sequence = it->args->getSequence(); |
1751 | 0 | for (int lid = 0; lid < int(sequence.size()); ++lid) |
1752 | 0 | intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst()); |
1753 | 0 | break; |
1754 | 0 | } |
1755 | 0 | case EatInstance: |
1756 | 0 | { |
1757 | 0 | int invocations; |
1758 | |
|
1759 | 0 | if (!it->getInt(invocations)) { |
1760 | 0 | error(loc, "invalid instance", "", ""); |
1761 | 0 | } else { |
1762 | 0 | if (!intermediate.setInvocations(invocations)) |
1763 | 0 | error(loc, "cannot change previously set instance attribute", "", ""); |
1764 | 0 | } |
1765 | 0 | break; |
1766 | 0 | } |
1767 | 0 | case EatMaxVertexCount: |
1768 | 0 | { |
1769 | 0 | int maxVertexCount; |
1770 | |
|
1771 | 0 | if (! it->getInt(maxVertexCount)) { |
1772 | 0 | error(loc, "invalid maxvertexcount", "", ""); |
1773 | 0 | } else { |
1774 | 0 | if (! intermediate.setVertices(maxVertexCount)) |
1775 | 0 | error(loc, "cannot change previously set maxvertexcount attribute", "", ""); |
1776 | 0 | } |
1777 | 0 | break; |
1778 | 0 | } |
1779 | 0 | case EatPatchConstantFunc: |
1780 | 0 | { |
1781 | 0 | TString pcfName; |
1782 | 0 | if (! it->getString(pcfName, 0, false)) { |
1783 | 0 | error(loc, "invalid patch constant function", "", ""); |
1784 | 0 | } else { |
1785 | 0 | patchConstantFunctionName = pcfName; |
1786 | 0 | } |
1787 | 0 | break; |
1788 | 0 | } |
1789 | 0 | case EatDomain: |
1790 | 0 | { |
1791 | | // Handle [domain("...")] |
1792 | 0 | TString domainStr; |
1793 | 0 | if (! it->getString(domainStr)) { |
1794 | 0 | error(loc, "invalid domain", "", ""); |
1795 | 0 | } else { |
1796 | 0 | TLayoutGeometry domain = ElgNone; |
1797 | |
|
1798 | 0 | if (domainStr == "tri") { |
1799 | 0 | domain = ElgTriangles; |
1800 | 0 | } else if (domainStr == "quad") { |
1801 | 0 | domain = ElgQuads; |
1802 | 0 | } else if (domainStr == "isoline") { |
1803 | 0 | domain = ElgIsolines; |
1804 | 0 | } else { |
1805 | 0 | error(loc, "unsupported domain type", domainStr.c_str(), ""); |
1806 | 0 | } |
1807 | |
|
1808 | 0 | if (language == EShLangTessEvaluation) { |
1809 | 0 | if (! intermediate.setInputPrimitive(domain)) |
1810 | 0 | error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), ""); |
1811 | 0 | } else { |
1812 | 0 | if (! intermediate.setOutputPrimitive(domain)) |
1813 | 0 | error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), ""); |
1814 | 0 | } |
1815 | 0 | } |
1816 | 0 | break; |
1817 | 0 | } |
1818 | 0 | case EatOutputTopology: |
1819 | 0 | { |
1820 | | // Handle [outputtopology("...")] |
1821 | 0 | TString topologyStr; |
1822 | 0 | if (! it->getString(topologyStr)) { |
1823 | 0 | error(loc, "invalid outputtopology", "", ""); |
1824 | 0 | } else { |
1825 | 0 | TVertexOrder vertexOrder = EvoNone; |
1826 | 0 | TLayoutGeometry primitive = ElgNone; |
1827 | |
|
1828 | 0 | if (topologyStr == "point") { |
1829 | 0 | intermediate.setPointMode(); |
1830 | 0 | } else if (topologyStr == "line") { |
1831 | 0 | primitive = ElgIsolines; |
1832 | 0 | } else if (topologyStr == "triangle_cw") { |
1833 | 0 | vertexOrder = EvoCw; |
1834 | 0 | primitive = ElgTriangles; |
1835 | 0 | } else if (topologyStr == "triangle_ccw") { |
1836 | 0 | vertexOrder = EvoCcw; |
1837 | 0 | primitive = ElgTriangles; |
1838 | 0 | } else { |
1839 | 0 | error(loc, "unsupported outputtopology type", topologyStr.c_str(), ""); |
1840 | 0 | } |
1841 | |
|
1842 | 0 | if (vertexOrder != EvoNone) { |
1843 | 0 | if (! intermediate.setVertexOrder(vertexOrder)) { |
1844 | 0 | error(loc, "cannot change previously set outputtopology", |
1845 | 0 | TQualifier::getVertexOrderString(vertexOrder), ""); |
1846 | 0 | } |
1847 | 0 | } |
1848 | 0 | if (primitive != ElgNone) |
1849 | 0 | intermediate.setOutputPrimitive(primitive); |
1850 | 0 | } |
1851 | 0 | break; |
1852 | 0 | } |
1853 | 0 | case EatPartitioning: |
1854 | 0 | { |
1855 | | // Handle [partitioning("...")] |
1856 | 0 | TString partitionStr; |
1857 | 0 | if (! it->getString(partitionStr)) { |
1858 | 0 | error(loc, "invalid partitioning", "", ""); |
1859 | 0 | } else { |
1860 | 0 | TVertexSpacing partitioning = EvsNone; |
1861 | |
|
1862 | 0 | if (partitionStr == "integer") { |
1863 | 0 | partitioning = EvsEqual; |
1864 | 0 | } else if (partitionStr == "fractional_even") { |
1865 | 0 | partitioning = EvsFractionalEven; |
1866 | 0 | } else if (partitionStr == "fractional_odd") { |
1867 | 0 | partitioning = EvsFractionalOdd; |
1868 | | //} else if (partition == "pow2") { // TODO: currently nothing to map this to. |
1869 | 0 | } else { |
1870 | 0 | error(loc, "unsupported partitioning type", partitionStr.c_str(), ""); |
1871 | 0 | } |
1872 | |
|
1873 | 0 | if (! intermediate.setVertexSpacing(partitioning)) |
1874 | 0 | error(loc, "cannot change previously set partitioning", |
1875 | 0 | TQualifier::getVertexSpacingString(partitioning), ""); |
1876 | 0 | } |
1877 | 0 | break; |
1878 | 0 | } |
1879 | 0 | case EatOutputControlPoints: |
1880 | 0 | { |
1881 | | // Handle [outputcontrolpoints("...")] |
1882 | 0 | int ctrlPoints; |
1883 | 0 | if (! it->getInt(ctrlPoints)) { |
1884 | 0 | error(loc, "invalid outputcontrolpoints", "", ""); |
1885 | 0 | } else { |
1886 | 0 | if (! intermediate.setVertices(ctrlPoints)) { |
1887 | 0 | error(loc, "cannot change previously set outputcontrolpoints attribute", "", ""); |
1888 | 0 | } |
1889 | 0 | } |
1890 | 0 | break; |
1891 | 0 | } |
1892 | 0 | case EatEarlyDepthStencil: |
1893 | 0 | intermediate.setEarlyFragmentTests(); |
1894 | 0 | break; |
1895 | 0 | case EatBuiltIn: |
1896 | 30 | case EatLocation: |
1897 | | // tolerate these because of dual use of entrypoint and type attributes |
1898 | 30 | break; |
1899 | 0 | default: |
1900 | 0 | warn(loc, "attribute does not apply to entry point", "", ""); |
1901 | 0 | break; |
1902 | 30 | } |
1903 | 30 | } |
1904 | 838 | } |
1905 | | |
1906 | | // Update the given type with any type-like attribute information in the |
1907 | | // attributes. |
1908 | | void HlslParseContext::transferTypeAttributes(const TSourceLoc& loc, const TAttributes& attributes, TType& type, |
1909 | | bool allowEntry) |
1910 | 19.9M | { |
1911 | 19.9M | if (attributes.size() == 0) |
1912 | 19.9M | return; |
1913 | | |
1914 | 446 | int value; |
1915 | 446 | TString builtInString; |
1916 | 892 | for (auto it = attributes.begin(); it != attributes.end(); ++it) { |
1917 | 446 | switch (it->name) { |
1918 | 80 | case EatLocation: |
1919 | | // location |
1920 | 80 | if (it->getInt(value)) |
1921 | 78 | type.getQualifier().layoutLocation = value; |
1922 | 2 | else |
1923 | 2 | error(loc, "needs a literal integer", "location", ""); |
1924 | 80 | break; |
1925 | 204 | case EatBinding: |
1926 | | // binding |
1927 | 204 | if (it->getInt(value)) { |
1928 | 184 | type.getQualifier().layoutBinding = value; |
1929 | 184 | type.getQualifier().layoutSet = 0; |
1930 | 184 | } else |
1931 | 20 | error(loc, "needs a literal integer", "binding", ""); |
1932 | | // set |
1933 | 204 | if (it->getInt(value, 1)) |
1934 | 92 | type.getQualifier().layoutSet = value; |
1935 | 204 | break; |
1936 | 0 | case EatGlobalBinding: |
1937 | | // global cbuffer binding |
1938 | 0 | if (it->getInt(value)) |
1939 | 0 | globalUniformBinding = value; |
1940 | 0 | else |
1941 | 0 | error(loc, "needs a literal integer", "global binding", ""); |
1942 | | // global cbuffer set |
1943 | 0 | if (it->getInt(value, 1)) |
1944 | 0 | globalUniformSet = value; |
1945 | 0 | break; |
1946 | 58 | case EatInputAttachment: |
1947 | | // input attachment |
1948 | 58 | if (it->getInt(value)) |
1949 | 56 | type.getQualifier().layoutAttachment = value; |
1950 | 2 | else |
1951 | 2 | error(loc, "needs a literal integer", "input attachment", ""); |
1952 | 58 | break; |
1953 | 0 | case EatBuiltIn: |
1954 | | // PointSize built-in |
1955 | 0 | if (it->getString(builtInString, 0, false)) { |
1956 | 0 | if (builtInString == "PointSize") |
1957 | 0 | type.getQualifier().builtIn = EbvPointSize; |
1958 | 0 | } |
1959 | 0 | break; |
1960 | 32 | case EatPushConstant: |
1961 | | // push_constant |
1962 | 32 | type.getQualifier().layoutPushConstant = true; |
1963 | 32 | break; |
1964 | 58 | case EatConstantId: |
1965 | | // specialization constant |
1966 | 58 | if (type.getQualifier().storage != EvqConst) { |
1967 | 0 | error(loc, "needs a const type", "constant_id", ""); |
1968 | 0 | break; |
1969 | 0 | } |
1970 | 58 | if (it->getInt(value)) { |
1971 | 58 | TSourceLoc loc; |
1972 | 58 | loc.init(); |
1973 | 58 | setSpecConstantId(loc, type.getQualifier(), value); |
1974 | 58 | } |
1975 | 58 | break; |
1976 | | |
1977 | | // image formats |
1978 | 0 | case EatFormatRgba32f: type.getQualifier().layoutFormat = ElfRgba32f; break; |
1979 | 0 | case EatFormatRgba16f: type.getQualifier().layoutFormat = ElfRgba16f; break; |
1980 | 0 | case EatFormatR32f: type.getQualifier().layoutFormat = ElfR32f; break; |
1981 | 0 | case EatFormatRgba8: type.getQualifier().layoutFormat = ElfRgba8; break; |
1982 | 0 | case EatFormatRgba8Snorm: type.getQualifier().layoutFormat = ElfRgba8Snorm; break; |
1983 | 0 | case EatFormatRg32f: type.getQualifier().layoutFormat = ElfRg32f; break; |
1984 | 0 | case EatFormatRg16f: type.getQualifier().layoutFormat = ElfRg16f; break; |
1985 | 0 | case EatFormatR11fG11fB10f: type.getQualifier().layoutFormat = ElfR11fG11fB10f; break; |
1986 | 0 | case EatFormatR16f: type.getQualifier().layoutFormat = ElfR16f; break; |
1987 | 0 | case EatFormatRgba16: type.getQualifier().layoutFormat = ElfRgba16; break; |
1988 | 0 | case EatFormatRgb10A2: type.getQualifier().layoutFormat = ElfRgb10A2; break; |
1989 | 0 | case EatFormatRg16: type.getQualifier().layoutFormat = ElfRg16; break; |
1990 | 0 | case EatFormatRg8: type.getQualifier().layoutFormat = ElfRg8; break; |
1991 | 0 | case EatFormatR16: type.getQualifier().layoutFormat = ElfR16; break; |
1992 | 0 | case EatFormatR8: type.getQualifier().layoutFormat = ElfR8; break; |
1993 | 0 | case EatFormatRgba16Snorm: type.getQualifier().layoutFormat = ElfRgba16Snorm; break; |
1994 | 0 | case EatFormatRg16Snorm: type.getQualifier().layoutFormat = ElfRg16Snorm; break; |
1995 | 0 | case EatFormatRg8Snorm: type.getQualifier().layoutFormat = ElfRg8Snorm; break; |
1996 | 0 | case EatFormatR16Snorm: type.getQualifier().layoutFormat = ElfR16Snorm; break; |
1997 | 0 | case EatFormatR8Snorm: type.getQualifier().layoutFormat = ElfR8Snorm; break; |
1998 | 0 | case EatFormatRgba32i: type.getQualifier().layoutFormat = ElfRgba32i; break; |
1999 | 0 | case EatFormatRgba16i: type.getQualifier().layoutFormat = ElfRgba16i; break; |
2000 | 0 | case EatFormatRgba8i: type.getQualifier().layoutFormat = ElfRgba8i; break; |
2001 | 0 | case EatFormatR32i: type.getQualifier().layoutFormat = ElfR32i; break; |
2002 | 0 | case EatFormatRg32i: type.getQualifier().layoutFormat = ElfRg32i; break; |
2003 | 0 | case EatFormatRg16i: type.getQualifier().layoutFormat = ElfRg16i; break; |
2004 | 0 | case EatFormatRg8i: type.getQualifier().layoutFormat = ElfRg8i; break; |
2005 | 0 | case EatFormatR16i: type.getQualifier().layoutFormat = ElfR16i; break; |
2006 | 0 | case EatFormatR8i: type.getQualifier().layoutFormat = ElfR8i; break; |
2007 | 0 | case EatFormatRgba32ui: type.getQualifier().layoutFormat = ElfRgba32ui; break; |
2008 | 0 | case EatFormatRgba16ui: type.getQualifier().layoutFormat = ElfRgba16ui; break; |
2009 | 0 | case EatFormatRgba8ui: type.getQualifier().layoutFormat = ElfRgba8ui; break; |
2010 | 0 | case EatFormatR32ui: type.getQualifier().layoutFormat = ElfR32ui; break; |
2011 | 0 | case EatFormatRgb10a2ui: type.getQualifier().layoutFormat = ElfRgb10a2ui; break; |
2012 | 0 | case EatFormatRg32ui: type.getQualifier().layoutFormat = ElfRg32ui; break; |
2013 | 0 | case EatFormatRg16ui: type.getQualifier().layoutFormat = ElfRg16ui; break; |
2014 | 0 | case EatFormatRg8ui: type.getQualifier().layoutFormat = ElfRg8ui; break; |
2015 | 0 | case EatFormatR16ui: type.getQualifier().layoutFormat = ElfR16ui; break; |
2016 | 0 | case EatFormatR8ui: type.getQualifier().layoutFormat = ElfR8ui; break; |
2017 | 0 | case EatFormatUnknown: type.getQualifier().layoutFormat = ElfNone; break; |
2018 | | |
2019 | 0 | case EatNonWritable: type.getQualifier().readonly = true; break; |
2020 | 0 | case EatNonReadable: type.getQualifier().writeonly = true; break; |
2021 | | |
2022 | 14 | default: |
2023 | 14 | if (! allowEntry) |
2024 | 2 | warn(loc, "attribute does not apply to a type", "", ""); |
2025 | 14 | break; |
2026 | 446 | } |
2027 | 446 | } |
2028 | 446 | } |
2029 | | |
2030 | | // |
2031 | | // Do all special handling for the entry point, including wrapping |
2032 | | // the shader's entry point with the official entry point that will call it. |
2033 | | // |
2034 | | // The following: |
2035 | | // |
2036 | | // retType shaderEntryPoint(args...) // shader declared entry point |
2037 | | // { body } |
2038 | | // |
2039 | | // Becomes |
2040 | | // |
2041 | | // out retType ret; |
2042 | | // in iargs<that are input>...; |
2043 | | // out oargs<that are output> ...; |
2044 | | // |
2045 | | // void shaderEntryPoint() // synthesized, but official, entry point |
2046 | | // { |
2047 | | // args<that are input> = iargs...; |
2048 | | // ret = @shaderEntryPoint(args...); |
2049 | | // oargs = args<that are output>...; |
2050 | | // } |
2051 | | // retType @shaderEntryPoint(args...) |
2052 | | // { body } |
2053 | | // |
2054 | | // The symbol table will still map the original entry point name to the |
2055 | | // the modified function and its new name: |
2056 | | // |
2057 | | // symbol table: shaderEntryPoint -> @shaderEntryPoint |
2058 | | // |
2059 | | // Returns nullptr if no entry-point tree was built, otherwise, returns |
2060 | | // a subtree that creates the entry point. |
2061 | | // |
2062 | | TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction, |
2063 | | const TAttributes& attributes) |
2064 | 2.17k | { |
2065 | | // Return true if this is a tessellation patch constant function input to a domain shader. |
2066 | 2.17k | const auto isDsPcfInput = [this](const TType& type) { |
2067 | 182 | return language == EShLangTessEvaluation && |
2068 | 4 | type.contains([](const TType* t) { |
2069 | 4 | return t->getQualifier().builtIn == EbvTessLevelOuter || |
2070 | 4 | t->getQualifier().builtIn == EbvTessLevelInner; |
2071 | 4 | }); |
2072 | 182 | }; |
2073 | | |
2074 | | // if we aren't in the entry point, fix the IO as such and exit |
2075 | 2.17k | if (! isEntrypointName(userFunction.getName())) { |
2076 | 1.34k | remapNonEntryPointIO(userFunction); |
2077 | 1.34k | return nullptr; |
2078 | 1.34k | } |
2079 | | |
2080 | 838 | entryPointFunction = &userFunction; // needed in finish() |
2081 | | |
2082 | | // Handle entry point attributes |
2083 | 838 | handleEntryPointAttributes(loc, attributes); |
2084 | | |
2085 | | // entry point logic... |
2086 | | |
2087 | | // Move parameters and return value to shader in/out |
2088 | 838 | TVariable* entryPointOutput; // gets created in remapEntryPointIO |
2089 | 838 | TVector<TVariable*> inputs; |
2090 | 838 | TVector<TVariable*> outputs; |
2091 | 838 | remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs); |
2092 | | |
2093 | | // Further this return/in/out transform by flattening, splitting, and assigning locations |
2094 | 976 | const auto makeVariableInOut = [&](TVariable& variable) { |
2095 | 976 | if (variable.getType().isStruct()) { |
2096 | 326 | bool arrayed = variable.getType().getQualifier().isArrayedIo(language); |
2097 | 326 | flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */, arrayed); |
2098 | 326 | } |
2099 | | // TODO: flatten arrays too |
2100 | | // TODO: flatten everything in I/O |
2101 | | // TODO: replace all split with flatten, make all paths can create flattened I/O, then split code can be removed |
2102 | | |
2103 | | // For clip and cull distance, multiple output variables potentially get merged |
2104 | | // into one in assignClipCullDistance. That code in assignClipCullDistance |
2105 | | // handles the interface logic, so we avoid it here in that case. |
2106 | 976 | if (!isClipOrCullDistance(variable.getType())) |
2107 | 952 | assignToInterface(variable); |
2108 | 976 | }; |
2109 | 838 | if (entryPointOutput != nullptr) |
2110 | 780 | makeVariableInOut(*entryPointOutput); |
2111 | 1.01k | for (auto it = inputs.begin(); it != inputs.end(); ++it) |
2112 | 180 | if (!isDsPcfInput((*it)->getType())) // wait until the end for PCF input (see comment below) |
2113 | 180 | makeVariableInOut(*(*it)); |
2114 | 854 | for (auto it = outputs.begin(); it != outputs.end(); ++it) |
2115 | 16 | makeVariableInOut(*(*it)); |
2116 | | |
2117 | | // In the domain shader, PCF input must be at the end of the linkage. That's because in the |
2118 | | // hull shader there is no ordering: the output comes from the separate PCF, which does not |
2119 | | // participate in the argument list. That is always put at the end of the HS linkage, so the |
2120 | | // input side of the DS must match. The argument may be in any position in the DS argument list |
2121 | | // however, so this ensures the linkage is built in the correct order regardless of argument order. |
2122 | 838 | if (language == EShLangTessEvaluation) { |
2123 | 12 | for (auto it = inputs.begin(); it != inputs.end(); ++it) |
2124 | 2 | if (isDsPcfInput((*it)->getType())) |
2125 | 0 | makeVariableInOut(*(*it)); |
2126 | 10 | } |
2127 | | |
2128 | | // Add uniform parameters to the $Global uniform block. |
2129 | 838 | TVector<TVariable*> opaque_uniforms; |
2130 | 1.03k | for (int i = 0; i < userFunction.getParamCount(); i++) { |
2131 | 196 | TType& paramType = *userFunction[i].type; |
2132 | 196 | TString& paramName = *userFunction[i].name; |
2133 | 196 | if (paramType.getQualifier().storage == EvqUniform) { |
2134 | 0 | if (!paramType.containsOpaque()) { |
2135 | | // Add it to the global uniform block. |
2136 | 0 | growGlobalUniformBlock(loc, paramType, paramName); |
2137 | 0 | } else { |
2138 | | // Declare it as a separate variable. |
2139 | 0 | TVariable *var = makeInternalVariable(paramName.c_str(), paramType); |
2140 | 0 | opaque_uniforms.push_back(var); |
2141 | 0 | } |
2142 | 0 | } |
2143 | 196 | } |
2144 | | |
2145 | | // Synthesize the call |
2146 | | |
2147 | 838 | pushScope(); // matches the one in handleFunctionBody() |
2148 | | |
2149 | | // new signature |
2150 | 838 | TType voidType(EbtVoid); |
2151 | 838 | TFunction synthEntryPoint(&userFunction.getName(), voidType); |
2152 | 838 | TIntermAggregate* synthParams = new TIntermAggregate(); |
2153 | 838 | intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc); |
2154 | 838 | intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str()); |
2155 | 838 | intermediate.incrementEntryPointCount(); |
2156 | 838 | TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table |
2157 | | |
2158 | | // change original name |
2159 | 838 | userFunction.addPrefix("@"); // change the name in the function, but not in the symbol table |
2160 | | |
2161 | | // Copy inputs (shader-in -> calling arg), while building up the call node |
2162 | 838 | TVector<TVariable*> argVars; |
2163 | 838 | TIntermAggregate* synthBody = new TIntermAggregate(); |
2164 | 838 | auto inputIt = inputs.begin(); |
2165 | 838 | auto opaqueUniformIt = opaque_uniforms.begin(); |
2166 | 838 | TIntermTyped* callingArgs = nullptr; |
2167 | | |
2168 | 1.03k | for (int i = 0; i < userFunction.getParamCount(); i++) { |
2169 | 196 | TParameter& param = userFunction[i]; |
2170 | 196 | argVars.push_back(makeInternalVariable(*param.name, *param.type)); |
2171 | 196 | argVars.back()->getWritableType().getQualifier().makeTemporary(); |
2172 | | |
2173 | | // Track the input patch, which is the only non-builtin supported by hull shader PCF. |
2174 | 196 | if (param.getDeclaredBuiltIn() == EbvInputPatch) |
2175 | 0 | inputPatch = argVars.back(); |
2176 | | |
2177 | 196 | TIntermSymbol* arg = intermediate.addSymbol(*argVars.back()); |
2178 | 196 | handleFunctionArgument(&callee, callingArgs, arg); |
2179 | 196 | if (param.type->getQualifier().isParamInput()) { |
2180 | 180 | TIntermTyped* input = intermediate.addSymbol(**inputIt); |
2181 | 180 | if (input->getType().getQualifier().builtIn == EbvFragCoord && intermediate.getDxPositionW()) { |
2182 | | // Replace FragCoord W with reciprocal |
2183 | 0 | auto pos_xyz = handleDotDereference(loc, input, "xyz"); |
2184 | 0 | auto pos_w = handleDotDereference(loc, input, "w"); |
2185 | 0 | auto one = intermediate.addConstantUnion(1.0, EbtFloat, loc); |
2186 | 0 | auto recip_w = intermediate.addBinaryMath(EOpDiv, one, pos_w, loc); |
2187 | 0 | TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); |
2188 | 0 | dst->getSequence().push_back(pos_xyz); |
2189 | 0 | dst->getSequence().push_back(recip_w); |
2190 | 0 | dst->setType(TType(EbtFloat, EvqTemporary, 4)); |
2191 | 0 | dst->setLoc(loc); |
2192 | 0 | input = dst; |
2193 | 0 | } |
2194 | 180 | intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg, input)); |
2195 | 180 | inputIt++; |
2196 | 180 | } |
2197 | 196 | if (param.type->getQualifier().storage == EvqUniform) { |
2198 | 0 | if (!param.type->containsOpaque()) { |
2199 | | // Look it up in the $Global uniform block. |
2200 | 0 | intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg, |
2201 | 0 | handleVariable(loc, param.name))); |
2202 | 0 | } else { |
2203 | 0 | intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg, |
2204 | 0 | intermediate.addSymbol(**opaqueUniformIt))); |
2205 | 0 | ++opaqueUniformIt; |
2206 | 0 | } |
2207 | 0 | } |
2208 | 196 | } |
2209 | | |
2210 | | // Call |
2211 | 838 | currentCaller = synthEntryPoint.getMangledName(); |
2212 | 838 | TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs); |
2213 | 838 | currentCaller = userFunction.getMangledName(); |
2214 | | |
2215 | | // Return value |
2216 | 838 | if (entryPointOutput) { |
2217 | 780 | TIntermTyped* returnAssign; |
2218 | | |
2219 | | // For hull shaders, the wrapped entry point return value is written to |
2220 | | // an array element as indexed by invocation ID, which we might have to make up. |
2221 | | // This is required to match SPIR-V semantics. |
2222 | 780 | if (language == EShLangTessControl) { |
2223 | 460 | TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId); |
2224 | | |
2225 | | // If there is no user declared invocation ID, we must make one. |
2226 | 460 | if (invocationIdSym == nullptr) { |
2227 | 384 | TType invocationIdType(EbtUint, EvqIn, 1); |
2228 | 384 | TString* invocationIdName = NewPoolTString("InvocationId"); |
2229 | 384 | invocationIdType.getQualifier().builtIn = EbvInvocationId; |
2230 | | |
2231 | 384 | TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType); |
2232 | | |
2233 | 384 | globalQualifierFix(loc, variable->getWritableType().getQualifier()); |
2234 | 384 | trackLinkage(*variable); |
2235 | | |
2236 | 384 | invocationIdSym = intermediate.addSymbol(*variable); |
2237 | 384 | } |
2238 | | |
2239 | 460 | TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput), |
2240 | 460 | invocationIdSym, loc); |
2241 | | |
2242 | | // Set the type of the array element being dereferenced |
2243 | 460 | const TType derefElementType(entryPointOutput->getType(), 0); |
2244 | 460 | element->setType(derefElementType); |
2245 | | |
2246 | 460 | returnAssign = handleAssign(loc, EOpAssign, element, callReturn); |
2247 | 460 | } else { |
2248 | 320 | returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn); |
2249 | 320 | } |
2250 | 780 | intermediate.growAggregate(synthBody, returnAssign); |
2251 | 780 | } else |
2252 | 58 | intermediate.growAggregate(synthBody, callReturn); |
2253 | | |
2254 | | // Output copies |
2255 | 838 | auto outputIt = outputs.begin(); |
2256 | 1.03k | for (int i = 0; i < userFunction.getParamCount(); i++) { |
2257 | 196 | TParameter& param = userFunction[i]; |
2258 | | |
2259 | | // GS outputs are via emit, so we do not copy them here. |
2260 | 196 | if (param.type->getQualifier().isParamOutput()) { |
2261 | 16 | if (param.getDeclaredBuiltIn() == EbvGsOutputStream) { |
2262 | | // GS output stream does not assign outputs here: it's the Append() method |
2263 | | // which writes to the output, probably multiple times separated by Emit. |
2264 | | // We merely remember the output to use, here. |
2265 | 0 | gsStreamOutput = *outputIt; |
2266 | 16 | } else { |
2267 | 16 | intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, |
2268 | 16 | intermediate.addSymbol(**outputIt), |
2269 | 16 | intermediate.addSymbol(*argVars[i]))); |
2270 | 16 | } |
2271 | | |
2272 | 16 | outputIt++; |
2273 | 16 | } |
2274 | 196 | } |
2275 | | |
2276 | | // Put the pieces together to form a full function subtree |
2277 | | // for the synthesized entry point. |
2278 | 838 | synthBody->setOperator(EOpSequence); |
2279 | 838 | TIntermNode* synthFunctionDef = synthParams; |
2280 | 838 | handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef); |
2281 | | |
2282 | 838 | entryPointFunctionBody = synthBody; |
2283 | | |
2284 | 838 | return synthFunctionDef; |
2285 | 2.17k | } |
2286 | | |
2287 | | void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody, |
2288 | | TIntermNode*& node) |
2289 | 1.84k | { |
2290 | 1.84k | node = intermediate.growAggregate(node, functionBody); |
2291 | 1.84k | intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc); |
2292 | 1.84k | node->getAsAggregate()->setName(function.getMangledName().c_str()); |
2293 | | |
2294 | 1.84k | popScope(); |
2295 | 1.84k | if (function.hasImplicitThis()) |
2296 | 18 | popImplicitThis(); |
2297 | | |
2298 | 1.84k | if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue) |
2299 | 48 | error(loc, "function does not return a value:", "", function.getName().c_str()); |
2300 | 1.84k | } |
2301 | | |
2302 | | // AST I/O is done through shader globals declared in the 'in' or 'out' |
2303 | | // storage class. An HLSL entry point has a return value, input parameters |
2304 | | // and output parameters. These need to get remapped to the AST I/O. |
2305 | | void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue, |
2306 | | TVector<TVariable*>& inputs, TVector<TVariable*>& outputs) |
2307 | 838 | { |
2308 | | // We might have in input structure type with no decorations that caused it |
2309 | | // to look like an input type, yet it has (e.g.) interpolation types that |
2310 | | // must be modified that turn it into an input type. |
2311 | | // Hence, a missing ioTypeMap for 'input' might need to be synthesized. |
2312 | 838 | const auto synthesizeEditedInput = [this](TType& type) { |
2313 | | // True if a type needs to be 'flat' |
2314 | 180 | const auto needsFlat = [](const TType& type) { |
2315 | 2 | return type.containsBasicType(EbtInt) || |
2316 | 2 | type.containsBasicType(EbtUint) || |
2317 | 0 | type.containsBasicType(EbtInt64) || |
2318 | 0 | type.containsBasicType(EbtUint64) || |
2319 | 0 | type.containsBasicType(EbtBool) || |
2320 | 0 | type.containsBasicType(EbtDouble); |
2321 | 2 | }; |
2322 | | |
2323 | 180 | if (language == EShLangFragment && needsFlat(type)) { |
2324 | 2 | if (type.isStruct()) { |
2325 | 0 | TTypeList* finalList = nullptr; |
2326 | 0 | auto it = ioTypeMap.find(type.getStruct()); |
2327 | 0 | if (it == ioTypeMap.end() || it->second.input == nullptr) { |
2328 | | // Getting here means we have no input struct, but we need one. |
2329 | 0 | auto list = new TTypeList; |
2330 | 0 | for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) { |
2331 | 0 | TType* newType = new TType; |
2332 | 0 | newType->shallowCopy(*member->type); |
2333 | 0 | TTypeLoc typeLoc = { newType, member->loc }; |
2334 | 0 | list->push_back(typeLoc); |
2335 | 0 | } |
2336 | | // install the new input type |
2337 | 0 | if (it == ioTypeMap.end()) { |
2338 | 0 | tIoKinds newLists = { list, nullptr, nullptr }; |
2339 | 0 | ioTypeMap[type.getStruct()] = newLists; |
2340 | 0 | } else |
2341 | 0 | it->second.input = list; |
2342 | 0 | finalList = list; |
2343 | 0 | } else |
2344 | 0 | finalList = it->second.input; |
2345 | | // edit for 'flat' |
2346 | 0 | for (auto member = finalList->begin(); member != finalList->end(); ++member) { |
2347 | 0 | if (needsFlat(*member->type)) { |
2348 | 0 | member->type->getQualifier().clearInterpolation(); |
2349 | 0 | member->type->getQualifier().flat = true; |
2350 | 0 | } |
2351 | 0 | } |
2352 | 2 | } else { |
2353 | 2 | type.getQualifier().clearInterpolation(); |
2354 | 2 | type.getQualifier().flat = true; |
2355 | 2 | } |
2356 | 2 | } |
2357 | 180 | }; |
2358 | | |
2359 | | // Do the actual work to make a type be a shader input or output variable, |
2360 | | // and clear the original to be non-IO (for use as a normal function parameter/return). |
2361 | 1.43k | const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* { |
2362 | 1.43k | TVariable* ioVariable = makeInternalVariable(name, type); |
2363 | 1.43k | clearUniformInputOutput(type.getQualifier()); |
2364 | 1.43k | if (type.isStruct()) { |
2365 | 478 | auto newLists = ioTypeMap.find(ioVariable->getType().getStruct()); |
2366 | 478 | if (newLists != ioTypeMap.end()) { |
2367 | 4 | if (storage == EvqVaryingIn && newLists->second.input) |
2368 | 0 | ioVariable->getWritableType().setStruct(newLists->second.input); |
2369 | 4 | else if (storage == EvqVaryingOut && newLists->second.output) |
2370 | 4 | ioVariable->getWritableType().setStruct(newLists->second.output); |
2371 | 4 | } |
2372 | 478 | } |
2373 | 1.43k | if (storage == EvqVaryingIn) { |
2374 | 180 | correctInput(ioVariable->getWritableType().getQualifier()); |
2375 | 180 | if (language == EShLangTessEvaluation) |
2376 | 2 | if (!ioVariable->getType().isArray()) |
2377 | 2 | ioVariable->getWritableType().getQualifier().patch = true; |
2378 | 1.25k | } else { |
2379 | 1.25k | correctOutput(ioVariable->getWritableType().getQualifier()); |
2380 | 1.25k | } |
2381 | 1.43k | ioVariable->getWritableType().getQualifier().storage = storage; |
2382 | | |
2383 | 1.43k | fixBuiltInIoType(ioVariable->getWritableType()); |
2384 | | |
2385 | 1.43k | return ioVariable; |
2386 | 1.43k | }; |
2387 | | |
2388 | | // return value is actually a shader-scoped output (out) |
2389 | 838 | if (function.getType().getBasicType() == EbtVoid) { |
2390 | 58 | returnValue = nullptr; |
2391 | 780 | } else { |
2392 | 780 | if (language == EShLangTessControl) { |
2393 | | // tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an |
2394 | | // array in SPIR-V semantics. We'll write to it indexed by invocation ID. |
2395 | | |
2396 | 460 | returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut); |
2397 | | |
2398 | 460 | TType outputType; |
2399 | 460 | outputType.shallowCopy(function.getType()); |
2400 | | |
2401 | | // vertices has necessarily already been set when handling entry point attributes. |
2402 | 460 | TArraySizes* arraySizes = new TArraySizes; |
2403 | 460 | arraySizes->addInnerSize(intermediate.getVertices()); |
2404 | 460 | outputType.transferArraySizes(arraySizes); |
2405 | | |
2406 | 460 | clearUniformInputOutput(function.getWritableType().getQualifier()); |
2407 | 460 | returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut); |
2408 | 460 | } else { |
2409 | 320 | returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut); |
2410 | 320 | } |
2411 | 780 | } |
2412 | | |
2413 | | // parameters are actually shader-scoped inputs and outputs (in or out) |
2414 | 1.03k | for (int i = 0; i < function.getParamCount(); i++) { |
2415 | 196 | TType& paramType = *function[i].type; |
2416 | 196 | if (paramType.getQualifier().isParamInput()) { |
2417 | 180 | synthesizeEditedInput(paramType); |
2418 | 180 | TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn); |
2419 | 180 | inputs.push_back(argAsGlobal); |
2420 | 180 | } |
2421 | 196 | if (paramType.getQualifier().isParamOutput()) { |
2422 | 16 | TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut); |
2423 | 16 | outputs.push_back(argAsGlobal); |
2424 | 16 | } |
2425 | 196 | } |
2426 | 838 | } |
2427 | | |
2428 | | // An HLSL function that looks like an entry point, but is not, |
2429 | | // declares entry point IO built-ins, but these have to be undone. |
2430 | | void HlslParseContext::remapNonEntryPointIO(TFunction& function) |
2431 | 1.34k | { |
2432 | | // return value |
2433 | 1.34k | if (function.getType().getBasicType() != EbtVoid) |
2434 | 974 | clearUniformInputOutput(function.getWritableType().getQualifier()); |
2435 | | |
2436 | | // parameters. |
2437 | | // References to structuredbuffer types are left unmodified |
2438 | 3.89k | for (int i = 0; i < function.getParamCount(); i++) |
2439 | 2.55k | if (!isReference(*function[i].type)) |
2440 | 2.53k | clearUniformInputOutput(function[i].type->getQualifier()); |
2441 | 1.34k | } |
2442 | | |
2443 | | TIntermNode* HlslParseContext::handleDeclare(const TSourceLoc& loc, TIntermTyped* var) |
2444 | 0 | { |
2445 | 0 | return intermediate.addUnaryNode(EOpDeclare, var, loc, TType(EbtVoid)); |
2446 | 0 | } |
2447 | | |
2448 | | // Handle function returns, including type conversions to the function return type |
2449 | | // if necessary. |
2450 | | TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value) |
2451 | 908 | { |
2452 | 908 | functionReturnsValue = true; |
2453 | | |
2454 | 908 | if (currentFunctionType->getBasicType() == EbtVoid) { |
2455 | 100 | error(loc, "void function cannot return a value", "return", ""); |
2456 | 100 | return intermediate.addBranch(EOpReturn, loc); |
2457 | 808 | } else if (*currentFunctionType != value->getType()) { |
2458 | 230 | value = intermediate.addConversion(EOpReturn, *currentFunctionType, value); |
2459 | 230 | if (value && *currentFunctionType != value->getType()) |
2460 | 130 | value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value); |
2461 | 230 | if (value == nullptr || *currentFunctionType != value->getType()) { |
2462 | 88 | error(loc, "type does not match, or is not convertible to, the function's return type", "return", ""); |
2463 | 88 | return value; |
2464 | 88 | } |
2465 | 230 | } |
2466 | | |
2467 | 720 | return intermediate.addBranch(EOpReturn, value, loc); |
2468 | 908 | } |
2469 | | |
2470 | | void HlslParseContext::handleFunctionArgument(TFunction* function, |
2471 | | TIntermTyped*& arguments, TIntermTyped* newArg) |
2472 | 62.3k | { |
2473 | 62.3k | TParameter param = { nullptr, new TType, nullptr }; |
2474 | 62.3k | param.type->shallowCopy(newArg->getType()); |
2475 | | |
2476 | 62.3k | function->addParameter(param); |
2477 | 62.3k | if (arguments) |
2478 | 42.1k | arguments = intermediate.growAggregate(arguments, newArg); |
2479 | 20.1k | else |
2480 | 20.1k | arguments = newArg; |
2481 | 62.3k | } |
2482 | | |
2483 | | // FragCoord may require special loading: we can optionally reciprocate W. |
2484 | | TIntermTyped* HlslParseContext::assignFromFragCoord(const TSourceLoc& loc, TOperator op, |
2485 | | TIntermTyped* left, TIntermTyped* right) |
2486 | 0 | { |
2487 | | // If we are not asked for reciprocal W, use a plain old assign. |
2488 | 0 | if (!intermediate.getDxPositionW()) |
2489 | 0 | return intermediate.addAssign(op, left, right, loc); |
2490 | | |
2491 | | // If we get here, we should reciprocate W. |
2492 | 0 | TIntermAggregate* assignList = nullptr; |
2493 | | |
2494 | | // If this is a complex rvalue, we don't want to dereference it many times. Create a temporary. |
2495 | 0 | TVariable* rhsTempVar = nullptr; |
2496 | 0 | rhsTempVar = makeInternalVariable("@fragcoord", right->getType()); |
2497 | 0 | rhsTempVar->getWritableType().getQualifier().makeTemporary(); |
2498 | |
|
2499 | 0 | { |
2500 | 0 | TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc); |
2501 | 0 | assignList = intermediate.growAggregate(assignList, |
2502 | 0 | intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc); |
2503 | 0 | } |
2504 | | |
2505 | | // tmp.w = 1.0 / tmp.w |
2506 | 0 | { |
2507 | 0 | const int W = 3; |
2508 | |
|
2509 | 0 | TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc); |
2510 | 0 | TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc); |
2511 | 0 | TIntermTyped* index = intermediate.addConstantUnion(W, loc); |
2512 | |
|
2513 | 0 | TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc); |
2514 | 0 | TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc); |
2515 | |
|
2516 | 0 | const TType derefType(right->getType(), 0); |
2517 | |
|
2518 | 0 | lhsElement->setType(derefType); |
2519 | 0 | rhsElement->setType(derefType); |
2520 | |
|
2521 | 0 | auto one = intermediate.addConstantUnion(1.0, EbtFloat, loc); |
2522 | 0 | auto recip_w = intermediate.addBinaryMath(EOpDiv, one, rhsElement, loc); |
2523 | |
|
2524 | 0 | assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, recip_w, loc)); |
2525 | 0 | } |
2526 | | |
2527 | | // Assign the rhs temp (now with W reciprocal) to the final output |
2528 | 0 | { |
2529 | 0 | TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc); |
2530 | 0 | assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc)); |
2531 | 0 | } |
2532 | |
|
2533 | 0 | assert(assignList != nullptr); |
2534 | 0 | assignList->setOperator(EOpSequence); |
2535 | |
|
2536 | 0 | return assignList; |
2537 | 0 | } |
2538 | | |
2539 | | // Position may require special handling: we can optionally invert Y. |
2540 | | // See: https://github.com/KhronosGroup/glslang/issues/1173 |
2541 | | // https://github.com/KhronosGroup/glslang/issues/494 |
2542 | | TIntermTyped* HlslParseContext::assignPosition(const TSourceLoc& loc, TOperator op, |
2543 | | TIntermTyped* left, TIntermTyped* right) |
2544 | 0 | { |
2545 | | // If we are not asked for Y inversion, use a plain old assign. |
2546 | 0 | if (!intermediate.getInvertY()) |
2547 | 0 | return intermediate.addAssign(op, left, right, loc); |
2548 | | |
2549 | | // If we get here, we should invert Y. |
2550 | 0 | TIntermAggregate* assignList = nullptr; |
2551 | | |
2552 | | // If this is a complex rvalue, we don't want to dereference it many times. Create a temporary. |
2553 | 0 | TVariable* rhsTempVar = nullptr; |
2554 | 0 | rhsTempVar = makeInternalVariable("@position", right->getType()); |
2555 | 0 | rhsTempVar->getWritableType().getQualifier().makeTemporary(); |
2556 | |
|
2557 | 0 | { |
2558 | 0 | TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc); |
2559 | 0 | assignList = intermediate.growAggregate(assignList, |
2560 | 0 | intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc); |
2561 | 0 | } |
2562 | | |
2563 | | // pos.y = -pos.y |
2564 | 0 | { |
2565 | 0 | const int Y = 1; |
2566 | |
|
2567 | 0 | TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc); |
2568 | 0 | TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc); |
2569 | 0 | TIntermTyped* index = intermediate.addConstantUnion(Y, loc); |
2570 | |
|
2571 | 0 | TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc); |
2572 | 0 | TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc); |
2573 | |
|
2574 | 0 | const TType derefType(right->getType(), 0); |
2575 | |
|
2576 | 0 | lhsElement->setType(derefType); |
2577 | 0 | rhsElement->setType(derefType); |
2578 | |
|
2579 | 0 | TIntermTyped* yNeg = intermediate.addUnaryMath(EOpNegative, rhsElement, loc); |
2580 | |
|
2581 | 0 | assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, yNeg, loc)); |
2582 | 0 | } |
2583 | | |
2584 | | // Assign the rhs temp (now with Y inversion) to the final output |
2585 | 0 | { |
2586 | 0 | TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc); |
2587 | 0 | assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc)); |
2588 | 0 | } |
2589 | |
|
2590 | 0 | assert(assignList != nullptr); |
2591 | 0 | assignList->setOperator(EOpSequence); |
2592 | |
|
2593 | 0 | return assignList; |
2594 | 0 | } |
2595 | | |
2596 | | // Clip and cull distance require special handling due to a semantic mismatch. In HLSL, |
2597 | | // these can be float scalar, float vector, or arrays of float scalar or float vector. |
2598 | | // In SPIR-V, they are arrays of scalar floats in all cases. We must copy individual components |
2599 | | // (e.g, both x and y components of a float2) out into the destination float array. |
2600 | | // |
2601 | | // The values are assigned to sequential members of the output array. The inner dimension |
2602 | | // is vector components. The outer dimension is array elements. |
2603 | | TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId, |
2604 | | TIntermTyped* left, TIntermTyped* right) |
2605 | 24 | { |
2606 | 24 | switch (language) { |
2607 | 0 | case EShLangFragment: |
2608 | 0 | case EShLangVertex: |
2609 | 0 | case EShLangGeometry: |
2610 | 0 | break; |
2611 | 24 | default: |
2612 | 24 | error(loc, "unimplemented: clip/cull not currently implemented for this stage", "", ""); |
2613 | 24 | return nullptr; |
2614 | 24 | } |
2615 | | |
2616 | 0 | TVariable** clipCullVar = nullptr; |
2617 | | |
2618 | | // Figure out if we are assigning to, or from, clip or cull distance. |
2619 | 0 | const bool isOutput = isClipOrCullDistance(left->getType()); |
2620 | | |
2621 | | // This is the rvalue or lvalue holding the clip or cull distance. |
2622 | 0 | TIntermTyped* clipCullNode = isOutput ? left : right; |
2623 | | // This is the value going into or out of the clip or cull distance. |
2624 | 0 | TIntermTyped* internalNode = isOutput ? right : left; |
2625 | |
|
2626 | 0 | const TBuiltInVariable builtInType = clipCullNode->getQualifier().builtIn; |
2627 | |
|
2628 | 0 | decltype(clipSemanticNSizeIn)* semanticNSize = nullptr; |
2629 | | |
2630 | | // Refer to either the clip or the cull distance, depending on semantic. |
2631 | 0 | switch (builtInType) { |
2632 | 0 | case EbvClipDistance: |
2633 | 0 | clipCullVar = isOutput ? &clipDistanceOutput : &clipDistanceInput; |
2634 | 0 | semanticNSize = isOutput ? &clipSemanticNSizeOut : &clipSemanticNSizeIn; |
2635 | 0 | break; |
2636 | 0 | case EbvCullDistance: |
2637 | 0 | clipCullVar = isOutput ? &cullDistanceOutput : &cullDistanceInput; |
2638 | 0 | semanticNSize = isOutput ? &cullSemanticNSizeOut : &cullSemanticNSizeIn; |
2639 | 0 | break; |
2640 | | |
2641 | | // called invalidly: we expected a clip or a cull distance. |
2642 | | // static compile time problem: should not happen. |
2643 | 0 | default: assert(0); return nullptr; |
2644 | 0 | } |
2645 | | |
2646 | | // This is the offset in the destination array of a given semantic's data |
2647 | 0 | std::array<int, maxClipCullRegs> semanticOffset; |
2648 | | |
2649 | | // Calculate offset of variable of semantic N in destination array |
2650 | 0 | int arrayLoc = 0; |
2651 | 0 | int vecItems = 0; |
2652 | |
|
2653 | 0 | for (int x = 0; x < maxClipCullRegs; ++x) { |
2654 | | // See if we overflowed the vec4 packing |
2655 | 0 | if ((vecItems + (*semanticNSize)[x]) > 4) { |
2656 | 0 | arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4 |
2657 | 0 | vecItems = 0; |
2658 | 0 | } |
2659 | |
|
2660 | 0 | semanticOffset[x] = arrayLoc; |
2661 | 0 | vecItems += (*semanticNSize)[x]; |
2662 | 0 | arrayLoc += (*semanticNSize)[x]; |
2663 | 0 | } |
2664 | | |
2665 | | |
2666 | | // It can have up to 2 array dimensions (in the case of geometry shader inputs) |
2667 | 0 | const TArraySizes* const internalArraySizes = internalNode->getType().getArraySizes(); |
2668 | 0 | const int internalArrayDims = internalNode->getType().isArray() ? internalArraySizes->getNumDims() : 0; |
2669 | | // vector sizes: |
2670 | 0 | const int internalVectorSize = internalNode->getType().getVectorSize(); |
2671 | | // array sizes, or 1 if it's not an array: |
2672 | 0 | const int internalInnerArraySize = (internalArrayDims > 0 ? internalArraySizes->getDimSize(internalArrayDims-1) : 1); |
2673 | 0 | const int internalOuterArraySize = (internalArrayDims > 1 ? internalArraySizes->getDimSize(0) : 1); |
2674 | | |
2675 | | // The created type may be an array of arrays, e.g, for geometry shader inputs. |
2676 | 0 | const bool isImplicitlyArrayed = (language == EShLangGeometry && !isOutput); |
2677 | | |
2678 | | // If we haven't created the output already, create it now. |
2679 | 0 | if (*clipCullVar == nullptr) { |
2680 | | // ClipDistance and CullDistance are handled specially in the entry point input/output copy |
2681 | | // algorithm, because they may need to be unpacked from components of vectors (or a scalar) |
2682 | | // into a float array, or vice versa. Here, we make the array the right size and type, |
2683 | | // which depends on the incoming data, which has several potential dimensions: |
2684 | | // * Semantic ID |
2685 | | // * vector size |
2686 | | // * array size |
2687 | | // Of those, semantic ID and array size cannot appear simultaneously. |
2688 | | // |
2689 | | // Also to note: for implicitly arrayed forms (e.g, geometry shader inputs), we need to create two |
2690 | | // array dimensions. The shader's declaration may have one or two array dimensions. One is always |
2691 | | // the geometry's dimension. |
2692 | |
|
2693 | 0 | const bool useInnerSize = internalArrayDims > 1 || !isImplicitlyArrayed; |
2694 | |
|
2695 | 0 | const int requiredInnerArraySize = arrayLoc * (useInnerSize ? internalInnerArraySize : 1); |
2696 | 0 | const int requiredOuterArraySize = (internalArrayDims > 0) ? internalArraySizes->getDimSize(0) : 1; |
2697 | |
|
2698 | 0 | TType clipCullType(EbtFloat, clipCullNode->getType().getQualifier().storage, 1); |
2699 | 0 | clipCullType.getQualifier() = clipCullNode->getType().getQualifier(); |
2700 | | |
2701 | | // Create required array dimension |
2702 | 0 | TArraySizes* arraySizes = new TArraySizes; |
2703 | 0 | if (isImplicitlyArrayed) |
2704 | 0 | arraySizes->addInnerSize(requiredOuterArraySize); |
2705 | 0 | arraySizes->addInnerSize(requiredInnerArraySize); |
2706 | 0 | clipCullType.transferArraySizes(arraySizes); |
2707 | | |
2708 | | // Obtain symbol name: we'll use that for the symbol we introduce. |
2709 | 0 | TIntermSymbol* sym = clipCullNode->getAsSymbolNode(); |
2710 | 0 | assert(sym != nullptr); |
2711 | | |
2712 | | // We are moving the semantic ID from the layout location, so it is no longer needed or |
2713 | | // desired there. |
2714 | 0 | clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd; |
2715 | | |
2716 | | // Create variable and track its linkage |
2717 | 0 | *clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType); |
2718 | |
|
2719 | 0 | trackLinkage(**clipCullVar); |
2720 | 0 | } |
2721 | | |
2722 | | // Create symbol for the clip or cull variable. |
2723 | 0 | TIntermSymbol* clipCullSym = intermediate.addSymbol(**clipCullVar); |
2724 | | |
2725 | | // vector sizes: |
2726 | 0 | const int clipCullVectorSize = clipCullSym->getType().getVectorSize(); |
2727 | | |
2728 | | // array sizes, or 1 if it's not an array: |
2729 | 0 | const TArraySizes* const clipCullArraySizes = clipCullSym->getType().getArraySizes(); |
2730 | 0 | const int clipCullOuterArraySize = isImplicitlyArrayed ? clipCullArraySizes->getDimSize(0) : 1; |
2731 | 0 | const int clipCullInnerArraySize = clipCullArraySizes->getDimSize(isImplicitlyArrayed ? 1 : 0); |
2732 | | |
2733 | | // clipCullSym has got to be an array of scalar floats, per SPIR-V semantics. |
2734 | | // fixBuiltInIoType() should have handled that upstream. |
2735 | 0 | assert(clipCullSym->getType().isArray()); |
2736 | 0 | assert(clipCullSym->getType().getVectorSize() == 1); |
2737 | 0 | assert(clipCullSym->getType().getBasicType() == EbtFloat); |
2738 | | |
2739 | | // We may be creating multiple sub-assignments. This is an aggregate to hold them. |
2740 | | // TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed. |
2741 | 0 | TIntermAggregate* assignList = nullptr; |
2742 | | |
2743 | | // Holds individual component assignments as we make them. |
2744 | 0 | TIntermTyped* clipCullAssign = nullptr; |
2745 | | |
2746 | | // If the types are homomorphic, use a simple assign. No need to mess about with |
2747 | | // individual components. |
2748 | 0 | if (clipCullSym->getType().isArray() == internalNode->getType().isArray() && |
2749 | 0 | clipCullInnerArraySize == internalInnerArraySize && |
2750 | 0 | clipCullOuterArraySize == internalOuterArraySize && |
2751 | 0 | clipCullVectorSize == internalVectorSize) { |
2752 | |
|
2753 | 0 | if (isOutput) |
2754 | 0 | clipCullAssign = intermediate.addAssign(op, clipCullSym, internalNode, loc); |
2755 | 0 | else |
2756 | 0 | clipCullAssign = intermediate.addAssign(op, internalNode, clipCullSym, loc); |
2757 | |
|
2758 | 0 | assignList = intermediate.growAggregate(assignList, clipCullAssign); |
2759 | 0 | assignList->setOperator(EOpSequence); |
2760 | |
|
2761 | 0 | return assignList; |
2762 | 0 | } |
2763 | | |
2764 | | // We are going to copy each component of the internal (per array element if indicated) to sequential |
2765 | | // array elements of the clipCullSym. This tracks the lhs element we're writing to as we go along. |
2766 | | // We may be starting in the middle - e.g, for a non-zero semantic ID calculated above. |
2767 | 0 | int clipCullInnerArrayPos = semanticOffset[semanticId]; |
2768 | 0 | int clipCullOuterArrayPos = 0; |
2769 | | |
2770 | | // Lambda to add an index to a node, set the type of the result, and return the new node. |
2771 | 0 | const auto addIndex = [this, &loc](TIntermTyped* node, int pos) -> TIntermTyped* { |
2772 | 0 | const TType derefType(node->getType(), 0); |
2773 | 0 | node = intermediate.addIndex(EOpIndexDirect, node, intermediate.addConstantUnion(pos, loc), loc); |
2774 | 0 | node->setType(derefType); |
2775 | 0 | return node; |
2776 | 0 | }; |
2777 | | |
2778 | | // Loop through every component of every element of the internal, and copy to or from the matching external. |
2779 | 0 | for (int internalOuterArrayPos = 0; internalOuterArrayPos < internalOuterArraySize; ++internalOuterArrayPos) { |
2780 | 0 | for (int internalInnerArrayPos = 0; internalInnerArrayPos < internalInnerArraySize; ++internalInnerArrayPos) { |
2781 | 0 | for (int internalComponent = 0; internalComponent < internalVectorSize; ++internalComponent) { |
2782 | | // clip/cull array member to read from / write to: |
2783 | 0 | TIntermTyped* clipCullMember = clipCullSym; |
2784 | | |
2785 | | // If implicitly arrayed, there is an outer array dimension involved |
2786 | 0 | if (isImplicitlyArrayed) |
2787 | 0 | clipCullMember = addIndex(clipCullMember, clipCullOuterArrayPos); |
2788 | | |
2789 | | // Index into proper array position for clip cull member |
2790 | 0 | clipCullMember = addIndex(clipCullMember, clipCullInnerArrayPos++); |
2791 | | |
2792 | | // if needed, start over with next outer array slice. |
2793 | 0 | if (isImplicitlyArrayed && clipCullInnerArrayPos >= clipCullInnerArraySize) { |
2794 | 0 | clipCullInnerArrayPos = semanticOffset[semanticId]; |
2795 | 0 | ++clipCullOuterArrayPos; |
2796 | 0 | } |
2797 | | |
2798 | | // internal member to read from / write to: |
2799 | 0 | TIntermTyped* internalMember = internalNode; |
2800 | | |
2801 | | // If internal node has outer array dimension, index appropriately. |
2802 | 0 | if (internalArrayDims > 1) |
2803 | 0 | internalMember = addIndex(internalMember, internalOuterArrayPos); |
2804 | | |
2805 | | // If internal node has inner array dimension, index appropriately. |
2806 | 0 | if (internalArrayDims > 0) |
2807 | 0 | internalMember = addIndex(internalMember, internalInnerArrayPos); |
2808 | | |
2809 | | // If internal node is a vector, extract the component of interest. |
2810 | 0 | if (internalNode->getType().isVector()) |
2811 | 0 | internalMember = addIndex(internalMember, internalComponent); |
2812 | | |
2813 | | // Create an assignment: output from internal to clip cull, or input from clip cull to internal. |
2814 | 0 | if (isOutput) |
2815 | 0 | clipCullAssign = intermediate.addAssign(op, clipCullMember, internalMember, loc); |
2816 | 0 | else |
2817 | 0 | clipCullAssign = intermediate.addAssign(op, internalMember, clipCullMember, loc); |
2818 | | |
2819 | | // Track assignment in the sequence. |
2820 | 0 | assignList = intermediate.growAggregate(assignList, clipCullAssign); |
2821 | 0 | } |
2822 | 0 | } |
2823 | 0 | } |
2824 | |
|
2825 | 0 | assert(assignList != nullptr); |
2826 | 0 | assignList->setOperator(EOpSequence); |
2827 | |
|
2828 | 0 | return assignList; |
2829 | 0 | } |
2830 | | |
2831 | | // Some simple source assignments need to be flattened to a sequence |
2832 | | // of AST assignments. Catch these and flatten, otherwise, pass through |
2833 | | // to intermediate.addAssign(). |
2834 | | // |
2835 | | // Also, assignment to matrix swizzles requires multiple component assignments, |
2836 | | // intercept those as well. |
2837 | | TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left, |
2838 | | TIntermTyped* right) |
2839 | 16.7k | { |
2840 | 16.7k | if (left == nullptr || right == nullptr) |
2841 | 0 | return nullptr; |
2842 | | |
2843 | | // writing to opaques will require fixing transforms |
2844 | 16.7k | if (left->getType().containsOpaque()) |
2845 | 6 | intermediate.setNeedsLegalization(); |
2846 | | |
2847 | 16.7k | if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle) |
2848 | 8 | return handleAssignToMatrixSwizzle(loc, op, left, right); |
2849 | | |
2850 | | // Return true if the given node is an index operation into a split variable. |
2851 | 33.4k | const auto indexesSplit = [this](const TIntermTyped* node) -> bool { |
2852 | 33.4k | const TIntermBinary* binaryNode = node->getAsBinaryNode(); |
2853 | | |
2854 | 33.4k | if (binaryNode == nullptr) |
2855 | 32.2k | return false; |
2856 | | |
2857 | 1.16k | return (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect) && |
2858 | 548 | wasSplit(binaryNode->getLeft()); |
2859 | 33.4k | }; |
2860 | | |
2861 | | // Return symbol if node is symbol or index ref |
2862 | 33.4k | const auto getSymbol = [](const TIntermTyped* node) -> const TIntermSymbol* { |
2863 | 33.4k | const TIntermSymbol* symbolNode = node->getAsSymbolNode(); |
2864 | 33.4k | if (symbolNode != nullptr) |
2865 | 16.4k | return symbolNode; |
2866 | | |
2867 | 17.0k | const TIntermBinary* binaryNode = node->getAsBinaryNode(); |
2868 | 17.0k | if (binaryNode != nullptr && (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect)) |
2869 | 548 | return binaryNode->getLeft()->getAsSymbolNode(); |
2870 | | |
2871 | 16.4k | return nullptr; |
2872 | 17.0k | }; |
2873 | | |
2874 | | // Return true if this stage assigns clip position with potentially inverted Y |
2875 | 16.7k | const auto assignsClipPos = [this](const TIntermTyped* node) -> bool { |
2876 | 16.7k | return node->getType().getQualifier().builtIn == EbvPosition && |
2877 | 0 | (language == EShLangVertex || language == EShLangGeometry || language == EShLangTessEvaluation); |
2878 | 16.7k | }; |
2879 | | |
2880 | 16.7k | const TIntermSymbol* leftSymbol = getSymbol(left); |
2881 | 16.7k | const TIntermSymbol* rightSymbol = getSymbol(right); |
2882 | | |
2883 | 16.7k | const bool isSplitLeft = wasSplit(left) || indexesSplit(left); |
2884 | 16.7k | const bool isSplitRight = wasSplit(right) || indexesSplit(right); |
2885 | | |
2886 | 16.7k | const bool isFlattenLeft = wasFlattened(leftSymbol); |
2887 | 16.7k | const bool isFlattenRight = wasFlattened(rightSymbol); |
2888 | | |
2889 | | // OK to do a single assign if neither side is split or flattened. Otherwise, |
2890 | | // fall through to a member-wise copy. |
2891 | 16.7k | if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) { |
2892 | | // Clip and cull distance requires more processing. See comment above assignClipCullDistance. |
2893 | 16.4k | if (isClipOrCullDistance(left->getType()) || isClipOrCullDistance(right->getType())) { |
2894 | 24 | const bool isOutput = isClipOrCullDistance(left->getType()); |
2895 | | |
2896 | 24 | const int semanticId = (isOutput ? left : right)->getType().getQualifier().layoutLocation; |
2897 | 24 | return assignClipCullDistance(loc, op, semanticId, left, right); |
2898 | 16.3k | } else if (assignsClipPos(left)) { |
2899 | | // Position can require special handling: see comment above assignPosition |
2900 | 0 | return assignPosition(loc, op, left, right); |
2901 | 16.3k | } else if (left->getQualifier().builtIn == EbvSampleMask) { |
2902 | | // Certain builtins are required to be arrayed outputs in SPIR-V, but may internally be scalars |
2903 | | // in the shader. Copy the scalar RHS into the LHS array element zero, if that happens. |
2904 | 0 | if (left->isArray() && !right->isArray()) { |
2905 | 0 | const TType derefType(left->getType(), 0); |
2906 | 0 | left = intermediate.addIndex(EOpIndexDirect, left, intermediate.addConstantUnion(0, loc), loc); |
2907 | 0 | left->setType(derefType); |
2908 | | // Fall through to add assign. |
2909 | 0 | } |
2910 | 0 | } |
2911 | | |
2912 | 16.3k | return intermediate.addAssign(op, left, right, loc); |
2913 | 16.4k | } |
2914 | | |
2915 | 326 | TIntermAggregate* assignList = nullptr; |
2916 | 326 | const TVector<TVariable*>* leftVariables = nullptr; |
2917 | 326 | const TVector<TVariable*>* rightVariables = nullptr; |
2918 | | |
2919 | | // A temporary to store the right node's value, so we don't keep indirecting into it |
2920 | | // if it's not a simple symbol. |
2921 | 326 | TVariable* rhsTempVar = nullptr; |
2922 | | |
2923 | | // If the RHS is a simple symbol node, we'll copy it for each member. |
2924 | 326 | TIntermSymbol* cloneSymNode = nullptr; |
2925 | | |
2926 | 326 | int memberCount = 0; |
2927 | | |
2928 | | // Track how many items there are to copy. |
2929 | 326 | if (left->getType().isStruct()) |
2930 | 326 | memberCount = (int)left->getType().getStruct()->size(); |
2931 | 326 | if (left->getType().isArray()) |
2932 | 0 | memberCount = left->getType().getCumulativeArraySize(); |
2933 | | |
2934 | 326 | if (isFlattenLeft) |
2935 | 320 | leftVariables = &flattenMap.find(leftSymbol->getId())->second.members; |
2936 | | |
2937 | 326 | if (isFlattenRight) { |
2938 | 6 | rightVariables = &flattenMap.find(rightSymbol->getId())->second.members; |
2939 | 320 | } else { |
2940 | | // The RHS is not flattened. There are several cases: |
2941 | | // 1. 1 item to copy: Use the RHS directly. |
2942 | | // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp. |
2943 | | // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member. |
2944 | | |
2945 | 320 | if (memberCount <= 1) { |
2946 | | // case 1: we'll use the symbol directly below. Nothing to do. |
2947 | 234 | } else { |
2948 | 86 | if (right->getAsSymbolNode() != nullptr) { |
2949 | | // case 2: we'll copy the symbol per iteration below. |
2950 | 0 | cloneSymNode = right->getAsSymbolNode(); |
2951 | 86 | } else { |
2952 | | // case 3: assign to a temp, and indirect into that. |
2953 | 86 | rhsTempVar = makeInternalVariable("flattenTemp", right->getType()); |
2954 | 86 | rhsTempVar->getWritableType().getQualifier().makeTemporary(); |
2955 | 86 | TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc); |
2956 | | |
2957 | | // Add this to the aggregate being built. |
2958 | 86 | assignList = intermediate.growAggregate(assignList, |
2959 | 86 | intermediate.addAssign(op, noFlattenRHS, right, loc), loc); |
2960 | 86 | } |
2961 | 86 | } |
2962 | 320 | } |
2963 | | |
2964 | | // When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in |
2965 | | // variables, which is awkward when copying between split and unsplit structures. This variable tracks |
2966 | | // array indirections so they can be percolated from outer structs to inner variables. |
2967 | 326 | std::vector <int> arrayElement; |
2968 | | |
2969 | 326 | TStorageQualifier leftStorage = left->getType().getQualifier().storage; |
2970 | 326 | TStorageQualifier rightStorage = right->getType().getQualifier().storage; |
2971 | | |
2972 | 326 | int leftOffsetStart = findSubtreeOffset(*left); |
2973 | 326 | int rightOffsetStart = findSubtreeOffset(*right); |
2974 | 326 | int leftOffset = leftOffsetStart; |
2975 | 326 | int rightOffset = rightOffsetStart; |
2976 | | |
2977 | 326 | const auto getMember = [&](bool isLeft, const TType& type, int member, TIntermTyped* splitNode, int splitMember, |
2978 | 326 | bool flattened) |
2979 | 828 | -> TIntermTyped * { |
2980 | 828 | const bool split = isLeft ? isSplitLeft : isSplitRight; |
2981 | | |
2982 | 828 | TIntermTyped* subTree; |
2983 | 828 | const TType derefType(type, member); |
2984 | 828 | const TVariable* builtInVar = nullptr; |
2985 | 828 | if ((flattened || split) && derefType.isBuiltIn()) { |
2986 | 0 | auto splitPair = splitBuiltIns.find(HlslParseContext::tInterstageIoData( |
2987 | 0 | derefType.getQualifier().builtIn, |
2988 | 0 | isLeft ? leftStorage : rightStorage)); |
2989 | 0 | if (splitPair != splitBuiltIns.end()) |
2990 | 0 | builtInVar = splitPair->second; |
2991 | 0 | } |
2992 | 828 | if (builtInVar != nullptr) { |
2993 | | // copy from interstage IO built-in if needed |
2994 | 0 | subTree = intermediate.addSymbol(*builtInVar); |
2995 | |
|
2996 | 0 | if (subTree->getType().isArray()) { |
2997 | | // Arrayness of builtIn symbols isn't handled by the normal recursion: |
2998 | | // it's been extracted and moved to the built-in. |
2999 | 0 | if (!arrayElement.empty()) { |
3000 | 0 | const TType splitDerefType(subTree->getType(), arrayElement.back()); |
3001 | 0 | subTree = intermediate.addIndex(EOpIndexDirect, subTree, |
3002 | 0 | intermediate.addConstantUnion(arrayElement.back(), loc), loc); |
3003 | 0 | subTree->setType(splitDerefType); |
3004 | 0 | } else if (splitNode->getAsOperator() != nullptr && (splitNode->getAsOperator()->getOp() == EOpIndexIndirect)) { |
3005 | | // This might also be a stage with arrayed outputs, in which case there's an index |
3006 | | // operation we should transfer to the output builtin. |
3007 | |
|
3008 | 0 | const TType splitDerefType(subTree->getType(), 0); |
3009 | 0 | subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree, |
3010 | 0 | splitNode->getAsBinaryNode()->getRight(), loc); |
3011 | 0 | subTree->setType(splitDerefType); |
3012 | 0 | } |
3013 | 0 | } |
3014 | 828 | } else if (flattened && !shouldFlatten(derefType, isLeft ? leftStorage : rightStorage, false)) { |
3015 | 414 | if (isLeft) { |
3016 | | // offset will cycle through variables for arrayed io |
3017 | 406 | if (leftOffset >= static_cast<int>(leftVariables->size())) |
3018 | 0 | leftOffset = leftOffsetStart; |
3019 | 406 | subTree = intermediate.addSymbol(*(*leftVariables)[leftOffset++]); |
3020 | 406 | } else { |
3021 | | // offset will cycle through variables for arrayed io |
3022 | 8 | if (rightOffset >= static_cast<int>(rightVariables->size())) |
3023 | 0 | rightOffset = rightOffsetStart; |
3024 | 8 | subTree = intermediate.addSymbol(*(*rightVariables)[rightOffset++]); |
3025 | 8 | } |
3026 | | |
3027 | | // arrayed io |
3028 | 414 | if (subTree->getType().isArray()) { |
3029 | 162 | if (!arrayElement.empty()) { |
3030 | 0 | const TType derefType(subTree->getType(), arrayElement.front()); |
3031 | 0 | subTree = intermediate.addIndex(EOpIndexDirect, subTree, |
3032 | 0 | intermediate.addConstantUnion(arrayElement.front(), loc), loc); |
3033 | 0 | subTree->setType(derefType); |
3034 | 162 | } else { |
3035 | | // There's an index operation we should transfer to the output builtin. |
3036 | 162 | assert(splitNode->getAsOperator() != nullptr && |
3037 | 162 | splitNode->getAsOperator()->getOp() == EOpIndexIndirect); |
3038 | 162 | const TType splitDerefType(subTree->getType(), 0); |
3039 | 162 | subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree, |
3040 | 162 | splitNode->getAsBinaryNode()->getRight(), loc); |
3041 | 162 | subTree->setType(splitDerefType); |
3042 | 162 | } |
3043 | 162 | } |
3044 | 414 | } else { |
3045 | | // Index operator if it's an aggregate, else EOpNull |
3046 | 414 | const TOperator accessOp = type.isArray() ? EOpIndexDirect |
3047 | 414 | : type.isStruct() ? EOpIndexDirectStruct |
3048 | 414 | : EOpNull; |
3049 | 414 | if (accessOp == EOpNull) { |
3050 | 0 | subTree = splitNode; |
3051 | 414 | } else { |
3052 | 414 | subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc), |
3053 | 414 | loc); |
3054 | 414 | const TType splitDerefType(splitNode->getType(), splitMember); |
3055 | 414 | subTree->setType(splitDerefType); |
3056 | 414 | } |
3057 | 414 | } |
3058 | | |
3059 | 828 | return subTree; |
3060 | 828 | }; |
3061 | | |
3062 | | // Use the proper RHS node: a new symbol from a TVariable, copy |
3063 | | // of an TIntermSymbol node, or sometimes the right node directly. |
3064 | 326 | right = rhsTempVar != nullptr ? intermediate.addSymbol(*rhsTempVar, loc) : |
3065 | 326 | cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) : |
3066 | 240 | right; |
3067 | | |
3068 | | // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the |
3069 | | // whole thing. So, we'll resort to an explicit type via std::function. |
3070 | 326 | const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight, |
3071 | 326 | bool topLevel)> |
3072 | 326 | traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight, |
3073 | 740 | bool topLevel) -> void { |
3074 | | // If we get here, we are assigning to or from a whole array or struct that must be |
3075 | | // flattened, so have to do member-by-member assignment: |
3076 | | |
3077 | 740 | bool shouldFlattenSubsetLeft = isFlattenLeft && shouldFlatten(left->getType(), leftStorage, topLevel); |
3078 | 740 | bool shouldFlattenSubsetRight = isFlattenRight && shouldFlatten(right->getType(), rightStorage, topLevel); |
3079 | | |
3080 | 740 | if ((left->getType().isArray() || right->getType().isArray()) && |
3081 | 0 | (shouldFlattenSubsetLeft || isSplitLeft || |
3082 | 0 | shouldFlattenSubsetRight || isSplitRight)) { |
3083 | 0 | const int elementsL = left->getType().isArray() ? left->getType().getOuterArraySize() : 1; |
3084 | 0 | const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1; |
3085 | | |
3086 | | // The arrays might not be the same size, |
3087 | | // e.g., if the size has been forced for EbvTessLevelInner/Outer. |
3088 | 0 | const int elementsToCopy = std::min(elementsL, elementsR); |
3089 | | |
3090 | | // array case |
3091 | 0 | for (int element = 0; element < elementsToCopy; ++element) { |
3092 | 0 | arrayElement.push_back(element); |
3093 | | |
3094 | | // Add a new AST symbol node if we have a temp variable holding a complex RHS. |
3095 | 0 | TIntermTyped* subLeft = getMember(true, left->getType(), element, left, element, |
3096 | 0 | shouldFlattenSubsetLeft); |
3097 | 0 | TIntermTyped* subRight = getMember(false, right->getType(), element, right, element, |
3098 | 0 | shouldFlattenSubsetRight); |
3099 | |
|
3100 | 0 | TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), element, splitLeft, |
3101 | 0 | element, shouldFlattenSubsetLeft) |
3102 | 0 | : subLeft; |
3103 | 0 | TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), element, splitRight, |
3104 | 0 | element, shouldFlattenSubsetRight) |
3105 | 0 | : subRight; |
3106 | |
|
3107 | 0 | traverse(subLeft, subRight, subSplitLeft, subSplitRight, false); |
3108 | |
|
3109 | 0 | arrayElement.pop_back(); |
3110 | 0 | } |
3111 | 740 | } else if (left->getType().isStruct() && (shouldFlattenSubsetLeft || isSplitLeft || |
3112 | 326 | shouldFlattenSubsetRight || isSplitRight)) { |
3113 | | // struct case |
3114 | 326 | const auto& membersL = *left->getType().getStruct(); |
3115 | 326 | const auto& membersR = *right->getType().getStruct(); |
3116 | | |
3117 | | // These track the members in the split structures corresponding to the same in the unsplit structures, |
3118 | | // which we traverse in parallel. |
3119 | 326 | int memberL = 0; |
3120 | 326 | int memberR = 0; |
3121 | | |
3122 | | // Handle empty structure assignment |
3123 | 326 | if (int(membersL.size()) == 0 && int(membersR.size()) == 0) |
3124 | 2 | assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc); |
3125 | | |
3126 | 740 | for (int member = 0; member < int(membersL.size()); ++member) { |
3127 | 414 | const TType& typeL = *membersL[member].type; |
3128 | 414 | const TType& typeR = *membersR[member].type; |
3129 | | |
3130 | 414 | TIntermTyped* subLeft = getMember(true, left->getType(), member, left, member, |
3131 | 414 | shouldFlattenSubsetLeft); |
3132 | 414 | TIntermTyped* subRight = getMember(false, right->getType(), member, right, member, |
3133 | 414 | shouldFlattenSubsetRight); |
3134 | | |
3135 | | // If there is no splitting, use the same values to avoid inefficiency. |
3136 | 414 | TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), member, splitLeft, |
3137 | 0 | memberL, shouldFlattenSubsetLeft) |
3138 | 414 | : subLeft; |
3139 | 414 | TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), member, splitRight, |
3140 | 0 | memberR, shouldFlattenSubsetRight) |
3141 | 414 | : subRight; |
3142 | | |
3143 | 414 | if (isClipOrCullDistance(subSplitLeft->getType()) || isClipOrCullDistance(subSplitRight->getType())) { |
3144 | | // Clip and cull distance built-in assignment is complex in its own right, and is handled in |
3145 | | // a separate function dedicated to that task. See comment above assignClipCullDistance; |
3146 | |
|
3147 | 0 | const bool isOutput = isClipOrCullDistance(subSplitLeft->getType()); |
3148 | | |
3149 | | // Since all clip/cull semantics boil down to the same built-in type, we need to get the |
3150 | | // semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping. |
3151 | 0 | const TType derefType((isOutput ? left : right)->getType(), member); |
3152 | 0 | const int semanticId = derefType.getQualifier().layoutLocation; |
3153 | |
|
3154 | 0 | TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId, |
3155 | 0 | subSplitLeft, subSplitRight); |
3156 | |
|
3157 | 0 | assignList = intermediate.growAggregate(assignList, clipCullAssign, loc); |
3158 | 414 | } else if (subSplitRight->getType().getQualifier().builtIn == EbvFragCoord) { |
3159 | | // FragCoord can require special handling: see comment above assignFromFragCoord |
3160 | 0 | TIntermTyped* fragCoordAssign = assignFromFragCoord(loc, op, subSplitLeft, subSplitRight); |
3161 | 0 | assignList = intermediate.growAggregate(assignList, fragCoordAssign, loc); |
3162 | 414 | } else if (assignsClipPos(subSplitLeft)) { |
3163 | | // Position can require special handling: see comment above assignPosition |
3164 | 0 | TIntermTyped* positionAssign = assignPosition(loc, op, subSplitLeft, subSplitRight); |
3165 | 0 | assignList = intermediate.growAggregate(assignList, positionAssign, loc); |
3166 | 414 | } else if (!shouldFlattenSubsetLeft && !shouldFlattenSubsetRight && |
3167 | 0 | !typeL.containsBuiltIn() && !typeR.containsBuiltIn()) { |
3168 | | // If this is the final flattening (no nested types below to flatten) |
3169 | | // we'll copy the member, else recurse into the type hierarchy. |
3170 | | // However, if splitting the struct, that means we can copy a whole |
3171 | | // subtree here IFF it does not itself contain any interstage built-in |
3172 | | // IO variables, so we only have to recurse into it if there's something |
3173 | | // for splitting to do. That can save a lot of AST verbosity for |
3174 | | // a bunch of memberwise copies. |
3175 | |
|
3176 | 0 | assignList = intermediate.growAggregate(assignList, |
3177 | 0 | intermediate.addAssign(op, subSplitLeft, subSplitRight, loc), |
3178 | 0 | loc); |
3179 | 414 | } else { |
3180 | 414 | traverse(subLeft, subRight, subSplitLeft, subSplitRight, false); |
3181 | 414 | } |
3182 | | |
3183 | 414 | memberL += (typeL.isBuiltIn() ? 0 : 1); |
3184 | 414 | memberR += (typeR.isBuiltIn() ? 0 : 1); |
3185 | 414 | } |
3186 | 414 | } else { |
3187 | | // Member copy |
3188 | 414 | assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc); |
3189 | 414 | } |
3190 | | |
3191 | 740 | }; |
3192 | | |
3193 | 326 | TIntermTyped* splitLeft = left; |
3194 | 326 | TIntermTyped* splitRight = right; |
3195 | | |
3196 | | // If either left or right was a split structure, we must read or write it, but still have to |
3197 | | // parallel-recurse through the unsplit structure to identify the built-in IO vars. |
3198 | | // The left can be either a symbol, or an index into a symbol (e.g, array reference) |
3199 | 326 | if (isSplitLeft) { |
3200 | 0 | if (indexesSplit(left)) { |
3201 | | // Index case: Refer to the indexed symbol, if the left is an index operator. |
3202 | 0 | const TIntermSymbol* symNode = left->getAsBinaryNode()->getLeft()->getAsSymbolNode(); |
3203 | |
|
3204 | 0 | TIntermTyped* splitLeftNonIo = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc); |
3205 | |
|
3206 | 0 | splitLeft = intermediate.addIndex(left->getAsBinaryNode()->getOp(), splitLeftNonIo, |
3207 | 0 | left->getAsBinaryNode()->getRight(), loc); |
3208 | |
|
3209 | 0 | const TType derefType(splitLeftNonIo->getType(), 0); |
3210 | 0 | splitLeft->setType(derefType); |
3211 | 0 | } else { |
3212 | | // Symbol case: otherwise, if not indexed, we have the symbol directly. |
3213 | 0 | const TIntermSymbol* symNode = left->getAsSymbolNode(); |
3214 | 0 | splitLeft = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc); |
3215 | 0 | } |
3216 | 0 | } |
3217 | | |
3218 | 326 | if (isSplitRight) |
3219 | 0 | splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc); |
3220 | | |
3221 | | // This makes the whole assignment, recursing through subtypes as needed. |
3222 | 326 | traverse(left, right, splitLeft, splitRight, true); |
3223 | | |
3224 | 326 | assert(assignList != nullptr); |
3225 | 326 | assignList->setOperator(EOpSequence); |
3226 | | |
3227 | 326 | return assignList; |
3228 | 16.7k | } |
3229 | | |
3230 | | // An assignment to matrix swizzle must be decomposed into individual assignments. |
3231 | | // These must be selected component-wise from the RHS and stored component-wise |
3232 | | // into the LHS. |
3233 | | TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left, |
3234 | | TIntermTyped* right) |
3235 | 8 | { |
3236 | 8 | assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle); |
3237 | | |
3238 | 8 | if (op != EOpAssign) |
3239 | 0 | error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", ""); |
3240 | | |
3241 | | // isolate the matrix and swizzle nodes |
3242 | 8 | TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped(); |
3243 | 8 | const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence(); |
3244 | | |
3245 | | // if the RHS isn't already a simple vector, let's store into one |
3246 | 8 | TIntermSymbol* vector = right->getAsSymbolNode(); |
3247 | 8 | TIntermTyped* vectorAssign = nullptr; |
3248 | 8 | if (vector == nullptr) { |
3249 | | // create a new intermediate vector variable to assign to |
3250 | 8 | TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2); |
3251 | 8 | vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc); |
3252 | | |
3253 | | // assign the right to the new vector |
3254 | 8 | vectorAssign = handleAssign(loc, op, vector, right); |
3255 | 8 | } |
3256 | | |
3257 | | // Assign the vector components to the matrix components. |
3258 | | // Store this as a sequence, so a single aggregate node represents this |
3259 | | // entire operation. |
3260 | 8 | TIntermAggregate* result = intermediate.makeAggregate(vectorAssign); |
3261 | 8 | TType columnType(matrix->getType(), 0); |
3262 | 8 | TType componentType(columnType, 0); |
3263 | 8 | TType indexType(EbtInt); |
3264 | 8 | for (int i = 0; i < (int)swizzle.size(); i += 2) { |
3265 | | // the right component, single index into the RHS vector |
3266 | 0 | TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector, |
3267 | 0 | intermediate.addConstantUnion(i/2, loc), loc); |
3268 | | |
3269 | | // the left component, double index into the LHS matrix |
3270 | 0 | TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix, |
3271 | 0 | intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(), |
3272 | 0 | indexType, loc), |
3273 | 0 | loc); |
3274 | 0 | leftComp->setType(columnType); |
3275 | 0 | leftComp = intermediate.addIndex(EOpIndexDirect, leftComp, |
3276 | 0 | intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(), |
3277 | 0 | indexType, loc), |
3278 | 0 | loc); |
3279 | 0 | leftComp->setType(componentType); |
3280 | | |
3281 | | // Add the assignment to the aggregate |
3282 | 0 | result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc)); |
3283 | 0 | } |
3284 | | |
3285 | 8 | result->setOp(EOpSequence); |
3286 | | |
3287 | 8 | return result; |
3288 | 8 | } |
3289 | | |
3290 | | // |
3291 | | // HLSL atomic operations have slightly different arguments than |
3292 | | // GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic. |
3293 | | // This provides the post-decomposition equivalent opcode. |
3294 | | // |
3295 | | TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage) |
3296 | 202 | { |
3297 | 202 | switch (op) { |
3298 | 60 | case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd; |
3299 | 56 | case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd; |
3300 | 22 | case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap; |
3301 | 6 | case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax; |
3302 | 14 | case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin; |
3303 | 18 | case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr; |
3304 | 18 | case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor; |
3305 | 8 | case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange; |
3306 | 0 | case EOpInterlockedCompareStore: // TODO: ... |
3307 | 0 | default: |
3308 | 0 | error(loc, "unknown atomic operation", "unknown op", ""); |
3309 | 0 | return EOpNull; |
3310 | 202 | } |
3311 | 202 | } |
3312 | | |
3313 | | // |
3314 | | // Create a combined sampler/texture from separate sampler and texture. |
3315 | | // |
3316 | | TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex, |
3317 | | TIntermTyped* argSampler) |
3318 | 306 | { |
3319 | 306 | TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler); |
3320 | | |
3321 | 306 | txcombine->getSequence().push_back(argTex); |
3322 | 306 | txcombine->getSequence().push_back(argSampler); |
3323 | | |
3324 | 306 | TSampler samplerType = argTex->getType().getSampler(); |
3325 | 306 | samplerType.combined = true; |
3326 | | |
3327 | | // TODO: |
3328 | | // This block exists until the spec no longer requires shadow modes on texture objects. |
3329 | | // It can be deleted after that, along with the shadowTextureVariant member. |
3330 | 306 | { |
3331 | 306 | const bool shadowMode = argSampler->getType().getSampler().shadow; |
3332 | | |
3333 | 306 | TIntermSymbol* texSymbol = argTex->getAsSymbolNode(); |
3334 | | |
3335 | 306 | if (texSymbol == nullptr) |
3336 | 14 | texSymbol = argTex->getAsBinaryNode()->getLeft()->getAsSymbolNode(); |
3337 | | |
3338 | 306 | if (texSymbol == nullptr) { |
3339 | 0 | error(loc, "unable to find texture symbol", "", ""); |
3340 | 0 | return nullptr; |
3341 | 0 | } |
3342 | | |
3343 | | // This forces the texture's shadow state to be the sampler's |
3344 | | // shadow state. This depends on downstream optimization to |
3345 | | // DCE one variant in [shadow, nonshadow] if both are present, |
3346 | | // or the SPIR-V module would be invalid. |
3347 | 306 | long long newId = texSymbol->getId(); |
3348 | | |
3349 | | // Check to see if this texture has been given a shadow mode already. |
3350 | | // If so, look up the one we already have. |
3351 | 306 | const auto textureShadowEntry = textureShadowVariant.find(texSymbol->getId()); |
3352 | | |
3353 | 306 | if (textureShadowEntry != textureShadowVariant.end()) |
3354 | 6 | newId = textureShadowEntry->second->get(shadowMode); |
3355 | 300 | else |
3356 | 300 | textureShadowVariant[texSymbol->getId()] = NewPoolObject(tShadowTextureSymbols(), 1); |
3357 | | |
3358 | | // Sometimes we have to create another symbol (if this texture has been seen before, |
3359 | | // and we haven't created the form for this shadow mode). |
3360 | 306 | if (newId == -1) { |
3361 | 4 | TType texType; |
3362 | 4 | texType.shallowCopy(argTex->getType()); |
3363 | 4 | texType.getSampler().shadow = shadowMode; // set appropriate shadow mode. |
3364 | 4 | globalQualifierFix(loc, texType.getQualifier()); |
3365 | | |
3366 | 4 | TVariable* newTexture = makeInternalVariable(texSymbol->getName(), texType); |
3367 | | |
3368 | 4 | trackLinkage(*newTexture); |
3369 | | |
3370 | 4 | newId = newTexture->getUniqueId(); |
3371 | 4 | } |
3372 | | |
3373 | 306 | assert(newId != -1); |
3374 | | |
3375 | 306 | if (textureShadowVariant.find(newId) == textureShadowVariant.end()) |
3376 | 4 | textureShadowVariant[newId] = textureShadowVariant[texSymbol->getId()]; |
3377 | | |
3378 | 306 | textureShadowVariant[newId]->set(shadowMode, newId); |
3379 | | |
3380 | | // Remember this shadow mode in the texture and the merged type. |
3381 | 306 | argTex->getWritableType().getSampler().shadow = shadowMode; |
3382 | 306 | samplerType.shadow = shadowMode; |
3383 | | |
3384 | 306 | texSymbol->switchId(newId); |
3385 | 306 | } |
3386 | | |
3387 | 0 | txcombine->setType(TType(samplerType, EvqTemporary)); |
3388 | 306 | txcombine->setLoc(loc); |
3389 | | |
3390 | 306 | return txcombine; |
3391 | 306 | } |
3392 | | |
3393 | | // Return true if this a buffer type that has an associated counter buffer. |
3394 | | bool HlslParseContext::hasStructBuffCounter(const TType& type) const |
3395 | 9.85k | { |
3396 | 9.85k | switch (type.getQualifier().declaredBuiltIn) { |
3397 | 76 | case EbvAppendConsume: // fall through... |
3398 | 180 | case EbvRWStructuredBuffer: // ... |
3399 | 180 | return true; |
3400 | 9.67k | default: |
3401 | 9.67k | return false; // the other structuredbuffer types do not have a counter. |
3402 | 9.85k | } |
3403 | 9.85k | } |
3404 | | |
3405 | | void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type) |
3406 | 176 | { |
3407 | | // Counter type |
3408 | 176 | TType* counterType = new TType(EbtUint, EvqBuffer); |
3409 | 176 | counterType->setFieldName(intermediate.implicitCounterName); |
3410 | | |
3411 | 176 | TTypeList* blockStruct = new TTypeList; |
3412 | 176 | TTypeLoc member = { counterType, loc }; |
3413 | 176 | blockStruct->push_back(member); |
3414 | | |
3415 | 176 | TType blockType(blockStruct, "", counterType->getQualifier()); |
3416 | 176 | blockType.getQualifier().storage = EvqBuffer; |
3417 | | |
3418 | 176 | type.shallowCopy(blockType); |
3419 | 176 | shareStructBufferType(type); |
3420 | 176 | } |
3421 | | |
3422 | | // declare counter for a structured buffer type |
3423 | | void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name) |
3424 | 414 | { |
3425 | | // Bail out if not a struct buffer |
3426 | 414 | if (! isStructBufferType(bufferType)) |
3427 | 34 | return; |
3428 | | |
3429 | 380 | if (! hasStructBuffCounter(bufferType)) |
3430 | 224 | return; |
3431 | | |
3432 | 156 | TType blockType; |
3433 | 156 | counterBufferType(loc, blockType); |
3434 | | |
3435 | 156 | TString* blockName = NewPoolTString(intermediate.addCounterBufferName(name).c_str()); |
3436 | | |
3437 | | // Counter buffer is not yet in use |
3438 | 156 | structBufferCounter[*blockName] = false; |
3439 | | |
3440 | 156 | shareStructBufferType(blockType); |
3441 | 156 | declareBlock(loc, blockType, blockName); |
3442 | 156 | } |
3443 | | |
3444 | | // return the counter that goes with a given structuredbuffer |
3445 | | TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer) |
3446 | 28 | { |
3447 | | // Bail out if not a struct buffer |
3448 | 28 | if (buffer == nullptr || ! isStructBufferType(buffer->getType())) |
3449 | 0 | return nullptr; |
3450 | | |
3451 | 28 | const TString counterBlockName(intermediate.addCounterBufferName(buffer->getAsSymbolNode()->getName())); |
3452 | | |
3453 | | // Mark the counter as being used |
3454 | 28 | structBufferCounter[counterBlockName] = true; |
3455 | | |
3456 | 28 | TIntermTyped* counterVar = handleVariable(loc, &counterBlockName); // find the block structure |
3457 | 28 | TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct |
3458 | | |
3459 | 28 | TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc); |
3460 | 28 | counterMember->setType(TType(EbtUint)); |
3461 | 28 | return counterMember; |
3462 | 28 | } |
3463 | | |
3464 | | // |
3465 | | // Decompose structure buffer methods into AST |
3466 | | // |
3467 | | void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
3468 | 12.4k | { |
3469 | 12.4k | if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr) |
3470 | 910 | return; |
3471 | | |
3472 | 11.4k | const TOperator op = node->getAsOperator()->getOp(); |
3473 | 11.4k | TIntermAggregate* argAggregate = arguments->getAsAggregate(); |
3474 | | |
3475 | | // Buffer is the object upon which method is called, so always arg 0 |
3476 | 11.4k | TIntermTyped* bufferObj = nullptr; |
3477 | | |
3478 | | // The parameters can be an aggregate, or just a the object as a symbol if there are no fn params. |
3479 | 11.4k | if (argAggregate) { |
3480 | 3.92k | if (argAggregate->getSequence().empty()) |
3481 | 0 | return; |
3482 | 3.92k | if (argAggregate->getSequence()[0]) |
3483 | 3.92k | bufferObj = argAggregate->getSequence()[0]->getAsTyped(); |
3484 | 7.56k | } else { |
3485 | 7.56k | bufferObj = arguments->getAsSymbolNode(); |
3486 | 7.56k | } |
3487 | | |
3488 | 11.4k | if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr) |
3489 | 2.13k | return; |
3490 | | |
3491 | | // Some methods require a hidden internal counter, obtained via getStructBufferCounter(). |
3492 | | // This lambda adds something to it and returns the old value. |
3493 | 9.35k | const auto incDecCounter = [&](int incval) -> TIntermTyped* { |
3494 | 28 | TIntermTyped* incrementValue = intermediate.addConstantUnion(static_cast<unsigned int>(incval), loc, true); |
3495 | 28 | TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member |
3496 | | |
3497 | 28 | if (counter == nullptr) |
3498 | 0 | return nullptr; |
3499 | | |
3500 | 28 | TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd); |
3501 | 28 | counterIncrement->setType(TType(EbtUint, EvqTemporary)); |
3502 | 28 | counterIncrement->setLoc(loc); |
3503 | 28 | counterIncrement->getSequence().push_back(counter); |
3504 | 28 | counterIncrement->getSequence().push_back(incrementValue); |
3505 | | |
3506 | 28 | return counterIncrement; |
3507 | 28 | }; |
3508 | | |
3509 | | // Index to obtain the runtime sized array out of the buffer. |
3510 | 9.35k | TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj); |
3511 | 9.35k | if (argArray == nullptr) |
3512 | 9.06k | return; // It might not be a struct buffer method. |
3513 | | |
3514 | 294 | switch (op) { |
3515 | 16 | case EOpMethodLoad: |
3516 | 16 | { |
3517 | 16 | TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index |
3518 | | |
3519 | 16 | const TType& bufferType = bufferObj->getType(); |
3520 | | |
3521 | 16 | const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn; |
3522 | | |
3523 | | // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address |
3524 | | // buffer then, but that's what it calls itself. |
3525 | 16 | const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer || |
3526 | 12 | builtInType == EbvRWByteAddressBuffer); |
3527 | | |
3528 | | |
3529 | 16 | if (isByteAddressBuffer) |
3530 | 16 | argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, |
3531 | 16 | intermediate.addConstantUnion(2, loc, true), |
3532 | 16 | loc, TType(EbtInt)); |
3533 | | |
3534 | | // Index into the array to find the item being loaded. |
3535 | 16 | const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; |
3536 | | |
3537 | 16 | node = intermediate.addIndex(idxOp, argArray, argIndex, loc); |
3538 | | |
3539 | 16 | const TType derefType(argArray->getType(), 0); |
3540 | 16 | node->setType(derefType); |
3541 | 16 | } |
3542 | | |
3543 | 16 | break; |
3544 | | |
3545 | 6 | case EOpMethodLoad2: |
3546 | 12 | case EOpMethodLoad3: |
3547 | 16 | case EOpMethodLoad4: |
3548 | 16 | { |
3549 | 16 | TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index |
3550 | | |
3551 | 16 | TOperator constructOp = EOpNull; |
3552 | 16 | int size = 0; |
3553 | | |
3554 | 16 | switch (op) { |
3555 | 6 | case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break; |
3556 | 6 | case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break; |
3557 | 4 | case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break; |
3558 | 0 | default: assert(0); |
3559 | 16 | } |
3560 | | |
3561 | 16 | TIntermTyped* body = nullptr; |
3562 | | |
3563 | | // First, we'll store the address in a variable to avoid multiple shifts |
3564 | | // (we must convert the byte address to an item address) |
3565 | 16 | TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex, |
3566 | 16 | intermediate.addConstantUnion(2, loc, true), |
3567 | 16 | loc, TType(EbtInt)); |
3568 | | |
3569 | 16 | TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary)); |
3570 | 16 | TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc); |
3571 | | |
3572 | 16 | body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc)); |
3573 | | |
3574 | 16 | TIntermTyped* vec = nullptr; |
3575 | | |
3576 | | // These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2 |
3577 | | // address conversion. |
3578 | 62 | for (int idx=0; idx<size; ++idx) { |
3579 | 46 | TIntermTyped* offsetIdx = byteAddrIdxVar; |
3580 | | |
3581 | | // add index offset |
3582 | 46 | if (idx != 0) |
3583 | 30 | offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, |
3584 | 30 | intermediate.addConstantUnion(idx, loc, true), |
3585 | 30 | loc, TType(EbtInt)); |
3586 | | |
3587 | 46 | const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect |
3588 | 46 | : EOpIndexIndirect; |
3589 | | |
3590 | 46 | TIntermTyped* indexVal = intermediate.addIndex(idxOp, argArray, offsetIdx, loc); |
3591 | | |
3592 | 46 | TType derefType(argArray->getType(), 0); |
3593 | 46 | derefType.getQualifier().makeTemporary(); |
3594 | 46 | indexVal->setType(derefType); |
3595 | | |
3596 | 46 | vec = intermediate.growAggregate(vec, indexVal); |
3597 | 46 | } |
3598 | | |
3599 | 16 | vec->setType(TType(argArray->getBasicType(), EvqTemporary, size)); |
3600 | 16 | vec->getAsAggregate()->setOperator(constructOp); |
3601 | | |
3602 | 16 | body = intermediate.growAggregate(body, vec); |
3603 | 16 | body->setType(vec->getType()); |
3604 | 16 | body->getAsAggregate()->setOperator(EOpSequence); |
3605 | | |
3606 | 16 | node = body; |
3607 | 16 | } |
3608 | | |
3609 | 0 | break; |
3610 | | |
3611 | 4 | case EOpMethodStore: |
3612 | 8 | case EOpMethodStore2: |
3613 | 14 | case EOpMethodStore3: |
3614 | 18 | case EOpMethodStore4: |
3615 | 18 | { |
3616 | 18 | TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index |
3617 | 18 | TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped(); // value |
3618 | | |
3619 | | // Index into the array to find the item being loaded. |
3620 | | // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address |
3621 | | // buffer then, but that's what it calls itself). |
3622 | | |
3623 | 18 | int size = 0; |
3624 | | |
3625 | 18 | switch (op) { |
3626 | 4 | case EOpMethodStore: size = 1; break; |
3627 | 4 | case EOpMethodStore2: size = 2; break; |
3628 | 6 | case EOpMethodStore3: size = 3; break; |
3629 | 4 | case EOpMethodStore4: size = 4; break; |
3630 | 0 | default: assert(0); |
3631 | 18 | } |
3632 | | |
3633 | 18 | TIntermAggregate* body = nullptr; |
3634 | | |
3635 | | // First, we'll store the address in a variable to avoid multiple shifts |
3636 | | // (we must convert the byte address to an item address) |
3637 | 18 | TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex, |
3638 | 18 | intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt)); |
3639 | | |
3640 | 18 | TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary)); |
3641 | 18 | TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc); |
3642 | | |
3643 | 18 | body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc)); |
3644 | | |
3645 | 64 | for (int idx=0; idx<size; ++idx) { |
3646 | 46 | TIntermTyped* offsetIdx = byteAddrIdxVar; |
3647 | 46 | TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true); |
3648 | | |
3649 | | // add index offset |
3650 | 46 | if (idx != 0) |
3651 | 28 | offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt)); |
3652 | | |
3653 | 46 | const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect |
3654 | 46 | : EOpIndexIndirect; |
3655 | | |
3656 | 46 | TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc); |
3657 | 46 | const TType derefType(argArray->getType(), 0); |
3658 | 46 | lValue->setType(derefType); |
3659 | | |
3660 | 46 | TIntermTyped* rValue; |
3661 | 46 | if (size == 1) { |
3662 | 4 | rValue = argValue; |
3663 | 42 | } else { |
3664 | 42 | rValue = intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc); |
3665 | 42 | const TType indexType(argValue->getType(), 0); |
3666 | 42 | rValue->setType(indexType); |
3667 | 42 | } |
3668 | | |
3669 | 46 | TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc); |
3670 | | |
3671 | 46 | body = intermediate.growAggregate(body, assign); |
3672 | 46 | } |
3673 | | |
3674 | 18 | body->setOperator(EOpSequence); |
3675 | 18 | node = body; |
3676 | 18 | } |
3677 | | |
3678 | 0 | break; |
3679 | | |
3680 | 6 | case EOpMethodGetDimensions: |
3681 | 6 | { |
3682 | 6 | const int numArgs = (int)argAggregate->getSequence().size(); |
3683 | 6 | TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped(); // out num items |
3684 | 6 | TIntermTyped* argStride = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr; // out stride |
3685 | | |
3686 | 6 | TIntermAggregate* body = nullptr; |
3687 | | |
3688 | | // Length output: |
3689 | 6 | if (argArray->getType().isSizedArray()) { |
3690 | 0 | const int length = argArray->getType().getOuterArraySize(); |
3691 | 0 | TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, |
3692 | 0 | intermediate.addConstantUnion(length, loc, true), loc); |
3693 | 0 | body = intermediate.growAggregate(body, assign, loc); |
3694 | 6 | } else { |
3695 | 6 | TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray, |
3696 | 6 | argNumItems->getType()); |
3697 | 6 | TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc); |
3698 | 6 | body = intermediate.growAggregate(body, assign, loc); |
3699 | 6 | } |
3700 | | |
3701 | | // Stride output: |
3702 | 6 | if (argStride != nullptr) { |
3703 | 0 | int size; |
3704 | 0 | int stride; |
3705 | 0 | intermediate.getMemberAlignment(argArray->getType(), size, stride, argArray->getType().getQualifier().layoutPacking, |
3706 | 0 | argArray->getType().getQualifier().layoutMatrix == ElmRowMajor); |
3707 | |
|
3708 | 0 | TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride, |
3709 | 0 | intermediate.addConstantUnion(stride, loc, true), loc); |
3710 | |
|
3711 | 0 | body = intermediate.growAggregate(body, assign); |
3712 | 0 | } |
3713 | | |
3714 | 6 | body->setOperator(EOpSequence); |
3715 | 6 | node = body; |
3716 | 6 | } |
3717 | | |
3718 | 6 | break; |
3719 | | |
3720 | 60 | case EOpInterlockedAdd: |
3721 | 116 | case EOpInterlockedAnd: |
3722 | 124 | case EOpInterlockedExchange: |
3723 | 130 | case EOpInterlockedMax: |
3724 | 144 | case EOpInterlockedMin: |
3725 | 162 | case EOpInterlockedOr: |
3726 | 180 | case EOpInterlockedXor: |
3727 | 202 | case EOpInterlockedCompareExchange: |
3728 | 204 | case EOpInterlockedCompareStore: |
3729 | 204 | { |
3730 | | // We'll replace the first argument with the block dereference, and let |
3731 | | // downstream decomposition handle the rest. |
3732 | | |
3733 | 204 | TIntermSequence& sequence = argAggregate->getSequence(); |
3734 | | |
3735 | 204 | TIntermTyped* argIndex = makeIntegerIndex(sequence[1]->getAsTyped()); // index |
3736 | 204 | argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true), |
3737 | 204 | loc, TType(EbtInt)); |
3738 | | |
3739 | 204 | const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; |
3740 | 204 | TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc); |
3741 | | |
3742 | 204 | const TType derefType(argArray->getType(), 0); |
3743 | 204 | element->setType(derefType); |
3744 | | |
3745 | | // Replace the numeric byte offset parameter with array reference. |
3746 | 204 | sequence[1] = element; |
3747 | 204 | sequence.erase(sequence.begin(), sequence.begin()+1); |
3748 | 204 | } |
3749 | 204 | break; |
3750 | | |
3751 | 8 | case EOpMethodIncrementCounter: |
3752 | 8 | { |
3753 | 8 | node = incDecCounter(1); |
3754 | 8 | break; |
3755 | 202 | } |
3756 | | |
3757 | 6 | case EOpMethodDecrementCounter: |
3758 | 6 | { |
3759 | 6 | TIntermTyped* preIncValue = incDecCounter(-1); // result is original value |
3760 | 6 | node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc, |
3761 | 6 | preIncValue->getType()); |
3762 | 6 | break; |
3763 | 202 | } |
3764 | | |
3765 | 8 | case EOpMethodAppend: |
3766 | 8 | { |
3767 | 8 | TIntermTyped* oldCounter = incDecCounter(1); |
3768 | | |
3769 | 8 | TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc); |
3770 | 8 | TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped(); |
3771 | | |
3772 | 8 | const TType derefType(argArray->getType(), 0); |
3773 | 8 | lValue->setType(derefType); |
3774 | | |
3775 | 8 | node = intermediate.addAssign(EOpAssign, lValue, rValue, loc); |
3776 | | |
3777 | 8 | break; |
3778 | 202 | } |
3779 | | |
3780 | 6 | case EOpMethodConsume: |
3781 | 6 | { |
3782 | 6 | TIntermTyped* oldCounter = incDecCounter(-1); |
3783 | | |
3784 | 6 | TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter, |
3785 | 6 | intermediate.addConstantUnion(-1, loc, true), loc, |
3786 | 6 | oldCounter->getType()); |
3787 | | |
3788 | 6 | node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc); |
3789 | | |
3790 | 6 | const TType derefType(argArray->getType(), 0); |
3791 | 6 | node->setType(derefType); |
3792 | | |
3793 | 6 | break; |
3794 | 202 | } |
3795 | | |
3796 | 6 | default: |
3797 | 6 | break; // most pass through unchanged |
3798 | 294 | } |
3799 | 294 | } |
3800 | | |
3801 | | // Create array of standard sample positions for given sample count. |
3802 | | // TODO: remove when a real method to query sample pos exists in SPIR-V. |
3803 | | TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count) |
3804 | 0 | { |
3805 | 0 | struct tSamplePos { float x, y; }; |
3806 | |
|
3807 | 0 | static const tSamplePos pos1[] = { |
3808 | 0 | { 0.0/16.0, 0.0/16.0 }, |
3809 | 0 | }; |
3810 | | |
3811 | | // standard sample positions for 2, 4, 8, and 16 samples. |
3812 | 0 | static const tSamplePos pos2[] = { |
3813 | 0 | { 4.0/16.0, 4.0/16.0 }, {-4.0/16.0, -4.0/16.0 }, |
3814 | 0 | }; |
3815 | |
|
3816 | 0 | static const tSamplePos pos4[] = { |
3817 | 0 | {-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0, 2.0/16.0 }, { 2.0/16.0, 6.0/16.0 }, |
3818 | 0 | }; |
3819 | |
|
3820 | 0 | static const tSamplePos pos8[] = { |
3821 | 0 | { 1.0/16.0, -3.0/16.0 }, {-1.0/16.0, 3.0/16.0 }, { 5.0/16.0, 1.0/16.0 }, {-3.0/16.0, -5.0/16.0 }, |
3822 | 0 | {-5.0/16.0, 5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0, 7.0/16.0 }, { 7.0/16.0, -7.0/16.0 }, |
3823 | 0 | }; |
3824 | |
|
3825 | 0 | static const tSamplePos pos16[] = { |
3826 | 0 | { 1.0/16.0, 1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0, 2.0/16.0 }, { 4.0/16.0, -1.0/16.0 }, |
3827 | 0 | {-5.0/16.0, -2.0/16.0 }, { 2.0/16.0, 5.0/16.0 }, { 5.0/16.0, 3.0/16.0 }, { 3.0/16.0, -5.0/16.0 }, |
3828 | 0 | {-2.0/16.0, 6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0, 4.0/16.0 }, |
3829 | 0 | {-8.0/16.0, 0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0, 7.0/16.0 }, {-7.0/16.0, -8.0/16.0 }, |
3830 | 0 | }; |
3831 | |
|
3832 | 0 | const tSamplePos* sampleLoc = nullptr; |
3833 | 0 | int numSamples = count; |
3834 | |
|
3835 | 0 | switch (count) { |
3836 | 0 | case 2: sampleLoc = pos2; break; |
3837 | 0 | case 4: sampleLoc = pos4; break; |
3838 | 0 | case 8: sampleLoc = pos8; break; |
3839 | 0 | case 16: sampleLoc = pos16; break; |
3840 | 0 | default: |
3841 | 0 | sampleLoc = pos1; |
3842 | 0 | numSamples = 1; |
3843 | 0 | } |
3844 | | |
3845 | 0 | TConstUnionArray* values = new TConstUnionArray(numSamples*2); |
3846 | |
|
3847 | 0 | for (int pos=0; pos<count; ++pos) { |
3848 | 0 | TConstUnion x, y; |
3849 | 0 | x.setDConst(sampleLoc[pos].x); |
3850 | 0 | y.setDConst(sampleLoc[pos].y); |
3851 | |
|
3852 | 0 | (*values)[pos*2+0] = x; |
3853 | 0 | (*values)[pos*2+1] = y; |
3854 | 0 | } |
3855 | |
|
3856 | 0 | TType retType(EbtFloat, EvqConst, 2); |
3857 | |
|
3858 | 0 | if (numSamples != 1) { |
3859 | 0 | TArraySizes* arraySizes = new TArraySizes; |
3860 | 0 | arraySizes->addInnerSize(numSamples); |
3861 | 0 | retType.transferArraySizes(arraySizes); |
3862 | 0 | } |
3863 | |
|
3864 | 0 | return new TIntermConstantUnion(*values, retType); |
3865 | 0 | } |
3866 | | |
3867 | | // |
3868 | | // Decompose DX9 and DX10 sample intrinsics & object methods into AST |
3869 | | // |
3870 | | void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
3871 | 12.4k | { |
3872 | 12.4k | if (node == nullptr || !node->getAsOperator()) |
3873 | 408 | return; |
3874 | | |
3875 | | // Sampler return must always be a vec4, but we can construct a shorter vector or a structure from it. |
3876 | 11.9k | const auto convertReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* { |
3877 | 370 | result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize())); |
3878 | | |
3879 | 370 | TIntermTyped* convertedResult = nullptr; |
3880 | | |
3881 | 370 | TType retType; |
3882 | 370 | getTextureReturnType(sampler, retType); |
3883 | | |
3884 | 370 | if (retType.isStruct()) { |
3885 | | // For type convenience, conversionAggregate points to the convertedResult (we know it's an aggregate here) |
3886 | 0 | TIntermAggregate* conversionAggregate = new TIntermAggregate; |
3887 | 0 | convertedResult = conversionAggregate; |
3888 | | |
3889 | | // Convert vector output to return structure. We will need a temp symbol to copy the results to. |
3890 | 0 | TVariable* structVar = makeInternalVariable("@sampleStructTemp", retType); |
3891 | | |
3892 | | // We also need a temp symbol to hold the result of the texture. We don't want to re-fetch the |
3893 | | // sample each time we'll index into the result, so we'll copy to this, and index into the copy. |
3894 | 0 | TVariable* sampleShadow = makeInternalVariable("@sampleResultShadow", result->getType()); |
3895 | | |
3896 | | // Initial copy from texture to our sample result shadow. |
3897 | 0 | TIntermTyped* shadowCopy = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*sampleShadow, loc), |
3898 | 0 | result, loc); |
3899 | |
|
3900 | 0 | conversionAggregate->getSequence().push_back(shadowCopy); |
3901 | |
|
3902 | 0 | unsigned vec4Pos = 0; |
3903 | |
|
3904 | 0 | for (unsigned m = 0; m < unsigned(retType.getStruct()->size()); ++m) { |
3905 | 0 | const TType memberType(retType, m); // dereferenced type of the member we're about to assign. |
3906 | | |
3907 | | // Check for bad struct members. This should have been caught upstream. Complain, because |
3908 | | // wwe don't know what to do with it. This algorithm could be generalized to handle |
3909 | | // other things, e.g, sub-structures, but HLSL doesn't allow them. |
3910 | 0 | if (!memberType.isVector() && !memberType.isScalar()) { |
3911 | 0 | error(loc, "expected: scalar or vector type in texture structure", "", ""); |
3912 | 0 | return nullptr; |
3913 | 0 | } |
3914 | | |
3915 | | // Index into the struct variable to find the member to assign. |
3916 | 0 | TIntermTyped* structMember = intermediate.addIndex(EOpIndexDirectStruct, |
3917 | 0 | intermediate.addSymbol(*structVar, loc), |
3918 | 0 | intermediate.addConstantUnion(m, loc), loc); |
3919 | |
|
3920 | 0 | structMember->setType(memberType); |
3921 | | |
3922 | | // Assign each component of (possible) vector in struct member. |
3923 | 0 | for (int component = 0; component < memberType.getVectorSize(); ++component) { |
3924 | 0 | TIntermTyped* vec4Member = intermediate.addIndex(EOpIndexDirect, |
3925 | 0 | intermediate.addSymbol(*sampleShadow, loc), |
3926 | 0 | intermediate.addConstantUnion(vec4Pos++, loc), loc); |
3927 | 0 | vec4Member->setType(TType(memberType.getBasicType(), EvqTemporary, 1)); |
3928 | |
|
3929 | 0 | TIntermTyped* memberAssign = nullptr; |
3930 | |
|
3931 | 0 | if (memberType.isVector()) { |
3932 | | // Vector member: we need to create an access chain to the vector component. |
3933 | |
|
3934 | 0 | TIntermTyped* structVecComponent = intermediate.addIndex(EOpIndexDirect, structMember, |
3935 | 0 | intermediate.addConstantUnion(component, loc), loc); |
3936 | |
|
3937 | 0 | memberAssign = intermediate.addAssign(EOpAssign, structVecComponent, vec4Member, loc); |
3938 | 0 | } else { |
3939 | | // Scalar member: we can assign to it directly. |
3940 | 0 | memberAssign = intermediate.addAssign(EOpAssign, structMember, vec4Member, loc); |
3941 | 0 | } |
3942 | | |
3943 | |
|
3944 | 0 | conversionAggregate->getSequence().push_back(memberAssign); |
3945 | 0 | } |
3946 | 0 | } |
3947 | | |
3948 | | // Add completed variable so the expression results in the whole struct value we just built. |
3949 | 0 | conversionAggregate->getSequence().push_back(intermediate.addSymbol(*structVar, loc)); |
3950 | | |
3951 | | // Make it a sequence. |
3952 | 0 | intermediate.setAggregateOperator(conversionAggregate, EOpSequence, retType, loc); |
3953 | 370 | } else { |
3954 | | // vector clamp the output if template vector type is smaller than sample result. |
3955 | 370 | if (retType.getVectorSize() < node->getVectorSize()) { |
3956 | | // Too many components. Construct shorter vector from it. |
3957 | 164 | const TOperator op = intermediate.mapTypeToConstructorOp(retType); |
3958 | | |
3959 | 164 | convertedResult = constructBuiltIn(retType, op, result, loc, false); |
3960 | 206 | } else { |
3961 | | // Enough components. Use directly. |
3962 | 206 | convertedResult = result; |
3963 | 206 | } |
3964 | 370 | } |
3965 | | |
3966 | 370 | convertedResult->setLoc(loc); |
3967 | 370 | return convertedResult; |
3968 | 370 | }; |
3969 | | |
3970 | 11.9k | const TOperator op = node->getAsOperator()->getOp(); |
3971 | 11.9k | const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; |
3972 | | |
3973 | | // Bail out if not a sampler method. |
3974 | | // Note though this is odd to do before checking the op, because the op |
3975 | | // could be something that takes the arguments, and the function in question |
3976 | | // takes the result of the op. So, this is not the final word. |
3977 | 11.9k | if (arguments != nullptr) { |
3978 | 11.2k | if (argAggregate == nullptr) { |
3979 | 7.32k | if (arguments->getAsTyped()->getBasicType() != EbtSampler) |
3980 | 7.18k | return; |
3981 | 7.32k | } else { |
3982 | 3.91k | if (argAggregate->getSequence().size() == 0 || |
3983 | 3.91k | argAggregate->getSequence()[0] == nullptr || |
3984 | 3.91k | argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler) |
3985 | 3.09k | return; |
3986 | 3.91k | } |
3987 | 11.2k | } |
3988 | | |
3989 | 1.70k | switch (op) { |
3990 | | // **** DX9 intrinsics: **** |
3991 | 0 | case EOpTexture: |
3992 | 0 | { |
3993 | | // Texture with ddx & ddy is really gradient form in HLSL |
3994 | 0 | if (argAggregate->getSequence().size() == 4) |
3995 | 0 | node->getAsAggregate()->setOperator(EOpTextureGrad); |
3996 | |
|
3997 | 0 | break; |
3998 | 0 | } |
3999 | 0 | case EOpTextureLod: //is almost EOpTextureBias (only args & operations are different) |
4000 | 0 | { |
4001 | 0 | TIntermTyped *argSamp = argAggregate->getSequence()[0]->getAsTyped(); // sampler |
4002 | 0 | TIntermTyped *argCoord = argAggregate->getSequence()[1]->getAsTyped(); // coord |
4003 | |
|
4004 | 0 | assert(argCoord->getVectorSize() == 4); |
4005 | 0 | TIntermTyped *w = intermediate.addConstantUnion(3, loc, true); |
4006 | 0 | TIntermTyped *argLod = intermediate.addIndex(EOpIndexDirect, argCoord, w, loc); |
4007 | |
|
4008 | 0 | TOperator constructOp = EOpNull; |
4009 | 0 | const TSampler &sampler = argSamp->getType().getSampler(); |
4010 | 0 | int coordSize = 0; |
4011 | |
|
4012 | 0 | switch (sampler.dim) |
4013 | 0 | { |
4014 | 0 | case Esd1D: constructOp = EOpConstructFloat; coordSize = 1; break; // 1D |
4015 | 0 | case Esd2D: constructOp = EOpConstructVec2; coordSize = 2; break; // 2D |
4016 | 0 | case Esd3D: constructOp = EOpConstructVec3; coordSize = 3; break; // 3D |
4017 | 0 | case EsdCube: constructOp = EOpConstructVec3; coordSize = 3; break; // also 3D |
4018 | 0 | default: |
4019 | 0 | error(loc, "unhandled DX9 texture LoD dimension", "", ""); |
4020 | 0 | break; |
4021 | 0 | } |
4022 | | |
4023 | 0 | TIntermAggregate *constructCoord = new TIntermAggregate(constructOp); |
4024 | 0 | constructCoord->getSequence().push_back(argCoord); |
4025 | 0 | constructCoord->setLoc(loc); |
4026 | 0 | constructCoord->setType(TType(argCoord->getBasicType(), EvqTemporary, coordSize)); |
4027 | |
|
4028 | 0 | TIntermAggregate *tex = new TIntermAggregate(EOpTextureLod); |
4029 | 0 | tex->getSequence().push_back(argSamp); // sampler |
4030 | 0 | tex->getSequence().push_back(constructCoord); // coordinate |
4031 | 0 | tex->getSequence().push_back(argLod); // lod |
4032 | |
|
4033 | 0 | node = convertReturn(tex, sampler); |
4034 | |
|
4035 | 0 | break; |
4036 | 0 | } |
4037 | | |
4038 | 0 | case EOpTextureBias: |
4039 | 0 | { |
4040 | 0 | TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler |
4041 | 0 | TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord |
4042 | | |
4043 | | // HLSL puts bias in W component of coordinate. We extract it and add it to |
4044 | | // the argument list, instead |
4045 | 0 | TIntermTyped* w = intermediate.addConstantUnion(3, loc, true); |
4046 | 0 | TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc); |
4047 | |
|
4048 | 0 | TOperator constructOp = EOpNull; |
4049 | 0 | const TSampler& sampler = arg0->getType().getSampler(); |
4050 | |
|
4051 | 0 | switch (sampler.dim) { |
4052 | 0 | case Esd1D: constructOp = EOpConstructFloat; break; // 1D |
4053 | 0 | case Esd2D: constructOp = EOpConstructVec2; break; // 2D |
4054 | 0 | case Esd3D: constructOp = EOpConstructVec3; break; // 3D |
4055 | 0 | case EsdCube: constructOp = EOpConstructVec3; break; // also 3D |
4056 | 0 | default: |
4057 | 0 | error(loc, "unhandled DX9 texture bias dimension", "", ""); |
4058 | 0 | break; |
4059 | 0 | } |
4060 | | |
4061 | 0 | TIntermAggregate* constructCoord = new TIntermAggregate(constructOp); |
4062 | 0 | constructCoord->getSequence().push_back(arg1); |
4063 | 0 | constructCoord->setLoc(loc); |
4064 | | |
4065 | | // The input vector should never be less than 2, since there's always a bias. |
4066 | | // The max is for safety, and should be a no-op. |
4067 | 0 | constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0))); |
4068 | |
|
4069 | 0 | TIntermAggregate* tex = new TIntermAggregate(EOpTexture); |
4070 | 0 | tex->getSequence().push_back(arg0); // sampler |
4071 | 0 | tex->getSequence().push_back(constructCoord); // coordinate |
4072 | 0 | tex->getSequence().push_back(bias); // bias |
4073 | |
|
4074 | 0 | node = convertReturn(tex, sampler); |
4075 | |
|
4076 | 0 | break; |
4077 | 0 | } |
4078 | | |
4079 | | // **** DX10 methods: **** |
4080 | 84 | case EOpMethodSample: // fall through |
4081 | 86 | case EOpMethodSampleBias: // ... |
4082 | 86 | { |
4083 | 86 | TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
4084 | 86 | TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
4085 | 86 | TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
4086 | 86 | TIntermTyped* argBias = nullptr; |
4087 | 86 | TIntermTyped* argOffset = nullptr; |
4088 | 86 | const TSampler& sampler = argTex->getType().getSampler(); |
4089 | | |
4090 | 86 | int nextArg = 3; |
4091 | | |
4092 | 86 | if (op == EOpMethodSampleBias) // SampleBias has a bias arg |
4093 | 2 | argBias = argAggregate->getSequence()[nextArg++]->getAsTyped(); |
4094 | | |
4095 | 86 | TOperator textureOp = EOpTexture; |
4096 | | |
4097 | 86 | if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form |
4098 | 0 | textureOp = EOpTextureOffset; |
4099 | 0 | argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped(); |
4100 | 0 | } |
4101 | | |
4102 | 86 | TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
4103 | | |
4104 | 86 | TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
4105 | 86 | txsample->getSequence().push_back(txcombine); |
4106 | 86 | txsample->getSequence().push_back(argCoord); |
4107 | | |
4108 | 86 | if (argOffset != nullptr) |
4109 | 0 | txsample->getSequence().push_back(argOffset); |
4110 | | |
4111 | 86 | if (argBias != nullptr) |
4112 | 2 | txsample->getSequence().push_back(argBias); |
4113 | | |
4114 | 86 | node = convertReturn(txsample, sampler); |
4115 | | |
4116 | 86 | break; |
4117 | 84 | } |
4118 | | |
4119 | 0 | case EOpMethodSampleGrad: // ... |
4120 | 0 | { |
4121 | 0 | TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
4122 | 0 | TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
4123 | 0 | TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
4124 | 0 | TIntermTyped* argDDX = argAggregate->getSequence()[3]->getAsTyped(); |
4125 | 0 | TIntermTyped* argDDY = argAggregate->getSequence()[4]->getAsTyped(); |
4126 | 0 | TIntermTyped* argOffset = nullptr; |
4127 | 0 | const TSampler& sampler = argTex->getType().getSampler(); |
4128 | |
|
4129 | 0 | TOperator textureOp = EOpTextureGrad; |
4130 | |
|
4131 | 0 | if (argAggregate->getSequence().size() == 6) { // last parameter is offset form |
4132 | 0 | textureOp = EOpTextureGradOffset; |
4133 | 0 | argOffset = argAggregate->getSequence()[5]->getAsTyped(); |
4134 | 0 | } |
4135 | |
|
4136 | 0 | TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
4137 | |
|
4138 | 0 | TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
4139 | 0 | txsample->getSequence().push_back(txcombine); |
4140 | 0 | txsample->getSequence().push_back(argCoord); |
4141 | 0 | txsample->getSequence().push_back(argDDX); |
4142 | 0 | txsample->getSequence().push_back(argDDY); |
4143 | |
|
4144 | 0 | if (argOffset != nullptr) |
4145 | 0 | txsample->getSequence().push_back(argOffset); |
4146 | |
|
4147 | 0 | node = convertReturn(txsample, sampler); |
4148 | |
|
4149 | 0 | break; |
4150 | 84 | } |
4151 | | |
4152 | 276 | case EOpMethodGetDimensions: |
4153 | 276 | { |
4154 | | // AST returns a vector of results, which we break apart component-wise into |
4155 | | // separate values to assign to the HLSL method's outputs, ala: |
4156 | | // tx . GetDimensions(width, height); |
4157 | | // float2 sizeQueryTemp = EOpTextureQuerySize |
4158 | | // width = sizeQueryTemp.X; |
4159 | | // height = sizeQueryTemp.Y; |
4160 | | |
4161 | 276 | TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
4162 | 276 | const TType& texType = argTex->getType(); |
4163 | | |
4164 | 276 | assert(texType.getBasicType() == EbtSampler); |
4165 | | |
4166 | 276 | const TSampler& sampler = texType.getSampler(); |
4167 | 276 | const TSamplerDim dim = sampler.dim; |
4168 | 276 | const bool isImage = sampler.isImage(); |
4169 | 276 | const bool isMs = sampler.isMultiSample(); |
4170 | 276 | const int numArgs = (int)argAggregate->getSequence().size(); |
4171 | | |
4172 | 276 | int numDims = 0; |
4173 | | |
4174 | 276 | switch (dim) { |
4175 | 246 | case Esd1D: numDims = 1; break; // W |
4176 | 22 | case Esd2D: numDims = 2; break; // W, H |
4177 | 0 | case Esd3D: numDims = 3; break; // W, H, D |
4178 | 8 | case EsdCube: numDims = 2; break; // W, H (cube) |
4179 | 0 | case EsdBuffer: numDims = 1; break; // W (buffers) |
4180 | 0 | case EsdRect: numDims = 2; break; // W, H (rect) |
4181 | 0 | default: |
4182 | 0 | error(loc, "unhandled DX10 MethodGet dimension", "", ""); |
4183 | 0 | break; |
4184 | 276 | } |
4185 | | |
4186 | | // Arrayed adds another dimension for the number of array elements |
4187 | 276 | if (sampler.isArrayed()) |
4188 | 68 | ++numDims; |
4189 | | |
4190 | | // Establish whether the method itself is querying mip levels. This can be false even |
4191 | | // if the underlying query requires a MIP level, due to the available HLSL method overloads. |
4192 | 276 | const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0))); |
4193 | | |
4194 | | // Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query). |
4195 | | // True if: |
4196 | | // 1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query) |
4197 | | // or, |
4198 | | // 2. There is a LOD (because the non-LOD query cannot be used in that case, per spec) |
4199 | 276 | const bool mipRequired = |
4200 | 276 | ((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1... |
4201 | 2 | mipQuery; // 2... |
4202 | | |
4203 | | // AST assumes integer return. Will be converted to float if required. |
4204 | 276 | TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize); |
4205 | 276 | sizeQuery->getSequence().push_back(argTex); |
4206 | | |
4207 | | // If we're building an LOD query, add the LOD. |
4208 | 276 | if (mipRequired) { |
4209 | | // If the base HLSL query had no MIP level given, use level 0. |
4210 | 274 | TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() : |
4211 | 274 | intermediate.addConstantUnion(0, loc, true); |
4212 | 274 | sizeQuery->getSequence().push_back(queryLod); |
4213 | 274 | } |
4214 | | |
4215 | 276 | sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims)); |
4216 | 276 | sizeQuery->setLoc(loc); |
4217 | | |
4218 | | // Return value from size query |
4219 | 276 | TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType()); |
4220 | 276 | tempArg->getWritableType().getQualifier().makeTemporary(); |
4221 | 276 | TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign, |
4222 | 276 | intermediate.addSymbol(*tempArg, loc), |
4223 | 276 | sizeQuery, loc); |
4224 | | |
4225 | | // Compound statement for assigning outputs |
4226 | 276 | TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc); |
4227 | | // Index of first output parameter |
4228 | 276 | const int outParamBase = mipQuery ? 2 : 1; |
4229 | | |
4230 | 650 | for (int compNum = 0; compNum < numDims; ++compNum) { |
4231 | 374 | TIntermTyped* indexedOut = nullptr; |
4232 | 374 | TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc); |
4233 | | |
4234 | 374 | if (numDims > 1) { |
4235 | 178 | TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true); |
4236 | 178 | indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc); |
4237 | 178 | indexedOut->setType(TType(EbtUint, EvqTemporary, 1)); |
4238 | 178 | indexedOut->setLoc(loc); |
4239 | 196 | } else { |
4240 | 196 | indexedOut = sizeQueryReturn; |
4241 | 196 | } |
4242 | | |
4243 | 374 | TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped(); |
4244 | 374 | TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc); |
4245 | | |
4246 | 374 | compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
4247 | 374 | } |
4248 | | |
4249 | | // handle mip level parameter |
4250 | 276 | if (mipQuery) { |
4251 | 146 | TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped(); |
4252 | | |
4253 | 146 | TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels); |
4254 | 146 | levelsQuery->getSequence().push_back(argTex); |
4255 | 146 | levelsQuery->setType(TType(EbtUint, EvqTemporary, 1)); |
4256 | 146 | levelsQuery->setLoc(loc); |
4257 | | |
4258 | 146 | TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc); |
4259 | 146 | compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
4260 | 146 | } |
4261 | | |
4262 | | // 2DMS formats query # samples, which needs a different query op |
4263 | 276 | if (sampler.isMultiSample()) { |
4264 | 2 | TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped(); |
4265 | | |
4266 | 2 | TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples); |
4267 | 2 | samplesQuery->getSequence().push_back(argTex); |
4268 | 2 | samplesQuery->setType(TType(EbtUint, EvqTemporary, 1)); |
4269 | 2 | samplesQuery->setLoc(loc); |
4270 | | |
4271 | 2 | TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc); |
4272 | 2 | compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
4273 | 2 | } |
4274 | | |
4275 | 276 | compoundStatement->setOperator(EOpSequence); |
4276 | 276 | compoundStatement->setLoc(loc); |
4277 | 276 | compoundStatement->setType(TType(EbtVoid)); |
4278 | | |
4279 | 276 | node = compoundStatement; |
4280 | | |
4281 | 276 | break; |
4282 | 276 | } |
4283 | | |
4284 | 28 | case EOpMethodSampleCmp: // fall through... |
4285 | 246 | case EOpMethodSampleCmpLevelZero: |
4286 | 246 | { |
4287 | 246 | TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
4288 | 246 | TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
4289 | 246 | TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
4290 | 246 | TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped(); |
4291 | 246 | TIntermTyped* argOffset = nullptr; |
4292 | | |
4293 | | // Sampler argument should be a sampler. |
4294 | 246 | if (argSamp->getType().getBasicType() != EbtSampler) { |
4295 | 44 | error(loc, "expected: sampler type", "", ""); |
4296 | 44 | return; |
4297 | 44 | } |
4298 | | |
4299 | | // Sampler should be a SamplerComparisonState |
4300 | 202 | if (! argSamp->getType().getSampler().isShadow()) { |
4301 | 6 | error(loc, "expected: SamplerComparisonState", "", ""); |
4302 | 6 | return; |
4303 | 6 | } |
4304 | | |
4305 | | // optional offset value |
4306 | 196 | if (argAggregate->getSequence().size() > 4) |
4307 | 10 | argOffset = argAggregate->getSequence()[4]->getAsTyped(); |
4308 | | |
4309 | 196 | const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp |
4310 | | |
4311 | | // AST wants comparison value as one of the texture coordinates |
4312 | 196 | TOperator constructOp = EOpNull; |
4313 | 196 | switch (coordDimWithCmpVal) { |
4314 | | // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val |
4315 | 78 | case 2: constructOp = EOpConstructVec2; break; |
4316 | 74 | case 3: constructOp = EOpConstructVec3; break; |
4317 | 44 | case 4: constructOp = EOpConstructVec4; break; |
4318 | 0 | case 5: constructOp = EOpConstructVec4; break; // cubeArrayShadow, cmp value is separate arg. |
4319 | 0 | default: |
4320 | 0 | error(loc, "unhandled DX10 MethodSample dimension", "", ""); |
4321 | 0 | break; |
4322 | 196 | } |
4323 | | |
4324 | 196 | TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp); |
4325 | 196 | coordWithCmp->getSequence().push_back(argCoord); |
4326 | 196 | if (coordDimWithCmpVal != 5) // cube array shadow is special. |
4327 | 196 | coordWithCmp->getSequence().push_back(argCmpVal); |
4328 | 196 | coordWithCmp->setLoc(loc); |
4329 | 196 | coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4))); |
4330 | | |
4331 | 196 | TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture); |
4332 | 196 | if (argOffset != nullptr) |
4333 | 10 | textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset); |
4334 | | |
4335 | | // Create combined sampler & texture op |
4336 | 196 | TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
4337 | 196 | TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
4338 | 196 | txsample->getSequence().push_back(txcombine); |
4339 | 196 | txsample->getSequence().push_back(coordWithCmp); |
4340 | | |
4341 | 196 | if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord. |
4342 | 0 | txsample->getSequence().push_back(argCmpVal); |
4343 | | |
4344 | | // the LevelZero form uses 0 as an explicit LOD |
4345 | 196 | if (op == EOpMethodSampleCmpLevelZero) |
4346 | 176 | txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true)); |
4347 | | |
4348 | | // Add offset if present |
4349 | 196 | if (argOffset != nullptr) |
4350 | 10 | txsample->getSequence().push_back(argOffset); |
4351 | | |
4352 | 196 | txsample->setType(node->getType()); |
4353 | 196 | txsample->setLoc(loc); |
4354 | 196 | node = txsample; |
4355 | | |
4356 | 196 | break; |
4357 | 196 | } |
4358 | | |
4359 | 44 | case EOpMethodLoad: |
4360 | 44 | { |
4361 | 44 | TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
4362 | 44 | TIntermTyped* argCoord = argAggregate->getSequence()[1]->getAsTyped(); |
4363 | 44 | TIntermTyped* argOffset = nullptr; |
4364 | 44 | TIntermTyped* lodComponent = nullptr; |
4365 | 44 | TIntermTyped* coordSwizzle = nullptr; |
4366 | | |
4367 | 44 | const TSampler& sampler = argTex->getType().getSampler(); |
4368 | 44 | const bool isMS = sampler.isMultiSample(); |
4369 | 44 | const bool isBuffer = sampler.dim == EsdBuffer; |
4370 | 44 | const bool isImage = sampler.isImage(); |
4371 | 44 | const TBasicType coordBaseType = argCoord->getType().getBasicType(); |
4372 | | |
4373 | | // Last component of coordinate is the mip level, for non-MS. we separate them here: |
4374 | 44 | if (isMS || isBuffer || isImage) { |
4375 | | // MS, Buffer, and Image have no LOD |
4376 | 24 | coordSwizzle = argCoord; |
4377 | 24 | } else { |
4378 | | // Extract coordinate |
4379 | 20 | int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1); |
4380 | 20 | TSwizzleSelectors<TVectorSelector> coordFields; |
4381 | 42 | for (int i = 0; i < swizzleSize; ++i) |
4382 | 22 | coordFields.push_back(i); |
4383 | 20 | TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc); |
4384 | 20 | coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc); |
4385 | 20 | coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size())); |
4386 | | |
4387 | | // Extract LOD |
4388 | 20 | TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true); |
4389 | 20 | lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc); |
4390 | 20 | lodComponent->setType(TType(coordBaseType, EvqTemporary, 1)); |
4391 | 20 | } |
4392 | | |
4393 | 44 | const int numArgs = (int)argAggregate->getSequence().size(); |
4394 | 44 | const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4)); |
4395 | | |
4396 | | // Create texel fetch |
4397 | 44 | const TOperator fetchOp = (isImage ? EOpImageLoad : |
4398 | 44 | hasOffset ? EOpTextureFetchOffset : |
4399 | 44 | EOpTextureFetch); |
4400 | 44 | TIntermAggregate* txfetch = new TIntermAggregate(fetchOp); |
4401 | | |
4402 | | // Build up the fetch |
4403 | 44 | txfetch->getSequence().push_back(argTex); |
4404 | 44 | txfetch->getSequence().push_back(coordSwizzle); |
4405 | | |
4406 | 44 | if (isMS) { |
4407 | | // add 2DMS sample index |
4408 | 0 | TIntermTyped* argSampleIdx = argAggregate->getSequence()[2]->getAsTyped(); |
4409 | 0 | txfetch->getSequence().push_back(argSampleIdx); |
4410 | 44 | } else if (isBuffer) { |
4411 | | // Nothing else to do for buffers. |
4412 | 24 | } else if (isImage) { |
4413 | | // Nothing else to do for images. |
4414 | 20 | } else { |
4415 | | // 2DMS and buffer have no LOD, but everything else does. |
4416 | 20 | txfetch->getSequence().push_back(lodComponent); |
4417 | 20 | } |
4418 | | |
4419 | | // Obtain offset arg, if there is one. |
4420 | 44 | if (hasOffset) { |
4421 | 0 | const int offsetPos = (isMS ? 3 : 2); |
4422 | 0 | argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped(); |
4423 | 0 | txfetch->getSequence().push_back(argOffset); |
4424 | 0 | } |
4425 | | |
4426 | 44 | node = convertReturn(txfetch, sampler); |
4427 | | |
4428 | 44 | break; |
4429 | 196 | } |
4430 | | |
4431 | 8 | case EOpMethodSampleLevel: |
4432 | 8 | { |
4433 | 8 | TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
4434 | 8 | TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
4435 | 8 | TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
4436 | 8 | TIntermTyped* argLod = argAggregate->getSequence()[3]->getAsTyped(); |
4437 | 8 | TIntermTyped* argOffset = nullptr; |
4438 | 8 | const TSampler& sampler = argTex->getType().getSampler(); |
4439 | | |
4440 | 8 | const int numArgs = (int)argAggregate->getSequence().size(); |
4441 | | |
4442 | 8 | if (numArgs == 5) // offset, if present |
4443 | 0 | argOffset = argAggregate->getSequence()[4]->getAsTyped(); |
4444 | | |
4445 | 8 | const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset); |
4446 | 8 | TIntermAggregate* txsample = new TIntermAggregate(textureOp); |
4447 | | |
4448 | 8 | TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
4449 | | |
4450 | 8 | txsample->getSequence().push_back(txcombine); |
4451 | 8 | txsample->getSequence().push_back(argCoord); |
4452 | 8 | txsample->getSequence().push_back(argLod); |
4453 | | |
4454 | 8 | if (argOffset != nullptr) |
4455 | 0 | txsample->getSequence().push_back(argOffset); |
4456 | | |
4457 | 8 | node = convertReturn(txsample, sampler); |
4458 | | |
4459 | 8 | break; |
4460 | 196 | } |
4461 | | |
4462 | 0 | case EOpMethodGather: |
4463 | 0 | { |
4464 | 0 | TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
4465 | 0 | TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
4466 | 0 | TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
4467 | 0 | TIntermTyped* argOffset = nullptr; |
4468 | | |
4469 | | // Offset is optional |
4470 | 0 | if (argAggregate->getSequence().size() > 3) |
4471 | 0 | argOffset = argAggregate->getSequence()[3]->getAsTyped(); |
4472 | |
|
4473 | 0 | const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset); |
4474 | 0 | TIntermAggregate* txgather = new TIntermAggregate(textureOp); |
4475 | |
|
4476 | 0 | TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
4477 | |
|
4478 | 0 | txgather->getSequence().push_back(txcombine); |
4479 | 0 | txgather->getSequence().push_back(argCoord); |
4480 | | // Offset if not given is implicitly channel 0 (red) |
4481 | |
|
4482 | 0 | if (argOffset != nullptr) |
4483 | 0 | txgather->getSequence().push_back(argOffset); |
4484 | |
|
4485 | 0 | txgather->setType(node->getType()); |
4486 | 0 | txgather->setLoc(loc); |
4487 | 0 | node = txgather; |
4488 | |
|
4489 | 0 | break; |
4490 | 196 | } |
4491 | | |
4492 | 0 | case EOpMethodGatherRed: // fall through... |
4493 | 0 | case EOpMethodGatherGreen: // ... |
4494 | 0 | case EOpMethodGatherBlue: // ... |
4495 | 0 | case EOpMethodGatherAlpha: // ... |
4496 | 10 | case EOpMethodGatherCmpRed: // ... |
4497 | 10 | case EOpMethodGatherCmpGreen: // ... |
4498 | 10 | case EOpMethodGatherCmpBlue: // ... |
4499 | 10 | case EOpMethodGatherCmpAlpha: // ... |
4500 | 10 | { |
4501 | 10 | int channel = 0; // the channel we are gathering |
4502 | 10 | int cmpValues = 0; // 1 if there is a compare value (handier than a bool below) |
4503 | | |
4504 | 10 | switch (op) { |
4505 | 10 | case EOpMethodGatherCmpRed: cmpValues = 1; [[fallthrough]]; |
4506 | 10 | case EOpMethodGatherRed: channel = 0; break; |
4507 | 0 | case EOpMethodGatherCmpGreen: cmpValues = 1; [[fallthrough]]; |
4508 | 0 | case EOpMethodGatherGreen: channel = 1; break; |
4509 | 0 | case EOpMethodGatherCmpBlue: cmpValues = 1; [[fallthrough]]; |
4510 | 0 | case EOpMethodGatherBlue: channel = 2; break; |
4511 | 0 | case EOpMethodGatherCmpAlpha: cmpValues = 1; [[fallthrough]]; |
4512 | 0 | case EOpMethodGatherAlpha: channel = 3; break; |
4513 | 0 | default: assert(0); break; |
4514 | 10 | } |
4515 | | |
4516 | | // For now, we have nothing to map the component-wise comparison forms |
4517 | | // to, because neither GLSL nor SPIR-V has such an opcode. Issue an |
4518 | | // unimplemented error instead. Most of the machinery is here if that |
4519 | | // should ever become available. However, red can be passed through |
4520 | | // to OpImageDrefGather. G/B/A cannot, because that opcode does not |
4521 | | // accept a component. |
4522 | 10 | if (cmpValues != 0 && op != EOpMethodGatherCmpRed) { |
4523 | 0 | error(loc, "unimplemented: component-level gather compare", "", ""); |
4524 | 0 | return; |
4525 | 0 | } |
4526 | | |
4527 | 10 | int arg = 0; |
4528 | | |
4529 | 10 | TIntermTyped* argTex = argAggregate->getSequence()[arg++]->getAsTyped(); |
4530 | 10 | TIntermTyped* argSamp = argAggregate->getSequence()[arg++]->getAsTyped(); |
4531 | 10 | TIntermTyped* argCoord = argAggregate->getSequence()[arg++]->getAsTyped(); |
4532 | 10 | TIntermTyped* argOffset = nullptr; |
4533 | 10 | TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr }; |
4534 | | // TIntermTyped* argStatus = nullptr; // TODO: residency |
4535 | 10 | TIntermTyped* argCmp = nullptr; |
4536 | | |
4537 | 10 | const TSamplerDim dim = argTex->getType().getSampler().dim; |
4538 | | |
4539 | 10 | const int argSize = (int)argAggregate->getSequence().size(); |
4540 | 10 | bool hasStatus = (argSize == (5+cmpValues) || argSize == (8+cmpValues)); |
4541 | 10 | bool hasOffset1 = false; |
4542 | 10 | bool hasOffset4 = false; |
4543 | | |
4544 | | // Sampler argument should be a sampler. |
4545 | 10 | if (argSamp->getType().getBasicType() != EbtSampler) { |
4546 | 4 | error(loc, "expected: sampler type", "", ""); |
4547 | 4 | return; |
4548 | 4 | } |
4549 | | |
4550 | | // Cmp forms require SamplerComparisonState |
4551 | 6 | if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) { |
4552 | 6 | error(loc, "expected: SamplerComparisonState", "", ""); |
4553 | 6 | return; |
4554 | 6 | } |
4555 | | |
4556 | | // Only 2D forms can have offsets. Discover if we have 0, 1 or 4 offsets. |
4557 | 0 | if (dim == Esd2D) { |
4558 | 0 | hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues)); |
4559 | 0 | hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues)); |
4560 | 0 | } |
4561 | |
|
4562 | 0 | assert(!(hasOffset1 && hasOffset4)); |
4563 | |
|
4564 | 0 | TOperator textureOp = EOpTextureGather; |
4565 | | |
4566 | | // Compare forms have compare value |
4567 | 0 | if (cmpValues != 0) |
4568 | 0 | argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped(); |
4569 | | |
4570 | | // Some forms have single offset |
4571 | 0 | if (hasOffset1) { |
4572 | 0 | textureOp = EOpTextureGatherOffset; // single offset form |
4573 | 0 | argOffset = argAggregate->getSequence()[arg++]->getAsTyped(); |
4574 | 0 | } |
4575 | | |
4576 | | // Some forms have 4 gather offsets |
4577 | 0 | if (hasOffset4) { |
4578 | 0 | textureOp = EOpTextureGatherOffsets; // note plural, for 4 offset form |
4579 | 0 | for (int offsetNum = 0; offsetNum < 4; ++offsetNum) |
4580 | 0 | argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped(); |
4581 | 0 | } |
4582 | | |
4583 | | // Residency status |
4584 | 0 | if (hasStatus) { |
4585 | | // argStatus = argAggregate->getSequence()[arg++]->getAsTyped(); |
4586 | 0 | error(loc, "unimplemented: residency status", "", ""); |
4587 | 0 | return; |
4588 | 0 | } |
4589 | | |
4590 | 0 | TIntermAggregate* txgather = new TIntermAggregate(textureOp); |
4591 | 0 | TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
4592 | |
|
4593 | 0 | TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true); |
4594 | |
|
4595 | 0 | txgather->getSequence().push_back(txcombine); |
4596 | 0 | txgather->getSequence().push_back(argCoord); |
4597 | | |
4598 | | // AST wants an array of 4 offsets, where HLSL has separate args. Here |
4599 | | // we construct an array from the separate args. |
4600 | 0 | if (hasOffset4) { |
4601 | 0 | TType arrayType(EbtInt, EvqTemporary, 2); |
4602 | 0 | TArraySizes* arraySizes = new TArraySizes; |
4603 | 0 | arraySizes->addInnerSize(4); |
4604 | 0 | arrayType.transferArraySizes(arraySizes); |
4605 | |
|
4606 | 0 | TIntermAggregate* initList = new TIntermAggregate(EOpNull); |
4607 | |
|
4608 | 0 | for (int offsetNum = 0; offsetNum < 4; ++offsetNum) |
4609 | 0 | initList->getSequence().push_back(argOffsets[offsetNum]); |
4610 | |
|
4611 | 0 | argOffset = addConstructor(loc, initList, arrayType); |
4612 | 0 | } |
4613 | | |
4614 | | // Add comparison value if we have one |
4615 | 0 | if (argCmp != nullptr) |
4616 | 0 | txgather->getSequence().push_back(argCmp); |
4617 | | |
4618 | | // Add offset (either 1, or an array of 4) if we have one |
4619 | 0 | if (argOffset != nullptr) |
4620 | 0 | txgather->getSequence().push_back(argOffset); |
4621 | | |
4622 | | // Add channel value if the sampler is not shadow |
4623 | 0 | if (! argSamp->getType().getSampler().isShadow()) |
4624 | 0 | txgather->getSequence().push_back(argChannel); |
4625 | |
|
4626 | 0 | txgather->setType(node->getType()); |
4627 | 0 | txgather->setLoc(loc); |
4628 | 0 | node = txgather; |
4629 | |
|
4630 | 0 | break; |
4631 | 0 | } |
4632 | | |
4633 | 0 | case EOpMethodCalculateLevelOfDetail: |
4634 | 16 | case EOpMethodCalculateLevelOfDetailUnclamped: |
4635 | 16 | { |
4636 | 16 | TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
4637 | 16 | TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped(); |
4638 | 16 | TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped(); |
4639 | | |
4640 | 16 | TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod); |
4641 | | |
4642 | 16 | TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp); |
4643 | 16 | txquerylod->getSequence().push_back(txcombine); |
4644 | 16 | txquerylod->getSequence().push_back(argCoord); |
4645 | | |
4646 | 16 | TIntermTyped* lodComponent = intermediate.addConstantUnion( |
4647 | 16 | op == EOpMethodCalculateLevelOfDetail ? 0 : 1, |
4648 | 16 | loc, true); |
4649 | 16 | TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc); |
4650 | 16 | lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1)); |
4651 | 16 | node = lodComponentIdx; |
4652 | | |
4653 | 16 | break; |
4654 | 0 | } |
4655 | | |
4656 | 0 | case EOpMethodGetSamplePosition: |
4657 | 0 | { |
4658 | | // TODO: this entire decomposition exists because there is not yet a way to query |
4659 | | // the sample position directly through SPIR-V. Instead, we return fixed sample |
4660 | | // positions for common cases. *** If the sample positions are set differently, |
4661 | | // this will be wrong. *** |
4662 | |
|
4663 | 0 | TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped(); |
4664 | 0 | TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped(); |
4665 | |
|
4666 | 0 | TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples); |
4667 | 0 | samplesQuery->getSequence().push_back(argTex); |
4668 | 0 | samplesQuery->setType(TType(EbtUint, EvqTemporary, 1)); |
4669 | 0 | samplesQuery->setLoc(loc); |
4670 | |
|
4671 | 0 | TIntermAggregate* compoundStatement = nullptr; |
4672 | |
|
4673 | 0 | TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint)); |
4674 | 0 | outSampleCount->getWritableType().getQualifier().makeTemporary(); |
4675 | 0 | TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc), |
4676 | 0 | samplesQuery, loc); |
4677 | 0 | compoundStatement = intermediate.growAggregate(compoundStatement, compAssign); |
4678 | |
|
4679 | 0 | TIntermTyped* idxtest[4]; |
4680 | | |
4681 | | // Create tests against 2, 4, 8, and 16 sample values |
4682 | 0 | int count = 0; |
4683 | 0 | for (int val = 2; val <= 16; val *= 2) |
4684 | 0 | idxtest[count++] = |
4685 | 0 | intermediate.addBinaryNode(EOpEqual, |
4686 | 0 | intermediate.addSymbol(*outSampleCount, loc), |
4687 | 0 | intermediate.addConstantUnion(val, loc), |
4688 | 0 | loc, TType(EbtBool)); |
4689 | |
|
4690 | 0 | const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect; |
4691 | | |
4692 | | // Create index ops into position arrays given sample index. |
4693 | | // TODO: should it be clamped? |
4694 | 0 | TIntermTyped* index[4]; |
4695 | 0 | count = 0; |
4696 | 0 | for (int val = 2; val <= 16; val *= 2) { |
4697 | 0 | index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc); |
4698 | 0 | index[count++]->setType(TType(EbtFloat, EvqTemporary, 2)); |
4699 | 0 | } |
4700 | | |
4701 | | // Create expression as: |
4702 | | // (sampleCount == 2) ? pos2[idx] : |
4703 | | // (sampleCount == 4) ? pos4[idx] : |
4704 | | // (sampleCount == 8) ? pos8[idx] : |
4705 | | // (sampleCount == 16) ? pos16[idx] : float2(0,0); |
4706 | 0 | TIntermTyped* test = |
4707 | 0 | intermediate.addSelection(idxtest[0], index[0], |
4708 | 0 | intermediate.addSelection(idxtest[1], index[1], |
4709 | 0 | intermediate.addSelection(idxtest[2], index[2], |
4710 | 0 | intermediate.addSelection(idxtest[3], index[3], |
4711 | 0 | getSamplePosArray(1), loc), loc), loc), loc); |
4712 | |
|
4713 | 0 | compoundStatement = intermediate.growAggregate(compoundStatement, test); |
4714 | 0 | compoundStatement->setOperator(EOpSequence); |
4715 | 0 | compoundStatement->setLoc(loc); |
4716 | 0 | compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2)); |
4717 | |
|
4718 | 0 | node = compoundStatement; |
4719 | |
|
4720 | 0 | break; |
4721 | 0 | } |
4722 | | |
4723 | 232 | case EOpSubpassLoad: |
4724 | 232 | { |
4725 | 232 | const TIntermTyped* argSubpass = |
4726 | 232 | argAggregate ? argAggregate->getSequence()[0]->getAsTyped() : |
4727 | 232 | arguments->getAsTyped(); |
4728 | | |
4729 | 232 | const TSampler& sampler = argSubpass->getType().getSampler(); |
4730 | | |
4731 | | // subpass load: the multisample form is overloaded. Here, we convert that to |
4732 | | // the EOpSubpassLoadMS opcode. |
4733 | 232 | if (argAggregate != nullptr && argAggregate->getSequence().size() > 1) |
4734 | 108 | node->getAsOperator()->setOp(EOpSubpassLoadMS); |
4735 | | |
4736 | 232 | node = convertReturn(node, sampler); |
4737 | | |
4738 | 232 | break; |
4739 | 0 | } |
4740 | | |
4741 | | |
4742 | 790 | default: |
4743 | 790 | break; // most pass through unchanged |
4744 | 1.70k | } |
4745 | 1.70k | } |
4746 | | |
4747 | | // |
4748 | | // Decompose geometry shader methods |
4749 | | // |
4750 | | void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
4751 | 12.4k | { |
4752 | 12.4k | if (node == nullptr || !node->getAsOperator()) |
4753 | 408 | return; |
4754 | | |
4755 | 11.9k | const TOperator op = node->getAsOperator()->getOp(); |
4756 | 11.9k | const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; |
4757 | | |
4758 | 11.9k | switch (op) { |
4759 | 8 | case EOpMethodAppend: |
4760 | 8 | if (argAggregate) { |
4761 | | // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol. |
4762 | 8 | if (language != EShLangGeometry) { |
4763 | 8 | node = nullptr; |
4764 | 8 | return; |
4765 | 8 | } |
4766 | | |
4767 | 0 | TIntermAggregate* sequence = nullptr; |
4768 | 0 | TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex); |
4769 | |
|
4770 | 0 | emit->setLoc(loc); |
4771 | 0 | emit->setType(TType(EbtVoid)); |
4772 | |
|
4773 | 0 | TIntermTyped* data = argAggregate->getSequence()[1]->getAsTyped(); |
4774 | | |
4775 | | // This will be patched in finalization during finalizeAppendMethods() |
4776 | 0 | sequence = intermediate.growAggregate(sequence, data, loc); |
4777 | 0 | sequence = intermediate.growAggregate(sequence, emit); |
4778 | |
|
4779 | 0 | sequence->setOperator(EOpSequence); |
4780 | 0 | sequence->setLoc(loc); |
4781 | 0 | sequence->setType(TType(EbtVoid)); |
4782 | |
|
4783 | 0 | gsAppends.push_back({sequence, loc}); |
4784 | |
|
4785 | 0 | node = sequence; |
4786 | 0 | } |
4787 | 0 | break; |
4788 | | |
4789 | 4 | case EOpMethodRestartStrip: |
4790 | 4 | { |
4791 | | // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol. |
4792 | 4 | if (language != EShLangGeometry) { |
4793 | 4 | node = nullptr; |
4794 | 4 | return; |
4795 | 4 | } |
4796 | | |
4797 | 0 | TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive); |
4798 | 0 | cut->setLoc(loc); |
4799 | 0 | cut->setType(TType(EbtVoid)); |
4800 | 0 | node = cut; |
4801 | 0 | } |
4802 | 0 | break; |
4803 | | |
4804 | 11.9k | default: |
4805 | 11.9k | break; // most pass through unchanged |
4806 | 11.9k | } |
4807 | 11.9k | } |
4808 | | |
4809 | | // |
4810 | | // Optionally decompose intrinsics to AST opcodes. |
4811 | | // |
4812 | | void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments) |
4813 | 12.4k | { |
4814 | | // Helper to find image data for image atomics: |
4815 | | // OpImageLoad(image[idx]) |
4816 | | // We take the image load apart and add its params to the atomic op aggregate node |
4817 | 12.4k | const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) { |
4818 | 0 | TIntermAggregate* loadOp = load->getAsAggregate(); |
4819 | 0 | if (loadOp == nullptr) { |
4820 | 0 | error(loc, "unknown image type in atomic operation", "", ""); |
4821 | 0 | node = nullptr; |
4822 | 0 | return; |
4823 | 0 | } |
4824 | | |
4825 | 0 | atomic->getSequence().push_back(loadOp->getSequence()[0]); |
4826 | 0 | atomic->getSequence().push_back(loadOp->getSequence()[1]); |
4827 | 0 | }; |
4828 | | |
4829 | | // Return true if this is an imageLoad, which we will change to an image atomic. |
4830 | 12.4k | const auto isImageParam = [](TIntermTyped* image) -> bool { |
4831 | 202 | TIntermAggregate* imageAggregate = image->getAsAggregate(); |
4832 | 202 | return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad; |
4833 | 202 | }; |
4834 | | |
4835 | 12.4k | const auto lookupBuiltinVariable = [&](const char* name, TBuiltInVariable builtin, TType& type) -> TIntermTyped* { |
4836 | 0 | TSymbol* symbol = symbolTable.find(name); |
4837 | 0 | if (nullptr == symbol) { |
4838 | 0 | type.getQualifier().builtIn = builtin; |
4839 | |
|
4840 | 0 | TVariable* variable = new TVariable(NewPoolTString(name), type); |
4841 | |
|
4842 | 0 | symbolTable.insert(*variable); |
4843 | |
|
4844 | 0 | symbol = symbolTable.find(name); |
4845 | 0 | assert(symbol && "Inserted symbol could not be found!"); |
4846 | 0 | } |
4847 | |
|
4848 | 0 | return intermediate.addSymbol(*(symbol->getAsVariable()), loc); |
4849 | 0 | }; |
4850 | | |
4851 | | // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST |
4852 | | // opcodes for compatibility with existing software stacks. |
4853 | 12.4k | static const bool decomposeHlslIntrinsics = true; |
4854 | | |
4855 | 12.4k | if (!decomposeHlslIntrinsics || !node || !node->getAsOperator()) |
4856 | 160 | return; |
4857 | | |
4858 | 12.2k | const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr; |
4859 | 12.2k | TIntermUnary* fnUnary = node->getAsUnaryNode(); |
4860 | 12.2k | const TOperator op = node->getAsOperator()->getOp(); |
4861 | | |
4862 | 12.2k | switch (op) { |
4863 | 18 | case EOpGenMul: |
4864 | 18 | { |
4865 | | // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul |
4866 | | // Since we are treating HLSL rows like GLSL columns (the first matrix indirection), |
4867 | | // we must reverse the operand order here. Hence, arg0 gets sequence[1], etc. |
4868 | 18 | TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped(); |
4869 | 18 | TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped(); |
4870 | | |
4871 | 18 | if (arg0->isVector() && arg1->isVector()) { // vec * vec |
4872 | 0 | node->getAsAggregate()->setOperator(EOpDot); |
4873 | 18 | } else { |
4874 | 18 | node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1); |
4875 | 18 | } |
4876 | | |
4877 | 18 | break; |
4878 | 0 | } |
4879 | | |
4880 | 96 | case EOpRcp: |
4881 | 96 | { |
4882 | | // rcp(a) -> 1 / a |
4883 | 96 | TIntermTyped* arg0 = fnUnary->getOperand(); |
4884 | 96 | TBasicType type0 = arg0->getBasicType(); |
4885 | 96 | TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true); |
4886 | 96 | node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0); |
4887 | | |
4888 | 96 | break; |
4889 | 0 | } |
4890 | | |
4891 | 148 | case EOpAny: // fall through |
4892 | 298 | case EOpAll: |
4893 | 298 | { |
4894 | 298 | TIntermTyped* typedArg = arguments->getAsTyped(); |
4895 | | |
4896 | | // HLSL allows float/etc types here, and the SPIR-V opcode requires a bool. |
4897 | | // We'll convert here. Note that for efficiency, we could add a smarter |
4898 | | // decomposition for some type cases, e.g, maybe by decomposing a dot product. |
4899 | 298 | if (typedArg->getType().getBasicType() != EbtBool) { |
4900 | 278 | const TType boolType(EbtBool, EvqTemporary, |
4901 | 278 | typedArg->getVectorSize(), |
4902 | 278 | typedArg->getMatrixCols(), |
4903 | 278 | typedArg->getMatrixRows(), |
4904 | 278 | typedArg->isVector()); |
4905 | | |
4906 | 278 | typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg); |
4907 | 278 | node->getAsUnaryNode()->setOperand(typedArg); |
4908 | 278 | } |
4909 | | |
4910 | 298 | break; |
4911 | 148 | } |
4912 | | |
4913 | 106 | case EOpSaturate: |
4914 | 106 | { |
4915 | | // saturate(a) -> clamp(a,0,1) |
4916 | 106 | TIntermTyped* arg0 = fnUnary->getOperand(); |
4917 | 106 | TBasicType type0 = arg0->getBasicType(); |
4918 | 106 | TIntermAggregate* clamp = new TIntermAggregate(EOpClamp); |
4919 | | |
4920 | 106 | clamp->getSequence().push_back(arg0); |
4921 | 106 | clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true)); |
4922 | 106 | clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true)); |
4923 | 106 | clamp->setLoc(loc); |
4924 | 106 | clamp->setType(node->getType()); |
4925 | 106 | clamp->getWritableType().getQualifier().makeTemporary(); |
4926 | 106 | node = clamp; |
4927 | | |
4928 | 106 | break; |
4929 | 148 | } |
4930 | | |
4931 | 92 | case EOpSinCos: |
4932 | 92 | { |
4933 | | // sincos(a,b,c) -> b = sin(a), c = cos(a) |
4934 | 92 | TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
4935 | 92 | TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
4936 | 92 | TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); |
4937 | | |
4938 | 92 | TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0); |
4939 | 92 | TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0); |
4940 | 92 | TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc); |
4941 | 92 | TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc); |
4942 | | |
4943 | 92 | TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc); |
4944 | 92 | compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign); |
4945 | 92 | compoundStatement->setOperator(EOpSequence); |
4946 | 92 | compoundStatement->setLoc(loc); |
4947 | 92 | compoundStatement->setType(TType(EbtVoid)); |
4948 | | |
4949 | 92 | node = compoundStatement; |
4950 | | |
4951 | 92 | break; |
4952 | 148 | } |
4953 | | |
4954 | 234 | case EOpClip: |
4955 | 234 | { |
4956 | | // clip(a) -> if (any(a<0)) discard; |
4957 | 234 | TIntermTyped* arg0 = fnUnary->getOperand(); |
4958 | 234 | TBasicType type0 = arg0->getBasicType(); |
4959 | 234 | TIntermTyped* compareNode = nullptr; |
4960 | | |
4961 | | // For non-scalars: per experiment with FXC compiler, discard if any component < 0. |
4962 | 234 | if (!arg0->isScalar()) { |
4963 | | // component-wise compare: a < 0 |
4964 | 130 | TIntermAggregate* less = new TIntermAggregate(EOpLessThan); |
4965 | 130 | less->getSequence().push_back(arg0); |
4966 | 130 | less->setLoc(loc); |
4967 | | |
4968 | | // make vec or mat of bool matching dimensions of input |
4969 | 130 | less->setType(TType(EbtBool, EvqTemporary, |
4970 | 130 | arg0->getType().getVectorSize(), |
4971 | 130 | arg0->getType().getMatrixCols(), |
4972 | 130 | arg0->getType().getMatrixRows(), |
4973 | 130 | arg0->getType().isVector())); |
4974 | | |
4975 | | // calculate # of components for comparison const |
4976 | 130 | const int constComponentCount = |
4977 | 130 | std::max(arg0->getType().getVectorSize(), 1) * |
4978 | 130 | std::max(arg0->getType().getMatrixCols(), 1) * |
4979 | 130 | std::max(arg0->getType().getMatrixRows(), 1); |
4980 | | |
4981 | 130 | TConstUnion zero; |
4982 | 130 | if (arg0->getType().isIntegerDomain()) |
4983 | 64 | zero.setDConst(0); |
4984 | 66 | else |
4985 | 66 | zero.setDConst(0.0); |
4986 | 130 | TConstUnionArray zeros(constComponentCount, zero); |
4987 | | |
4988 | 130 | less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true)); |
4989 | | |
4990 | 130 | compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool)); |
4991 | 130 | } else { |
4992 | 104 | TIntermTyped* zero; |
4993 | 104 | if (arg0->getType().isIntegerDomain()) |
4994 | 48 | zero = intermediate.addConstantUnion(0, loc, true); |
4995 | 56 | else |
4996 | 56 | zero = intermediate.addConstantUnion(0.0, type0, loc, true); |
4997 | 104 | compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero); |
4998 | 104 | } |
4999 | | |
5000 | 234 | TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc); |
5001 | | |
5002 | 234 | node = new TIntermSelection(compareNode, killNode, nullptr); |
5003 | 234 | node->setLoc(loc); |
5004 | | |
5005 | 234 | break; |
5006 | 148 | } |
5007 | | |
5008 | 104 | case EOpLog10: |
5009 | 104 | { |
5010 | | // log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10)) |
5011 | 104 | TIntermTyped* arg0 = fnUnary->getOperand(); |
5012 | 104 | TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0); |
5013 | 104 | TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true); |
5014 | | |
5015 | 104 | node = handleBinaryMath(loc, "mul", EOpMul, log2, base); |
5016 | | |
5017 | 104 | break; |
5018 | 148 | } |
5019 | | |
5020 | 12 | case EOpDst: |
5021 | 12 | { |
5022 | | // dest.x = 1; |
5023 | | // dest.y = src0.y * src1.y; |
5024 | | // dest.z = src0.z; |
5025 | | // dest.w = src1.w; |
5026 | | |
5027 | 12 | TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
5028 | 12 | TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
5029 | | |
5030 | 12 | TIntermTyped* y = intermediate.addConstantUnion(1, loc, true); |
5031 | 12 | TIntermTyped* z = intermediate.addConstantUnion(2, loc, true); |
5032 | 12 | TIntermTyped* w = intermediate.addConstantUnion(3, loc, true); |
5033 | | |
5034 | 12 | TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc); |
5035 | 12 | TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc); |
5036 | 12 | TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc); |
5037 | 12 | TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc); |
5038 | | |
5039 | 12 | TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); |
5040 | | |
5041 | 12 | dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); |
5042 | 12 | dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y)); |
5043 | 12 | dst->getSequence().push_back(src0z); |
5044 | 12 | dst->getSequence().push_back(src1w); |
5045 | 12 | dst->setType(TType(EbtFloat, EvqTemporary, 4)); |
5046 | 12 | dst->setLoc(loc); |
5047 | 12 | node = dst; |
5048 | | |
5049 | 12 | break; |
5050 | 148 | } |
5051 | | |
5052 | 60 | case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value |
5053 | 74 | case EOpInterlockedMin: // ... |
5054 | 80 | case EOpInterlockedMax: // ... |
5055 | 136 | case EOpInterlockedAnd: // ... |
5056 | 154 | case EOpInterlockedOr: // ... |
5057 | 172 | case EOpInterlockedXor: // ... |
5058 | 180 | case EOpInterlockedExchange: // always has output arg |
5059 | 180 | { |
5060 | 180 | TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest |
5061 | 180 | TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // value |
5062 | 180 | TIntermTyped* arg2 = nullptr; |
5063 | | |
5064 | 180 | if (argAggregate->getSequence().size() > 2) |
5065 | 102 | arg2 = argAggregate->getSequence()[2]->getAsTyped(); |
5066 | | |
5067 | 180 | const bool isImage = isImageParam(arg0); |
5068 | 180 | const TOperator atomicOp = mapAtomicOp(loc, op, isImage); |
5069 | 180 | TIntermAggregate* atomic = new TIntermAggregate(atomicOp); |
5070 | 180 | atomic->setType(arg0->getType()); |
5071 | 180 | atomic->getWritableType().getQualifier().makeTemporary(); |
5072 | 180 | atomic->setLoc(loc); |
5073 | | |
5074 | 180 | if (isImage) { |
5075 | | // orig_value = imageAtomicOp(image, loc, data) |
5076 | 0 | imageAtomicParams(atomic, arg0); |
5077 | 0 | atomic->getSequence().push_back(arg1); |
5078 | |
|
5079 | 0 | if (argAggregate->getSequence().size() > 2) { |
5080 | 0 | node = intermediate.addAssign(EOpAssign, arg2, atomic, loc); |
5081 | 0 | } else { |
5082 | 0 | node = atomic; // no assignment needed, as there was no out var. |
5083 | 0 | } |
5084 | 180 | } else { |
5085 | | // Normal memory variable: |
5086 | | // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value |
5087 | 180 | if (argAggregate->getSequence().size() > 2) { |
5088 | | // optional output param is present. return value goes to arg2. |
5089 | 102 | atomic->getSequence().push_back(arg0); |
5090 | 102 | atomic->getSequence().push_back(arg1); |
5091 | | |
5092 | 102 | node = intermediate.addAssign(EOpAssign, arg2, atomic, loc); |
5093 | 102 | } else { |
5094 | | // Set the matching operator. Since output is absent, this is all we need to do. |
5095 | 78 | node->getAsAggregate()->setOperator(atomicOp); |
5096 | 78 | node->setType(atomic->getType()); |
5097 | 78 | } |
5098 | 180 | } |
5099 | | |
5100 | 180 | break; |
5101 | 172 | } |
5102 | | |
5103 | 22 | case EOpInterlockedCompareExchange: |
5104 | 22 | { |
5105 | 22 | TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest |
5106 | 22 | TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp |
5107 | 22 | TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value |
5108 | 22 | TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig |
5109 | | |
5110 | 22 | const bool isImage = isImageParam(arg0); |
5111 | 22 | TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage)); |
5112 | 22 | atomic->setLoc(loc); |
5113 | 22 | atomic->setType(arg2->getType()); |
5114 | 22 | atomic->getWritableType().getQualifier().makeTemporary(); |
5115 | | |
5116 | 22 | if (isImage) { |
5117 | 0 | imageAtomicParams(atomic, arg0); |
5118 | 22 | } else { |
5119 | 22 | atomic->getSequence().push_back(arg0); |
5120 | 22 | } |
5121 | | |
5122 | 22 | atomic->getSequence().push_back(arg1); |
5123 | 22 | atomic->getSequence().push_back(arg2); |
5124 | 22 | node = intermediate.addAssign(EOpAssign, arg3, atomic, loc); |
5125 | | |
5126 | 22 | break; |
5127 | 172 | } |
5128 | | |
5129 | 0 | case EOpEvaluateAttributeSnapped: |
5130 | 0 | { |
5131 | | // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels |
5132 | | // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y: |
5133 | | // iU = (iU<<28)>>28 |
5134 | | // fU = ((float)iU)/16 |
5135 | | // Targets might handle this natively, in which case they can disable |
5136 | | // decompositions. |
5137 | |
|
5138 | 0 | TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value |
5139 | 0 | TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset |
5140 | |
|
5141 | 0 | TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true); |
5142 | 0 | TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift, |
5143 | 0 | handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28), |
5144 | 0 | i28); |
5145 | |
|
5146 | 0 | TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true); |
5147 | 0 | TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul, |
5148 | 0 | intermediate.addConversion(EOpConstructFloat, |
5149 | 0 | TType(EbtFloat, EvqTemporary, 2), iU), |
5150 | 0 | recip16); |
5151 | |
|
5152 | 0 | TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset); |
5153 | 0 | interp->getSequence().push_back(arg0); |
5154 | 0 | interp->getSequence().push_back(floatOffset); |
5155 | 0 | interp->setLoc(loc); |
5156 | 0 | interp->setType(arg0->getType()); |
5157 | 0 | interp->getWritableType().getQualifier().makeTemporary(); |
5158 | |
|
5159 | 0 | node = interp; |
5160 | |
|
5161 | 0 | break; |
5162 | 172 | } |
5163 | | |
5164 | 0 | case EOpLit: |
5165 | 0 | { |
5166 | 0 | TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped(); |
5167 | 0 | TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped(); |
5168 | 0 | TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped(); |
5169 | |
|
5170 | 0 | TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4); |
5171 | | |
5172 | | // Ambient |
5173 | 0 | dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); |
5174 | | |
5175 | | // Diffuse: |
5176 | 0 | TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true); |
5177 | 0 | TIntermAggregate* diffuse = new TIntermAggregate(EOpMax); |
5178 | 0 | diffuse->getSequence().push_back(n_dot_l); |
5179 | 0 | diffuse->getSequence().push_back(zero); |
5180 | 0 | diffuse->setLoc(loc); |
5181 | 0 | diffuse->setType(TType(EbtFloat)); |
5182 | 0 | dst->getSequence().push_back(diffuse); |
5183 | | |
5184 | | // Specular: |
5185 | 0 | TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin); |
5186 | 0 | min_ndot->getSequence().push_back(n_dot_l); |
5187 | 0 | min_ndot->getSequence().push_back(n_dot_h); |
5188 | 0 | min_ndot->setLoc(loc); |
5189 | 0 | min_ndot->setType(TType(EbtFloat)); |
5190 | |
|
5191 | 0 | TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero); |
5192 | 0 | TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m |
5193 | |
|
5194 | 0 | dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc)); |
5195 | | |
5196 | | // One: |
5197 | 0 | dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true)); |
5198 | |
|
5199 | 0 | dst->setLoc(loc); |
5200 | 0 | dst->setType(TType(EbtFloat, EvqTemporary, 4)); |
5201 | 0 | node = dst; |
5202 | 0 | break; |
5203 | 172 | } |
5204 | | |
5205 | 64 | case EOpAsDouble: |
5206 | 64 | { |
5207 | | // asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must |
5208 | | // first construct a uint64. |
5209 | 64 | TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
5210 | 64 | TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
5211 | | |
5212 | 64 | if (arg0->getType().isVector()) { // TODO: ... |
5213 | 34 | error(loc, "double2 conversion not implemented", "asdouble", ""); |
5214 | 34 | break; |
5215 | 34 | } |
5216 | | |
5217 | 30 | TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2); |
5218 | | |
5219 | 30 | uint64->getSequence().push_back(arg0); |
5220 | 30 | uint64->getSequence().push_back(arg1); |
5221 | 30 | uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2 |
5222 | 30 | uint64->setLoc(loc); |
5223 | | |
5224 | | // bitcast uint2 to a double |
5225 | 30 | TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble); |
5226 | 30 | convert->getAsUnaryNode()->setOperand(uint64); |
5227 | 30 | convert->setLoc(loc); |
5228 | 30 | convert->setType(TType(EbtDouble, EvqTemporary)); |
5229 | 30 | node = convert; |
5230 | | |
5231 | 30 | break; |
5232 | 64 | } |
5233 | | |
5234 | 170 | case EOpF16tof32: |
5235 | 170 | { |
5236 | | // input uvecN with low 16 bits of each component holding a float16. convert to float32. |
5237 | 170 | TIntermTyped* argValue = node->getAsUnaryNode()->getOperand(); |
5238 | 170 | TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true); |
5239 | 170 | const int vecSize = argValue->getType().getVectorSize(); |
5240 | | |
5241 | 170 | TOperator constructOp = EOpNull; |
5242 | 170 | switch (vecSize) { |
5243 | 60 | case 1: constructOp = EOpNull; break; // direct use, no construct needed |
5244 | 46 | case 2: constructOp = EOpConstructVec2; break; |
5245 | 32 | case 3: constructOp = EOpConstructVec3; break; |
5246 | 32 | case 4: constructOp = EOpConstructVec4; break; |
5247 | 0 | default: assert(0); break; |
5248 | 170 | } |
5249 | | |
5250 | | // For scalar case, we don't need to construct another type. |
5251 | 170 | TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr; |
5252 | | |
5253 | 170 | if (result) { |
5254 | 110 | result->setType(TType(EbtFloat, EvqTemporary, vecSize)); |
5255 | 110 | result->setLoc(loc); |
5256 | 110 | } |
5257 | | |
5258 | 546 | for (int idx = 0; idx < vecSize; ++idx) { |
5259 | 376 | TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true); |
5260 | 376 | TIntermTyped* component = argValue->getType().isVector() ? |
5261 | 316 | intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue; |
5262 | | |
5263 | 376 | if (component != argValue) |
5264 | 316 | component->setType(TType(argValue->getBasicType(), EvqTemporary)); |
5265 | | |
5266 | 376 | TIntermTyped* unpackOp = new TIntermUnary(EOpUnpackHalf2x16); |
5267 | 376 | unpackOp->setType(TType(EbtFloat, EvqTemporary, 2)); |
5268 | 376 | unpackOp->getAsUnaryNode()->setOperand(component); |
5269 | 376 | unpackOp->setLoc(loc); |
5270 | | |
5271 | 376 | TIntermTyped* lowOrder = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc); |
5272 | | |
5273 | 376 | if (result != nullptr) { |
5274 | 316 | result->getSequence().push_back(lowOrder); |
5275 | 316 | node = result; |
5276 | 316 | } else { |
5277 | 60 | node = lowOrder; |
5278 | 60 | } |
5279 | 376 | } |
5280 | | |
5281 | 170 | break; |
5282 | 170 | } |
5283 | | |
5284 | 30 | case EOpF32tof16: |
5285 | 30 | { |
5286 | | // input floatN converted to 16 bit float in low order bits of each component of uintN |
5287 | 30 | TIntermTyped* argValue = node->getAsUnaryNode()->getOperand(); |
5288 | | |
5289 | 30 | TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true); |
5290 | 30 | const int vecSize = argValue->getType().getVectorSize(); |
5291 | | |
5292 | 30 | TOperator constructOp = EOpNull; |
5293 | 30 | switch (vecSize) { |
5294 | 14 | case 1: constructOp = EOpNull; break; // direct use, no construct needed |
5295 | 8 | case 2: constructOp = EOpConstructUVec2; break; |
5296 | 4 | case 3: constructOp = EOpConstructUVec3; break; |
5297 | 4 | case 4: constructOp = EOpConstructUVec4; break; |
5298 | 0 | default: assert(0); break; |
5299 | 30 | } |
5300 | | |
5301 | | // For scalar case, we don't need to construct another type. |
5302 | 30 | TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr; |
5303 | | |
5304 | 30 | if (result) { |
5305 | 16 | result->setType(TType(EbtUint, EvqTemporary, vecSize)); |
5306 | 16 | result->setLoc(loc); |
5307 | 16 | } |
5308 | | |
5309 | 88 | for (int idx = 0; idx < vecSize; ++idx) { |
5310 | 58 | TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true); |
5311 | 58 | TIntermTyped* component = argValue->getType().isVector() ? |
5312 | 44 | intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue; |
5313 | | |
5314 | 58 | if (component != argValue) |
5315 | 44 | component->setType(TType(argValue->getBasicType(), EvqTemporary)); |
5316 | | |
5317 | 58 | TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2); |
5318 | 58 | vec2ComponentAndZero->getSequence().push_back(component); |
5319 | 58 | vec2ComponentAndZero->getSequence().push_back(zero); |
5320 | 58 | vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2)); |
5321 | 58 | vec2ComponentAndZero->setLoc(loc); |
5322 | | |
5323 | 58 | TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16); |
5324 | 58 | packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero); |
5325 | 58 | packOp->setLoc(loc); |
5326 | 58 | packOp->setType(TType(EbtUint, EvqTemporary)); |
5327 | | |
5328 | 58 | if (result != nullptr) { |
5329 | 44 | result->getSequence().push_back(packOp); |
5330 | 44 | node = result; |
5331 | 44 | } else { |
5332 | 14 | node = packOp; |
5333 | 14 | } |
5334 | 58 | } |
5335 | | |
5336 | 30 | break; |
5337 | 30 | } |
5338 | | |
5339 | 60 | case EOpD3DCOLORtoUBYTE4: |
5340 | 60 | { |
5341 | | // ivec4 ( x.zyxw * 255.001953 ); |
5342 | 60 | TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand(); |
5343 | 60 | TSwizzleSelectors<TVectorSelector> selectors; |
5344 | 60 | selectors.push_back(2); |
5345 | 60 | selectors.push_back(1); |
5346 | 60 | selectors.push_back(0); |
5347 | 60 | selectors.push_back(3); |
5348 | 60 | TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc); |
5349 | 60 | TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc); |
5350 | 60 | swizzled->setType(arg0->getType()); |
5351 | 60 | swizzled->getWritableType().getQualifier().makeTemporary(); |
5352 | | |
5353 | 60 | TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true); |
5354 | 60 | TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled); |
5355 | 60 | rangeConverted->setType(arg0->getType()); |
5356 | 60 | rangeConverted->getWritableType().getQualifier().makeTemporary(); |
5357 | | |
5358 | 60 | node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted); |
5359 | 60 | node->setLoc(loc); |
5360 | 60 | node->setType(TType(EbtInt, EvqTemporary, 4)); |
5361 | 60 | break; |
5362 | 30 | } |
5363 | | |
5364 | 8 | case EOpIsFinite: |
5365 | 8 | { |
5366 | | // Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate |
5367 | | // it to !isnan && !isinf |
5368 | | |
5369 | 8 | TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand(); |
5370 | | |
5371 | | // We'll make a temporary in case the RHS is cmoplex |
5372 | 8 | TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType()); |
5373 | 8 | tempArg->getWritableType().getQualifier().makeTemporary(); |
5374 | | |
5375 | 8 | TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign, |
5376 | 8 | intermediate.addSymbol(*tempArg, loc), |
5377 | 8 | arg0, loc); |
5378 | | |
5379 | 8 | TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc); |
5380 | | |
5381 | 8 | const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(), |
5382 | 8 | arg0->getMatrixRows()); |
5383 | | |
5384 | 8 | TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc)); |
5385 | 8 | isnan->setType(boolType); |
5386 | | |
5387 | 8 | TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan); |
5388 | 8 | notnan->setType(boolType); |
5389 | | |
5390 | 8 | TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc)); |
5391 | 8 | isinf->setType(boolType); |
5392 | | |
5393 | 8 | TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf); |
5394 | 8 | notinf->setType(boolType); |
5395 | | |
5396 | 8 | TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf); |
5397 | 8 | andNode->setType(boolType); |
5398 | | |
5399 | 8 | compoundStatement = intermediate.growAggregate(compoundStatement, andNode); |
5400 | 8 | compoundStatement->setOperator(EOpSequence); |
5401 | 8 | compoundStatement->setLoc(loc); |
5402 | 8 | compoundStatement->setType(boolType); |
5403 | | |
5404 | 8 | node = compoundStatement; |
5405 | | |
5406 | 8 | break; |
5407 | 30 | } |
5408 | 0 | case EOpWaveGetLaneCount: |
5409 | 0 | { |
5410 | | // Mapped to gl_SubgroupSize builtin (We preprend @ to the symbol |
5411 | | // so that it inhabits the symbol table, but has a user-invalid name |
5412 | | // in-case some source HLSL defined the symbol also). |
5413 | 0 | TType type(EbtUint, EvqVaryingIn); |
5414 | 0 | node = lookupBuiltinVariable("@gl_SubgroupSize", EbvSubgroupSize2, type); |
5415 | 0 | break; |
5416 | 30 | } |
5417 | 0 | case EOpWaveGetLaneIndex: |
5418 | 0 | { |
5419 | | // Mapped to gl_SubgroupInvocationID builtin (We preprend @ to the |
5420 | | // symbol so that it inhabits the symbol table, but has a |
5421 | | // user-invalid name in-case some source HLSL defined the symbol |
5422 | | // also). |
5423 | 0 | TType type(EbtUint, EvqVaryingIn); |
5424 | 0 | node = lookupBuiltinVariable("@gl_SubgroupInvocationID", EbvSubgroupInvocation2, type); |
5425 | 0 | break; |
5426 | 30 | } |
5427 | 0 | case EOpWaveActiveCountBits: |
5428 | 0 | { |
5429 | | // Mapped to subgroupBallotBitCount(subgroupBallot()) builtin |
5430 | | |
5431 | | // uvec4 type. |
5432 | 0 | TType uvec4Type(EbtUint, EvqTemporary, 4); |
5433 | | |
5434 | | // Get the uvec4 return from subgroupBallot(). |
5435 | 0 | TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc, |
5436 | 0 | EOpSubgroupBallot, true, arguments, uvec4Type); |
5437 | | |
5438 | | // uint type. |
5439 | 0 | TType uintType(EbtUint, EvqTemporary); |
5440 | |
|
5441 | 0 | node = intermediate.addBuiltInFunctionCall(loc, |
5442 | 0 | EOpSubgroupBallotBitCount, true, res, uintType); |
5443 | |
|
5444 | 0 | break; |
5445 | 30 | } |
5446 | 0 | case EOpWavePrefixCountBits: |
5447 | 0 | { |
5448 | | // Mapped to subgroupBallotExclusiveBitCount(subgroupBallot()) |
5449 | | // builtin |
5450 | | |
5451 | | // uvec4 type. |
5452 | 0 | TType uvec4Type(EbtUint, EvqTemporary, 4); |
5453 | | |
5454 | | // Get the uvec4 return from subgroupBallot(). |
5455 | 0 | TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc, |
5456 | 0 | EOpSubgroupBallot, true, arguments, uvec4Type); |
5457 | | |
5458 | | // uint type. |
5459 | 0 | TType uintType(EbtUint, EvqTemporary); |
5460 | |
|
5461 | 0 | node = intermediate.addBuiltInFunctionCall(loc, |
5462 | 0 | EOpSubgroupBallotExclusiveBitCount, true, res, uintType); |
5463 | |
|
5464 | 0 | break; |
5465 | 30 | } |
5466 | | |
5467 | 10.7k | default: |
5468 | 10.7k | break; // most pass through unchanged |
5469 | 12.2k | } |
5470 | 12.2k | } |
5471 | | |
5472 | | // |
5473 | | // Handle seeing function call syntax in the grammar, which could be any of |
5474 | | // - .length() method |
5475 | | // - constructor |
5476 | | // - a call to a built-in function mapped to an operator |
5477 | | // - a call to a built-in function that will remain a function call (e.g., texturing) |
5478 | | // - user function |
5479 | | // - subroutine call (not implemented yet) |
5480 | | // |
5481 | | TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments) |
5482 | 20.8k | { |
5483 | 20.8k | TIntermTyped* result = nullptr; |
5484 | | |
5485 | 20.8k | TOperator op = function->getBuiltInOp(); |
5486 | 20.8k | if (op != EOpNull) { |
5487 | | // |
5488 | | // Then this should be a constructor. |
5489 | | // Don't go through the symbol table for constructors. |
5490 | | // Their parameters will be verified algorithmically. |
5491 | | // |
5492 | 7.24k | TType type(EbtVoid); // use this to get the type back |
5493 | 7.24k | if (! constructorError(loc, arguments, *function, op, type)) { |
5494 | | // |
5495 | | // It's a constructor, of type 'type'. |
5496 | | // |
5497 | 7.03k | result = handleConstructor(loc, arguments, type); |
5498 | 7.03k | if (result == nullptr) { |
5499 | 16 | error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), ""); |
5500 | 16 | return nullptr; |
5501 | 16 | } |
5502 | 7.03k | } |
5503 | 13.5k | } else { |
5504 | | // |
5505 | | // Find it in the symbol table. |
5506 | | // |
5507 | 13.5k | const TFunction* fnCandidate = nullptr; |
5508 | 13.5k | bool builtIn = false; |
5509 | 13.5k | int thisDepth = 0; |
5510 | | |
5511 | | // For mat mul, the situation is unusual: we have to compare vector sizes to mat row or col sizes, |
5512 | | // and clamp the opposite arg. Since that's complex, we farm it off to a separate method. |
5513 | | // It doesn't naturally fall out of processing an argument at a time in isolation. |
5514 | 13.5k | if (function->getName() == "mul") |
5515 | 20 | addGenMulArgumentConversion(loc, *function, arguments); |
5516 | | |
5517 | 13.5k | TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr; |
5518 | | |
5519 | | // TODO: this needs improvement: there's no way at present to look up a signature in |
5520 | | // the symbol table for an arbitrary type. This is a temporary hack until that ability exists. |
5521 | | // It will have false positives, since it doesn't check arg counts or types. |
5522 | 13.5k | if (arguments) { |
5523 | | // Check if first argument is struct buffer type. It may be an aggregate or a symbol, so we |
5524 | | // look for either case. |
5525 | | |
5526 | 12.7k | TIntermTyped* arg0 = nullptr; |
5527 | | |
5528 | 12.7k | if (aggregate && aggregate->getSequence().size() > 0 && aggregate->getSequence()[0]) |
5529 | 4.21k | arg0 = aggregate->getSequence()[0]->getAsTyped(); |
5530 | 8.50k | else if (arguments->getAsSymbolNode()) |
5531 | 7.79k | arg0 = arguments->getAsSymbolNode(); |
5532 | | |
5533 | 12.7k | if (arg0 != nullptr && isStructBufferType(arg0->getType())) { |
5534 | 328 | static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1; |
5535 | | |
5536 | 328 | if (function->getName().length() > methodPrefixSize && |
5537 | 322 | isStructBufferMethod(function->getName().substr(methodPrefixSize))) { |
5538 | 288 | const TString mangle = function->getName() + "("; |
5539 | 288 | TSymbol* symbol = symbolTable.find(mangle, &builtIn); |
5540 | | |
5541 | 288 | if (symbol) |
5542 | 288 | fnCandidate = symbol->getAsFunction(); |
5543 | 288 | } |
5544 | 328 | } |
5545 | 12.7k | } |
5546 | | |
5547 | 13.5k | if (fnCandidate == nullptr) |
5548 | 13.2k | fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments); |
5549 | | |
5550 | 13.5k | if (fnCandidate) { |
5551 | | // This is a declared function that might map to |
5552 | | // - a built-in operator, |
5553 | | // - a built-in function not mapped to an operator, or |
5554 | | // - a user function. |
5555 | | |
5556 | | // turn an implicit member-function resolution into an explicit call |
5557 | 12.4k | TString callerName; |
5558 | 12.4k | if (thisDepth == 0) |
5559 | 12.3k | callerName = fnCandidate->getMangledName(); |
5560 | 10 | else { |
5561 | | // get the explicit (full) name of the function |
5562 | 10 | callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth]; |
5563 | 10 | callerName += fnCandidate->getMangledName(); |
5564 | | // insert the implicit calling argument |
5565 | 10 | pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments); |
5566 | 10 | } |
5567 | | |
5568 | | // Convert 'in' arguments, so that types match. |
5569 | | // However, skip those that need expansion, that is covered next. |
5570 | 12.4k | if (arguments) |
5571 | 11.6k | addInputArgumentConversions(*fnCandidate, arguments); |
5572 | | |
5573 | | // Expand arguments. Some arguments must physically expand to a different set |
5574 | | // than what the shader declared and passes. |
5575 | 12.4k | if (arguments && !builtIn) |
5576 | 368 | expandArguments(loc, *fnCandidate, arguments); |
5577 | | |
5578 | | // Expansion may have changed the form of arguments |
5579 | 12.4k | aggregate = arguments ? arguments->getAsAggregate() : nullptr; |
5580 | | |
5581 | 12.4k | op = fnCandidate->getBuiltInOp(); |
5582 | 12.4k | if (builtIn && op != EOpNull) { |
5583 | | // SM 4.0 and above guarantees roundEven semantics for round() |
5584 | 11.2k | if (!hlslDX9Compatible() && op == EOpRound) |
5585 | 96 | op = EOpRoundEven; |
5586 | | |
5587 | | // A function call mapped to a built-in operation. |
5588 | 11.2k | result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments, |
5589 | 11.2k | fnCandidate->getType()); |
5590 | 11.2k | if (result == nullptr) { |
5591 | 0 | error(arguments->getLoc(), " wrong operand type", "Internal Error", |
5592 | 0 | "built in unary operator function. Type: %s", |
5593 | 0 | static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str()); |
5594 | 11.2k | } else if (result->getAsOperator()) { |
5595 | 11.0k | builtInOpCheck(loc, *fnCandidate, *result->getAsOperator()); |
5596 | 11.0k | } |
5597 | 11.2k | } else { |
5598 | | // This is a function call not mapped to built-in operator. |
5599 | | // It could still be a built-in function, but only if PureOperatorBuiltins == false. |
5600 | 1.18k | result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc); |
5601 | 1.18k | TIntermAggregate* call = result->getAsAggregate(); |
5602 | 1.18k | call->setName(callerName); |
5603 | | |
5604 | | // this is how we know whether the given function is a built-in function or a user-defined function |
5605 | | // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also |
5606 | | // if builtIn == true, it's definitely a built-in function with EOpNull |
5607 | 1.18k | if (! builtIn) { |
5608 | 1.11k | call->setUserDefined(); |
5609 | 1.11k | intermediate.addToCallGraph(infoSink, currentCaller, callerName); |
5610 | 1.11k | } |
5611 | 1.18k | } |
5612 | | |
5613 | | // for decompositions, since we want to operate on the function node, not the aggregate holding |
5614 | | // output conversions. |
5615 | 12.4k | const TIntermTyped* fnNode = result; |
5616 | | |
5617 | 12.4k | decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions |
5618 | 12.4k | decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions |
5619 | 12.4k | decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions |
5620 | 12.4k | decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions |
5621 | | |
5622 | | // Create the qualifier list, carried in the AST for the call. |
5623 | | // Because some arguments expand to multiple arguments, the qualifier list will |
5624 | | // be longer than the formal parameter list. |
5625 | 12.4k | if (result == fnNode && result->getAsAggregate()) { |
5626 | 3.72k | TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList(); |
5627 | 10.0k | for (int i = 0; i < fnCandidate->getParamCount(); ++i) { |
5628 | 6.34k | TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage; |
5629 | 6.34k | if (hasStructBuffCounter(*(*fnCandidate)[i].type)) { |
5630 | | // add buffer and counter buffer argument qualifier |
5631 | 2 | qualifierList.push_back(qual); |
5632 | 2 | qualifierList.push_back(qual); |
5633 | 6.34k | } else if (shouldFlatten(*(*fnCandidate)[i].type, (*fnCandidate)[i].type->getQualifier().storage, |
5634 | 6.34k | true)) { |
5635 | | // add structure member expansion |
5636 | 0 | for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb) |
5637 | 0 | qualifierList.push_back(qual); |
5638 | 6.34k | } else { |
5639 | | // Normal 1:1 case |
5640 | 6.34k | qualifierList.push_back(qual); |
5641 | 6.34k | } |
5642 | 6.34k | } |
5643 | 3.72k | } |
5644 | | |
5645 | | // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore. |
5646 | | // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output. |
5647 | | // Also, build the qualifier list for user function calls, which are always called with an aggregate. |
5648 | | // We don't do this is if there has been a decomposition, which will have added its own conversions |
5649 | | // for output parameters. |
5650 | 12.4k | if (result == fnNode && result->getAsAggregate()) |
5651 | 3.72k | result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator()); |
5652 | 12.4k | } |
5653 | 13.5k | } |
5654 | | |
5655 | | // generic error recovery |
5656 | | // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to |
5657 | | // reduce cascades |
5658 | 20.7k | if (result == nullptr) |
5659 | 1.39k | result = intermediate.addConstantUnion(0.0, EbtFloat, loc); |
5660 | | |
5661 | 20.7k | return result; |
5662 | 20.8k | } |
5663 | | |
5664 | | // An initial argument list is difficult: it can be null, or a single node, |
5665 | | // or an aggregate if more than one argument. Add one to the front, maintaining |
5666 | | // this lack of uniformity. |
5667 | | void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments) |
5668 | 10 | { |
5669 | 10 | if (arguments == nullptr) |
5670 | 6 | arguments = front; |
5671 | 4 | else if (arguments->getAsAggregate() != nullptr) |
5672 | 2 | arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front); |
5673 | 2 | else |
5674 | 2 | arguments = intermediate.growAggregate(front, arguments); |
5675 | 10 | } |
5676 | | |
5677 | | // |
5678 | | // HLSL allows mismatched dimensions on vec*mat, mat*vec, vec*vec, and mat*mat. This is a |
5679 | | // situation not well suited to resolution in intrinsic selection, but we can do so here, since we |
5680 | | // can look at both arguments insert explicit shape changes if required. |
5681 | | // |
5682 | | void HlslParseContext::addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args) |
5683 | 20 | { |
5684 | 20 | TIntermAggregate* argAggregate = args ? args->getAsAggregate() : nullptr; |
5685 | | |
5686 | 20 | if (argAggregate == nullptr || argAggregate->getSequence().size() != 2) { |
5687 | | // It really ought to have two arguments. |
5688 | 0 | error(loc, "expected: mul arguments", "", ""); |
5689 | 0 | return; |
5690 | 0 | } |
5691 | | |
5692 | 20 | TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); |
5693 | 20 | TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); |
5694 | | |
5695 | 20 | if (arg0->isVector() && arg1->isVector()) { |
5696 | | // For: |
5697 | | // vec * vec: it's handled during intrinsic selection, so while we could do it here, |
5698 | | // we can also ignore it, which is easier. |
5699 | 20 | } else if (arg0->isVector() && arg1->isMatrix()) { |
5700 | | // vec * mat: we clamp the vec if the mat col is smaller, else clamp the mat col. |
5701 | 0 | if (arg0->getVectorSize() < arg1->getMatrixCols()) { |
5702 | | // vec is smaller, so truncate larger mat dimension |
5703 | 0 | const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision, |
5704 | 0 | 0, arg0->getVectorSize(), arg1->getMatrixRows()); |
5705 | 0 | arg1 = addConstructor(loc, arg1, truncType); |
5706 | 0 | } else if (arg0->getVectorSize() > arg1->getMatrixCols()) { |
5707 | | // vec is larger, so truncate vec to mat size |
5708 | 0 | const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision, |
5709 | 0 | arg1->getMatrixCols()); |
5710 | 0 | arg0 = addConstructor(loc, arg0, truncType); |
5711 | 0 | } |
5712 | 20 | } else if (arg0->isMatrix() && arg1->isVector()) { |
5713 | | // mat * vec: we clamp the vec if the mat col is smaller, else clamp the mat col. |
5714 | 16 | if (arg1->getVectorSize() < arg0->getMatrixRows()) { |
5715 | | // vec is smaller, so truncate larger mat dimension |
5716 | 0 | const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision, |
5717 | 0 | 0, arg0->getMatrixCols(), arg1->getVectorSize()); |
5718 | 0 | arg0 = addConstructor(loc, arg0, truncType); |
5719 | 16 | } else if (arg1->getVectorSize() > arg0->getMatrixRows()) { |
5720 | | // vec is larger, so truncate vec to mat size |
5721 | 0 | const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision, |
5722 | 0 | arg0->getMatrixRows()); |
5723 | 0 | arg1 = addConstructor(loc, arg1, truncType); |
5724 | 0 | } |
5725 | 16 | } else if (arg0->isMatrix() && arg1->isMatrix()) { |
5726 | | // mat * mat: we clamp the smaller inner dimension to match the other matrix size. |
5727 | | // Remember, HLSL Mrc = GLSL/SPIRV Mcr. |
5728 | 0 | if (arg0->getMatrixRows() > arg1->getMatrixCols()) { |
5729 | 0 | const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision, |
5730 | 0 | 0, arg0->getMatrixCols(), arg1->getMatrixCols()); |
5731 | 0 | arg0 = addConstructor(loc, arg0, truncType); |
5732 | 0 | } else if (arg0->getMatrixRows() < arg1->getMatrixCols()) { |
5733 | 0 | const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision, |
5734 | 0 | 0, arg0->getMatrixRows(), arg1->getMatrixRows()); |
5735 | 0 | arg1 = addConstructor(loc, arg1, truncType); |
5736 | 0 | } |
5737 | 4 | } else { |
5738 | | // It's something with scalars: we'll just leave it alone. Function selection will handle it |
5739 | | // downstream. |
5740 | 4 | } |
5741 | | |
5742 | | // Warn if we altered one of the arguments |
5743 | 20 | if (arg0 != argAggregate->getSequence()[0] || arg1 != argAggregate->getSequence()[1]) |
5744 | 0 | warn(loc, "mul() matrix size mismatch", "", ""); |
5745 | | |
5746 | | // Put arguments back. (They might be unchanged, in which case this is harmless). |
5747 | 20 | argAggregate->getSequence()[0] = arg0; |
5748 | 20 | argAggregate->getSequence()[1] = arg1; |
5749 | | |
5750 | 20 | call[0].type = &arg0->getWritableType(); |
5751 | 20 | call[1].type = &arg1->getWritableType(); |
5752 | 20 | } |
5753 | | |
5754 | | // |
5755 | | // Add any needed implicit conversions for function-call arguments to input parameters. |
5756 | | // |
5757 | | void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments) |
5758 | 11.6k | { |
5759 | 11.6k | TIntermAggregate* aggregate = arguments->getAsAggregate(); |
5760 | | |
5761 | | // Replace a single argument with a single argument. |
5762 | 11.6k | const auto setArg = [&](int paramNum, TIntermTyped* arg) { |
5763 | 2.47k | if (function.getParamCount() == 1) |
5764 | 880 | arguments = arg; |
5765 | 1.59k | else { |
5766 | 1.59k | if (aggregate == nullptr) |
5767 | 0 | arguments = arg; |
5768 | 1.59k | else |
5769 | 1.59k | aggregate->getSequence()[paramNum] = arg; |
5770 | 1.59k | } |
5771 | 2.47k | }; |
5772 | | |
5773 | | // Process each argument's conversion |
5774 | 28.3k | for (int param = 0; param < function.getParamCount(); ++param) { |
5775 | 16.6k | if (! function[param].type->getQualifier().isParamInput()) |
5776 | 750 | continue; |
5777 | | |
5778 | | // At this early point there is a slight ambiguity between whether an aggregate 'arguments' |
5779 | | // is the single argument itself or its children are the arguments. Only one argument |
5780 | | // means take 'arguments' itself as the one argument. |
5781 | 15.9k | TIntermTyped* arg = function.getParamCount() == 1 |
5782 | 15.9k | ? arguments->getAsTyped() |
5783 | 15.9k | : (aggregate ? |
5784 | 8.05k | aggregate->getSequence()[param]->getAsTyped() : |
5785 | 8.05k | arguments->getAsTyped()); |
5786 | 15.9k | if (*function[param].type != arg->getType()) { |
5787 | | // In-qualified arguments just need an extra node added above the argument to |
5788 | | // convert to the correct type. |
5789 | 3.00k | TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg); |
5790 | 3.00k | if (convArg != nullptr) |
5791 | 2.47k | convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg); |
5792 | 3.00k | if (convArg != nullptr) |
5793 | 2.47k | setArg(param, convArg); |
5794 | 524 | else |
5795 | 524 | error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param); |
5796 | 12.9k | } else { |
5797 | 12.9k | if (wasFlattened(arg)) { |
5798 | | // If both formal and calling arg are to be flattened, leave that to argument |
5799 | | // expansion, not conversion. |
5800 | 0 | if (!shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) { |
5801 | | // Will make a two-level subtree. |
5802 | | // The deepest will copy member-by-member to build the structure to pass. |
5803 | | // The level above that will be a two-operand EOpComma sequence that follows the copy by the |
5804 | | // object itself. |
5805 | 0 | TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type); |
5806 | 0 | internalAggregate->getWritableType().getQualifier().makeTemporary(); |
5807 | 0 | TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(), |
5808 | 0 | internalAggregate->getName(), |
5809 | 0 | getLanguage(), |
5810 | 0 | internalAggregate->getType()); |
5811 | 0 | internalSymbolNode->setLoc(arg->getLoc()); |
5812 | | // This makes the deepest level, the member-wise copy |
5813 | 0 | TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign, |
5814 | 0 | internalSymbolNode, arg)->getAsAggregate(); |
5815 | | |
5816 | | // Now, pair that with the resulting aggregate. |
5817 | 0 | assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc()); |
5818 | 0 | assignAgg->setOperator(EOpComma); |
5819 | 0 | assignAgg->setType(internalAggregate->getType()); |
5820 | 0 | setArg(param, assignAgg); |
5821 | 0 | } |
5822 | 0 | } |
5823 | 12.9k | } |
5824 | 15.9k | } |
5825 | 11.6k | } |
5826 | | |
5827 | | // |
5828 | | // Add any needed implicit expansion of calling arguments from what the shader listed to what's |
5829 | | // internally needed for the AST (given the constraints downstream). |
5830 | | // |
5831 | | void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments) |
5832 | 368 | { |
5833 | 368 | TIntermAggregate* aggregate = arguments->getAsAggregate(); |
5834 | 368 | int functionParamNumberOffset = 0; |
5835 | | |
5836 | | // Replace a single argument with a single argument. |
5837 | 368 | const auto setArg = [&](int paramNum, TIntermTyped* arg) { |
5838 | 0 | if (function.getParamCount() + functionParamNumberOffset == 1) |
5839 | 0 | arguments = arg; |
5840 | 0 | else { |
5841 | 0 | if (aggregate == nullptr) |
5842 | 0 | arguments = arg; |
5843 | 0 | else |
5844 | 0 | aggregate->getSequence()[paramNum] = arg; |
5845 | 0 | } |
5846 | 0 | }; |
5847 | | |
5848 | | // Replace a single argument with a list of arguments |
5849 | 368 | const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) { |
5850 | 0 | if (args.size() == 1) |
5851 | 0 | setArg(paramNum, args.front()); |
5852 | 0 | else if (args.size() > 1) { |
5853 | 0 | if (function.getParamCount() + functionParamNumberOffset == 1) { |
5854 | 0 | arguments = intermediate.makeAggregate(args.front()); |
5855 | 0 | std::for_each(args.begin() + 1, args.end(), |
5856 | 0 | [&](TIntermTyped* arg) { |
5857 | 0 | arguments = intermediate.growAggregate(arguments, arg); |
5858 | 0 | }); |
5859 | 0 | } else { |
5860 | 0 | auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum); |
5861 | 0 | aggregate->getSequence().insert(it, args.begin(), args.end()); |
5862 | 0 | } |
5863 | 0 | functionParamNumberOffset += (int)(args.size() - 1); |
5864 | 0 | } |
5865 | 0 | }; |
5866 | | |
5867 | | // Process each argument's conversion |
5868 | 960 | for (int param = 0; param < function.getParamCount(); ++param) { |
5869 | | // At this early point there is a slight ambiguity between whether an aggregate 'arguments' |
5870 | | // is the single argument itself or its children are the arguments. Only one argument |
5871 | | // means take 'arguments' itself as the one argument. |
5872 | 592 | TIntermTyped* arg = function.getParamCount() == 1 |
5873 | 592 | ? arguments->getAsTyped() |
5874 | 592 | : (aggregate ? |
5875 | 344 | aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() : |
5876 | 344 | arguments->getAsTyped()); |
5877 | | |
5878 | 592 | if (wasFlattened(arg) && shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) { |
5879 | | // Need to pass the structure members instead of the structure. |
5880 | 0 | TVector<TIntermTyped*> memberArgs; |
5881 | 0 | for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb) |
5882 | 0 | memberArgs.push_back(flattenAccess(arg, memb)); |
5883 | 0 | setArgList(param + functionParamNumberOffset, memberArgs); |
5884 | 0 | } |
5885 | 592 | } |
5886 | | |
5887 | | // TODO: if we need both hidden counter args (below) and struct expansion (above) |
5888 | | // the two algorithms need to be merged: Each assumes the list starts out 1:1 between |
5889 | | // parameters and arguments. |
5890 | | |
5891 | | // If any argument is a pass-by-reference struct buffer with an associated counter |
5892 | | // buffer, we have to add another hidden parameter for that counter. |
5893 | 368 | if (aggregate) |
5894 | 144 | addStructBuffArguments(loc, aggregate); |
5895 | 368 | } |
5896 | | |
5897 | | // |
5898 | | // Add any needed implicit output conversions for function-call arguments. This |
5899 | | // can require a new tree topology, complicated further by whether the function |
5900 | | // has a return value. |
5901 | | // |
5902 | | // Returns a node of a subtree that evaluates to the return value of the function. |
5903 | | // |
5904 | | TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode) |
5905 | 3.72k | { |
5906 | 3.72k | assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr); |
5907 | | |
5908 | 3.72k | const TSourceLoc& loc = intermNode.getLoc(); |
5909 | | |
5910 | 3.72k | TIntermSequence argSequence; // temp sequence for unary node args |
5911 | | |
5912 | 3.72k | if (intermNode.getAsUnaryNode()) |
5913 | 0 | argSequence.push_back(intermNode.getAsUnaryNode()->getOperand()); |
5914 | | |
5915 | 3.72k | TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence; |
5916 | | |
5917 | 6.36k | const auto needsConversion = [&](int argNum) { |
5918 | 6.36k | return function[argNum].type->getQualifier().isParamOutput() && |
5919 | 40 | (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() || |
5920 | 40 | shouldConvertLValue(arguments[argNum]) || |
5921 | 16 | wasFlattened(arguments[argNum]->getAsTyped())); |
5922 | 6.36k | }; |
5923 | | |
5924 | | // Will there be any output conversions? |
5925 | 3.72k | bool outputConversions = false; |
5926 | 10.0k | for (int i = 0; i < function.getParamCount(); ++i) { |
5927 | 6.34k | if (needsConversion(i)) { |
5928 | 12 | outputConversions = true; |
5929 | 12 | break; |
5930 | 12 | } |
5931 | 6.34k | } |
5932 | | |
5933 | 3.72k | if (! outputConversions) |
5934 | 3.71k | return &intermNode; |
5935 | | |
5936 | | // Setup for the new tree, if needed: |
5937 | | // |
5938 | | // Output conversions need a different tree topology. |
5939 | | // Out-qualified arguments need a temporary of the correct type, with the call |
5940 | | // followed by an assignment of the temporary to the original argument: |
5941 | | // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...) |
5942 | | // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet) |
5943 | | // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment. |
5944 | 12 | TIntermTyped* conversionTree = nullptr; |
5945 | 12 | TVariable* tempRet = nullptr; |
5946 | 12 | if (intermNode.getBasicType() != EbtVoid) { |
5947 | | // do the "tempRet = function(...), " bit from above |
5948 | 0 | tempRet = makeInternalVariable("tempReturn", intermNode.getType()); |
5949 | 0 | TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc); |
5950 | 0 | conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc); |
5951 | 0 | } else |
5952 | 12 | conversionTree = &intermNode; |
5953 | | |
5954 | 12 | conversionTree = intermediate.makeAggregate(conversionTree); |
5955 | | |
5956 | | // Process each argument's conversion |
5957 | 24 | for (int i = 0; i < function.getParamCount(); ++i) { |
5958 | 12 | if (needsConversion(i)) { |
5959 | | // Out-qualified arguments needing conversion need to use the topology setup above. |
5960 | | // Do the " ...(tempArg, ...), arg = tempArg" bit from above. |
5961 | | |
5962 | | // Make a temporary for what the function expects the argument to look like. |
5963 | 12 | TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type); |
5964 | 12 | tempArg->getWritableType().getQualifier().makeTemporary(); |
5965 | 12 | TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc); |
5966 | | |
5967 | | // This makes the deepest level, the member-wise copy |
5968 | 12 | TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(), |
5969 | 12 | tempArgNode); |
5970 | 12 | tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign); |
5971 | 12 | conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc()); |
5972 | | |
5973 | | // replace the argument with another node for the same tempArg variable |
5974 | 12 | arguments[i] = intermediate.addSymbol(*tempArg, loc); |
5975 | 12 | } |
5976 | 12 | } |
5977 | | |
5978 | | // Finalize the tree topology (see bigger comment above). |
5979 | 12 | if (tempRet) { |
5980 | | // do the "..., tempRet" bit from above |
5981 | 0 | TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc); |
5982 | 0 | conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc); |
5983 | 0 | } |
5984 | | |
5985 | 12 | conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc); |
5986 | | |
5987 | 12 | return conversionTree; |
5988 | 3.72k | } |
5989 | | |
5990 | | // |
5991 | | // Add any needed "hidden" counter buffer arguments for function calls. |
5992 | | // |
5993 | | // Modifies the 'aggregate' argument if needed. Otherwise, is no-op. |
5994 | | // |
5995 | | void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate) |
5996 | 144 | { |
5997 | | // See if there are any SB types with counters. |
5998 | 144 | const bool hasStructBuffArg = |
5999 | 144 | std::any_of(aggregate->getSequence().begin(), |
6000 | 144 | aggregate->getSequence().end(), |
6001 | 388 | [this](const TIntermNode* node) { |
6002 | 388 | return (node && node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType()); |
6003 | 388 | }); |
6004 | | |
6005 | | // Nothing to do, if we didn't find one. |
6006 | 144 | if (! hasStructBuffArg) |
6007 | 142 | return; |
6008 | | |
6009 | 2 | TIntermSequence argsWithCounterBuffers; |
6010 | | |
6011 | 8 | for (int param = 0; param < int(aggregate->getSequence().size()); ++param) { |
6012 | 6 | argsWithCounterBuffers.push_back(aggregate->getSequence()[param]); |
6013 | | |
6014 | 6 | if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) { |
6015 | 2 | const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode(); |
6016 | 2 | if (blockSym != nullptr) { |
6017 | 2 | TType counterType; |
6018 | 2 | counterBufferType(loc, counterType); |
6019 | | |
6020 | 2 | const TString counterBlockName(intermediate.addCounterBufferName(blockSym->getName())); |
6021 | | |
6022 | 2 | TVariable* variable = makeInternalVariable(counterBlockName, counterType); |
6023 | | |
6024 | | // Mark this buffer's counter block as being in use |
6025 | 2 | structBufferCounter[counterBlockName] = true; |
6026 | | |
6027 | 2 | TIntermSymbol* sym = intermediate.addSymbol(*variable, loc); |
6028 | 2 | argsWithCounterBuffers.push_back(sym); |
6029 | 2 | } |
6030 | 2 | } |
6031 | 6 | } |
6032 | | |
6033 | | // Swap with the temp list we've built up. |
6034 | 2 | aggregate->getSequence().swap(argsWithCounterBuffers); |
6035 | 2 | } |
6036 | | |
6037 | | |
6038 | | // |
6039 | | // Do additional checking of built-in function calls that is not caught |
6040 | | // by normal semantic checks on argument type, extension tagging, etc. |
6041 | | // |
6042 | | // Assumes there has been a semantically correct match to a built-in function prototype. |
6043 | | // |
6044 | | void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode) |
6045 | 11.0k | { |
6046 | | // Set up convenience accessors to the argument(s). There is almost always |
6047 | | // multiple arguments for the cases below, but when there might be one, |
6048 | | // check the unaryArg first. |
6049 | 11.0k | const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference |
6050 | 11.0k | const TIntermTyped* unaryArg = nullptr; |
6051 | 11.0k | const TIntermTyped* arg0 = nullptr; |
6052 | 11.0k | if (callNode.getAsAggregate()) { |
6053 | 3.61k | argp = &callNode.getAsAggregate()->getSequence(); |
6054 | 3.61k | if (argp->size() > 0) |
6055 | 3.61k | arg0 = (*argp)[0]->getAsTyped(); |
6056 | 7.44k | } else { |
6057 | 7.44k | assert(callNode.getAsUnaryNode()); |
6058 | 7.44k | unaryArg = callNode.getAsUnaryNode()->getOperand(); |
6059 | 7.44k | arg0 = unaryArg; |
6060 | 7.44k | } |
6061 | 11.0k | const TIntermSequence& aggArgs = argp ? *argp : TIntermSequence(); // only valid when unaryArg is nullptr |
6062 | | |
6063 | 11.0k | switch (callNode.getOp()) { |
6064 | 0 | case EOpTextureGather: |
6065 | 0 | case EOpTextureGatherOffset: |
6066 | 0 | case EOpTextureGatherOffsets: |
6067 | 0 | { |
6068 | | // Figure out which variants are allowed by what extensions, |
6069 | | // and what arguments must be constant for which situations. |
6070 | |
|
6071 | 0 | TString featureString = fnCandidate.getName() + "(...)"; |
6072 | 0 | const char* feature = featureString.c_str(); |
6073 | 0 | int compArg = -1; // track which argument, if any, is the constant component argument |
6074 | 0 | switch (callNode.getOp()) { |
6075 | 0 | case EOpTextureGather: |
6076 | | // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5, |
6077 | | // otherwise, need GL_ARB_texture_gather. |
6078 | 0 | if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || |
6079 | 0 | fnCandidate[0].type->getSampler().shadow) { |
6080 | 0 | if (! fnCandidate[0].type->getSampler().shadow) |
6081 | 0 | compArg = 2; |
6082 | 0 | } |
6083 | 0 | break; |
6084 | 0 | case EOpTextureGatherOffset: |
6085 | | // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument |
6086 | 0 | if (! fnCandidate[0].type->getSampler().shadow) |
6087 | 0 | compArg = 3; |
6088 | 0 | break; |
6089 | 0 | case EOpTextureGatherOffsets: |
6090 | 0 | if (! fnCandidate[0].type->getSampler().shadow) |
6091 | 0 | compArg = 3; |
6092 | 0 | break; |
6093 | 0 | default: |
6094 | 0 | break; |
6095 | 0 | } |
6096 | | |
6097 | 0 | if (compArg > 0 && compArg < fnCandidate.getParamCount()) { |
6098 | 0 | if (aggArgs[compArg]->getAsConstantUnion()) { |
6099 | 0 | int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst(); |
6100 | 0 | if (value < 0 || value > 3) |
6101 | 0 | error(loc, "must be 0, 1, 2, or 3:", feature, "component argument"); |
6102 | 0 | } else |
6103 | 0 | error(loc, "must be a compile-time constant:", feature, "component argument"); |
6104 | 0 | } |
6105 | |
|
6106 | 0 | break; |
6107 | 0 | } |
6108 | | |
6109 | 0 | case EOpTextureOffset: |
6110 | 0 | case EOpTextureFetchOffset: |
6111 | 0 | case EOpTextureProjOffset: |
6112 | 0 | case EOpTextureLodOffset: |
6113 | 0 | case EOpTextureProjLodOffset: |
6114 | 0 | case EOpTextureGradOffset: |
6115 | 0 | case EOpTextureProjGradOffset: |
6116 | 0 | { |
6117 | | // Handle texture-offset limits checking |
6118 | | // Pick which argument has to hold constant offsets |
6119 | 0 | int arg = -1; |
6120 | 0 | switch (callNode.getOp()) { |
6121 | 0 | case EOpTextureOffset: arg = 2; break; |
6122 | 0 | case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break; |
6123 | 0 | case EOpTextureProjOffset: arg = 2; break; |
6124 | 0 | case EOpTextureLodOffset: arg = 3; break; |
6125 | 0 | case EOpTextureProjLodOffset: arg = 3; break; |
6126 | 0 | case EOpTextureGradOffset: arg = 4; break; |
6127 | 0 | case EOpTextureProjGradOffset: arg = 4; break; |
6128 | 0 | default: |
6129 | 0 | assert(0); |
6130 | 0 | break; |
6131 | 0 | } |
6132 | | |
6133 | 0 | if (arg > 0) { |
6134 | 0 | if (aggArgs[arg]->getAsConstantUnion() == nullptr) |
6135 | 0 | error(loc, "argument must be compile-time constant", "texel offset", ""); |
6136 | 0 | else { |
6137 | 0 | const TType& type = aggArgs[arg]->getAsTyped()->getType(); |
6138 | 0 | for (int c = 0; c < type.getVectorSize(); ++c) { |
6139 | 0 | int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst(); |
6140 | 0 | if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset) |
6141 | 0 | error(loc, "value is out of range:", "texel offset", |
6142 | 0 | "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]"); |
6143 | 0 | } |
6144 | 0 | } |
6145 | 0 | } |
6146 | |
|
6147 | 0 | break; |
6148 | 0 | } |
6149 | | |
6150 | 0 | case EOpTextureQuerySamples: |
6151 | 0 | case EOpImageQuerySamples: |
6152 | 0 | break; |
6153 | | |
6154 | 0 | case EOpImageAtomicAdd: |
6155 | 0 | case EOpImageAtomicMin: |
6156 | 0 | case EOpImageAtomicMax: |
6157 | 0 | case EOpImageAtomicAnd: |
6158 | 0 | case EOpImageAtomicOr: |
6159 | 0 | case EOpImageAtomicXor: |
6160 | 0 | case EOpImageAtomicExchange: |
6161 | 0 | case EOpImageAtomicCompSwap: |
6162 | 0 | break; |
6163 | | |
6164 | 0 | case EOpInterpolateAtCentroid: |
6165 | 0 | case EOpInterpolateAtSample: |
6166 | 0 | case EOpInterpolateAtOffset: |
6167 | | // TODO(greg-lunarg): Re-enable this check. It currently gives false errors for builtins |
6168 | | // defined and passed as members of a struct. In this case the storage class is showing to be |
6169 | | // Function. See glslang #2584 |
6170 | | |
6171 | | // Make sure the first argument is an interpolant, or an array element of an interpolant |
6172 | | // if (arg0->getType().getQualifier().storage != EvqVaryingIn) { |
6173 | | // It might still be an array element. |
6174 | | // |
6175 | | // We could check more, but the semantics of the first argument are already met; the |
6176 | | // only way to turn an array into a float/vec* is array dereference and swizzle. |
6177 | | // |
6178 | | // ES and desktop 4.3 and earlier: swizzles may not be used |
6179 | | // desktop 4.4 and later: swizzles may be used |
6180 | | // const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true); |
6181 | | // if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn) |
6182 | | // error(loc, "first argument must be an interpolant, or interpolant-array element", |
6183 | | // fnCandidate.getName().c_str(), ""); |
6184 | | // } |
6185 | 0 | break; |
6186 | | |
6187 | 11.0k | default: |
6188 | 11.0k | break; |
6189 | 11.0k | } |
6190 | 11.0k | } |
6191 | | |
6192 | | // |
6193 | | // Handle seeing something in a grammar production that can be done by calling |
6194 | | // a constructor. |
6195 | | // |
6196 | | // The constructor still must be "handled" by handleFunctionCall(), which will |
6197 | | // then call handleConstructor(). |
6198 | | // |
6199 | | TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type) |
6200 | 7.51k | { |
6201 | 7.51k | TOperator op = intermediate.mapTypeToConstructorOp(type); |
6202 | | |
6203 | 7.51k | if (op == EOpNull) { |
6204 | 36 | error(loc, "cannot construct this type", type.getBasicString(), ""); |
6205 | 36 | return nullptr; |
6206 | 36 | } |
6207 | | |
6208 | 7.48k | TString empty(""); |
6209 | | |
6210 | 7.48k | return new TFunction(&empty, type, op); |
6211 | 7.51k | } |
6212 | | |
6213 | | // |
6214 | | // Handle seeing a "COLON semantic" at the end of a type declaration, |
6215 | | // by updating the type according to the semantic. |
6216 | | // |
6217 | | void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn, |
6218 | | const TString& upperCase) |
6219 | 1.25k | { |
6220 | | // Parse and return semantic number. If limit is 0, it will be ignored. Otherwise, if the parsed |
6221 | | // semantic number is >= limit, errorMsg is issued and 0 is returned. |
6222 | | // TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet |
6223 | | // accept those in lambda functions. |
6224 | 1.25k | const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int { |
6225 | 56 | size_t pos = semantic.find_last_not_of("0123456789"); |
6226 | 56 | if (pos == std::string::npos) |
6227 | 0 | return 0u; |
6228 | | |
6229 | 56 | unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1); |
6230 | | |
6231 | 56 | if (limit != 0 && semanticNum >= limit) { |
6232 | 4 | error(loc, errorMsg, semantic.c_str(), ""); |
6233 | 4 | return 0u; |
6234 | 4 | } |
6235 | | |
6236 | 52 | return semanticNum; |
6237 | 56 | }; |
6238 | | |
6239 | 1.25k | if (builtIn == EbvNone && hlslDX9Compatible()) { |
6240 | 0 | if (language == EShLangVertex) { |
6241 | 0 | if (qualifier.isParamOutput()) { |
6242 | 0 | if (upperCase == "POSITION") { |
6243 | 0 | builtIn = EbvPosition; |
6244 | 0 | } |
6245 | 0 | if (upperCase == "PSIZE") { |
6246 | 0 | builtIn = EbvPointSize; |
6247 | 0 | } |
6248 | 0 | } |
6249 | 0 | } else if (language == EShLangFragment) { |
6250 | 0 | if (qualifier.isParamInput() && upperCase == "VPOS") { |
6251 | 0 | builtIn = EbvFragCoord; |
6252 | 0 | } |
6253 | 0 | if (qualifier.isParamOutput()) { |
6254 | 0 | if (upperCase.compare(0, 5, "COLOR") == 0) { |
6255 | 0 | qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr); |
6256 | 0 | nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u); |
6257 | 0 | } |
6258 | 0 | if (upperCase == "DEPTH") { |
6259 | 0 | builtIn = EbvFragDepth; |
6260 | 0 | } |
6261 | 0 | } |
6262 | 0 | } |
6263 | 0 | } |
6264 | | |
6265 | 1.25k | switch(builtIn) { |
6266 | 1.12k | case EbvNone: |
6267 | | // Get location numbers from fragment outputs, instead of |
6268 | | // auto-assigning them. |
6269 | 1.12k | if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) { |
6270 | 20 | qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr); |
6271 | 20 | nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u); |
6272 | 1.10k | } else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) { |
6273 | 26 | builtIn = EbvClipDistance; |
6274 | 26 | qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic"); |
6275 | 1.07k | } else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) { |
6276 | 10 | builtIn = EbvCullDistance; |
6277 | 10 | qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic"); |
6278 | 10 | } |
6279 | 1.12k | break; |
6280 | 48 | case EbvPosition: |
6281 | | // adjust for stage in/out |
6282 | 48 | if (language == EShLangFragment) |
6283 | 2 | builtIn = EbvFragCoord; |
6284 | 48 | break; |
6285 | 0 | case EbvFragStencilRef: |
6286 | 0 | error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", ""); |
6287 | 0 | break; |
6288 | 0 | case EbvTessLevelInner: |
6289 | 0 | case EbvTessLevelOuter: |
6290 | 0 | qualifier.patch = true; |
6291 | 0 | break; |
6292 | 82 | default: |
6293 | 82 | break; |
6294 | 1.25k | } |
6295 | | |
6296 | 1.25k | if (qualifier.builtIn == EbvNone) |
6297 | 1.23k | qualifier.builtIn = builtIn; |
6298 | 1.25k | qualifier.semanticName = intermediate.addSemanticName(upperCase); |
6299 | 1.25k | } |
6300 | | |
6301 | | // |
6302 | | // Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN" |
6303 | | // |
6304 | | // 'location' has the "c[Subcomponent]" part. |
6305 | | // 'component' points to the "component" part, or nullptr if not present. |
6306 | | // |
6307 | | void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location, |
6308 | | const glslang::TString* component) |
6309 | 106 | { |
6310 | 106 | if (location.size() == 0 || location[0] != 'c') { |
6311 | 2 | error(loc, "expected 'c'", "packoffset", ""); |
6312 | 2 | return; |
6313 | 2 | } |
6314 | 104 | if (location.size() == 1) |
6315 | 12 | return; |
6316 | 92 | if (! isdigit(location[1])) { |
6317 | 0 | error(loc, "expected number after 'c'", "packoffset", ""); |
6318 | 0 | return; |
6319 | 0 | } |
6320 | | |
6321 | 92 | qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str()); |
6322 | 92 | if (component != nullptr) { |
6323 | 50 | int componentOffset = 0; |
6324 | 50 | switch ((*component)[0]) { |
6325 | 10 | case 'x': componentOffset = 0; break; |
6326 | 24 | case 'y': componentOffset = 4; break; |
6327 | 6 | case 'z': componentOffset = 8; break; |
6328 | 10 | case 'w': componentOffset = 12; break; |
6329 | 0 | default: |
6330 | 0 | componentOffset = -1; |
6331 | 0 | break; |
6332 | 50 | } |
6333 | 50 | if (componentOffset < 0 || component->size() > 1) { |
6334 | 0 | error(loc, "expected {x, y, z, w} for component", "packoffset", ""); |
6335 | 0 | return; |
6336 | 0 | } |
6337 | 50 | qualifier.layoutOffset += componentOffset; |
6338 | 50 | } |
6339 | 92 | } |
6340 | | |
6341 | | // |
6342 | | // Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN" |
6343 | | // |
6344 | | // 'profile' points to the shader_profile part, or nullptr if not present. |
6345 | | // 'desc' is the type# part. |
6346 | | // |
6347 | | void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile, |
6348 | | const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc) |
6349 | 1.04k | { |
6350 | 1.04k | if (profile != nullptr) |
6351 | 2 | warn(loc, "ignoring shader_profile", "register", ""); |
6352 | | |
6353 | 1.04k | if (desc.size() < 1) { |
6354 | 0 | error(loc, "expected register type", "register", ""); |
6355 | 0 | return; |
6356 | 0 | } |
6357 | | |
6358 | 1.04k | int regNumber = 0; |
6359 | 1.04k | if (desc.size() > 1) { |
6360 | 1.03k | if (isdigit(desc[1])) |
6361 | 1.03k | regNumber = atoi(desc.substr(1, desc.size()).c_str()); |
6362 | 2 | else { |
6363 | 2 | error(loc, "expected register number after register type", "register", ""); |
6364 | 2 | return; |
6365 | 2 | } |
6366 | 1.03k | } |
6367 | | |
6368 | | // more information about register types see |
6369 | | // https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-variable-register |
6370 | 1.03k | const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding(); |
6371 | 1.03k | switch (std::tolower(desc[0])) { |
6372 | 2 | case 'c': |
6373 | | // c register is the register slot in the global const buffer |
6374 | | // each slot is a vector of 4 32 bit components |
6375 | 2 | qualifier.layoutOffset = regNumber * 4 * 4; |
6376 | 2 | break; |
6377 | | // const buffer register slot |
6378 | 38 | case 'b': |
6379 | | // textrues and structured buffers |
6380 | 552 | case 't': |
6381 | | // samplers |
6382 | 910 | case 's': |
6383 | | // uav resources |
6384 | 1.03k | case 'u': |
6385 | | // if nothing else has set the binding, do so now |
6386 | | // (other mechanisms override this one) |
6387 | 1.03k | if (!qualifier.hasBinding()) |
6388 | 1.02k | qualifier.layoutBinding = regNumber + subComponent; |
6389 | | |
6390 | | // This handles per-register layout sets numbers. For the global mode which sets |
6391 | | // every symbol to the same value, see setLinkageLayoutSets(). |
6392 | 1.03k | if ((resourceInfo.size() % 3) == 0) { |
6393 | | // Apply per-symbol resource set and binding. |
6394 | 1.03k | for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) { |
6395 | 0 | if (strcmp(desc.c_str(), it[0].c_str()) == 0) { |
6396 | 0 | qualifier.layoutSet = atoi(it[1].c_str()); |
6397 | 0 | qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent; |
6398 | 0 | break; |
6399 | 0 | } |
6400 | 0 | } |
6401 | 1.03k | } |
6402 | 1.03k | break; |
6403 | 6 | default: |
6404 | 6 | warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]); |
6405 | 6 | break; |
6406 | 1.03k | } |
6407 | | |
6408 | | // space |
6409 | 1.03k | unsigned int setNumber; |
6410 | 1.03k | const auto crackSpace = [&]() -> bool { |
6411 | 224 | const int spaceLen = 5; |
6412 | 224 | if (spaceDesc->size() < spaceLen + 1) |
6413 | 2 | return false; |
6414 | 222 | if (spaceDesc->compare(0, spaceLen, "space") != 0) |
6415 | 6 | return false; |
6416 | 216 | if (! isdigit((*spaceDesc)[spaceLen])) |
6417 | 4 | return false; |
6418 | 212 | setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str()); |
6419 | 212 | return true; |
6420 | 216 | }; |
6421 | | |
6422 | | // if nothing else has set the set, do so now |
6423 | | // (other mechanisms override this one) |
6424 | 1.03k | if (spaceDesc && !qualifier.hasSet()) { |
6425 | 224 | if (! crackSpace()) { |
6426 | 12 | error(loc, "expected spaceN", "register", ""); |
6427 | 12 | return; |
6428 | 12 | } |
6429 | 212 | qualifier.layoutSet = setNumber; |
6430 | 212 | } |
6431 | 1.03k | } |
6432 | | |
6433 | | // Convert to a scalar boolean, or if not allowed by HLSL semantics, |
6434 | | // report an error and return nullptr. |
6435 | | TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition, |
6436 | | bool mustBeScalar) |
6437 | 280 | { |
6438 | 280 | if (mustBeScalar && !condition->getType().isScalarOrVec1()) { |
6439 | 0 | error(loc, "requires a scalar", "conditional expression", ""); |
6440 | 0 | return nullptr; |
6441 | 0 | } |
6442 | | |
6443 | 280 | return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()), |
6444 | 280 | condition); |
6445 | 280 | } |
6446 | | |
6447 | | // |
6448 | | // Same error message for all places assignments don't work. |
6449 | | // |
6450 | | void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right) |
6451 | 1.57k | { |
6452 | 1.57k | error(loc, "", op, "cannot convert from '%s' to '%s'", |
6453 | 1.57k | right.c_str(), left.c_str()); |
6454 | 1.57k | } |
6455 | | |
6456 | | // |
6457 | | // Same error message for all places unary operations don't work. |
6458 | | // |
6459 | | void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand) |
6460 | 0 | { |
6461 | 0 | error(loc, " wrong operand type", op, |
6462 | 0 | "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)", |
6463 | 0 | op, operand.c_str()); |
6464 | 0 | } |
6465 | | |
6466 | | // |
6467 | | // Same error message for all binary operations don't work. |
6468 | | // |
6469 | | void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right) |
6470 | 20 | { |
6471 | 20 | error(loc, " wrong operand types:", op, |
6472 | 20 | "no operation '%s' exists that takes a left-hand operand of type '%s' and " |
6473 | 20 | "a right operand of type '%s' (or there is no acceptable conversion)", |
6474 | 20 | op, left.c_str(), right.c_str()); |
6475 | 20 | } |
6476 | | |
6477 | | // |
6478 | | // A basic type of EbtVoid is a key that the name string was seen in the source, but |
6479 | | // it was not found as a variable in the symbol table. If so, give the error |
6480 | | // message and insert a dummy variable in the symbol table to prevent future errors. |
6481 | | // |
6482 | | void HlslParseContext::variableCheck(TIntermTyped*& nodePtr) |
6483 | 2.65k | { |
6484 | 2.65k | TIntermSymbol* symbol = nodePtr->getAsSymbolNode(); |
6485 | 2.65k | if (! symbol) |
6486 | 352 | return; |
6487 | | |
6488 | 2.29k | if (symbol->getType().getBasicType() == EbtVoid) { |
6489 | 158 | error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), ""); |
6490 | | |
6491 | | // Add to symbol table to prevent future error messages on the same name |
6492 | 158 | if (symbol->getName().size() > 0) { |
6493 | 158 | TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat)); |
6494 | 158 | symbolTable.insert(*fakeVariable); |
6495 | | |
6496 | | // substitute a symbol node for this new variable |
6497 | 158 | nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc()); |
6498 | 158 | } |
6499 | 158 | } |
6500 | 2.29k | } |
6501 | | |
6502 | | // |
6503 | | // Both test, and if necessary spit out an error, to see if the node is really |
6504 | | // a constant. |
6505 | | // |
6506 | | void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token) |
6507 | 0 | { |
6508 | 0 | if (node->getQualifier().storage != EvqConst) |
6509 | 0 | error(node->getLoc(), "constant expression required", token, ""); |
6510 | 0 | } |
6511 | | |
6512 | | // |
6513 | | // Both test, and if necessary spit out an error, to see if the node is really |
6514 | | // an integer. |
6515 | | // |
6516 | | void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token) |
6517 | 590 | { |
6518 | 590 | if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar()) |
6519 | 584 | return; |
6520 | | |
6521 | 6 | error(node->getLoc(), "scalar integer expression required", token, ""); |
6522 | 6 | } |
6523 | | |
6524 | | // |
6525 | | // Both test, and if necessary spit out an error, to see if we are currently |
6526 | | // globally scoped. |
6527 | | // |
6528 | | void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token) |
6529 | 0 | { |
6530 | 0 | if (! symbolTable.atGlobalLevel()) |
6531 | 0 | error(loc, "not allowed in nested scope", token, ""); |
6532 | 0 | } |
6533 | | |
6534 | | bool HlslParseContext::builtInName(const TString& /*identifier*/) |
6535 | 26 | { |
6536 | 26 | return false; |
6537 | 26 | } |
6538 | | |
6539 | | // |
6540 | | // Make sure there is enough data and not too many arguments provided to the |
6541 | | // constructor to build something of the type of the constructor. Also returns |
6542 | | // the type of the constructor. |
6543 | | // |
6544 | | // Returns true if there was an error in construction. |
6545 | | // |
6546 | | bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function, |
6547 | | TOperator op, TType& type) |
6548 | 7.24k | { |
6549 | 7.24k | type.shallowCopy(function.getType()); |
6550 | | |
6551 | 7.24k | bool constructingMatrix = false; |
6552 | 7.24k | switch (op) { |
6553 | 0 | case EOpConstructTextureSampler: |
6554 | 0 | error(loc, "unhandled texture constructor", "constructor", ""); |
6555 | 0 | return true; |
6556 | 318 | case EOpConstructMat2x2: |
6557 | 624 | case EOpConstructMat2x3: |
6558 | 962 | case EOpConstructMat2x4: |
6559 | 1.29k | case EOpConstructMat3x2: |
6560 | 1.68k | case EOpConstructMat3x3: |
6561 | 2.13k | case EOpConstructMat3x4: |
6562 | 2.49k | case EOpConstructMat4x2: |
6563 | 2.90k | case EOpConstructMat4x3: |
6564 | 3.44k | case EOpConstructMat4x4: |
6565 | 3.44k | case EOpConstructDMat2x2: |
6566 | 3.44k | case EOpConstructDMat2x3: |
6567 | 3.44k | case EOpConstructDMat2x4: |
6568 | 3.44k | case EOpConstructDMat3x2: |
6569 | 3.44k | case EOpConstructDMat3x3: |
6570 | 3.44k | case EOpConstructDMat3x4: |
6571 | 3.44k | case EOpConstructDMat4x2: |
6572 | 3.44k | case EOpConstructDMat4x3: |
6573 | 3.44k | case EOpConstructDMat4x4: |
6574 | 3.44k | case EOpConstructIMat2x2: |
6575 | 3.44k | case EOpConstructIMat2x3: |
6576 | 3.44k | case EOpConstructIMat2x4: |
6577 | 3.48k | case EOpConstructIMat3x2: |
6578 | 3.48k | case EOpConstructIMat3x3: |
6579 | 3.48k | case EOpConstructIMat3x4: |
6580 | 3.54k | case EOpConstructIMat4x2: |
6581 | 3.54k | case EOpConstructIMat4x3: |
6582 | 3.60k | case EOpConstructIMat4x4: |
6583 | 3.60k | case EOpConstructUMat2x2: |
6584 | 3.60k | case EOpConstructUMat2x3: |
6585 | 3.60k | case EOpConstructUMat2x4: |
6586 | 3.63k | case EOpConstructUMat3x2: |
6587 | 3.63k | case EOpConstructUMat3x3: |
6588 | 3.63k | case EOpConstructUMat3x4: |
6589 | 3.65k | case EOpConstructUMat4x2: |
6590 | 3.65k | case EOpConstructUMat4x3: |
6591 | 3.70k | case EOpConstructUMat4x4: |
6592 | 3.70k | case EOpConstructBMat2x2: |
6593 | 3.70k | case EOpConstructBMat2x3: |
6594 | 3.70k | case EOpConstructBMat2x4: |
6595 | 3.71k | case EOpConstructBMat3x2: |
6596 | 3.71k | case EOpConstructBMat3x3: |
6597 | 3.71k | case EOpConstructBMat3x4: |
6598 | 3.72k | case EOpConstructBMat4x2: |
6599 | 3.72k | case EOpConstructBMat4x3: |
6600 | 3.74k | case EOpConstructBMat4x4: |
6601 | 3.74k | constructingMatrix = true; |
6602 | 3.74k | break; |
6603 | 3.50k | default: |
6604 | 3.50k | break; |
6605 | 7.24k | } |
6606 | | |
6607 | | // |
6608 | | // Walk the arguments for first-pass checks and collection of information. |
6609 | | // |
6610 | | |
6611 | 7.24k | int size = 0; |
6612 | 7.24k | bool constType = true; |
6613 | 7.24k | bool full = false; |
6614 | 7.24k | bool overFull = false; |
6615 | 7.24k | bool matrixInMatrix = false; |
6616 | 7.24k | bool arrayArg = false; |
6617 | 49.7k | for (int arg = 0; arg < function.getParamCount(); ++arg) { |
6618 | 42.4k | if (function[arg].type->isArray()) { |
6619 | 8 | if (function[arg].type->isUnsizedArray()) { |
6620 | | // Can't construct from an unsized array. |
6621 | 0 | error(loc, "array argument must be sized", "constructor", ""); |
6622 | 0 | return true; |
6623 | 0 | } |
6624 | 8 | arrayArg = true; |
6625 | 8 | } |
6626 | 42.4k | if (constructingMatrix && function[arg].type->isMatrix()) |
6627 | 0 | matrixInMatrix = true; |
6628 | | |
6629 | | // 'full' will go to true when enough args have been seen. If we loop |
6630 | | // again, there is an extra argument. |
6631 | 42.4k | if (full) { |
6632 | | // For vectors and matrices, it's okay to have too many components |
6633 | | // available, but not okay to have unused arguments. |
6634 | 116 | overFull = true; |
6635 | 116 | } |
6636 | | |
6637 | 42.4k | size += function[arg].type->computeNumComponents(); |
6638 | 42.4k | if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents()) |
6639 | 6.76k | full = true; |
6640 | | |
6641 | 42.4k | if (function[arg].type->getQualifier().storage != EvqConst) |
6642 | 310 | constType = false; |
6643 | 42.4k | } |
6644 | | |
6645 | 7.24k | if (constType) |
6646 | 6.97k | type.getQualifier().storage = EvqConst; |
6647 | | |
6648 | 7.24k | if (type.isArray()) { |
6649 | 30 | if (function.getParamCount() == 0) { |
6650 | 0 | error(loc, "array constructor must have at least one argument", "constructor", ""); |
6651 | 0 | return true; |
6652 | 0 | } |
6653 | | |
6654 | 30 | if (type.isUnsizedArray()) { |
6655 | | // auto adapt the constructor type to the number of arguments |
6656 | 0 | type.changeOuterArraySize(function.getParamCount()); |
6657 | 30 | } else if (type.getOuterArraySize() != function.getParamCount() && type.computeNumComponents() > size) { |
6658 | 6 | error(loc, "array constructor needs one argument per array element", "constructor", ""); |
6659 | 6 | return true; |
6660 | 6 | } |
6661 | | |
6662 | 24 | if (type.isArrayOfArrays()) { |
6663 | | // Types have to match, but we're still making the type. |
6664 | | // Finish making the type, and the comparison is done later |
6665 | | // when checking for conversion. |
6666 | 0 | TArraySizes& arraySizes = *type.getArraySizes(); |
6667 | | |
6668 | | // At least the dimensionalities have to match. |
6669 | 0 | if (! function[0].type->isArray() || |
6670 | 0 | arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) { |
6671 | 0 | error(loc, "array constructor argument not correct type to construct array element", "constructor", ""); |
6672 | 0 | return true; |
6673 | 0 | } |
6674 | | |
6675 | 0 | if (arraySizes.isInnerUnsized()) { |
6676 | | // "Arrays of arrays ..., and the size for any dimension is optional" |
6677 | | // That means we need to adopt (from the first argument) the other array sizes into the type. |
6678 | 0 | for (int d = 1; d < arraySizes.getNumDims(); ++d) { |
6679 | 0 | if (arraySizes.getDimSize(d) == UnsizedArraySize) { |
6680 | 0 | arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1)); |
6681 | 0 | } |
6682 | 0 | } |
6683 | 0 | } |
6684 | 0 | } |
6685 | 24 | } |
6686 | | |
6687 | | // Some array -> array type casts are okay |
6688 | 7.23k | if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() && |
6689 | 0 | !type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() && |
6690 | 0 | type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1) |
6691 | 0 | return false; |
6692 | | |
6693 | 7.23k | if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) { |
6694 | 0 | error(loc, "constructing non-array constituent from array argument", "constructor", ""); |
6695 | 0 | return true; |
6696 | 0 | } |
6697 | | |
6698 | 7.23k | if (matrixInMatrix && ! type.isArray()) { |
6699 | 0 | return false; |
6700 | 0 | } |
6701 | | |
6702 | 7.23k | if (overFull) { |
6703 | 44 | error(loc, "too many arguments", "constructor", ""); |
6704 | 44 | return true; |
6705 | 44 | } |
6706 | | |
6707 | 7.19k | if (op == EOpConstructStruct && ! type.isArray()) { |
6708 | 22 | if (isScalarConstructor(node)) |
6709 | 0 | return false; |
6710 | | |
6711 | | // Self-type construction: e.g, we can construct a struct from a single identically typed object. |
6712 | 22 | if (function.getParamCount() == 1 && type == *function[0].type) |
6713 | 20 | return false; |
6714 | | |
6715 | 2 | if ((int)type.getStruct()->size() != function.getParamCount()) { |
6716 | 2 | error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", ""); |
6717 | 2 | return true; |
6718 | 2 | } |
6719 | 2 | } |
6720 | | |
6721 | 7.17k | if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) || |
6722 | 7.01k | (op == EOpConstructStruct && size < type.computeNumComponents())) { |
6723 | 152 | error(loc, "not enough data provided for construction", "constructor", ""); |
6724 | 152 | return true; |
6725 | 152 | } |
6726 | | |
6727 | 7.01k | return false; |
6728 | 7.17k | } |
6729 | | |
6730 | | // See if 'node', in the context of constructing aggregates, is a scalar argument |
6731 | | // to a constructor. |
6732 | | // |
6733 | | bool HlslParseContext::isScalarConstructor(const TIntermNode* node) |
6734 | 22 | { |
6735 | | // Obviously, it must be a scalar, but an aggregate node might not be fully |
6736 | | // completed yet: holding a sequence of initializers under an aggregate |
6737 | | // would not yet be typed, so don't check it's type. This corresponds to |
6738 | | // the aggregate operator also not being set yet. (An aggregate operation |
6739 | | // that legitimately yields a scalar will have a getOp() of that operator, |
6740 | | // not EOpNull.) |
6741 | | |
6742 | 22 | return node->getAsTyped() != nullptr && |
6743 | 22 | node->getAsTyped()->isScalar() && |
6744 | 0 | (node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull); |
6745 | 22 | } |
6746 | | |
6747 | | // Checks to see if a void variable has been declared and raise an error message for such a case |
6748 | | // |
6749 | | // returns true in case of an error |
6750 | | // |
6751 | | bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType) |
6752 | 26.3k | { |
6753 | 26.3k | if (basicType == EbtVoid) { |
6754 | 24 | error(loc, "illegal use of type 'void'", identifier.c_str(), ""); |
6755 | 24 | return true; |
6756 | 24 | } |
6757 | | |
6758 | 26.2k | return false; |
6759 | 26.3k | } |
6760 | | |
6761 | | // |
6762 | | // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level. |
6763 | | // |
6764 | | void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier) |
6765 | 1.26k | { |
6766 | | // move from parameter/unknown qualifiers to pipeline in/out qualifiers |
6767 | 1.26k | switch (qualifier.storage) { |
6768 | 384 | case EvqIn: |
6769 | 384 | qualifier.storage = EvqVaryingIn; |
6770 | 384 | break; |
6771 | 0 | case EvqOut: |
6772 | 0 | qualifier.storage = EvqVaryingOut; |
6773 | 0 | break; |
6774 | 882 | default: |
6775 | 882 | break; |
6776 | 1.26k | } |
6777 | 1.26k | } |
6778 | | |
6779 | | // |
6780 | | // Merge characteristics of the 'src' qualifier into the 'dst'. |
6781 | | // |
6782 | | void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src) |
6783 | 1.91k | { |
6784 | | // Storage qualification |
6785 | 1.91k | if (dst.storage == EvqTemporary || dst.storage == EvqGlobal) |
6786 | 1.35k | dst.storage = src.storage; |
6787 | 564 | else if ((dst.storage == EvqIn && src.storage == EvqOut) || |
6788 | 564 | (dst.storage == EvqOut && src.storage == EvqIn)) |
6789 | 0 | dst.storage = EvqInOut; |
6790 | 564 | else if ((dst.storage == EvqIn && src.storage == EvqConst) || |
6791 | 564 | (dst.storage == EvqConst && src.storage == EvqIn)) |
6792 | 0 | dst.storage = EvqConstReadOnly; |
6793 | | |
6794 | | // Layout qualifiers |
6795 | 1.91k | mergeObjectLayoutQualifiers(dst, src, false); |
6796 | | |
6797 | | // individual qualifiers |
6798 | 28.7k | #define MERGE_SINGLETON(field) dst.field |= src.field; |
6799 | 1.91k | MERGE_SINGLETON(invariant); |
6800 | 1.91k | MERGE_SINGLETON(noContraction); |
6801 | 1.91k | MERGE_SINGLETON(centroid); |
6802 | 1.91k | MERGE_SINGLETON(smooth); |
6803 | 1.91k | MERGE_SINGLETON(flat); |
6804 | 1.91k | MERGE_SINGLETON(nopersp); |
6805 | 1.91k | MERGE_SINGLETON(patch); |
6806 | 1.91k | MERGE_SINGLETON(sample); |
6807 | 1.91k | MERGE_SINGLETON(coherent); |
6808 | 1.91k | MERGE_SINGLETON(volatil); |
6809 | 1.91k | MERGE_SINGLETON(restrict); |
6810 | 1.91k | MERGE_SINGLETON(readonly); |
6811 | 1.91k | MERGE_SINGLETON(writeonly); |
6812 | 1.91k | MERGE_SINGLETON(specConstant); |
6813 | 1.91k | MERGE_SINGLETON(nonUniform); |
6814 | 1.91k | } |
6815 | | |
6816 | | // used to flatten the sampler type space into a single dimension |
6817 | | // correlates with the declaration of defaultSamplerPrecision[] |
6818 | | int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler) |
6819 | 0 | { |
6820 | 0 | int arrayIndex = sampler.arrayed ? 1 : 0; |
6821 | 0 | int shadowIndex = sampler.shadow ? 1 : 0; |
6822 | 0 | int externalIndex = sampler.external ? 1 : 0; |
6823 | |
|
6824 | 0 | return EsdNumDims * |
6825 | 0 | (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim; |
6826 | 0 | } |
6827 | | |
6828 | | // |
6829 | | // Do size checking for an array type's size. |
6830 | | // |
6831 | | void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair) |
6832 | 484 | { |
6833 | 484 | bool isConst = false; |
6834 | 484 | sizePair.size = 1; |
6835 | 484 | sizePair.node = nullptr; |
6836 | | |
6837 | 484 | TIntermConstantUnion* constant = expr->getAsConstantUnion(); |
6838 | 484 | if (constant) { |
6839 | | // handle true (non-specialization) constant |
6840 | 472 | sizePair.size = constant->getConstArray()[0].getIConst(); |
6841 | 472 | isConst = true; |
6842 | 472 | } else { |
6843 | | // see if it's a specialization constant instead |
6844 | 12 | if (expr->getQualifier().isSpecConstant()) { |
6845 | 0 | isConst = true; |
6846 | 0 | sizePair.node = expr; |
6847 | 0 | TIntermSymbol* symbol = expr->getAsSymbolNode(); |
6848 | 0 | if (symbol && symbol->getConstArray().size() > 0) |
6849 | 0 | sizePair.size = symbol->getConstArray()[0].getIConst(); |
6850 | 0 | } |
6851 | 12 | } |
6852 | | |
6853 | 484 | if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) { |
6854 | 12 | error(loc, "array size must be a constant integer expression", "", ""); |
6855 | 12 | return; |
6856 | 12 | } |
6857 | | |
6858 | 472 | if (sizePair.size <= 0) { |
6859 | 2 | error(loc, "array size must be a positive integer", "", ""); |
6860 | 2 | return; |
6861 | 2 | } |
6862 | 472 | } |
6863 | | |
6864 | | // |
6865 | | // Require array to be completely sized |
6866 | | // |
6867 | | void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes) |
6868 | 0 | { |
6869 | 0 | if (arraySizes.hasUnsized()) |
6870 | 0 | error(loc, "array size required", "", ""); |
6871 | 0 | } |
6872 | | |
6873 | | void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type) |
6874 | 0 | { |
6875 | 0 | const TTypeList& structure = *type.getStruct(); |
6876 | 0 | for (int m = 0; m < (int)structure.size(); ++m) { |
6877 | 0 | const TType& member = *structure[m].type; |
6878 | 0 | if (member.isArray()) |
6879 | 0 | arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes()); |
6880 | 0 | } |
6881 | 0 | } |
6882 | | |
6883 | | // |
6884 | | // Do all the semantic checking for declaring or redeclaring an array, with and |
6885 | | // without a size, and make the right changes to the symbol table. |
6886 | | // |
6887 | | void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type, |
6888 | | TSymbol*& symbol, bool track) |
6889 | 192 | { |
6890 | 192 | if (symbol == nullptr) { |
6891 | 192 | bool currentScope; |
6892 | 192 | symbol = symbolTable.find(identifier, nullptr, ¤tScope); |
6893 | | |
6894 | 192 | if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) { |
6895 | | // bad shader (errors already reported) trying to redeclare a built-in name as an array |
6896 | 0 | return; |
6897 | 0 | } |
6898 | 192 | if (symbol == nullptr || ! currentScope) { |
6899 | | // |
6900 | | // Successfully process a new definition. |
6901 | | // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations) |
6902 | | // |
6903 | 190 | symbol = new TVariable(&identifier, type); |
6904 | 190 | symbolTable.insert(*symbol); |
6905 | 190 | if (track && symbolTable.atGlobalLevel()) |
6906 | 100 | trackLinkage(*symbol); |
6907 | | |
6908 | 190 | return; |
6909 | 190 | } |
6910 | 2 | if (symbol->getAsAnonMember()) { |
6911 | 0 | error(loc, "cannot redeclare a user-block member array", identifier.c_str(), ""); |
6912 | 0 | symbol = nullptr; |
6913 | 0 | return; |
6914 | 0 | } |
6915 | 2 | } |
6916 | | |
6917 | | // |
6918 | | // Process a redeclaration. |
6919 | | // |
6920 | | |
6921 | 2 | if (symbol == nullptr) { |
6922 | 0 | error(loc, "array variable name expected", identifier.c_str(), ""); |
6923 | 0 | return; |
6924 | 0 | } |
6925 | | |
6926 | | // redeclareBuiltinVariable() should have already done the copyUp() |
6927 | 2 | TType& existingType = symbol->getWritableType(); |
6928 | | |
6929 | 2 | if (existingType.isSizedArray()) { |
6930 | | // be more lenient for input arrays to geometry shaders and tessellation control outputs, |
6931 | | // where the redeclaration is the same size |
6932 | 2 | return; |
6933 | 2 | } |
6934 | | |
6935 | 0 | existingType.updateArraySizes(type); |
6936 | 0 | } |
6937 | | |
6938 | | // |
6939 | | // Enforce non-initializer type/qualifier rules. |
6940 | | // |
6941 | | void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type, |
6942 | | TIntermTyped*& initializer) |
6943 | 26.2k | { |
6944 | | // |
6945 | | // Make the qualifier make sense, given that there is an initializer. |
6946 | | // |
6947 | 26.2k | if (initializer == nullptr) { |
6948 | 9.80k | if (type.getQualifier().storage == EvqConst || |
6949 | 9.67k | type.getQualifier().storage == EvqConstReadOnly) { |
6950 | 132 | initializer = intermediate.makeAggregate(loc); |
6951 | 132 | warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), ""); |
6952 | 132 | } |
6953 | 9.80k | } |
6954 | 26.2k | } |
6955 | | |
6956 | | // |
6957 | | // See if the identifier is a built-in symbol that can be redeclared, and if so, |
6958 | | // copy the symbol table's read-only built-in variable to the current |
6959 | | // global level, where it can be modified based on the passed in type. |
6960 | | // |
6961 | | // Returns nullptr if no redeclaration took place; meaning a normal declaration still |
6962 | | // needs to occur for it, not necessarily an error. |
6963 | | // |
6964 | | // Returns a redeclared and type-modified variable if a redeclared occurred. |
6965 | | // |
6966 | | TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier, |
6967 | | const TQualifier& /*qualifier*/, |
6968 | | const TShaderQualifiers& /*publicType*/) |
6969 | 0 | { |
6970 | 0 | if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel()) |
6971 | 0 | return nullptr; |
6972 | | |
6973 | 0 | return nullptr; |
6974 | 0 | } |
6975 | | |
6976 | | // |
6977 | | // Generate index to the array element in a structure buffer (SSBO) |
6978 | | // |
6979 | | TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const |
6980 | 9.78k | { |
6981 | | // Bail out if not a struct buffer |
6982 | 9.78k | if (buffer == nullptr || ! isStructBufferType(buffer->getType())) |
6983 | 9.42k | return nullptr; |
6984 | | |
6985 | | // Runtime sized array is always the last element. |
6986 | 358 | const TTypeList* bufferStruct = buffer->getType().getStruct(); |
6987 | 358 | TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc); |
6988 | | |
6989 | 358 | TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc); |
6990 | 358 | argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type); |
6991 | | |
6992 | 358 | return argArray; |
6993 | 9.78k | } |
6994 | | |
6995 | | // |
6996 | | // IFF type is a structuredbuffer/byteaddressbuffer type, return the content |
6997 | | // (template) type. E.g, StructuredBuffer<MyType> -> MyType. Else return nullptr. |
6998 | | // |
6999 | | TType* HlslParseContext::getStructBufferContentType(const TType& type) const |
7000 | 25.2k | { |
7001 | 25.2k | if (type.getBasicType() != EbtBlock || type.getQualifier().storage != EvqBuffer) |
7002 | 23.7k | return nullptr; |
7003 | | |
7004 | 1.46k | const int memberCount = (int)type.getStruct()->size(); |
7005 | 1.46k | assert(memberCount > 0); |
7006 | | |
7007 | 1.46k | TType* contentType = (*type.getStruct())[memberCount-1].type; |
7008 | | |
7009 | 1.46k | return contentType->isUnsizedArray() ? contentType : nullptr; |
7010 | 25.2k | } |
7011 | | |
7012 | | // |
7013 | | // If an existing struct buffer has a sharable type, then share it. |
7014 | | // |
7015 | | void HlslParseContext::shareStructBufferType(TType& type) |
7016 | 708 | { |
7017 | | // PackOffset must be equivalent to share types on a per-member basis. |
7018 | | // Note: cannot use auto type due to recursion. Thus, this is a std::function. |
7019 | 708 | const std::function<bool(TType& lhs, TType& rhs)> |
7020 | 1.43k | compareQualifiers = [&](TType& lhs, TType& rhs) -> bool { |
7021 | 1.43k | if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset) |
7022 | 0 | return false; |
7023 | | |
7024 | 1.43k | if (lhs.isStruct() != rhs.isStruct()) |
7025 | 0 | return false; |
7026 | | |
7027 | 1.43k | if (lhs.getQualifier().builtIn != rhs.getQualifier().builtIn) |
7028 | 536 | return false; |
7029 | | |
7030 | 898 | if (lhs.isStruct() && rhs.isStruct()) { |
7031 | 472 | if (lhs.getStruct()->size() != rhs.getStruct()->size()) |
7032 | 0 | return false; |
7033 | | |
7034 | 944 | for (int i = 0; i < int(lhs.getStruct()->size()); ++i) |
7035 | 472 | if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type)) |
7036 | 0 | return false; |
7037 | 472 | } |
7038 | | |
7039 | 898 | return true; |
7040 | 898 | }; |
7041 | | |
7042 | | // We need to compare certain qualifiers in addition to the type. |
7043 | 1.22k | const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool { |
7044 | 1.22k | if (lhs.getQualifier().readonly != rhs.getQualifier().readonly) |
7045 | 262 | return false; |
7046 | | |
7047 | | // If both are structures, recursively look for packOffset equality |
7048 | | // as well as type equality. |
7049 | 962 | return compareQualifiers(lhs, rhs) && lhs == rhs; |
7050 | 1.22k | }; |
7051 | | |
7052 | | // This is an exhaustive O(N) search, but real world shaders have |
7053 | | // only a small number of these. |
7054 | 1.51k | for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) { |
7055 | | // If the deep structure matches, modulo qualifiers, use it |
7056 | 1.22k | if (typeEqual(*structBufferTypes[idx], type)) { |
7057 | 416 | type.shallowCopy(*structBufferTypes[idx]); |
7058 | 416 | return; |
7059 | 416 | } |
7060 | 1.22k | } |
7061 | | |
7062 | | // Otherwise, remember it: |
7063 | 292 | TType* typeCopy = new TType; |
7064 | 292 | typeCopy->shallowCopy(type); |
7065 | 292 | structBufferTypes.push_back(typeCopy); |
7066 | 292 | } |
7067 | | |
7068 | | void HlslParseContext::paramFix(TType& type) |
7069 | 13.7M | { |
7070 | 13.7M | switch (type.getQualifier().storage) { |
7071 | 6 | case EvqConst: |
7072 | 6 | type.getQualifier().storage = EvqConstReadOnly; |
7073 | 6 | break; |
7074 | 2 | case EvqGlobal: |
7075 | 12.4M | case EvqTemporary: |
7076 | 12.4M | type.getQualifier().storage = EvqIn; |
7077 | 12.4M | break; |
7078 | 26 | case EvqBuffer: |
7079 | 26 | { |
7080 | | // SSBO parameter. These do not go through the declareBlock path since they are fn parameters. |
7081 | 26 | correctUniform(type.getQualifier()); |
7082 | 26 | TQualifier bufferQualifier = globalBufferDefaults; |
7083 | 26 | mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true); |
7084 | 26 | bufferQualifier.storage = type.getQualifier().storage; |
7085 | 26 | bufferQualifier.readonly = type.getQualifier().readonly; |
7086 | 26 | bufferQualifier.coherent = type.getQualifier().coherent; |
7087 | 26 | bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn; |
7088 | 26 | type.getQualifier() = bufferQualifier; |
7089 | 26 | break; |
7090 | 2 | } |
7091 | 1.33M | default: |
7092 | 1.33M | break; |
7093 | 13.7M | } |
7094 | 13.7M | } |
7095 | | |
7096 | | void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op) |
7097 | 14.8k | { |
7098 | 14.8k | if (type.containsSpecializationSize()) |
7099 | 0 | error(loc, "can't use with types containing arrays sized with a specialization constant", op, ""); |
7100 | 14.8k | } |
7101 | | |
7102 | | // |
7103 | | // Layout qualifier stuff. |
7104 | | // |
7105 | | |
7106 | | // Put the id's layout qualification into the public type, for qualifiers not having a number set. |
7107 | | // This is before we know any type information for error checking. |
7108 | | void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id) |
7109 | 38 | { |
7110 | 38 | std::transform(id.begin(), id.end(), id.begin(), ::tolower); |
7111 | | |
7112 | 38 | if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) { |
7113 | 0 | qualifier.layoutMatrix = ElmRowMajor; |
7114 | 0 | return; |
7115 | 0 | } |
7116 | 38 | if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) { |
7117 | 0 | qualifier.layoutMatrix = ElmColumnMajor; |
7118 | 0 | return; |
7119 | 0 | } |
7120 | 38 | if (id == "push_constant") { |
7121 | 22 | requireVulkan(loc, "push_constant"); |
7122 | 22 | qualifier.layoutPushConstant = true; |
7123 | 22 | return; |
7124 | 22 | } |
7125 | 16 | if (language == EShLangGeometry || language == EShLangTessEvaluation) { |
7126 | 6 | if (id == TQualifier::getGeometryString(ElgTriangles)) { |
7127 | | // publicType.shaderQualifiers.geometry = ElgTriangles; |
7128 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7129 | 0 | return; |
7130 | 0 | } |
7131 | 6 | if (language == EShLangGeometry) { |
7132 | 4 | if (id == TQualifier::getGeometryString(ElgPoints)) { |
7133 | | // publicType.shaderQualifiers.geometry = ElgPoints; |
7134 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7135 | 0 | return; |
7136 | 0 | } |
7137 | 4 | if (id == TQualifier::getGeometryString(ElgLineStrip)) { |
7138 | | // publicType.shaderQualifiers.geometry = ElgLineStrip; |
7139 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7140 | 0 | return; |
7141 | 0 | } |
7142 | 4 | if (id == TQualifier::getGeometryString(ElgLines)) { |
7143 | | // publicType.shaderQualifiers.geometry = ElgLines; |
7144 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7145 | 0 | return; |
7146 | 0 | } |
7147 | 4 | if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) { |
7148 | | // publicType.shaderQualifiers.geometry = ElgLinesAdjacency; |
7149 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7150 | 0 | return; |
7151 | 0 | } |
7152 | 4 | if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) { |
7153 | | // publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency; |
7154 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7155 | 0 | return; |
7156 | 0 | } |
7157 | 4 | if (id == TQualifier::getGeometryString(ElgTriangleStrip)) { |
7158 | | // publicType.shaderQualifiers.geometry = ElgTriangleStrip; |
7159 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7160 | 0 | return; |
7161 | 0 | } |
7162 | 4 | } else { |
7163 | 2 | assert(language == EShLangTessEvaluation); |
7164 | | |
7165 | | // input primitive |
7166 | 2 | if (id == TQualifier::getGeometryString(ElgTriangles)) { |
7167 | | // publicType.shaderQualifiers.geometry = ElgTriangles; |
7168 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7169 | 0 | return; |
7170 | 0 | } |
7171 | 2 | if (id == TQualifier::getGeometryString(ElgQuads)) { |
7172 | | // publicType.shaderQualifiers.geometry = ElgQuads; |
7173 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7174 | 0 | return; |
7175 | 0 | } |
7176 | 2 | if (id == TQualifier::getGeometryString(ElgIsolines)) { |
7177 | | // publicType.shaderQualifiers.geometry = ElgIsolines; |
7178 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7179 | 0 | return; |
7180 | 0 | } |
7181 | | |
7182 | | // vertex spacing |
7183 | 2 | if (id == TQualifier::getVertexSpacingString(EvsEqual)) { |
7184 | | // publicType.shaderQualifiers.spacing = EvsEqual; |
7185 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7186 | 0 | return; |
7187 | 0 | } |
7188 | 2 | if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) { |
7189 | | // publicType.shaderQualifiers.spacing = EvsFractionalEven; |
7190 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7191 | 0 | return; |
7192 | 0 | } |
7193 | 2 | if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) { |
7194 | | // publicType.shaderQualifiers.spacing = EvsFractionalOdd; |
7195 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7196 | 0 | return; |
7197 | 0 | } |
7198 | | |
7199 | | // triangle order |
7200 | 2 | if (id == TQualifier::getVertexOrderString(EvoCw)) { |
7201 | | // publicType.shaderQualifiers.order = EvoCw; |
7202 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7203 | 0 | return; |
7204 | 0 | } |
7205 | 2 | if (id == TQualifier::getVertexOrderString(EvoCcw)) { |
7206 | | // publicType.shaderQualifiers.order = EvoCcw; |
7207 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7208 | 0 | return; |
7209 | 0 | } |
7210 | | |
7211 | | // point mode |
7212 | 2 | if (id == "point_mode") { |
7213 | | // publicType.shaderQualifiers.pointMode = true; |
7214 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7215 | 0 | return; |
7216 | 0 | } |
7217 | 2 | } |
7218 | 6 | } |
7219 | 16 | if (language == EShLangFragment) { |
7220 | 0 | if (id == "origin_upper_left") { |
7221 | | // publicType.shaderQualifiers.originUpperLeft = true; |
7222 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7223 | 0 | return; |
7224 | 0 | } |
7225 | 0 | if (id == "pixel_center_integer") { |
7226 | | // publicType.shaderQualifiers.pixelCenterInteger = true; |
7227 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7228 | 0 | return; |
7229 | 0 | } |
7230 | 0 | if (id == "early_fragment_tests") { |
7231 | | // publicType.shaderQualifiers.earlyFragmentTests = true; |
7232 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7233 | 0 | return; |
7234 | 0 | } |
7235 | 0 | for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) { |
7236 | 0 | if (id == TQualifier::getLayoutDepthString(depth)) { |
7237 | | // publicType.shaderQualifiers.layoutDepth = depth; |
7238 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7239 | 0 | return; |
7240 | 0 | } |
7241 | 0 | } |
7242 | 0 | if (id.compare(0, 13, "blend_support") == 0) { |
7243 | 0 | bool found = false; |
7244 | 0 | for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) { |
7245 | 0 | if (id == TQualifier::getBlendEquationString(be)) { |
7246 | 0 | requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation"); |
7247 | 0 | intermediate.addBlendEquation(be); |
7248 | | // publicType.shaderQualifiers.blendEquation = true; |
7249 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7250 | 0 | found = true; |
7251 | 0 | break; |
7252 | 0 | } |
7253 | 0 | } |
7254 | 0 | if (! found) |
7255 | 0 | error(loc, "unknown blend equation", "blend_support", ""); |
7256 | 0 | return; |
7257 | 0 | } |
7258 | 0 | } |
7259 | 16 | error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), ""); |
7260 | 16 | } |
7261 | | |
7262 | | // Put the id's layout qualifier value into the public type, for qualifiers having a number set. |
7263 | | // This is before we know any type information for error checking. |
7264 | | void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id, |
7265 | | const TIntermTyped* node) |
7266 | 590 | { |
7267 | 590 | const char* feature = "layout-id value"; |
7268 | | // const char* nonLiteralFeature = "non-literal layout-id value"; |
7269 | | |
7270 | 590 | integerCheck(node, feature); |
7271 | 590 | const TIntermConstantUnion* constUnion = node->getAsConstantUnion(); |
7272 | 590 | int value = 0; |
7273 | 590 | if (constUnion) { |
7274 | 586 | value = constUnion->getConstArray()[0].getIConst(); |
7275 | 586 | } |
7276 | | |
7277 | 590 | std::transform(id.begin(), id.end(), id.begin(), ::tolower); |
7278 | | |
7279 | 590 | if (id == "offset") { |
7280 | 0 | qualifier.layoutOffset = value; |
7281 | 0 | return; |
7282 | 590 | } else if (id == "align") { |
7283 | | // "The specified alignment must be a power of 2, or a compile-time error results." |
7284 | 0 | if (! IsPow2(value)) |
7285 | 0 | error(loc, "must be a power of 2", "align", ""); |
7286 | 0 | else |
7287 | 0 | qualifier.layoutAlign = value; |
7288 | 0 | return; |
7289 | 590 | } else if (id == "location") { |
7290 | 12 | if ((unsigned int)value >= TQualifier::layoutLocationEnd) |
7291 | 0 | error(loc, "location is too large", id.c_str(), ""); |
7292 | 12 | else |
7293 | 12 | qualifier.layoutLocation = value; |
7294 | 12 | return; |
7295 | 578 | } else if (id == "set") { |
7296 | 0 | if ((unsigned int)value >= TQualifier::layoutSetEnd) |
7297 | 0 | error(loc, "set is too large", id.c_str(), ""); |
7298 | 0 | else |
7299 | 0 | qualifier.layoutSet = value; |
7300 | 0 | return; |
7301 | 578 | } else if (id == "binding") { |
7302 | 36 | if ((unsigned int)value >= TQualifier::layoutBindingEnd) |
7303 | 0 | error(loc, "binding is too large", id.c_str(), ""); |
7304 | 36 | else |
7305 | 36 | qualifier.layoutBinding = value; |
7306 | 36 | return; |
7307 | 542 | } else if (id == "component") { |
7308 | 4 | if ((unsigned)value >= TQualifier::layoutComponentEnd) |
7309 | 0 | error(loc, "component is too large", id.c_str(), ""); |
7310 | 4 | else |
7311 | 4 | qualifier.layoutComponent = value; |
7312 | 4 | return; |
7313 | 538 | } else if (id.compare(0, 4, "xfb_") == 0) { |
7314 | | // "Any shader making any static use (after preprocessing) of any of these |
7315 | | // *xfb_* qualifiers will cause the shader to be in a transform feedback |
7316 | | // capturing mode and hence responsible for describing the transform feedback |
7317 | | // setup." |
7318 | 0 | intermediate.setXfbMode(); |
7319 | 0 | if (id == "xfb_buffer") { |
7320 | | // "It is a compile-time error to specify an *xfb_buffer* that is greater than |
7321 | | // the implementation-dependent constant gl_MaxTransformFeedbackBuffers." |
7322 | 0 | if (value >= resources.maxTransformFeedbackBuffers) |
7323 | 0 | error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", |
7324 | 0 | resources.maxTransformFeedbackBuffers); |
7325 | 0 | if (value >= (int)TQualifier::layoutXfbBufferEnd) |
7326 | 0 | error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1); |
7327 | 0 | else |
7328 | 0 | qualifier.layoutXfbBuffer = value; |
7329 | 0 | return; |
7330 | 0 | } else if (id == "xfb_offset") { |
7331 | 0 | if (value >= (int)TQualifier::layoutXfbOffsetEnd) |
7332 | 0 | error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1); |
7333 | 0 | else |
7334 | 0 | qualifier.layoutXfbOffset = value; |
7335 | 0 | return; |
7336 | 0 | } else if (id == "xfb_stride") { |
7337 | | // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the |
7338 | | // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents." |
7339 | 0 | if (value > 4 * resources.maxTransformFeedbackInterleavedComponents) |
7340 | 0 | error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", |
7341 | 0 | resources.maxTransformFeedbackInterleavedComponents); |
7342 | 0 | else if (value >= (int)TQualifier::layoutXfbStrideEnd) |
7343 | 0 | error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1); |
7344 | 0 | if (value < (int)TQualifier::layoutXfbStrideEnd) |
7345 | 0 | qualifier.layoutXfbStride = value; |
7346 | 0 | return; |
7347 | 0 | } |
7348 | 0 | } |
7349 | | |
7350 | 538 | if (id == "input_attachment_index") { |
7351 | 520 | requireVulkan(loc, "input_attachment_index"); |
7352 | 520 | if (value >= (int)TQualifier::layoutAttachmentEnd) |
7353 | 0 | error(loc, "attachment index is too large", id.c_str(), ""); |
7354 | 520 | else |
7355 | 520 | qualifier.layoutAttachment = value; |
7356 | 520 | return; |
7357 | 520 | } |
7358 | 18 | if (id == "constant_id") { |
7359 | 0 | setSpecConstantId(loc, qualifier, value); |
7360 | 0 | return; |
7361 | 0 | } |
7362 | | |
7363 | 18 | switch (language) { |
7364 | 0 | case EShLangVertex: |
7365 | 0 | break; |
7366 | | |
7367 | 8 | case EShLangTessControl: |
7368 | 8 | if (id == "vertices") { |
7369 | 0 | if (value == 0) |
7370 | 0 | error(loc, "must be greater than 0", "vertices", ""); |
7371 | 0 | else |
7372 | | // publicType.shaderQualifiers.vertices = value; |
7373 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7374 | 0 | return; |
7375 | 0 | } |
7376 | 8 | break; |
7377 | | |
7378 | 8 | case EShLangTessEvaluation: |
7379 | 0 | break; |
7380 | | |
7381 | 4 | case EShLangGeometry: |
7382 | 4 | if (id == "invocations") { |
7383 | 0 | if (value == 0) |
7384 | 0 | error(loc, "must be at least 1", "invocations", ""); |
7385 | 0 | else |
7386 | | // publicType.shaderQualifiers.invocations = value; |
7387 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7388 | 0 | return; |
7389 | 0 | } |
7390 | 4 | if (id == "max_vertices") { |
7391 | | // publicType.shaderQualifiers.vertices = value; |
7392 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7393 | 0 | if (value > resources.maxGeometryOutputVertices) |
7394 | 0 | error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", ""); |
7395 | 0 | return; |
7396 | 0 | } |
7397 | 4 | if (id == "stream") { |
7398 | 0 | qualifier.layoutStream = value; |
7399 | 0 | return; |
7400 | 0 | } |
7401 | 4 | break; |
7402 | | |
7403 | 4 | case EShLangFragment: |
7404 | 0 | if (id == "index") { |
7405 | 0 | qualifier.layoutIndex = value; |
7406 | 0 | return; |
7407 | 0 | } |
7408 | 0 | break; |
7409 | | |
7410 | 0 | case EShLangCompute: |
7411 | 0 | if (id.compare(0, 11, "local_size_") == 0) { |
7412 | 0 | if (id == "local_size_x") { |
7413 | | // publicType.shaderQualifiers.localSize[0] = value; |
7414 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7415 | 0 | return; |
7416 | 0 | } |
7417 | 0 | if (id == "local_size_y") { |
7418 | | // publicType.shaderQualifiers.localSize[1] = value; |
7419 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7420 | 0 | return; |
7421 | 0 | } |
7422 | 0 | if (id == "local_size_z") { |
7423 | | // publicType.shaderQualifiers.localSize[2] = value; |
7424 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7425 | 0 | return; |
7426 | 0 | } |
7427 | 0 | if (spvVersion.spv != 0) { |
7428 | 0 | if (id == "local_size_x_id") { |
7429 | | // publicType.shaderQualifiers.localSizeSpecId[0] = value; |
7430 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7431 | 0 | return; |
7432 | 0 | } |
7433 | 0 | if (id == "local_size_y_id") { |
7434 | | // publicType.shaderQualifiers.localSizeSpecId[1] = value; |
7435 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7436 | 0 | return; |
7437 | 0 | } |
7438 | 0 | if (id == "local_size_z_id") { |
7439 | | // publicType.shaderQualifiers.localSizeSpecId[2] = value; |
7440 | 0 | warn(loc, "ignored", id.c_str(), ""); |
7441 | 0 | return; |
7442 | 0 | } |
7443 | 0 | } |
7444 | 0 | } |
7445 | 0 | break; |
7446 | | |
7447 | 6 | default: |
7448 | 6 | break; |
7449 | 18 | } |
7450 | | |
7451 | 18 | error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), ""); |
7452 | 18 | } |
7453 | | |
7454 | | void HlslParseContext::setSpecConstantId(const TSourceLoc& loc, TQualifier& qualifier, int value) |
7455 | 58 | { |
7456 | 58 | if (value >= (int)TQualifier::layoutSpecConstantIdEnd) { |
7457 | 0 | error(loc, "specialization-constant id is too large", "constant_id", ""); |
7458 | 58 | } else { |
7459 | 58 | qualifier.layoutSpecConstantId = value; |
7460 | 58 | qualifier.specConstant = true; |
7461 | 58 | if (! intermediate.addUsedConstantId(value)) |
7462 | 14 | error(loc, "specialization-constant id already used", "constant_id", ""); |
7463 | 58 | } |
7464 | 58 | return; |
7465 | 58 | } |
7466 | | |
7467 | | // Merge any layout qualifier information from src into dst, leaving everything else in dst alone |
7468 | | // |
7469 | | // "More than one layout qualifier may appear in a single declaration. |
7470 | | // Additionally, the same layout-qualifier-name can occur multiple times |
7471 | | // within a layout qualifier or across multiple layout qualifiers in the |
7472 | | // same declaration. When the same layout-qualifier-name occurs |
7473 | | // multiple times, in a single declaration, the last occurrence overrides |
7474 | | // the former occurrence(s). Further, if such a layout-qualifier-name |
7475 | | // will effect subsequent declarations or other observable behavior, it |
7476 | | // is only the last occurrence that will have any effect, behaving as if |
7477 | | // the earlier occurrence(s) within the declaration are not present. |
7478 | | // This is also true for overriding layout-qualifier-names, where one |
7479 | | // overrides the other (e.g., row_major vs. column_major); only the last |
7480 | | // occurrence has any effect." |
7481 | | // |
7482 | | void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly) |
7483 | 3.41k | { |
7484 | 3.41k | if (src.hasMatrix()) |
7485 | 1.04k | dst.layoutMatrix = src.layoutMatrix; |
7486 | 3.41k | if (src.hasPacking()) |
7487 | 1.09k | dst.layoutPacking = src.layoutPacking; |
7488 | | |
7489 | 3.41k | if (src.hasStream()) |
7490 | 0 | dst.layoutStream = src.layoutStream; |
7491 | | |
7492 | 3.41k | if (src.hasFormat()) |
7493 | 0 | dst.layoutFormat = src.layoutFormat; |
7494 | | |
7495 | 3.41k | if (src.hasXfbBuffer()) |
7496 | 0 | dst.layoutXfbBuffer = src.layoutXfbBuffer; |
7497 | | |
7498 | 3.41k | if (src.hasAlign()) |
7499 | 0 | dst.layoutAlign = src.layoutAlign; |
7500 | | |
7501 | 3.41k | if (! inheritOnly) { |
7502 | 1.91k | if (src.hasLocation()) |
7503 | 0 | dst.layoutLocation = src.layoutLocation; |
7504 | 1.91k | if (src.hasComponent()) |
7505 | 0 | dst.layoutComponent = src.layoutComponent; |
7506 | 1.91k | if (src.hasIndex()) |
7507 | 0 | dst.layoutIndex = src.layoutIndex; |
7508 | | |
7509 | 1.91k | if (src.hasOffset()) |
7510 | 98 | dst.layoutOffset = src.layoutOffset; |
7511 | | |
7512 | 1.91k | if (src.hasSet()) |
7513 | 0 | dst.layoutSet = src.layoutSet; |
7514 | 1.91k | if (src.layoutBinding != TQualifier::layoutBindingEnd) |
7515 | 0 | dst.layoutBinding = src.layoutBinding; |
7516 | | |
7517 | 1.91k | if (src.hasXfbStride()) |
7518 | 0 | dst.layoutXfbStride = src.layoutXfbStride; |
7519 | 1.91k | if (src.hasXfbOffset()) |
7520 | 0 | dst.layoutXfbOffset = src.layoutXfbOffset; |
7521 | 1.91k | if (src.hasAttachment()) |
7522 | 0 | dst.layoutAttachment = src.layoutAttachment; |
7523 | 1.91k | if (src.hasSpecConstantId()) |
7524 | 2 | dst.layoutSpecConstantId = src.layoutSpecConstantId; |
7525 | | |
7526 | 1.91k | if (src.layoutPushConstant) |
7527 | 18 | dst.layoutPushConstant = true; |
7528 | 1.91k | } |
7529 | 3.41k | } |
7530 | | |
7531 | | |
7532 | | // |
7533 | | // Look up a function name in the symbol table, and make sure it is a function. |
7534 | | // |
7535 | | // First, look for an exact match. If there is none, use the generic selector |
7536 | | // TParseContextBase::selectFunction() to find one, parameterized by the |
7537 | | // convertible() and better() predicates defined below. |
7538 | | // |
7539 | | // Return the function symbol if found, otherwise nullptr. |
7540 | | // |
7541 | | const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth, |
7542 | | TIntermTyped*& args) |
7543 | 13.2k | { |
7544 | 13.2k | if (symbolTable.isFunctionNameVariable(call.getName())) { |
7545 | 2 | error(loc, "can't use function syntax on variable", call.getName().c_str(), ""); |
7546 | 2 | return nullptr; |
7547 | 2 | } |
7548 | | |
7549 | | // first, look for an exact match |
7550 | 13.2k | bool dummyScope; |
7551 | 13.2k | TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth); |
7552 | 13.2k | if (symbol) |
7553 | 9.05k | return symbol->getAsFunction(); |
7554 | | |
7555 | | // no exact match, use the generic selector, parameterized by the GLSL rules |
7556 | | |
7557 | | // create list of candidates to send |
7558 | 4.21k | TVector<const TFunction*> candidateList; |
7559 | 4.21k | symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); |
7560 | | |
7561 | | // These built-in ops can accept any type, so we bypass the argument selection |
7562 | 4.21k | if (candidateList.size() == 1 && builtIn && |
7563 | 380 | (candidateList[0]->getBuiltInOp() == EOpMethodAppend || |
7564 | 372 | candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip || |
7565 | 368 | candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter || |
7566 | 368 | candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter || |
7567 | 368 | candidateList[0]->getBuiltInOp() == EOpMethodConsume)) { |
7568 | 12 | return candidateList[0]; |
7569 | 12 | } |
7570 | | |
7571 | 4.20k | bool allowOnlyUpConversions = true; |
7572 | | |
7573 | | // can 'from' convert to 'to'? |
7574 | 318k | const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool { |
7575 | 318k | if (from == to) |
7576 | 6.13k | return true; |
7577 | | |
7578 | | // no aggregate conversions |
7579 | 311k | if (from.isArray() || to.isArray() || |
7580 | 311k | from.isStruct() || to.isStruct()) |
7581 | 742 | return false; |
7582 | | |
7583 | 311k | switch (op) { |
7584 | 0 | case EOpInterlockedAdd: |
7585 | 0 | case EOpInterlockedAnd: |
7586 | 0 | case EOpInterlockedCompareExchange: |
7587 | 0 | case EOpInterlockedCompareStore: |
7588 | 0 | case EOpInterlockedExchange: |
7589 | 0 | case EOpInterlockedMax: |
7590 | 0 | case EOpInterlockedMin: |
7591 | 0 | case EOpInterlockedOr: |
7592 | 0 | case EOpInterlockedXor: |
7593 | | // We do not promote the texture or image type for these ocodes. Normally that would not |
7594 | | // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this |
7595 | | // stage it's merely e.g, a basic integer type. |
7596 | | // |
7597 | | // Instead, we want to promote other arguments, but stay within the same family. In other |
7598 | | // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor, |
7599 | | // but it is allowed to promote its other arguments. |
7600 | 0 | if (arg == 0) |
7601 | 0 | return false; |
7602 | 0 | break; |
7603 | 4.03k | case EOpMethodSample: |
7604 | 4.11k | case EOpMethodSampleBias: |
7605 | 5.08k | case EOpMethodSampleCmp: |
7606 | 12.3k | case EOpMethodSampleCmpLevelZero: |
7607 | 12.3k | case EOpMethodSampleGrad: |
7608 | 12.7k | case EOpMethodSampleLevel: |
7609 | 15.5k | case EOpMethodLoad: |
7610 | 35.6k | case EOpMethodGetDimensions: |
7611 | 35.6k | case EOpMethodGetSamplePosition: |
7612 | 35.6k | case EOpMethodGather: |
7613 | 35.6k | case EOpMethodCalculateLevelOfDetail: |
7614 | 36.6k | case EOpMethodCalculateLevelOfDetailUnclamped: |
7615 | 36.6k | case EOpMethodGatherRed: |
7616 | 36.6k | case EOpMethodGatherGreen: |
7617 | 36.6k | case EOpMethodGatherBlue: |
7618 | 36.6k | case EOpMethodGatherAlpha: |
7619 | 36.6k | case EOpMethodGatherCmp: |
7620 | 37.0k | case EOpMethodGatherCmpRed: |
7621 | 37.0k | case EOpMethodGatherCmpGreen: |
7622 | 37.0k | case EOpMethodGatherCmpBlue: |
7623 | 37.0k | case EOpMethodGatherCmpAlpha: |
7624 | 37.0k | case EOpMethodAppend: |
7625 | 37.0k | case EOpMethodRestartStrip: |
7626 | | // those are method calls, the object type can not be changed |
7627 | | // they are equal if the dim and type match (is dim sufficient?) |
7628 | 37.0k | if (arg == 0) |
7629 | 33.8k | return from.getSampler().type == to.getSampler().type && |
7630 | 11.2k | from.getSampler().arrayed == to.getSampler().arrayed && |
7631 | 6.38k | from.getSampler().shadow == to.getSampler().shadow && |
7632 | 6.38k | from.getSampler().ms == to.getSampler().ms && |
7633 | 6.06k | from.getSampler().dim == to.getSampler().dim; |
7634 | 3.16k | break; |
7635 | 274k | default: |
7636 | 274k | break; |
7637 | 311k | } |
7638 | | |
7639 | | // basic types have to be convertible |
7640 | 277k | if (allowOnlyUpConversions) |
7641 | 198k | if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall)) |
7642 | 34.2k | return false; |
7643 | | |
7644 | | // shapes have to be convertible |
7645 | 243k | if ((from.isScalarOrVec1() && to.isScalarOrVec1()) || |
7646 | 234k | (from.isScalarOrVec1() && to.isVector()) || |
7647 | 212k | (from.isScalarOrVec1() && to.isMatrix()) || |
7648 | 69.7k | (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize())) |
7649 | 180k | return true; |
7650 | | |
7651 | | // TODO: what are the matrix rules? they go here |
7652 | | |
7653 | 62.6k | return false; |
7654 | 243k | }; |
7655 | | |
7656 | | // Is 'to2' a better conversion than 'to1'? |
7657 | | // Ties should not be considered as better. |
7658 | | // Assumes 'convertible' already said true. |
7659 | 557k | const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool { |
7660 | | // exact match is always better than mismatch |
7661 | 557k | if (from == to2) |
7662 | 26.7k | return from != to1; |
7663 | 530k | if (from == to1) |
7664 | 130k | return false; |
7665 | | |
7666 | | // shape changes are always worse |
7667 | 400k | if (from.isScalar() || from.isVector()) { |
7668 | 400k | if (from.getVectorSize() == to2.getVectorSize() && |
7669 | 58.2k | from.getVectorSize() != to1.getVectorSize()) |
7670 | 37.4k | return true; |
7671 | 362k | if (from.getVectorSize() == to1.getVectorSize() && |
7672 | 163k | from.getVectorSize() != to2.getVectorSize()) |
7673 | 143k | return false; |
7674 | 362k | } |
7675 | | |
7676 | | // Handle sampler betterness: An exact sampler match beats a non-exact match. |
7677 | | // (If we just looked at basic type, all EbtSamplers would look the same). |
7678 | | // If any type is not a sampler, just use the linearize function below. |
7679 | 219k | if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) { |
7680 | | // We can ignore the vector size in the comparison. |
7681 | 5.52k | TSampler to1Sampler = to1.getSampler(); |
7682 | 5.52k | TSampler to2Sampler = to2.getSampler(); |
7683 | | |
7684 | 5.52k | to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize; |
7685 | | |
7686 | 5.52k | if (from.getSampler() == to2Sampler) |
7687 | 3.16k | return from.getSampler() != to1Sampler; |
7688 | 2.36k | if (from.getSampler() == to1Sampler) |
7689 | 1.51k | return false; |
7690 | 2.36k | } |
7691 | | |
7692 | | // Might or might not be changing shape, which means basic type might |
7693 | | // or might not match, so within that, the question is how big a |
7694 | | // basic-type conversion is being done. |
7695 | | // |
7696 | | // Use a hierarchy of domains, translated to order of magnitude |
7697 | | // in a linearized view: |
7698 | | // - floating-point vs. integer |
7699 | | // - 32 vs. 64 bit (or width in general) |
7700 | | // - bool vs. non bool |
7701 | | // - signed vs. not signed |
7702 | 859k | const auto linearize = [](const TBasicType& basicType) -> int { |
7703 | 859k | switch (basicType) { |
7704 | 221k | case EbtBool: return 1; |
7705 | 85.2k | case EbtInt: return 10; |
7706 | 64.2k | case EbtUint: return 11; |
7707 | 0 | case EbtInt64: return 20; |
7708 | 0 | case EbtUint64: return 21; |
7709 | 142k | case EbtFloat: return 100; |
7710 | 80 | case EbtDouble: return 110; |
7711 | 345k | default: return 0; |
7712 | 859k | } |
7713 | 859k | }; |
7714 | | |
7715 | 214k | return abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) < |
7716 | 214k | abs(linearize(to1.getBasicType()) - linearize(from.getBasicType())); |
7717 | 219k | }; |
7718 | | |
7719 | | // for ambiguity reporting |
7720 | 4.20k | bool tie = false; |
7721 | | |
7722 | | // send to the generic selector |
7723 | 4.20k | const TFunction* bestMatch = nullptr; |
7724 | | |
7725 | | // printf has var args and is in the symbol table as "printf()", |
7726 | | // mangled to "printf(" |
7727 | 4.20k | if (call.getName() == "printf") { |
7728 | 0 | TSymbol* symbol = symbolTable.find("printf(", &builtIn); |
7729 | 0 | if (symbol) |
7730 | 0 | return symbol->getAsFunction(); |
7731 | 0 | } |
7732 | | |
7733 | 4.20k | bestMatch = selectFunction(candidateList, call, convertible, better, tie); |
7734 | | |
7735 | 4.20k | if (bestMatch == nullptr) { |
7736 | | // If there is nothing selected by allowing only up-conversions (to a larger linearize() value), |
7737 | | // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any |
7738 | | // upconversions possible. |
7739 | 1.75k | allowOnlyUpConversions = false; |
7740 | 1.75k | bestMatch = selectFunction(candidateList, call, convertible, better, tie); |
7741 | 1.75k | } |
7742 | | |
7743 | 4.20k | if (bestMatch == nullptr) { |
7744 | 958 | error(loc, "no matching overloaded function found", call.getName().c_str(), ""); |
7745 | 958 | return nullptr; |
7746 | 958 | } |
7747 | | |
7748 | | // For built-ins, we can convert across the arguments. This will happen in several steps: |
7749 | | // Step 1: If there's an exact match, use it. |
7750 | | // Step 2a: Otherwise, get the operator from the best match and promote arguments: |
7751 | | // Step 2b: reconstruct the TFunction based on the new arg types |
7752 | | // Step 3: Re-select after type promotion is applied, to find proper candidate. |
7753 | 3.24k | if (builtIn) { |
7754 | | // Step 1: If there's an exact match, use it. |
7755 | 3.14k | if (call.getMangledName() == bestMatch->getMangledName()) |
7756 | 0 | return bestMatch; |
7757 | | |
7758 | | // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we |
7759 | | // are that kind of operator. |
7760 | 3.14k | if (args != nullptr) { |
7761 | | // The arg list can be a unary node, or an aggregate. We have to handle both. |
7762 | | // We will use the normal promote() facilities, which require an interm node. |
7763 | 3.14k | TIntermOperator* promote = nullptr; |
7764 | | |
7765 | 3.14k | if (call.getParamCount() == 1) { |
7766 | 1.30k | promote = new TIntermUnary(bestMatch->getBuiltInOp()); |
7767 | 1.30k | promote->getAsUnaryNode()->setOperand(args->getAsTyped()); |
7768 | 1.83k | } else { |
7769 | 1.83k | promote = new TIntermAggregate(bestMatch->getBuiltInOp()); |
7770 | 1.83k | promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence()); |
7771 | 1.83k | } |
7772 | | |
7773 | 3.14k | if (! intermediate.promote(promote)) |
7774 | 200 | return nullptr; |
7775 | | |
7776 | | // Obtain the promoted arg list. |
7777 | 2.94k | if (call.getParamCount() == 1) { |
7778 | 1.30k | args = promote->getAsUnaryNode()->getOperand(); |
7779 | 1.63k | } else { |
7780 | 1.63k | promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence()); |
7781 | 1.63k | } |
7782 | 2.94k | } |
7783 | | |
7784 | | // Step 2b: reconstruct the TFunction based on the new arg types |
7785 | 2.94k | TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp()); |
7786 | | |
7787 | 2.94k | if (args->getAsAggregate()) { |
7788 | | // Handle aggregates: put all args into the new function call |
7789 | 6.07k | for (int arg = 0; arg < int(args->getAsAggregate()->getSequence().size()); ++arg) { |
7790 | | // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly. |
7791 | 4.44k | TParameter param = { nullptr, new TType, nullptr }; |
7792 | 4.44k | param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType()); |
7793 | 4.44k | convertedCall.addParameter(param); |
7794 | 4.44k | } |
7795 | 1.63k | } else if (args->getAsUnaryNode()) { |
7796 | | // Handle unaries: put all args into the new function call |
7797 | 0 | TParameter param = { nullptr, new TType, nullptr }; |
7798 | 0 | param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType()); |
7799 | 0 | convertedCall.addParameter(param); |
7800 | 1.30k | } else if (args->getAsTyped()) { |
7801 | | // Handle bare e.g, floats, not in an aggregate. |
7802 | 1.30k | TParameter param = { nullptr, new TType, nullptr }; |
7803 | 1.30k | param.type->shallowCopy(args->getAsTyped()->getType()); |
7804 | 1.30k | convertedCall.addParameter(param); |
7805 | 1.30k | } else { |
7806 | 0 | assert(0); // unknown argument list. |
7807 | 0 | return nullptr; |
7808 | 0 | } |
7809 | | |
7810 | | // Step 3: Re-select after type promotion, to find proper candidate |
7811 | | // send to the generic selector |
7812 | 2.94k | bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie); |
7813 | | |
7814 | | // At this point, there should be no tie. |
7815 | 2.94k | } |
7816 | | |
7817 | 3.04k | if (tie) |
7818 | 540 | error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), ""); |
7819 | | |
7820 | | // Append default parameter values if needed |
7821 | 3.04k | if (!tie && bestMatch != nullptr) { |
7822 | 2.55k | for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) { |
7823 | 52 | handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue); |
7824 | 52 | } |
7825 | 2.50k | } |
7826 | | |
7827 | 3.04k | return bestMatch; |
7828 | 3.24k | } |
7829 | | |
7830 | | // |
7831 | | // Do everything necessary to handle a typedef declaration, for a single symbol. |
7832 | | // |
7833 | | // 'parseType' is the type part of the declaration (to the left) |
7834 | | // 'arraySizes' is the arrayness tagged on the identifier (to the right) |
7835 | | // |
7836 | | void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType) |
7837 | 0 | { |
7838 | 0 | TVariable* typeSymbol = new TVariable(&identifier, parseType, true); |
7839 | 0 | if (! symbolTable.insert(*typeSymbol)) |
7840 | 0 | error(loc, "name already defined", "typedef", identifier.c_str()); |
7841 | 0 | } |
7842 | | |
7843 | | // Do everything necessary to handle a struct declaration, including |
7844 | | // making IO aliases because HLSL allows mixed IO in a struct that specializes |
7845 | | // based on the usage (input, output, uniform, none). |
7846 | | void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type) |
7847 | 916 | { |
7848 | | // If it was named, which means the type can be reused later, add |
7849 | | // it to the symbol table. (Unless it's a block, in which |
7850 | | // case the name is not a type.) |
7851 | 916 | if (type.getBasicType() == EbtBlock || structName.size() == 0) |
7852 | 196 | return; |
7853 | | |
7854 | 720 | TVariable* userTypeDef = new TVariable(&structName, type, true); |
7855 | 720 | if (! symbolTable.insert(*userTypeDef)) { |
7856 | 12 | error(loc, "redefinition", structName.c_str(), "struct"); |
7857 | 12 | return; |
7858 | 12 | } |
7859 | | |
7860 | | // See if we need IO aliases for the structure typeList |
7861 | | |
7862 | 3.69k | const auto condAlloc = [](bool pred, TTypeList*& list) { |
7863 | 3.69k | if (pred && list == nullptr) |
7864 | 62 | list = new TTypeList; |
7865 | 3.69k | }; |
7866 | | |
7867 | 708 | tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found |
7868 | 1.93k | for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) { |
7869 | 1.23k | condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform); |
7870 | 1.23k | condAlloc( hasInput(member->type->getQualifier()), newLists.input); |
7871 | 1.23k | condAlloc( hasOutput(member->type->getQualifier()), newLists.output); |
7872 | | |
7873 | 1.23k | if (member->type->isStruct()) { |
7874 | 32 | auto it = ioTypeMap.find(member->type->getStruct()); |
7875 | 32 | if (it != ioTypeMap.end()) { |
7876 | 0 | condAlloc(it->second.uniform != nullptr, newLists.uniform); |
7877 | 0 | condAlloc(it->second.input != nullptr, newLists.input); |
7878 | 0 | condAlloc(it->second.output != nullptr, newLists.output); |
7879 | 0 | } |
7880 | 32 | } |
7881 | 1.23k | } |
7882 | 708 | if (newLists.uniform == nullptr && |
7883 | 688 | newLists.input == nullptr && |
7884 | 666 | newLists.output == nullptr) { |
7885 | | // Won't do any IO caching, clear up the type and get out now. |
7886 | 1.81k | for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) |
7887 | 1.14k | clearUniformInputOutput(member->type->getQualifier()); |
7888 | 666 | return; |
7889 | 666 | } |
7890 | | |
7891 | | // We have IO involved. |
7892 | | |
7893 | | // Make a pure typeList for the symbol table, and cache side copies of IO versions. |
7894 | 124 | for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) { |
7895 | 82 | const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) { |
7896 | 0 | if (s != nullptr) { |
7897 | 0 | ioMember.type = new TType; |
7898 | 0 | ioMember.type->shallowCopy(*member->type); |
7899 | 0 | ioMember.type->setStruct(s); |
7900 | 0 | } |
7901 | 0 | }; |
7902 | 102 | const auto newMember = [&](TTypeLoc& m) { |
7903 | 102 | if (m.type == nullptr) { |
7904 | 102 | m.type = new TType; |
7905 | 102 | m.type->shallowCopy(*member->type); |
7906 | 102 | } |
7907 | 102 | }; |
7908 | | |
7909 | 82 | TTypeLoc newUniformMember = { nullptr, member->loc }; |
7910 | 82 | TTypeLoc newInputMember = { nullptr, member->loc }; |
7911 | 82 | TTypeLoc newOutputMember = { nullptr, member->loc }; |
7912 | 82 | if (member->type->isStruct()) { |
7913 | | // swap in an IO child if there is one |
7914 | 0 | auto it = ioTypeMap.find(member->type->getStruct()); |
7915 | 0 | if (it != ioTypeMap.end()) { |
7916 | 0 | inheritStruct(it->second.uniform, newUniformMember); |
7917 | 0 | inheritStruct(it->second.input, newInputMember); |
7918 | 0 | inheritStruct(it->second.output, newOutputMember); |
7919 | 0 | } |
7920 | 0 | } |
7921 | 82 | if (newLists.uniform) { |
7922 | 60 | newMember(newUniformMember); |
7923 | | |
7924 | | // inherit default matrix layout (changeable via #pragma pack_matrix), if none given. |
7925 | 60 | if (member->type->isMatrix() && member->type->getQualifier().layoutMatrix == ElmNone) |
7926 | 14 | newUniformMember.type->getQualifier().layoutMatrix = globalUniformDefaults.layoutMatrix; |
7927 | | |
7928 | 60 | correctUniform(newUniformMember.type->getQualifier()); |
7929 | 60 | newLists.uniform->push_back(newUniformMember); |
7930 | 60 | } |
7931 | 82 | if (newLists.input) { |
7932 | 22 | newMember(newInputMember); |
7933 | 22 | correctInput(newInputMember.type->getQualifier()); |
7934 | 22 | newLists.input->push_back(newInputMember); |
7935 | 22 | } |
7936 | 82 | if (newLists.output) { |
7937 | 20 | newMember(newOutputMember); |
7938 | 20 | correctOutput(newOutputMember.type->getQualifier()); |
7939 | 20 | newLists.output->push_back(newOutputMember); |
7940 | 20 | } |
7941 | | |
7942 | | // make original pure |
7943 | 82 | clearUniformInputOutput(member->type->getQualifier()); |
7944 | 82 | } |
7945 | 42 | ioTypeMap[type.getStruct()] = newLists; |
7946 | 42 | } |
7947 | | |
7948 | | // Lookup a user-type by name. |
7949 | | // If found, fill in the type and return the defining symbol. |
7950 | | // If not found, return nullptr. |
7951 | | TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type) |
7952 | 39.5k | { |
7953 | 39.5k | TSymbol* symbol = symbolTable.find(typeName); |
7954 | 39.5k | if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) { |
7955 | 1.01k | type.shallowCopy(symbol->getType()); |
7956 | 1.01k | return symbol; |
7957 | 1.01k | } else |
7958 | 38.5k | return nullptr; |
7959 | 39.5k | } |
7960 | | |
7961 | | // |
7962 | | // Do everything necessary to handle a variable (non-block) declaration. |
7963 | | // Either redeclaring a variable, or making a new one, updating the symbol |
7964 | | // table, and all error checking. |
7965 | | // |
7966 | | // Returns a subtree node that computes an initializer, if needed. |
7967 | | // Returns nullptr if there is no code to execute for initialization. |
7968 | | // |
7969 | | // 'parseType' is the type part of the declaration (to the left) |
7970 | | // 'arraySizes' is the arrayness tagged on the identifier (to the right) |
7971 | | // |
7972 | | TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type, |
7973 | | TIntermTyped* initializer) |
7974 | 26.3k | { |
7975 | 26.3k | if (voidErrorCheck(loc, identifier, type.getBasicType())) |
7976 | 24 | return nullptr; |
7977 | | |
7978 | | // Global consts with initializers that are non-const act like EvqGlobal in HLSL. |
7979 | | // This test is implicitly recursive, because initializers propagate constness |
7980 | | // up the aggregate node tree during creation. E.g, for: |
7981 | | // { { 1, 2 }, { 3, 4 } } |
7982 | | // the initializer list is marked EvqConst at the top node, and remains so here. However: |
7983 | | // { 1, { myvar, 2 }, 3 } |
7984 | | // is not a const intializer, and still becomes EvqGlobal here. |
7985 | | |
7986 | 26.2k | const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst); |
7987 | | |
7988 | 26.2k | if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) { |
7989 | | // Force to global |
7990 | 30 | type.getQualifier().storage = EvqGlobal; |
7991 | 30 | } |
7992 | | |
7993 | | // make const and initialization consistent |
7994 | 26.2k | fixConstInit(loc, identifier, type, initializer); |
7995 | | |
7996 | | // Check for redeclaration of built-ins and/or attempting to declare a reserved name |
7997 | 26.2k | TSymbol* symbol = nullptr; |
7998 | | |
7999 | 26.2k | inheritGlobalDefaults(type.getQualifier()); |
8000 | | |
8001 | 26.2k | const bool flattenVar = shouldFlatten(type, type.getQualifier().storage, true); |
8002 | | |
8003 | | // correct IO in the type |
8004 | 26.2k | switch (type.getQualifier().storage) { |
8005 | 650 | case EvqGlobal: |
8006 | 19.8k | case EvqTemporary: |
8007 | 19.8k | clearUniformInputOutput(type.getQualifier()); |
8008 | 19.8k | break; |
8009 | 4.61k | case EvqUniform: |
8010 | 4.61k | case EvqBuffer: |
8011 | 4.61k | correctUniform(type.getQualifier()); |
8012 | 4.61k | if (type.isStruct()) { |
8013 | 38 | auto it = ioTypeMap.find(type.getStruct()); |
8014 | 38 | if (it != ioTypeMap.end()) |
8015 | 0 | type.setStruct(it->second.uniform); |
8016 | 38 | } |
8017 | | |
8018 | 4.61k | break; |
8019 | 1.82k | default: |
8020 | 1.82k | break; |
8021 | 26.2k | } |
8022 | | |
8023 | | // Declare the variable |
8024 | 26.2k | if (type.isArray()) { |
8025 | | // array case |
8026 | 192 | declareArray(loc, identifier, type, symbol, !flattenVar); |
8027 | 26.0k | } else { |
8028 | | // non-array case |
8029 | 26.0k | if (symbol == nullptr) |
8030 | 26.0k | symbol = declareNonArray(loc, identifier, type, !flattenVar); |
8031 | 0 | else if (type != symbol->getType()) |
8032 | 0 | error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str()); |
8033 | 26.0k | } |
8034 | | |
8035 | 26.2k | if (symbol == nullptr) |
8036 | 1.55k | return nullptr; |
8037 | | |
8038 | 24.7k | if (flattenVar) |
8039 | 38 | flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel()); |
8040 | | |
8041 | 24.7k | TVariable* variable = symbol->getAsVariable(); |
8042 | | |
8043 | 24.7k | if (initializer == nullptr) { |
8044 | 8.85k | if (intermediate.getDebugInfo()) |
8045 | 0 | return executeDeclaration(loc, variable); |
8046 | 8.85k | else |
8047 | 8.85k | return nullptr; |
8048 | 8.85k | } |
8049 | | |
8050 | | // Deal with initializer |
8051 | 15.8k | if (variable == nullptr) { |
8052 | 0 | error(loc, "initializer requires a variable, not a member", identifier.c_str(), ""); |
8053 | 0 | return nullptr; |
8054 | 0 | } |
8055 | 15.8k | return executeInitializer(loc, initializer, variable); |
8056 | 15.8k | } |
8057 | | |
8058 | | // Pick up global defaults from the provide global defaults into dst. |
8059 | | void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const |
8060 | 26.2k | { |
8061 | 26.2k | if (dst.storage == EvqVaryingOut) { |
8062 | 0 | if (! dst.hasStream() && language == EShLangGeometry) |
8063 | 0 | dst.layoutStream = globalOutputDefaults.layoutStream; |
8064 | 0 | if (! dst.hasXfbBuffer()) |
8065 | 0 | dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer; |
8066 | 0 | } |
8067 | 26.2k | } |
8068 | | |
8069 | | // |
8070 | | // Make an internal-only variable whose name is for debug purposes only |
8071 | | // and won't be searched for. Callers will only use the return value to use |
8072 | | // the variable, not the name to look it up. It is okay if the name |
8073 | | // is the same as other names; there won't be any conflict. |
8074 | | // |
8075 | | TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const |
8076 | 3.09k | { |
8077 | 3.09k | TString* nameString = NewPoolTString(name); |
8078 | 3.09k | TVariable* variable = new TVariable(nameString, type); |
8079 | 3.09k | symbolTable.makeInternalVariable(*variable); |
8080 | | |
8081 | 3.09k | return variable; |
8082 | 3.09k | } |
8083 | | |
8084 | | // Make a symbol node holding a new internal temporary variable. |
8085 | | TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name, |
8086 | | const TType& type) const |
8087 | 154 | { |
8088 | 154 | TVariable* tmpVar = makeInternalVariable(name, type); |
8089 | 154 | tmpVar->getWritableType().getQualifier().makeTemporary(); |
8090 | | |
8091 | 154 | return intermediate.addSymbol(*tmpVar, loc); |
8092 | 154 | } |
8093 | | |
8094 | | // |
8095 | | // Declare a non-array variable, the main point being there is no redeclaration |
8096 | | // for resizing allowed. |
8097 | | // |
8098 | | // Return the successfully declared variable. |
8099 | | // |
8100 | | TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type, |
8101 | | bool track) |
8102 | 26.0k | { |
8103 | | // make a new variable |
8104 | 26.0k | TVariable* variable = new TVariable(&identifier, type); |
8105 | | |
8106 | | // add variable to symbol table |
8107 | 26.0k | if (symbolTable.insert(*variable)) { |
8108 | 24.5k | if (track && symbolTable.atGlobalLevel()) |
8109 | 5.67k | trackLinkage(*variable); |
8110 | 24.5k | return variable; |
8111 | 24.5k | } |
8112 | | |
8113 | 1.55k | error(loc, "redefinition", variable->getName().c_str(), ""); |
8114 | 1.55k | return nullptr; |
8115 | 26.0k | } |
8116 | | |
8117 | | // Return a declaration of a temporary variable |
8118 | | // |
8119 | | // This is used to force a variable to be declared in the correct scope |
8120 | | // when debug information is being generated. |
8121 | | |
8122 | | TIntermNode* HlslParseContext::executeDeclaration(const TSourceLoc& loc, TVariable* variable) |
8123 | 0 | { |
8124 | | // |
8125 | | // Identifier must be of type temporary. |
8126 | | // |
8127 | 0 | TStorageQualifier qualifier = variable->getType().getQualifier().storage; |
8128 | 0 | if (qualifier != EvqTemporary) |
8129 | 0 | return nullptr; |
8130 | | |
8131 | 0 | TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc); |
8132 | 0 | return handleDeclare(loc, intermSymbol); |
8133 | 0 | } |
8134 | | |
8135 | | // |
8136 | | // Handle all types of initializers from the grammar. |
8137 | | // |
8138 | | // Returning nullptr just means there is no code to execute to handle the |
8139 | | // initializer, which will, for example, be the case for constant initializers. |
8140 | | // |
8141 | | // Returns a subtree that accomplished the initialization. |
8142 | | // |
8143 | | TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable) |
8144 | 15.8k | { |
8145 | | // |
8146 | | // Identifier must be of type constant, a global, or a temporary, and |
8147 | | // starting at version 120, desktop allows uniforms to have initializers. |
8148 | | // |
8149 | 15.8k | TStorageQualifier qualifier = variable->getType().getQualifier().storage; |
8150 | | |
8151 | | // |
8152 | | // If the initializer was from braces { ... }, we convert the whole subtree to a |
8153 | | // constructor-style subtree, allowing the rest of the code to operate |
8154 | | // identically for both kinds of initializers. |
8155 | | // |
8156 | | // |
8157 | | // Type can't be deduced from the initializer list, so a skeletal type to |
8158 | | // follow has to be passed in. Constness and specialization-constness |
8159 | | // should be deduced bottom up, not dictated by the skeletal type. |
8160 | | // |
8161 | 15.8k | TType skeletalType; |
8162 | 15.8k | skeletalType.shallowCopy(variable->getType()); |
8163 | 15.8k | skeletalType.getQualifier().makeTemporary(); |
8164 | 15.8k | if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull) |
8165 | 722 | initializer = convertInitializerList(loc, skeletalType, initializer, nullptr); |
8166 | 15.8k | if (initializer == nullptr) { |
8167 | | // error recovery; don't leave const without constant values |
8168 | 30 | if (qualifier == EvqConst) |
8169 | 8 | variable->getWritableType().getQualifier().storage = EvqTemporary; |
8170 | 30 | return nullptr; |
8171 | 30 | } |
8172 | | |
8173 | | // Fix outer arrayness if variable is unsized, getting size from the initializer |
8174 | 15.8k | if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray()) |
8175 | 6 | variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize()); |
8176 | | |
8177 | | // Inner arrayness can also get set by an initializer |
8178 | 15.8k | if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() && |
8179 | 2 | initializer->getType().getArraySizes()->getNumDims() == |
8180 | 2 | variable->getType().getArraySizes()->getNumDims()) { |
8181 | | // adopt unsized sizes from the initializer's sizes |
8182 | 4 | for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) { |
8183 | 2 | if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) { |
8184 | 0 | variable->getWritableType().getArraySizes()->setDimSize(d, |
8185 | 0 | initializer->getType().getArraySizes()->getDimSize(d)); |
8186 | 0 | } |
8187 | 2 | } |
8188 | 2 | } |
8189 | | |
8190 | | // Uniform and global consts require a constant initializer |
8191 | 15.8k | if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) { |
8192 | 10 | error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); |
8193 | 10 | variable->getWritableType().getQualifier().storage = EvqTemporary; |
8194 | 10 | return nullptr; |
8195 | 10 | } |
8196 | | |
8197 | | // Const variables require a constant initializer |
8198 | 15.8k | if (qualifier == EvqConst) { |
8199 | 1.01k | if (initializer->getType().getQualifier().storage != EvqConst) { |
8200 | 26 | variable->getWritableType().getQualifier().storage = EvqConstReadOnly; |
8201 | 26 | qualifier = EvqConstReadOnly; |
8202 | 26 | } |
8203 | 1.01k | } |
8204 | | |
8205 | 15.8k | if (qualifier == EvqConst || qualifier == EvqUniform) { |
8206 | | // Compile-time tagging of the variable with its constant value... |
8207 | | |
8208 | 992 | initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer); |
8209 | 992 | if (initializer != nullptr && variable->getType() != initializer->getType()) |
8210 | 30 | initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer); |
8211 | 992 | if (initializer == nullptr || !initializer->getAsConstantUnion() || |
8212 | 988 | variable->getType() != initializer->getType()) { |
8213 | 4 | error(loc, "non-matching or non-convertible constant type for const initializer", |
8214 | 4 | variable->getType().getStorageQualifierString(), ""); |
8215 | 4 | variable->getWritableType().getQualifier().storage = EvqTemporary; |
8216 | 4 | return nullptr; |
8217 | 4 | } |
8218 | | |
8219 | 988 | variable->setConstArray(initializer->getAsConstantUnion()->getConstArray()); |
8220 | 14.8k | } else { |
8221 | | // normal assigning of a value to a variable... |
8222 | 14.8k | specializationCheck(loc, initializer->getType(), "initializer"); |
8223 | 14.8k | TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc); |
8224 | 14.8k | TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer); |
8225 | 14.8k | if (initNode == nullptr) |
8226 | 1.57k | assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); |
8227 | 14.8k | return initNode; |
8228 | 14.8k | } |
8229 | | |
8230 | 988 | return nullptr; |
8231 | 15.8k | } |
8232 | | |
8233 | | // |
8234 | | // Reprocess any initializer-list { ... } parts of the initializer. |
8235 | | // Need to hierarchically assign correct types and implicit |
8236 | | // conversions. Will do this mimicking the same process used for |
8237 | | // creating a constructor-style initializer, ensuring we get the |
8238 | | // same form. |
8239 | | // |
8240 | | // Returns a node representing an expression for the initializer list expressed |
8241 | | // as the correct type. |
8242 | | // |
8243 | | // Returns nullptr if there is an error. |
8244 | | // |
8245 | | TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, |
8246 | | TIntermTyped* initializer, TIntermTyped* scalarInit) |
8247 | 1.38k | { |
8248 | | // Will operate recursively. Once a subtree is found that is constructor style, |
8249 | | // everything below it is already good: Only the "top part" of the initializer |
8250 | | // can be an initializer list, where "top part" can extend for several (or all) levels. |
8251 | | |
8252 | | // see if we have bottomed out in the tree within the initializer-list part |
8253 | 1.38k | TIntermAggregate* initList = initializer->getAsAggregate(); |
8254 | 1.38k | if (initList == nullptr || initList->getOp() != EOpNull) { |
8255 | | // We don't have a list, but if it's a scalar and the 'type' is a |
8256 | | // composite, we need to lengthen below to make it useful. |
8257 | | // Otherwise, this is an already formed object to initialize with. |
8258 | 534 | if (type.isScalar() || !initializer->getType().isScalar()) |
8259 | 332 | return initializer; |
8260 | 202 | else |
8261 | 202 | initList = intermediate.makeAggregate(initializer); |
8262 | 534 | } |
8263 | | |
8264 | | // Of the initializer-list set of nodes, need to process bottom up, |
8265 | | // so recurse deep, then process on the way up. |
8266 | | |
8267 | | // Go down the tree here... |
8268 | 1.04k | if (type.isArray()) { |
8269 | | // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate. |
8270 | | // Later on, initializer execution code will deal with array size logic. |
8271 | 98 | TType arrayType; |
8272 | 98 | arrayType.shallowCopy(type); // sharing struct stuff is fine |
8273 | 98 | arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below |
8274 | | |
8275 | | // edit array sizes to fill in unsized dimensions |
8276 | 98 | if (type.isUnsizedArray()) |
8277 | 6 | arrayType.changeOuterArraySize((int)initList->getSequence().size()); |
8278 | | |
8279 | | // set unsized array dimensions that can be derived from the initializer's first element |
8280 | 98 | if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) { |
8281 | 0 | TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped(); |
8282 | 0 | if (firstInit->getType().isArray() && |
8283 | 0 | arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) { |
8284 | 0 | for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) { |
8285 | 0 | if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize) |
8286 | 0 | arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1)); |
8287 | 0 | } |
8288 | 0 | } |
8289 | 0 | } |
8290 | | |
8291 | | // lengthen list to be long enough |
8292 | 98 | lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit); |
8293 | | |
8294 | | // recursively process each element |
8295 | 98 | TType elementType(arrayType, 0); // dereferenced type |
8296 | 374 | for (int i = 0; i < arrayType.getOuterArraySize(); ++i) { |
8297 | 282 | initList->getSequence()[i] = convertInitializerList(loc, elementType, |
8298 | 282 | initList->getSequence()[i]->getAsTyped(), scalarInit); |
8299 | 282 | if (initList->getSequence()[i] == nullptr) |
8300 | 6 | return nullptr; |
8301 | 282 | } |
8302 | | |
8303 | 92 | return addConstructor(loc, initList, arrayType); |
8304 | 950 | } else if (type.isStruct()) { |
8305 | | // do we have implicit assignments to opaques? |
8306 | 152 | for (size_t i = initList->getSequence().size(); i < type.getStruct()->size(); ++i) { |
8307 | 50 | if ((*type.getStruct())[i].type->containsOpaque()) { |
8308 | 0 | error(loc, "cannot implicitly initialize opaque members", "initializer list", ""); |
8309 | 0 | return nullptr; |
8310 | 0 | } |
8311 | 50 | } |
8312 | | |
8313 | | // lengthen list to be long enough |
8314 | 102 | lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit); |
8315 | | |
8316 | 102 | if (type.getStruct()->size() != initList->getSequence().size()) { |
8317 | 4 | error(loc, "wrong number of structure members", "initializer list", ""); |
8318 | 4 | return nullptr; |
8319 | 4 | } |
8320 | 302 | for (size_t i = 0; i < type.getStruct()->size(); ++i) { |
8321 | 208 | initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, |
8322 | 208 | initList->getSequence()[i]->getAsTyped(), scalarInit); |
8323 | 208 | if (initList->getSequence()[i] == nullptr) |
8324 | 4 | return nullptr; |
8325 | 208 | } |
8326 | 848 | } else if (type.isMatrix()) { |
8327 | 340 | if (type.computeNumComponents() == (int)initList->getSequence().size()) { |
8328 | | // This means the matrix is initialized component-wise, rather than as |
8329 | | // a series of rows and columns. We can just use the list directly as |
8330 | | // a constructor; no further processing needed. |
8331 | 292 | } else { |
8332 | | // lengthen list to be long enough |
8333 | 48 | lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit); |
8334 | | |
8335 | 48 | if (type.getMatrixCols() != (int)initList->getSequence().size()) { |
8336 | 2 | error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str()); |
8337 | 2 | return nullptr; |
8338 | 2 | } |
8339 | 46 | TType vectorType(type, 0); // dereferenced type |
8340 | 214 | for (int i = 0; i < type.getMatrixCols(); ++i) { |
8341 | 168 | initList->getSequence()[i] = convertInitializerList(loc, vectorType, |
8342 | 168 | initList->getSequence()[i]->getAsTyped(), scalarInit); |
8343 | 168 | if (initList->getSequence()[i] == nullptr) |
8344 | 0 | return nullptr; |
8345 | 168 | } |
8346 | 46 | } |
8347 | 508 | } else if (type.isVector()) { |
8348 | | // lengthen list to be long enough |
8349 | 330 | lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit); |
8350 | | |
8351 | | // error check; we're at bottom, so work is finished below |
8352 | 330 | if (type.getVectorSize() != (int)initList->getSequence().size()) { |
8353 | 0 | error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", |
8354 | 0 | type.getCompleteString().c_str()); |
8355 | 0 | return nullptr; |
8356 | 0 | } |
8357 | 330 | } else if (type.isScalar()) { |
8358 | | // lengthen list to be long enough |
8359 | 178 | lengthenList(loc, initList->getSequence(), 1, scalarInit); |
8360 | | |
8361 | 178 | if ((int)initList->getSequence().size() != 1) { |
8362 | 4 | error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str()); |
8363 | 4 | return nullptr; |
8364 | 4 | } |
8365 | 178 | } else { |
8366 | 0 | error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str()); |
8367 | 0 | return nullptr; |
8368 | 0 | } |
8369 | | |
8370 | | // Now that the subtree is processed, process this node as if the |
8371 | | // initializer list is a set of arguments to a constructor. |
8372 | 936 | TIntermTyped* emulatedConstructorArguments; |
8373 | 936 | if (initList->getSequence().size() == 1) |
8374 | 216 | emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped(); |
8375 | 720 | else |
8376 | 720 | emulatedConstructorArguments = initList; |
8377 | | |
8378 | 936 | return addConstructor(loc, emulatedConstructorArguments, type); |
8379 | 1.04k | } |
8380 | | |
8381 | | // Lengthen list to be long enough to cover any gap from the current list size |
8382 | | // to 'size'. If the list is longer, do nothing. |
8383 | | // The value to lengthen with is the default for short lists. |
8384 | | // |
8385 | | // By default, lists that are too short due to lack of initializers initialize to zero. |
8386 | | // Alternatively, it could be a scalar initializer for a structure. Both cases are handled, |
8387 | | // based on whether something is passed in as 'scalarInit'. |
8388 | | // |
8389 | | // 'scalarInit' must be safe to use each time this is called (no side effects replication). |
8390 | | // |
8391 | | void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit) |
8392 | 756 | { |
8393 | 1.55k | for (int c = (int)list.size(); c < size; ++c) { |
8394 | 798 | if (scalarInit == nullptr) |
8395 | 798 | list.push_back(intermediate.addConstantUnion(0, loc)); |
8396 | 0 | else |
8397 | 0 | list.push_back(scalarInit); |
8398 | 798 | } |
8399 | 756 | } |
8400 | | |
8401 | | // |
8402 | | // Test for the correctness of the parameters passed to various constructor functions |
8403 | | // and also convert them to the right data type, if allowed and required. |
8404 | | // |
8405 | | // Returns nullptr for an error or the constructed node (aggregate or typed) for no error. |
8406 | | // |
8407 | | TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type) |
8408 | 7.03k | { |
8409 | 7.03k | if (node == nullptr) |
8410 | 0 | return nullptr; |
8411 | | |
8412 | | // Construct identical type |
8413 | 7.03k | if (type == node->getType()) |
8414 | 102 | return node; |
8415 | | |
8416 | | // Handle the idiom "(struct type)<scalar value>" |
8417 | 6.93k | if (type.isStruct() && isScalarConstructor(node)) { |
8418 | | // 'node' will almost always get used multiple times, so should not be used directly, |
8419 | | // it would create a DAG instead of a tree, which might be okay (would |
8420 | | // like to formalize that for constants and symbols), but if it has |
8421 | | // side effects, they would get executed multiple times, which is not okay. |
8422 | 0 | if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) { |
8423 | 0 | TIntermAggregate* seq = intermediate.makeAggregate(loc); |
8424 | 0 | TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType()); |
8425 | 0 | seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc)); |
8426 | 0 | seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy)); |
8427 | 0 | seq->setOp(EOpComma); |
8428 | 0 | seq->setType(type); |
8429 | 0 | return seq; |
8430 | 0 | } else |
8431 | 0 | return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node); |
8432 | 0 | } |
8433 | | |
8434 | 6.93k | return addConstructor(loc, node, type); |
8435 | 6.93k | } |
8436 | | |
8437 | | // Add a constructor, either from the grammar, or other programmatic reasons. |
8438 | | // |
8439 | | // 'node' is what to construct from. |
8440 | | // 'type' is what type to construct. |
8441 | | // |
8442 | | // Returns the constructed object. |
8443 | | // Return nullptr if it can't be done. |
8444 | | // |
8445 | | TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type) |
8446 | 7.97k | { |
8447 | 7.97k | TIntermAggregate* aggrNode = node->getAsAggregate(); |
8448 | 7.97k | TOperator op = intermediate.mapTypeToConstructorOp(type); |
8449 | | |
8450 | 7.97k | if (op == EOpConstructTextureSampler) |
8451 | 0 | return intermediate.setAggregateOperator(aggrNode, op, type, loc); |
8452 | | |
8453 | 7.97k | TTypeList::const_iterator memberTypes; |
8454 | 7.97k | if (op == EOpConstructStruct) |
8455 | 100 | memberTypes = type.getStruct()->begin(); |
8456 | | |
8457 | 7.97k | TType elementType; |
8458 | 7.97k | if (type.isArray()) { |
8459 | 108 | TType dereferenced(type, 0); |
8460 | 108 | elementType.shallowCopy(dereferenced); |
8461 | 108 | } else |
8462 | 7.86k | elementType.shallowCopy(type); |
8463 | | |
8464 | 7.97k | bool singleArg; |
8465 | 7.97k | if (aggrNode != nullptr) { |
8466 | 6.29k | if (aggrNode->getOp() != EOpNull) |
8467 | 6 | singleArg = true; |
8468 | 6.29k | else |
8469 | 6.29k | singleArg = false; |
8470 | 6.29k | } else |
8471 | 1.68k | singleArg = true; |
8472 | | |
8473 | 7.97k | TIntermTyped *newNode; |
8474 | 7.97k | if (singleArg) { |
8475 | | // Handle array -> array conversion |
8476 | | // Constructing an array of one type from an array of another type is allowed, |
8477 | | // assuming there are enough components available (semantic-checked earlier). |
8478 | 1.68k | if (type.isArray() && node->isArray()) |
8479 | 0 | newNode = convertArray(node, type); |
8480 | | |
8481 | | // If structure constructor or array constructor is being called |
8482 | | // for only one parameter inside the aggregate, we need to call constructAggregate function once. |
8483 | 1.68k | else if (type.isArray()) |
8484 | 0 | newNode = constructAggregate(node, elementType, 1, node->getLoc()); |
8485 | 1.68k | else if (op == EOpConstructStruct) |
8486 | 42 | newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc()); |
8487 | 1.64k | else { |
8488 | | // shape conversion for matrix constructor from scalar. HLSL semantics are: scalar |
8489 | | // is replicated into every element of the matrix (not just the diagnonal), so |
8490 | | // that is handled specially here. |
8491 | 1.64k | if (type.isMatrix() && node->getType().isScalarOrVec1()) |
8492 | 146 | node = intermediate.addShapeConversion(type, node); |
8493 | | |
8494 | 1.64k | newNode = constructBuiltIn(type, op, node, node->getLoc(), false); |
8495 | 1.64k | } |
8496 | | |
8497 | 1.68k | if (newNode && (type.isArray() || op == EOpConstructStruct)) |
8498 | 42 | newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc); |
8499 | | |
8500 | 1.68k | return newNode; |
8501 | 1.68k | } |
8502 | | |
8503 | | // |
8504 | | // Handle list of arguments. |
8505 | | // |
8506 | 6.29k | TIntermSequence& sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor |
8507 | | // if the structure constructor contains more than one parameter, then construct |
8508 | | // each parameter |
8509 | | |
8510 | 6.29k | int paramCount = 0; // keeps a track of the constructor parameter number being checked |
8511 | | |
8512 | | // for each parameter to the constructor call, check to see if the right type is passed or convert them |
8513 | | // to the right type if possible (and allowed). |
8514 | | // for structure constructors, just check if the right type is passed, no conversion is allowed. |
8515 | | |
8516 | 6.29k | for (TIntermSequence::iterator p = sequenceVector.begin(); |
8517 | 50.2k | p != sequenceVector.end(); p++, paramCount++) { |
8518 | 43.9k | if (type.isArray()) |
8519 | 310 | newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc()); |
8520 | 43.6k | else if (op == EOpConstructStruct) |
8521 | 154 | newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc()); |
8522 | 43.4k | else |
8523 | 43.4k | newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true); |
8524 | | |
8525 | 43.9k | if (newNode) |
8526 | 43.9k | *p = newNode; |
8527 | 18 | else |
8528 | 18 | return nullptr; |
8529 | 43.9k | } |
8530 | | |
8531 | 6.27k | TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc); |
8532 | | |
8533 | 6.27k | return constructor; |
8534 | 6.29k | } |
8535 | | |
8536 | | // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value |
8537 | | // for the parameter to the constructor (passed to this function). Essentially, it converts |
8538 | | // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a |
8539 | | // float, then float is converted to int. |
8540 | | // |
8541 | | // Returns nullptr for an error or the constructed node. |
8542 | | // |
8543 | | TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, |
8544 | | const TSourceLoc& loc, bool subset) |
8545 | 45.2k | { |
8546 | 45.2k | TIntermTyped* newNode; |
8547 | 45.2k | TOperator basicOp; |
8548 | | |
8549 | | // |
8550 | | // First, convert types as needed. |
8551 | | // |
8552 | 45.2k | switch (op) { |
8553 | 0 | case EOpConstructF16Vec2: |
8554 | 0 | case EOpConstructF16Vec3: |
8555 | 0 | case EOpConstructF16Vec4: |
8556 | 0 | case EOpConstructF16Mat2x2: |
8557 | 0 | case EOpConstructF16Mat2x3: |
8558 | 0 | case EOpConstructF16Mat2x4: |
8559 | 0 | case EOpConstructF16Mat3x2: |
8560 | 0 | case EOpConstructF16Mat3x3: |
8561 | 0 | case EOpConstructF16Mat3x4: |
8562 | 0 | case EOpConstructF16Mat4x2: |
8563 | 0 | case EOpConstructF16Mat4x3: |
8564 | 0 | case EOpConstructF16Mat4x4: |
8565 | 0 | case EOpConstructFloat16: |
8566 | 0 | basicOp = EOpConstructFloat16; |
8567 | 0 | break; |
8568 | | |
8569 | 1.28k | case EOpConstructVec2: |
8570 | 2.81k | case EOpConstructVec3: |
8571 | 6.30k | case EOpConstructVec4: |
8572 | 7.57k | case EOpConstructMat2x2: |
8573 | 9.28k | case EOpConstructMat2x3: |
8574 | 11.8k | case EOpConstructMat2x4: |
8575 | 13.6k | case EOpConstructMat3x2: |
8576 | 16.9k | case EOpConstructMat3x3: |
8577 | 21.6k | case EOpConstructMat3x4: |
8578 | 24.3k | case EOpConstructMat4x2: |
8579 | 28.7k | case EOpConstructMat4x3: |
8580 | 36.5k | case EOpConstructMat4x4: |
8581 | 37.6k | case EOpConstructFloat: |
8582 | 37.6k | basicOp = EOpConstructFloat; |
8583 | 37.6k | break; |
8584 | | |
8585 | 4 | case EOpConstructDVec2: |
8586 | 10 | case EOpConstructDVec3: |
8587 | 10 | case EOpConstructDVec4: |
8588 | 10 | case EOpConstructDMat2x2: |
8589 | 10 | case EOpConstructDMat2x3: |
8590 | 10 | case EOpConstructDMat2x4: |
8591 | 10 | case EOpConstructDMat3x2: |
8592 | 10 | case EOpConstructDMat3x3: |
8593 | 10 | case EOpConstructDMat3x4: |
8594 | 10 | case EOpConstructDMat4x2: |
8595 | 10 | case EOpConstructDMat4x3: |
8596 | 10 | case EOpConstructDMat4x4: |
8597 | 14 | case EOpConstructDouble: |
8598 | 14 | basicOp = EOpConstructDouble; |
8599 | 14 | break; |
8600 | | |
8601 | 0 | case EOpConstructI16Vec2: |
8602 | 0 | case EOpConstructI16Vec3: |
8603 | 0 | case EOpConstructI16Vec4: |
8604 | 0 | case EOpConstructInt16: |
8605 | 0 | basicOp = EOpConstructInt16; |
8606 | 0 | break; |
8607 | | |
8608 | 250 | case EOpConstructIVec2: |
8609 | 272 | case EOpConstructIVec3: |
8610 | 512 | case EOpConstructIVec4: |
8611 | 512 | case EOpConstructIMat2x2: |
8612 | 512 | case EOpConstructIMat2x3: |
8613 | 512 | case EOpConstructIMat2x4: |
8614 | 1.01k | case EOpConstructIMat3x2: |
8615 | 1.01k | case EOpConstructIMat3x3: |
8616 | 1.01k | case EOpConstructIMat3x4: |
8617 | 1.89k | case EOpConstructIMat4x2: |
8618 | 1.89k | case EOpConstructIMat4x3: |
8619 | 3.90k | case EOpConstructIMat4x4: |
8620 | 4.02k | case EOpConstructInt: |
8621 | 4.02k | basicOp = EOpConstructInt; |
8622 | 4.02k | break; |
8623 | | |
8624 | 0 | case EOpConstructU16Vec2: |
8625 | 0 | case EOpConstructU16Vec3: |
8626 | 0 | case EOpConstructU16Vec4: |
8627 | 0 | case EOpConstructUint16: |
8628 | 0 | basicOp = EOpConstructUint16; |
8629 | 0 | break; |
8630 | | |
8631 | 218 | case EOpConstructUVec2: |
8632 | 480 | case EOpConstructUVec3: |
8633 | 760 | case EOpConstructUVec4: |
8634 | 760 | case EOpConstructUMat2x2: |
8635 | 760 | case EOpConstructUMat2x3: |
8636 | 760 | case EOpConstructUMat2x4: |
8637 | 1.02k | case EOpConstructUMat3x2: |
8638 | 1.02k | case EOpConstructUMat3x3: |
8639 | 1.02k | case EOpConstructUMat3x4: |
8640 | 1.43k | case EOpConstructUMat4x2: |
8641 | 1.43k | case EOpConstructUMat4x3: |
8642 | 2.61k | case EOpConstructUMat4x4: |
8643 | 2.66k | case EOpConstructUint: |
8644 | 2.66k | basicOp = EOpConstructUint; |
8645 | 2.66k | break; |
8646 | | |
8647 | 16 | case EOpConstructBVec2: |
8648 | 22 | case EOpConstructBVec3: |
8649 | 30 | case EOpConstructBVec4: |
8650 | 30 | case EOpConstructBMat2x2: |
8651 | 30 | case EOpConstructBMat2x3: |
8652 | 30 | case EOpConstructBMat2x4: |
8653 | 144 | case EOpConstructBMat3x2: |
8654 | 144 | case EOpConstructBMat3x3: |
8655 | 144 | case EOpConstructBMat3x4: |
8656 | 320 | case EOpConstructBMat4x2: |
8657 | 320 | case EOpConstructBMat4x3: |
8658 | 896 | case EOpConstructBMat4x4: |
8659 | 900 | case EOpConstructBool: |
8660 | 900 | basicOp = EOpConstructBool; |
8661 | 900 | break; |
8662 | | |
8663 | 6 | default: |
8664 | 6 | error(loc, "unsupported construction", "", ""); |
8665 | | |
8666 | 6 | return nullptr; |
8667 | 45.2k | } |
8668 | 45.2k | newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc()); |
8669 | 45.2k | if (newNode == nullptr) { |
8670 | 26 | error(loc, "can't convert", "constructor", ""); |
8671 | 26 | return nullptr; |
8672 | 26 | } |
8673 | | |
8674 | | // |
8675 | | // Now, if there still isn't an operation to do the construction, and we need one, add one. |
8676 | | // |
8677 | | |
8678 | | // Otherwise, skip out early. |
8679 | 45.2k | if (subset || (newNode != node && newNode->getType() == type)) |
8680 | 44.6k | return newNode; |
8681 | | |
8682 | | // setAggregateOperator will insert a new node for the constructor, as needed. |
8683 | 624 | return intermediate.setAggregateOperator(newNode, op, type, loc); |
8684 | 45.2k | } |
8685 | | |
8686 | | // Convert the array in node to the requested type, which is also an array. |
8687 | | // Returns nullptr on failure, otherwise returns aggregate holding the list of |
8688 | | // elements needed to construct the array. |
8689 | | TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type) |
8690 | 0 | { |
8691 | 0 | assert(node->isArray() && type.isArray()); |
8692 | 0 | if (node->getType().computeNumComponents() < type.computeNumComponents()) |
8693 | 0 | return nullptr; |
8694 | | |
8695 | | // TODO: write an argument replicator, for the case the argument should not be |
8696 | | // executed multiple times, yet multiple copies are needed. |
8697 | | |
8698 | 0 | TIntermTyped* constructee = node->getAsTyped(); |
8699 | | // track where we are in consuming the argument |
8700 | 0 | int constructeeElement = 0; |
8701 | 0 | int constructeeComponent = 0; |
8702 | | |
8703 | | // bump up to the next component to consume |
8704 | 0 | const auto getNextComponent = [&]() { |
8705 | 0 | TIntermTyped* component; |
8706 | 0 | component = handleBracketDereference(node->getLoc(), constructee, |
8707 | 0 | intermediate.addConstantUnion(constructeeElement, node->getLoc())); |
8708 | 0 | if (component->isVector()) |
8709 | 0 | component = handleBracketDereference(node->getLoc(), component, |
8710 | 0 | intermediate.addConstantUnion(constructeeComponent, node->getLoc())); |
8711 | | // bump component pointer up |
8712 | 0 | ++constructeeComponent; |
8713 | 0 | if (constructeeComponent == constructee->getVectorSize()) { |
8714 | 0 | constructeeComponent = 0; |
8715 | 0 | ++constructeeElement; |
8716 | 0 | } |
8717 | 0 | return component; |
8718 | 0 | }; |
8719 | | |
8720 | | // make one subnode per constructed array element |
8721 | 0 | TIntermAggregate* constructor = nullptr; |
8722 | 0 | TType derefType(type, 0); |
8723 | 0 | TType speculativeComponentType(derefType, 0); |
8724 | 0 | TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType; |
8725 | 0 | TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType); |
8726 | 0 | TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize()); |
8727 | 0 | for (int e = 0; e < type.getOuterArraySize(); ++e) { |
8728 | | // construct an element |
8729 | 0 | TIntermTyped* elementArg; |
8730 | 0 | if (type.getVectorSize() == constructee->getVectorSize()) { |
8731 | | // same element shape |
8732 | 0 | elementArg = handleBracketDereference(node->getLoc(), constructee, |
8733 | 0 | intermediate.addConstantUnion(e, node->getLoc())); |
8734 | 0 | } else { |
8735 | | // mismatched element shapes |
8736 | 0 | if (type.getVectorSize() == 1) |
8737 | 0 | elementArg = getNextComponent(); |
8738 | 0 | else { |
8739 | | // make a vector |
8740 | 0 | TIntermAggregate* elementConstructee = nullptr; |
8741 | 0 | for (int c = 0; c < type.getVectorSize(); ++c) |
8742 | 0 | elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent()); |
8743 | 0 | elementArg = addConstructor(node->getLoc(), elementConstructee, crossType); |
8744 | 0 | } |
8745 | 0 | } |
8746 | | // convert basic types |
8747 | 0 | elementArg = intermediate.addConversion(componentOp, derefType, elementArg); |
8748 | 0 | if (elementArg == nullptr) |
8749 | 0 | return nullptr; |
8750 | | // combine with top-level constructor |
8751 | 0 | constructor = intermediate.growAggregate(constructor, elementArg); |
8752 | 0 | } |
8753 | | |
8754 | 0 | return constructor; |
8755 | 0 | } |
8756 | | |
8757 | | // This function tests for the type of the parameters to the structure or array constructor. Raises |
8758 | | // an error message if the expected type does not match the parameter passed to the constructor. |
8759 | | // |
8760 | | // Returns nullptr for an error or the input node itself if the expected and the given parameter types match. |
8761 | | // |
8762 | | TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, |
8763 | | const TSourceLoc& loc) |
8764 | 506 | { |
8765 | | // Handle cases that map more 1:1 between constructor arguments and constructed. |
8766 | 506 | TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped()); |
8767 | 506 | if (converted == nullptr || converted->getType() != type) { |
8768 | 4 | error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount, |
8769 | 4 | node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str()); |
8770 | | |
8771 | 4 | return nullptr; |
8772 | 4 | } |
8773 | | |
8774 | 502 | return converted; |
8775 | 506 | } |
8776 | | |
8777 | | // |
8778 | | // Do everything needed to add an interface block. |
8779 | | // |
8780 | | void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName) |
8781 | 736 | { |
8782 | 736 | assert(type.getWritableStruct() != nullptr); |
8783 | | |
8784 | | // Clean up top-level decorations that don't belong. |
8785 | 736 | switch (type.getQualifier().storage) { |
8786 | 168 | case EvqUniform: |
8787 | 736 | case EvqBuffer: |
8788 | 736 | correctUniform(type.getQualifier()); |
8789 | 736 | break; |
8790 | 0 | case EvqVaryingIn: |
8791 | 0 | correctInput(type.getQualifier()); |
8792 | 0 | break; |
8793 | 0 | case EvqVaryingOut: |
8794 | 0 | correctOutput(type.getQualifier()); |
8795 | 0 | break; |
8796 | 0 | default: |
8797 | 0 | break; |
8798 | 736 | } |
8799 | | |
8800 | 736 | TTypeList& typeList = *type.getWritableStruct(); |
8801 | | // fix and check for member storage qualifiers and types that don't belong within a block |
8802 | 1.61k | for (unsigned int member = 0; member < typeList.size(); ++member) { |
8803 | 878 | TType& memberType = *typeList[member].type; |
8804 | 878 | TQualifier& memberQualifier = memberType.getQualifier(); |
8805 | 878 | const TSourceLoc& memberLoc = typeList[member].loc; |
8806 | 878 | globalQualifierFix(memberLoc, memberQualifier); |
8807 | 878 | memberQualifier.storage = type.getQualifier().storage; |
8808 | | |
8809 | 878 | if (memberType.isStruct()) { |
8810 | | // clean up and pick up the right set of decorations |
8811 | 136 | auto it = ioTypeMap.find(memberType.getStruct()); |
8812 | 136 | switch (type.getQualifier().storage) { |
8813 | 34 | case EvqUniform: |
8814 | 136 | case EvqBuffer: |
8815 | 136 | correctUniform(type.getQualifier()); |
8816 | 136 | if (it != ioTypeMap.end() && it->second.uniform) |
8817 | 8 | memberType.setStruct(it->second.uniform); |
8818 | 136 | break; |
8819 | 0 | case EvqVaryingIn: |
8820 | 0 | correctInput(type.getQualifier()); |
8821 | 0 | if (it != ioTypeMap.end() && it->second.input) |
8822 | 0 | memberType.setStruct(it->second.input); |
8823 | 0 | break; |
8824 | 0 | case EvqVaryingOut: |
8825 | 0 | correctOutput(type.getQualifier()); |
8826 | 0 | if (it != ioTypeMap.end() && it->second.output) |
8827 | 0 | memberType.setStruct(it->second.output); |
8828 | 0 | break; |
8829 | 0 | default: |
8830 | 0 | break; |
8831 | 136 | } |
8832 | 136 | } |
8833 | 878 | } |
8834 | | |
8835 | | // Make default block qualification, and adjust the member qualifications |
8836 | | |
8837 | 736 | TQualifier defaultQualification; |
8838 | 736 | switch (type.getQualifier().storage) { |
8839 | 168 | case EvqUniform: defaultQualification = globalUniformDefaults; break; |
8840 | 568 | case EvqBuffer: defaultQualification = globalBufferDefaults; break; |
8841 | 0 | case EvqVaryingIn: defaultQualification = globalInputDefaults; break; |
8842 | 0 | case EvqVaryingOut: defaultQualification = globalOutputDefaults; break; |
8843 | 0 | default: defaultQualification.clear(); break; |
8844 | 736 | } |
8845 | | |
8846 | | // Special case for "push_constant uniform", which has a default of std430, |
8847 | | // contrary to normal uniform defaults, and can't have a default tracked for it. |
8848 | 736 | if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking()) |
8849 | 60 | type.getQualifier().layoutPacking = ElpStd430; |
8850 | | |
8851 | | // fix and check for member layout qualifiers |
8852 | | |
8853 | 736 | mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true); |
8854 | | |
8855 | 736 | bool memberWithLocation = false; |
8856 | 736 | bool memberWithoutLocation = false; |
8857 | 1.61k | for (unsigned int member = 0; member < typeList.size(); ++member) { |
8858 | 878 | TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
8859 | 878 | const TSourceLoc& memberLoc = typeList[member].loc; |
8860 | 878 | if (memberQualifier.hasStream()) { |
8861 | 0 | if (defaultQualification.layoutStream != memberQualifier.layoutStream) |
8862 | 0 | error(memberLoc, "member cannot contradict block", "stream", ""); |
8863 | 0 | } |
8864 | | |
8865 | | // "This includes a block's inheritance of the |
8866 | | // current global default buffer, a block member's inheritance of the block's |
8867 | | // buffer, and the requirement that any *xfb_buffer* declared on a block |
8868 | | // member must match the buffer inherited from the block." |
8869 | 878 | if (memberQualifier.hasXfbBuffer()) { |
8870 | 0 | if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer) |
8871 | 0 | error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", ""); |
8872 | 0 | } |
8873 | | |
8874 | 878 | if (memberQualifier.hasLocation()) { |
8875 | 0 | switch (type.getQualifier().storage) { |
8876 | 0 | case EvqVaryingIn: |
8877 | 0 | case EvqVaryingOut: |
8878 | 0 | memberWithLocation = true; |
8879 | 0 | break; |
8880 | 0 | default: |
8881 | 0 | break; |
8882 | 0 | } |
8883 | 0 | } else |
8884 | 878 | memberWithoutLocation = true; |
8885 | | |
8886 | 878 | TQualifier newMemberQualification = defaultQualification; |
8887 | 878 | mergeQualifiers(newMemberQualification, memberQualifier); |
8888 | 878 | memberQualifier = newMemberQualification; |
8889 | 878 | } |
8890 | | |
8891 | | // Process the members |
8892 | 736 | fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation); |
8893 | 736 | fixXfbOffsets(type.getQualifier(), typeList); |
8894 | 736 | fixBlockUniformOffsets(type.getQualifier(), typeList); |
8895 | | |
8896 | | // reverse merge, so that currentBlockQualifier now has all layout information |
8897 | | // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers) |
8898 | 736 | mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true); |
8899 | | |
8900 | | // |
8901 | | // Build and add the interface block as a new type named 'blockName' |
8902 | | // |
8903 | | |
8904 | | // Use the instance name as the interface name if one exists, else the block name. |
8905 | 736 | const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName(); |
8906 | | |
8907 | 736 | TType blockType(&typeList, interfaceName, type.getQualifier()); |
8908 | 736 | if (type.isArray()) |
8909 | 14 | blockType.transferArraySizes(type.getArraySizes()); |
8910 | | |
8911 | | // Add the variable, as anonymous or named instanceName. |
8912 | | // Make an anonymous variable if no name was provided. |
8913 | 736 | if (instanceName == nullptr) |
8914 | 166 | instanceName = NewPoolTString(""); |
8915 | | |
8916 | 736 | TVariable& variable = *new TVariable(instanceName, blockType); |
8917 | 736 | if (! symbolTable.insert(variable)) { |
8918 | 10 | if (*instanceName == "") |
8919 | 4 | error(loc, "nameless block contains a member that already has a name at global scope", |
8920 | 4 | "" /* blockName->c_str() */, ""); |
8921 | 6 | else |
8922 | 6 | error(loc, "block instance name redefinition", variable.getName().c_str(), ""); |
8923 | | |
8924 | 10 | return; |
8925 | 10 | } |
8926 | | |
8927 | | // Save it in the AST for linker use. |
8928 | 726 | if (symbolTable.atGlobalLevel()) |
8929 | 712 | trackLinkage(variable); |
8930 | 726 | } |
8931 | | |
8932 | | // |
8933 | | // "For a block, this process applies to the entire block, or until the first member |
8934 | | // is reached that has a location layout qualifier. When a block member is declared with a location |
8935 | | // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level |
8936 | | // declaration. Subsequent members are again assigned consecutive locations, based on the newest location, |
8937 | | // until the next member declared with a location qualifier. The values used for locations do not have to be |
8938 | | // declared in increasing order." |
8939 | | void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation) |
8940 | 736 | { |
8941 | | // "If a block has no block-level location layout qualifier, it is required that either all or none of its members |
8942 | | // have a location layout qualifier, or a compile-time error results." |
8943 | 736 | if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation) |
8944 | 0 | error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", ""); |
8945 | 736 | else { |
8946 | 736 | if (memberWithLocation) { |
8947 | | // remove any block-level location and make it per *every* member |
8948 | 0 | int nextLocation = 0; // by the rule above, initial value is not relevant |
8949 | 0 | if (qualifier.hasAnyLocation()) { |
8950 | 0 | nextLocation = qualifier.layoutLocation; |
8951 | 0 | qualifier.layoutLocation = TQualifier::layoutLocationEnd; |
8952 | 0 | if (qualifier.hasComponent()) { |
8953 | | // "It is a compile-time error to apply the *component* qualifier to a ... block" |
8954 | 0 | error(loc, "cannot apply to a block", "component", ""); |
8955 | 0 | } |
8956 | 0 | if (qualifier.hasIndex()) { |
8957 | 0 | error(loc, "cannot apply to a block", "index", ""); |
8958 | 0 | } |
8959 | 0 | } |
8960 | 0 | for (unsigned int member = 0; member < typeList.size(); ++member) { |
8961 | 0 | TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
8962 | 0 | const TSourceLoc& memberLoc = typeList[member].loc; |
8963 | 0 | if (! memberQualifier.hasLocation()) { |
8964 | 0 | if (nextLocation >= (int)TQualifier::layoutLocationEnd) |
8965 | 0 | error(memberLoc, "location is too large", "location", ""); |
8966 | 0 | memberQualifier.layoutLocation = nextLocation; |
8967 | 0 | memberQualifier.layoutComponent = 0; |
8968 | 0 | } |
8969 | 0 | nextLocation = memberQualifier.layoutLocation + |
8970 | 0 | intermediate.computeTypeLocationSize(*typeList[member].type, language); |
8971 | 0 | } |
8972 | 0 | } |
8973 | 736 | } |
8974 | 736 | } |
8975 | | |
8976 | | void HlslParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList) |
8977 | 736 | { |
8978 | | // "If a block is qualified with xfb_offset, all its |
8979 | | // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any |
8980 | | // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer |
8981 | | // offsets." |
8982 | | |
8983 | 736 | if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset()) |
8984 | 736 | return; |
8985 | | |
8986 | 0 | int nextOffset = qualifier.layoutXfbOffset; |
8987 | 0 | for (unsigned int member = 0; member < typeList.size(); ++member) { |
8988 | 0 | TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
8989 | 0 | bool contains64BitType = false; |
8990 | 0 | bool contains32BitType = false; |
8991 | 0 | bool contains16BitType = false; |
8992 | 0 | int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType, contains32BitType, contains16BitType); |
8993 | | // see if we need to auto-assign an offset to this member |
8994 | 0 | if (! memberQualifier.hasXfbOffset()) { |
8995 | | // "if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8" |
8996 | 0 | if (contains64BitType) |
8997 | 0 | RoundToPow2(nextOffset, 8); |
8998 | 0 | else if (contains32BitType) |
8999 | 0 | RoundToPow2(nextOffset, 4); |
9000 | | // "if applied to an aggregate containing a half float or 16-bit integer, the offset must also be a multiple of 2" |
9001 | 0 | else if (contains16BitType) |
9002 | 0 | RoundToPow2(nextOffset, 2); |
9003 | 0 | memberQualifier.layoutXfbOffset = nextOffset; |
9004 | 0 | } else |
9005 | 0 | nextOffset = memberQualifier.layoutXfbOffset; |
9006 | 0 | nextOffset += memberSize; |
9007 | 0 | } |
9008 | | |
9009 | | // The above gave all block members an offset, so we can take it off the block now, |
9010 | | // which will avoid double counting the offset usage. |
9011 | 0 | qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd; |
9012 | 0 | } |
9013 | | |
9014 | | // Calculate and save the offset of each block member, using the recursively |
9015 | | // defined block offset rules and the user-provided offset and align. |
9016 | | // |
9017 | | // Also, compute and save the total size of the block. For the block's size, arrayness |
9018 | | // is not taken into account, as each element is backed by a separate buffer. |
9019 | | // |
9020 | | void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList) |
9021 | 736 | { |
9022 | 736 | if (! qualifier.isUniformOrBuffer()) |
9023 | 0 | return; |
9024 | 736 | if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar) |
9025 | 676 | return; |
9026 | | |
9027 | 60 | int offset = 0; |
9028 | 60 | int memberSize; |
9029 | 178 | for (unsigned int member = 0; member < typeList.size(); ++member) { |
9030 | 118 | TQualifier& memberQualifier = typeList[member].type->getQualifier(); |
9031 | 118 | const TSourceLoc& memberLoc = typeList[member].loc; |
9032 | | |
9033 | | // "When align is applied to an array, it effects only the start of the array, not the array's internal stride." |
9034 | | |
9035 | | // modify just the children's view of matrix layout, if there is one for this member |
9036 | 118 | TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix; |
9037 | 118 | int dummyStride; |
9038 | 118 | int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride, |
9039 | 118 | qualifier.layoutPacking, |
9040 | 118 | subMatrixLayout != ElmNone |
9041 | 118 | ? subMatrixLayout == ElmRowMajor |
9042 | 118 | : qualifier.layoutMatrix == ElmRowMajor); |
9043 | 118 | if (memberQualifier.hasOffset()) { |
9044 | | // "The specified offset must be a multiple |
9045 | | // of the base alignment of the type of the block member it qualifies, or a compile-time error results." |
9046 | 30 | if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment)) |
9047 | 0 | error(memberLoc, "must be a multiple of the member's alignment", "offset", |
9048 | 0 | "(layout offset = %d | member alignment = %d)", memberQualifier.layoutOffset, memberAlignment); |
9049 | | |
9050 | | // "The offset qualifier forces the qualified member to start at or after the specified |
9051 | | // integral-constant expression, which will be its byte offset from the beginning of the buffer. |
9052 | | // "The actual offset of a member is computed as |
9053 | | // follows: If offset was declared, start with that offset, otherwise start with the next available offset." |
9054 | 30 | offset = std::max(offset, memberQualifier.layoutOffset); |
9055 | 30 | } |
9056 | | |
9057 | | // "The actual alignment of a member will be the greater of the specified align alignment and the standard |
9058 | | // (e.g., std140) base alignment for the member's type." |
9059 | 118 | if (memberQualifier.hasAlign()) |
9060 | 0 | memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign); |
9061 | | |
9062 | | // "If the resulting offset is not a multiple of the actual alignment, |
9063 | | // increase it to the first offset that is a multiple of |
9064 | | // the actual alignment." |
9065 | 118 | RoundToPow2(offset, memberAlignment); |
9066 | 118 | typeList[member].type->getQualifier().layoutOffset = offset; |
9067 | 118 | offset += memberSize; |
9068 | 118 | } |
9069 | 60 | } |
9070 | | |
9071 | | // For an identifier that is already declared, add more qualification to it. |
9072 | | void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier) |
9073 | 0 | { |
9074 | 0 | TSymbol* symbol = symbolTable.find(identifier); |
9075 | 0 | if (symbol == nullptr) { |
9076 | 0 | error(loc, "identifier not previously declared", identifier.c_str(), ""); |
9077 | 0 | return; |
9078 | 0 | } |
9079 | 0 | if (symbol->getAsFunction()) { |
9080 | 0 | error(loc, "cannot re-qualify a function name", identifier.c_str(), ""); |
9081 | 0 | return; |
9082 | 0 | } |
9083 | | |
9084 | 0 | if (qualifier.isAuxiliary() || |
9085 | 0 | qualifier.isMemory() || |
9086 | 0 | qualifier.isInterpolation() || |
9087 | 0 | qualifier.hasLayout() || |
9088 | 0 | qualifier.storage != EvqTemporary || |
9089 | 0 | qualifier.precision != EpqNone) { |
9090 | 0 | error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), ""); |
9091 | 0 | return; |
9092 | 0 | } |
9093 | | |
9094 | | // For read-only built-ins, add a new symbol for holding the modified qualifier. |
9095 | | // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block) |
9096 | 0 | if (symbol->isReadOnly()) |
9097 | 0 | symbol = symbolTable.copyUp(symbol); |
9098 | |
|
9099 | 0 | if (qualifier.invariant) { |
9100 | 0 | if (intermediate.inIoAccessed(identifier)) |
9101 | 0 | error(loc, "cannot change qualification after use", "invariant", ""); |
9102 | 0 | symbol->getWritableType().getQualifier().invariant = true; |
9103 | 0 | } else if (qualifier.noContraction) { |
9104 | 0 | if (intermediate.inIoAccessed(identifier)) |
9105 | 0 | error(loc, "cannot change qualification after use", "precise", ""); |
9106 | 0 | symbol->getWritableType().getQualifier().noContraction = true; |
9107 | 0 | } else if (qualifier.specConstant) { |
9108 | 0 | symbol->getWritableType().getQualifier().makeSpecConstant(); |
9109 | 0 | if (qualifier.hasSpecConstantId()) |
9110 | 0 | symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId; |
9111 | 0 | } else |
9112 | 0 | warn(loc, "unknown requalification", "", ""); |
9113 | 0 | } |
9114 | | |
9115 | | void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers) |
9116 | 0 | { |
9117 | 0 | for (unsigned int i = 0; i < identifiers.size(); ++i) |
9118 | 0 | addQualifierToExisting(loc, qualifier, *identifiers[i]); |
9119 | 0 | } |
9120 | | |
9121 | | // |
9122 | | // Update the intermediate for the given input geometry |
9123 | | // |
9124 | | bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry) |
9125 | 14 | { |
9126 | | // these can be declared on non-entry-points, in which case they lose their meaning |
9127 | 14 | if (! parsingEntrypointParameters) |
9128 | 14 | return true; |
9129 | | |
9130 | 0 | switch (geometry) { |
9131 | 0 | case ElgPoints: // fall through |
9132 | 0 | case ElgLines: // ... |
9133 | 0 | case ElgTriangles: // ... |
9134 | 0 | case ElgLinesAdjacency: // ... |
9135 | 0 | case ElgTrianglesAdjacency: // ... |
9136 | 0 | if (! intermediate.setInputPrimitive(geometry)) { |
9137 | 0 | error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), ""); |
9138 | 0 | return false; |
9139 | 0 | } |
9140 | 0 | break; |
9141 | | |
9142 | 0 | default: |
9143 | 0 | error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), ""); |
9144 | 0 | return false; |
9145 | 0 | } |
9146 | | |
9147 | 0 | return true; |
9148 | 0 | } |
9149 | | |
9150 | | // |
9151 | | // Update the intermediate for the given output geometry |
9152 | | // |
9153 | | bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry) |
9154 | 12 | { |
9155 | | // If this is not a geometry shader, ignore. It might be a mixed shader including several stages. |
9156 | | // Since that's an OK situation, return true for success. |
9157 | 12 | if (language != EShLangGeometry) |
9158 | 12 | return true; |
9159 | | |
9160 | | // these can be declared on non-entry-points, in which case they lose their meaning |
9161 | 0 | if (! parsingEntrypointParameters) |
9162 | 0 | return true; |
9163 | | |
9164 | 0 | switch (geometry) { |
9165 | 0 | case ElgPoints: |
9166 | 0 | case ElgLineStrip: |
9167 | 0 | case ElgTriangleStrip: |
9168 | 0 | if (! intermediate.setOutputPrimitive(geometry)) { |
9169 | 0 | error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), ""); |
9170 | 0 | return false; |
9171 | 0 | } |
9172 | 0 | break; |
9173 | 0 | default: |
9174 | 0 | error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), ""); |
9175 | 0 | return false; |
9176 | 0 | } |
9177 | | |
9178 | 0 | return true; |
9179 | 0 | } |
9180 | | |
9181 | | // |
9182 | | // Selection attributes |
9183 | | // |
9184 | | void HlslParseContext::handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection* selection, |
9185 | | const TAttributes& attributes) |
9186 | 78 | { |
9187 | 78 | if (selection == nullptr) |
9188 | 0 | return; |
9189 | | |
9190 | 78 | for (auto it = attributes.begin(); it != attributes.end(); ++it) { |
9191 | 0 | switch (it->name) { |
9192 | 0 | case EatFlatten: |
9193 | 0 | selection->setFlatten(); |
9194 | 0 | break; |
9195 | 0 | case EatBranch: |
9196 | 0 | selection->setDontFlatten(); |
9197 | 0 | break; |
9198 | 0 | default: |
9199 | 0 | warn(loc, "attribute does not apply to a selection", "", ""); |
9200 | 0 | break; |
9201 | 0 | } |
9202 | 0 | } |
9203 | 78 | } |
9204 | | |
9205 | | // |
9206 | | // Switch attributes |
9207 | | // |
9208 | | void HlslParseContext::handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch* selection, |
9209 | | const TAttributes& attributes) |
9210 | 30 | { |
9211 | 30 | if (selection == nullptr) |
9212 | 0 | return; |
9213 | | |
9214 | 30 | for (auto it = attributes.begin(); it != attributes.end(); ++it) { |
9215 | 0 | switch (it->name) { |
9216 | 0 | case EatFlatten: |
9217 | 0 | selection->setFlatten(); |
9218 | 0 | break; |
9219 | 0 | case EatBranch: |
9220 | 0 | selection->setDontFlatten(); |
9221 | 0 | break; |
9222 | 0 | default: |
9223 | 0 | warn(loc, "attribute does not apply to a switch", "", ""); |
9224 | 0 | break; |
9225 | 0 | } |
9226 | 0 | } |
9227 | 30 | } |
9228 | | |
9229 | | // |
9230 | | // Loop attributes |
9231 | | // |
9232 | | void HlslParseContext::handleLoopAttributes(const TSourceLoc& loc, TIntermLoop* loop, |
9233 | | const TAttributes& attributes) |
9234 | 130 | { |
9235 | 130 | if (loop == nullptr) |
9236 | 0 | return; |
9237 | | |
9238 | 150 | for (auto it = attributes.begin(); it != attributes.end(); ++it) { |
9239 | 20 | switch (it->name) { |
9240 | 12 | case EatUnroll: |
9241 | 12 | loop->setUnroll(); |
9242 | 12 | break; |
9243 | 8 | case EatLoop: |
9244 | 8 | loop->setDontUnroll(); |
9245 | 8 | break; |
9246 | 0 | default: |
9247 | 0 | warn(loc, "attribute does not apply to a loop", "", ""); |
9248 | 0 | break; |
9249 | 20 | } |
9250 | 20 | } |
9251 | 130 | } |
9252 | | |
9253 | | // |
9254 | | // Updating default qualifier for the case of a declaration with just a qualifier, |
9255 | | // no type, block, or identifier. |
9256 | | // |
9257 | | void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType) |
9258 | 0 | { |
9259 | 0 | if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) { |
9260 | 0 | assert(language == EShLangTessControl || language == EShLangGeometry); |
9261 | | // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices"; |
9262 | 0 | } |
9263 | 0 | if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) { |
9264 | 0 | if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations)) |
9265 | 0 | error(loc, "cannot change previously set layout value", "invocations", ""); |
9266 | 0 | } |
9267 | 0 | if (publicType.shaderQualifiers.geometry != ElgNone) { |
9268 | 0 | if (publicType.qualifier.storage == EvqVaryingIn) { |
9269 | 0 | switch (publicType.shaderQualifiers.geometry) { |
9270 | 0 | case ElgPoints: |
9271 | 0 | case ElgLines: |
9272 | 0 | case ElgLinesAdjacency: |
9273 | 0 | case ElgTriangles: |
9274 | 0 | case ElgTrianglesAdjacency: |
9275 | 0 | case ElgQuads: |
9276 | 0 | case ElgIsolines: |
9277 | 0 | break; |
9278 | 0 | default: |
9279 | 0 | error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), |
9280 | 0 | ""); |
9281 | 0 | } |
9282 | 0 | } else if (publicType.qualifier.storage == EvqVaryingOut) { |
9283 | 0 | handleOutputGeometry(loc, publicType.shaderQualifiers.geometry); |
9284 | 0 | } else |
9285 | 0 | error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), |
9286 | 0 | GetStorageQualifierString(publicType.qualifier.storage)); |
9287 | 0 | } |
9288 | 0 | if (publicType.shaderQualifiers.spacing != EvsNone) |
9289 | 0 | intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing); |
9290 | 0 | if (publicType.shaderQualifiers.order != EvoNone) |
9291 | 0 | intermediate.setVertexOrder(publicType.shaderQualifiers.order); |
9292 | 0 | if (publicType.shaderQualifiers.pointMode) |
9293 | 0 | intermediate.setPointMode(); |
9294 | 0 | for (int i = 0; i < 3; ++i) { |
9295 | 0 | if (publicType.shaderQualifiers.localSize[i] > 1) { |
9296 | 0 | int max = 0; |
9297 | 0 | switch (i) { |
9298 | 0 | case 0: max = resources.maxComputeWorkGroupSizeX; break; |
9299 | 0 | case 1: max = resources.maxComputeWorkGroupSizeY; break; |
9300 | 0 | case 2: max = resources.maxComputeWorkGroupSizeZ; break; |
9301 | 0 | default: break; |
9302 | 0 | } |
9303 | 0 | if (intermediate.getLocalSize(i) > (unsigned int)max) |
9304 | 0 | error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", ""); |
9305 | | |
9306 | | // Fix the existing constant gl_WorkGroupSize with this new information. |
9307 | 0 | TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); |
9308 | 0 | workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i)); |
9309 | 0 | } |
9310 | 0 | if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) { |
9311 | 0 | intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]); |
9312 | | // Set the workgroup built-in variable as a specialization constant |
9313 | 0 | TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); |
9314 | 0 | workGroupSize->getWritableType().getQualifier().specConstant = true; |
9315 | 0 | } |
9316 | 0 | } |
9317 | 0 | if (publicType.shaderQualifiers.earlyFragmentTests) |
9318 | 0 | intermediate.setEarlyFragmentTests(); |
9319 | |
|
9320 | 0 | const TQualifier& qualifier = publicType.qualifier; |
9321 | |
|
9322 | 0 | switch (qualifier.storage) { |
9323 | 0 | case EvqUniform: |
9324 | 0 | if (qualifier.hasMatrix()) |
9325 | 0 | globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix; |
9326 | 0 | if (qualifier.hasPacking()) |
9327 | 0 | globalUniformDefaults.layoutPacking = qualifier.layoutPacking; |
9328 | 0 | break; |
9329 | 0 | case EvqBuffer: |
9330 | 0 | if (qualifier.hasMatrix()) |
9331 | 0 | globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix; |
9332 | 0 | if (qualifier.hasPacking()) |
9333 | 0 | globalBufferDefaults.layoutPacking = qualifier.layoutPacking; |
9334 | 0 | break; |
9335 | 0 | case EvqVaryingIn: |
9336 | 0 | break; |
9337 | 0 | case EvqVaryingOut: |
9338 | 0 | if (qualifier.hasStream()) |
9339 | 0 | globalOutputDefaults.layoutStream = qualifier.layoutStream; |
9340 | 0 | if (qualifier.hasXfbBuffer()) |
9341 | 0 | globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer; |
9342 | 0 | if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) { |
9343 | 0 | if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride)) |
9344 | 0 | error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", |
9345 | 0 | qualifier.layoutXfbBuffer); |
9346 | 0 | } |
9347 | 0 | break; |
9348 | 0 | default: |
9349 | 0 | error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", ""); |
9350 | 0 | return; |
9351 | 0 | } |
9352 | 0 | } |
9353 | | |
9354 | | // |
9355 | | // Take the sequence of statements that has been built up since the last case/default, |
9356 | | // put it on the list of top-level nodes for the current (inner-most) switch statement, |
9357 | | // and follow that by the case/default we are on now. (See switch topology comment on |
9358 | | // TIntermSwitch.) |
9359 | | // |
9360 | | void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode) |
9361 | 158 | { |
9362 | 158 | TIntermSequence* switchSequence = switchSequenceStack.back(); |
9363 | | |
9364 | 158 | if (statements) { |
9365 | 62 | statements->setOperator(EOpSequence); |
9366 | 62 | switchSequence->push_back(statements); |
9367 | 62 | } |
9368 | 158 | if (branchNode) { |
9369 | | // check all previous cases for the same label (or both are 'default') |
9370 | 306 | for (unsigned int s = 0; s < switchSequence->size(); ++s) { |
9371 | 178 | TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode(); |
9372 | 178 | if (prevBranch) { |
9373 | 104 | TIntermTyped* prevExpression = prevBranch->getExpression(); |
9374 | 104 | TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression(); |
9375 | 104 | if (prevExpression == nullptr && newExpression == nullptr) |
9376 | 0 | error(branchNode->getLoc(), "duplicate label", "default", ""); |
9377 | 104 | else if (prevExpression != nullptr && |
9378 | 104 | newExpression != nullptr && |
9379 | 104 | prevExpression->getAsConstantUnion() && |
9380 | 104 | newExpression->getAsConstantUnion() && |
9381 | 104 | prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() == |
9382 | 104 | newExpression->getAsConstantUnion()->getConstArray()[0].getIConst()) |
9383 | 6 | error(branchNode->getLoc(), "duplicated value", "case", ""); |
9384 | 104 | } |
9385 | 178 | } |
9386 | 128 | switchSequence->push_back(branchNode); |
9387 | 128 | } |
9388 | 158 | } |
9389 | | |
9390 | | // |
9391 | | // Turn the top-level node sequence built up of wrapupSwitchSubsequence |
9392 | | // into a switch node. |
9393 | | // |
9394 | | TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, |
9395 | | TIntermAggregate* lastStatements, const TAttributes& attributes) |
9396 | 30 | { |
9397 | 30 | wrapupSwitchSubsequence(lastStatements, nullptr); |
9398 | | |
9399 | 30 | if (expression == nullptr || |
9400 | 30 | (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) || |
9401 | 28 | expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector()) |
9402 | 2 | error(loc, "condition must be a scalar integer expression", "switch", ""); |
9403 | | |
9404 | | // If there is nothing to do, drop the switch but still execute the expression |
9405 | 30 | TIntermSequence* switchSequence = switchSequenceStack.back(); |
9406 | 30 | if (switchSequence->size() == 0) |
9407 | 0 | return expression; |
9408 | | |
9409 | 30 | if (lastStatements == nullptr) { |
9410 | | // emulate a break for error recovery |
9411 | 0 | lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc)); |
9412 | 0 | lastStatements->setOperator(EOpSequence); |
9413 | 0 | switchSequence->push_back(lastStatements); |
9414 | 0 | } |
9415 | | |
9416 | 30 | TIntermAggregate* body = new TIntermAggregate(EOpSequence); |
9417 | 30 | body->getSequence() = *switchSequenceStack.back(); |
9418 | 30 | body->setLoc(loc); |
9419 | | |
9420 | 30 | TIntermSwitch* switchNode = new TIntermSwitch(expression, body); |
9421 | 30 | switchNode->setLoc(loc); |
9422 | 30 | handleSwitchAttributes(loc, switchNode, attributes); |
9423 | | |
9424 | 30 | return switchNode; |
9425 | 30 | } |
9426 | | |
9427 | | // Make a new symbol-table level that is made out of the members of a structure. |
9428 | | // This should be done as an anonymous struct (name is "") so that the symbol table |
9429 | | // finds the members with no explicit reference to a 'this' variable. |
9430 | | void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators) |
9431 | 916 | { |
9432 | | // member variables |
9433 | 916 | TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct); |
9434 | 916 | symbolTable.pushThis(thisVariable); |
9435 | | |
9436 | | // member functions |
9437 | 956 | for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) { |
9438 | | // member should have a prefix matching currentTypePrefix.back() |
9439 | | // but, symbol lookup within the class scope will just use the |
9440 | | // unprefixed name. Hence, there are two: one fully prefixed and |
9441 | | // one with no prefix. |
9442 | 40 | TFunction& member = *it->function->clone(); |
9443 | 40 | member.removePrefix(currentTypePrefix.back()); |
9444 | 40 | symbolTable.insert(member); |
9445 | 40 | } |
9446 | 916 | } |
9447 | | |
9448 | | // Track levels of class/struct/namespace nesting with a prefix string using |
9449 | | // the type names separated by the scoping operator. E.g., two levels |
9450 | | // would look like: |
9451 | | // |
9452 | | // outer::inner |
9453 | | // |
9454 | | // The string is empty when at normal global level. |
9455 | | // |
9456 | | void HlslParseContext::pushNamespace(const TString& typeName) |
9457 | 1.92k | { |
9458 | | // make new type prefix |
9459 | 1.92k | TString newPrefix; |
9460 | 1.92k | if (currentTypePrefix.size() > 0) |
9461 | 10 | newPrefix = currentTypePrefix.back(); |
9462 | 1.92k | newPrefix.append(typeName); |
9463 | 1.92k | newPrefix.append(scopeMangler); |
9464 | 1.92k | currentTypePrefix.push_back(newPrefix); |
9465 | 1.92k | } |
9466 | | |
9467 | | // Opposite of pushNamespace(), see above |
9468 | | void HlslParseContext::popNamespace() |
9469 | 1.92k | { |
9470 | 1.92k | currentTypePrefix.pop_back(); |
9471 | 1.92k | } |
9472 | | |
9473 | | // Use the class/struct nesting string to create a global name for |
9474 | | // a member of a class/struct. |
9475 | | void HlslParseContext::getFullNamespaceName(TString*& name) const |
9476 | 6.13M | { |
9477 | 6.13M | if (currentTypePrefix.size() == 0) |
9478 | 6.13M | return; |
9479 | | |
9480 | 128 | TString* fullName = NewPoolTString(currentTypePrefix.back().c_str()); |
9481 | 128 | fullName->append(*name); |
9482 | 128 | name = fullName; |
9483 | 128 | } |
9484 | | |
9485 | | // Helper function to add the namespace scope mangling syntax to a string. |
9486 | | void HlslParseContext::addScopeMangler(TString& name) |
9487 | 40 | { |
9488 | 40 | name.append(scopeMangler); |
9489 | 40 | } |
9490 | | |
9491 | | // Return true if this has uniform-interface like decorations. |
9492 | | bool HlslParseContext::hasUniform(const TQualifier& qualifier) const |
9493 | 1.23k | { |
9494 | 1.23k | return qualifier.hasUniformLayout() || |
9495 | 1.19k | qualifier.layoutPushConstant; |
9496 | 1.23k | } |
9497 | | |
9498 | | // Potentially not the opposite of hasUniform(), as if some characteristic is |
9499 | | // ever used for more than one thing (e.g., uniform or input), hasUniform() should |
9500 | | // say it exists, but clearUniform() should leave it in place. |
9501 | | void HlslParseContext::clearUniform(TQualifier& qualifier) |
9502 | 27.9k | { |
9503 | 27.9k | qualifier.clearUniformLayout(); |
9504 | 27.9k | qualifier.layoutPushConstant = false; |
9505 | 27.9k | } |
9506 | | |
9507 | | // Return false if builtIn by itself doesn't force this qualifier to be an input qualifier. |
9508 | | bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const |
9509 | 1.42k | { |
9510 | 1.42k | switch (qualifier.builtIn) { |
9511 | 48 | case EbvPosition: |
9512 | 48 | case EbvPointSize: |
9513 | 48 | return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment; |
9514 | 18 | case EbvClipDistance: |
9515 | 28 | case EbvCullDistance: |
9516 | 28 | return language != EShLangVertex && language != EShLangCompute; |
9517 | 4 | case EbvFragCoord: |
9518 | 4 | case EbvFace: |
9519 | 4 | case EbvHelperInvocation: |
9520 | 4 | case EbvLayer: |
9521 | 4 | case EbvPointCoord: |
9522 | 4 | case EbvSampleId: |
9523 | 6 | case EbvSampleMask: |
9524 | 6 | case EbvSamplePosition: |
9525 | 6 | case EbvViewportIndex: |
9526 | 6 | return language == EShLangFragment; |
9527 | 0 | case EbvGlobalInvocationId: |
9528 | 0 | case EbvLocalInvocationIndex: |
9529 | 0 | case EbvLocalInvocationId: |
9530 | 0 | case EbvNumWorkGroups: |
9531 | 0 | case EbvWorkGroupId: |
9532 | 0 | case EbvWorkGroupSize: |
9533 | 0 | return language == EShLangCompute; |
9534 | 0 | case EbvInvocationId: |
9535 | 0 | return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry; |
9536 | 0 | case EbvPatchVertices: |
9537 | 0 | return language == EShLangTessControl || language == EShLangTessEvaluation; |
9538 | 0 | case EbvInstanceId: |
9539 | 0 | case EbvInstanceIndex: |
9540 | 0 | case EbvVertexId: |
9541 | 0 | case EbvVertexIndex: |
9542 | 0 | return language == EShLangVertex; |
9543 | 0 | case EbvPrimitiveId: |
9544 | 0 | return language == EShLangGeometry || language == EShLangFragment || language == EShLangTessControl; |
9545 | 0 | case EbvTessLevelInner: |
9546 | 0 | case EbvTessLevelOuter: |
9547 | 0 | return language == EShLangTessEvaluation; |
9548 | 0 | case EbvTessCoord: |
9549 | 0 | return language == EShLangTessEvaluation; |
9550 | 0 | case EbvViewIndex: |
9551 | 0 | return language != EShLangCompute; |
9552 | 1.34k | default: |
9553 | 1.34k | return false; |
9554 | 1.42k | } |
9555 | 1.42k | } |
9556 | | |
9557 | | // Return true if there are decorations to preserve for input-like storage. |
9558 | | bool HlslParseContext::hasInput(const TQualifier& qualifier) const |
9559 | 1.23k | { |
9560 | 1.23k | if (qualifier.hasAnyLocation()) |
9561 | 6 | return true; |
9562 | | |
9563 | 1.22k | if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample)) |
9564 | 0 | return true; |
9565 | | |
9566 | 1.22k | if (language == EShLangTessEvaluation && qualifier.patch) |
9567 | 0 | return true; |
9568 | | |
9569 | 1.22k | if (isInputBuiltIn(qualifier)) |
9570 | 16 | return true; |
9571 | | |
9572 | 1.20k | return false; |
9573 | 1.22k | } |
9574 | | |
9575 | | // Return false if builtIn by itself doesn't force this qualifier to be an output qualifier. |
9576 | | bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const |
9577 | 2.50k | { |
9578 | 2.50k | switch (qualifier.builtIn) { |
9579 | 28 | case EbvPosition: |
9580 | 28 | case EbvPointSize: |
9581 | 28 | case EbvClipVertex: |
9582 | 28 | case EbvClipDistance: |
9583 | 28 | case EbvCullDistance: |
9584 | 28 | return language != EShLangFragment && language != EShLangCompute; |
9585 | 80 | case EbvFragDepth: |
9586 | 80 | case EbvFragDepthGreater: |
9587 | 80 | case EbvFragDepthLesser: |
9588 | 82 | case EbvSampleMask: |
9589 | 82 | return language == EShLangFragment; |
9590 | 0 | case EbvLayer: |
9591 | 0 | case EbvViewportIndex: |
9592 | 0 | return language == EShLangGeometry || language == EShLangVertex; |
9593 | 0 | case EbvPrimitiveId: |
9594 | 0 | return language == EShLangGeometry; |
9595 | 0 | case EbvTessLevelInner: |
9596 | 0 | case EbvTessLevelOuter: |
9597 | 0 | return language == EShLangTessControl; |
9598 | 2.39k | default: |
9599 | 2.39k | return false; |
9600 | 2.50k | } |
9601 | 2.50k | } |
9602 | | |
9603 | | // Return true if there are decorations to preserve for output-like storage. |
9604 | | bool HlslParseContext::hasOutput(const TQualifier& qualifier) const |
9605 | 1.23k | { |
9606 | 1.23k | if (qualifier.hasAnyLocation()) |
9607 | 6 | return true; |
9608 | | |
9609 | 1.22k | if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb()) |
9610 | 0 | return true; |
9611 | | |
9612 | 1.22k | if (language == EShLangTessControl && qualifier.patch) |
9613 | 0 | return true; |
9614 | | |
9615 | 1.22k | if (language == EShLangGeometry && qualifier.hasStream()) |
9616 | 0 | return true; |
9617 | | |
9618 | 1.22k | if (isOutputBuiltIn(qualifier)) |
9619 | 14 | return true; |
9620 | | |
9621 | 1.21k | return false; |
9622 | 1.22k | } |
9623 | | |
9624 | | // Make the IO decorations etc. be appropriate only for an input interface. |
9625 | | void HlslParseContext::correctInput(TQualifier& qualifier) |
9626 | 202 | { |
9627 | 202 | clearUniform(qualifier); |
9628 | 202 | if (language == EShLangVertex) |
9629 | 2 | qualifier.clearInterstage(); |
9630 | 202 | if (language != EShLangTessEvaluation) |
9631 | 200 | qualifier.patch = false; |
9632 | 202 | if (language != EShLangFragment) { |
9633 | 192 | qualifier.clearInterpolation(); |
9634 | 192 | qualifier.sample = false; |
9635 | 192 | } |
9636 | | |
9637 | 202 | qualifier.clearStreamLayout(); |
9638 | 202 | qualifier.clearXfbLayout(); |
9639 | | |
9640 | 202 | if (! isInputBuiltIn(qualifier)) |
9641 | 144 | qualifier.builtIn = EbvNone; |
9642 | 202 | } |
9643 | | |
9644 | | // Make the IO decorations etc. be appropriate only for an output interface. |
9645 | | void HlslParseContext::correctOutput(TQualifier& qualifier) |
9646 | 1.27k | { |
9647 | 1.27k | clearUniform(qualifier); |
9648 | 1.27k | if (language == EShLangFragment) |
9649 | 24 | qualifier.clearInterstage(); |
9650 | 1.27k | if (language != EShLangGeometry) |
9651 | 1.27k | qualifier.clearStreamLayout(); |
9652 | 1.27k | if (language == EShLangFragment) |
9653 | 24 | qualifier.clearXfbLayout(); |
9654 | 1.27k | if (language != EShLangTessControl) |
9655 | 346 | qualifier.patch = false; |
9656 | | |
9657 | | // Fixes Test/hlsl.entry-inout.vert (SV_Position will not become a varying). |
9658 | 1.27k | if (qualifier.builtIn == EbvNone) |
9659 | 1.26k | qualifier.builtIn = qualifier.declaredBuiltIn; |
9660 | | |
9661 | 1.27k | switch (qualifier.builtIn) { |
9662 | 0 | case EbvFragDepth: |
9663 | 0 | intermediate.setDepthReplacing(); |
9664 | 0 | intermediate.setDepth(EldAny); |
9665 | 0 | break; |
9666 | 0 | case EbvFragDepthGreater: |
9667 | 0 | intermediate.setDepthReplacing(); |
9668 | 0 | intermediate.setDepth(EldGreater); |
9669 | 0 | qualifier.builtIn = EbvFragDepth; |
9670 | 0 | break; |
9671 | 0 | case EbvFragDepthLesser: |
9672 | 0 | intermediate.setDepthReplacing(); |
9673 | 0 | intermediate.setDepth(EldLess); |
9674 | 0 | qualifier.builtIn = EbvFragDepth; |
9675 | 0 | break; |
9676 | 1.27k | default: |
9677 | 1.27k | break; |
9678 | 1.27k | } |
9679 | | |
9680 | 1.27k | if (! isOutputBuiltIn(qualifier)) |
9681 | 1.26k | qualifier.builtIn = EbvNone; |
9682 | 1.27k | } |
9683 | | |
9684 | | // Make the IO decorations etc. be appropriate only for uniform type interfaces. |
9685 | | void HlslParseContext::correctUniform(TQualifier& qualifier) |
9686 | 34.4k | { |
9687 | 34.4k | if (qualifier.declaredBuiltIn == EbvNone) |
9688 | 34.3k | qualifier.declaredBuiltIn = qualifier.builtIn; |
9689 | | |
9690 | 34.4k | qualifier.builtIn = EbvNone; |
9691 | 34.4k | qualifier.clearInterstage(); |
9692 | 34.4k | qualifier.clearInterstageLayout(); |
9693 | 34.4k | } |
9694 | | |
9695 | | // Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface. |
9696 | | void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier) |
9697 | 26.4k | { |
9698 | 26.4k | clearUniform(qualifier); |
9699 | 26.4k | correctUniform(qualifier); |
9700 | 26.4k | } |
9701 | | |
9702 | | |
9703 | | // Set texture return type. Returns success (not all types are valid). |
9704 | | bool HlslParseContext::setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc) |
9705 | 1.24M | { |
9706 | | // Seed the output with an invalid index. We will set it to a valid one if we can. |
9707 | 1.24M | sampler.structReturnIndex = TSampler::noReturnStruct; |
9708 | | |
9709 | | // Arrays aren't supported. |
9710 | 1.24M | if (retType.isArray()) { |
9711 | 0 | error(loc, "Arrays not supported in texture template types", "", ""); |
9712 | 0 | return false; |
9713 | 0 | } |
9714 | | |
9715 | | // If return type is a vector, remember the vector size in the sampler, and return. |
9716 | 1.24M | if (retType.isVector() || retType.isScalar()) { |
9717 | 1.24M | sampler.vectorSize = retType.getVectorSize(); |
9718 | 1.24M | return true; |
9719 | 1.24M | } |
9720 | | |
9721 | | // If it wasn't a vector, it must be a struct meeting certain requirements. The requirements |
9722 | | // are checked below: just check for struct-ness here. |
9723 | 2 | if (!retType.isStruct()) { |
9724 | 0 | error(loc, "Invalid texture template type", "", ""); |
9725 | 0 | return false; |
9726 | 0 | } |
9727 | | |
9728 | | // TODO: Subpass doesn't handle struct returns, due to some oddities with fn overloading. |
9729 | 2 | if (sampler.isSubpass()) { |
9730 | 0 | error(loc, "Unimplemented: structure template type in subpass input", "", ""); |
9731 | 0 | return false; |
9732 | 0 | } |
9733 | | |
9734 | 2 | TTypeList* members = retType.getWritableStruct(); |
9735 | | |
9736 | | // Check for too many or not enough structure members. |
9737 | 2 | if (members->size() > 4 || members->size() == 0) { |
9738 | 0 | error(loc, "Invalid member count in texture template structure", "", ""); |
9739 | 0 | return false; |
9740 | 0 | } |
9741 | | |
9742 | | // Error checking: We must have <= 4 total components, all of the same basic type. |
9743 | 2 | unsigned totalComponents = 0; |
9744 | 6 | for (unsigned m = 0; m < members->size(); ++m) { |
9745 | | // Check for bad member types |
9746 | 4 | if (!(*members)[m].type->isScalar() && !(*members)[m].type->isVector()) { |
9747 | 0 | error(loc, "Invalid texture template struct member type", "", ""); |
9748 | 0 | return false; |
9749 | 0 | } |
9750 | | |
9751 | 4 | const unsigned memberVectorSize = (*members)[m].type->getVectorSize(); |
9752 | 4 | totalComponents += memberVectorSize; |
9753 | | |
9754 | | // too many total member components |
9755 | 4 | if (totalComponents > 4) { |
9756 | 0 | error(loc, "Too many components in texture template structure type", "", ""); |
9757 | 0 | return false; |
9758 | 0 | } |
9759 | | |
9760 | | // All members must be of a common basic type |
9761 | 4 | if ((*members)[m].type->getBasicType() != (*members)[0].type->getBasicType()) { |
9762 | 0 | error(loc, "Texture template structure members must same basic type", "", ""); |
9763 | 0 | return false; |
9764 | 0 | } |
9765 | 4 | } |
9766 | | |
9767 | | // If the structure in the return type already exists in the table, we'll use it. Otherwise, we'll make |
9768 | | // a new entry. This is a linear search, but it hardly ever happens, and the list cannot be very large. |
9769 | 2 | for (unsigned int idx = 0; idx < textureReturnStruct.size(); ++idx) { |
9770 | 0 | if (textureReturnStruct[idx] == members) { |
9771 | 0 | sampler.structReturnIndex = idx; |
9772 | 0 | return true; |
9773 | 0 | } |
9774 | 0 | } |
9775 | | |
9776 | | // It wasn't found as an existing entry. See if we have room for a new one. |
9777 | 2 | if (textureReturnStruct.size() >= TSampler::structReturnSlots) { |
9778 | 0 | error(loc, "Texture template struct return slots exceeded", "", ""); |
9779 | 0 | return false; |
9780 | 0 | } |
9781 | | |
9782 | | // Insert it in the vector that tracks struct return types. |
9783 | 2 | sampler.structReturnIndex = unsigned(textureReturnStruct.size()); |
9784 | 2 | textureReturnStruct.push_back(members); |
9785 | | |
9786 | | // Success! |
9787 | 2 | return true; |
9788 | 2 | } |
9789 | | |
9790 | | // Return the sampler return type in retType. |
9791 | | void HlslParseContext::getTextureReturnType(const TSampler& sampler, TType& retType) const |
9792 | 778 | { |
9793 | 778 | if (sampler.hasReturnStruct()) { |
9794 | 0 | assert(textureReturnStruct.size() >= sampler.structReturnIndex); |
9795 | | |
9796 | | // We land here if the texture return is a structure. |
9797 | 0 | TTypeList* blockStruct = textureReturnStruct[sampler.structReturnIndex]; |
9798 | |
|
9799 | 0 | const TType resultType(blockStruct, ""); |
9800 | 0 | retType.shallowCopy(resultType); |
9801 | 778 | } else { |
9802 | | // We land here if the texture return is a vector or scalar. |
9803 | 778 | const TType resultType(sampler.type, EvqTemporary, sampler.getVectorSize()); |
9804 | 778 | retType.shallowCopy(resultType); |
9805 | 778 | } |
9806 | 778 | } |
9807 | | |
9808 | | |
9809 | | // Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type |
9810 | | TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const |
9811 | 460 | { |
9812 | 460 | const auto it = builtInTessLinkageSymbols.find(biType); |
9813 | 460 | if (it == builtInTessLinkageSymbols.end()) // if it wasn't declared by the user, return nullptr |
9814 | 384 | return nullptr; |
9815 | | |
9816 | 76 | return intermediate.addSymbol(*it->second->getAsVariable()); |
9817 | 460 | } |
9818 | | |
9819 | | // Find the patch constant function (issues error, returns nullptr if not found) |
9820 | | const TFunction* HlslParseContext::findPatchConstantFunction(const TSourceLoc& loc) |
9821 | 0 | { |
9822 | 0 | if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) { |
9823 | 0 | error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), ""); |
9824 | 0 | return nullptr; |
9825 | 0 | } |
9826 | | |
9827 | 0 | const TString mangledName = patchConstantFunctionName + "("; |
9828 | | |
9829 | | // create list of PCF candidates |
9830 | 0 | TVector<const TFunction*> candidateList; |
9831 | 0 | bool builtIn; |
9832 | 0 | symbolTable.findFunctionNameList(mangledName, candidateList, builtIn); |
9833 | | |
9834 | | // We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not |
9835 | | // allow any disambiguation of overloads. |
9836 | 0 | if (candidateList.empty()) { |
9837 | 0 | error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), ""); |
9838 | 0 | return nullptr; |
9839 | 0 | } |
9840 | | |
9841 | | // Based on directed experiments, it appears that if there are overloaded patchconstantfunctions, |
9842 | | // HLSL picks the last one in shader source order. Since that isn't yet implemented here, error |
9843 | | // out if there is more than one candidate. |
9844 | 0 | if (candidateList.size() > 1) { |
9845 | 0 | error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), ""); |
9846 | 0 | return nullptr; |
9847 | 0 | } |
9848 | | |
9849 | 0 | return candidateList[0]; |
9850 | 0 | } |
9851 | | |
9852 | | // Finalization step: Add patch constant function invocation |
9853 | | void HlslParseContext::addPatchConstantInvocation() |
9854 | 1.75k | { |
9855 | 1.75k | TSourceLoc loc; |
9856 | 1.75k | loc.init(); |
9857 | | |
9858 | | // If there's no patch constant function, or we're not a HS, do nothing. |
9859 | 1.75k | if (patchConstantFunctionName.empty() || language != EShLangTessControl) |
9860 | 1.75k | return; |
9861 | | |
9862 | | // Look for built-in variables in a function's parameter list. |
9863 | 0 | const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) { |
9864 | 0 | for (int p=0; p<function.getParamCount(); ++p) { |
9865 | 0 | TStorageQualifier storage = function[p].type->getQualifier().storage; |
9866 | |
|
9867 | 0 | if (storage == EvqConstReadOnly) // treated identically to input |
9868 | 0 | storage = EvqIn; |
9869 | |
|
9870 | 0 | if (function[p].getDeclaredBuiltIn() != EbvNone) |
9871 | 0 | builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage)); |
9872 | 0 | else |
9873 | 0 | builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage)); |
9874 | 0 | } |
9875 | 0 | }; |
9876 | | |
9877 | | // If we synthesize a built-in interface variable, we must add it to the linkage. |
9878 | 0 | const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) { |
9879 | 0 | if (name == nullptr) { |
9880 | 0 | error(loc, "unable to locate patch function parameter name", "", ""); |
9881 | 0 | return; |
9882 | 0 | } else { |
9883 | 0 | TVariable& variable = *new TVariable(name, type); |
9884 | 0 | if (! symbolTable.insert(variable)) { |
9885 | 0 | error(loc, "unable to declare patch constant function interface variable", name->c_str(), ""); |
9886 | 0 | return; |
9887 | 0 | } |
9888 | | |
9889 | 0 | globalQualifierFix(loc, variable.getWritableType().getQualifier()); |
9890 | |
|
9891 | 0 | if (symbolNode != nullptr) |
9892 | 0 | *symbolNode = intermediate.addSymbol(variable); |
9893 | |
|
9894 | 0 | trackLinkage(variable); |
9895 | 0 | } |
9896 | 0 | }; |
9897 | |
|
9898 | 0 | const auto isOutputPatch = [](TFunction& patchConstantFunction, int param) { |
9899 | 0 | const TType& type = *patchConstantFunction[param].type; |
9900 | 0 | const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn(); |
9901 | |
|
9902 | 0 | return type.isSizedArray() && biType == EbvOutputPatch; |
9903 | 0 | }; |
9904 | | |
9905 | | // We will perform these steps. Each is in a scoped block for separation: they could |
9906 | | // become separate functions to make addPatchConstantInvocation shorter. |
9907 | | // |
9908 | | // 1. Union the interfaces, and create built-ins for anything present in the PCF and |
9909 | | // declared as a built-in variable that isn't present in the entry point's signature. |
9910 | | // |
9911 | | // 2. Synthesizes a call to the patchconstfunction using built-in variables from either main, |
9912 | | // or the ones we created. Matching is based on built-in type. We may use synthesized |
9913 | | // variables from (1) above. |
9914 | | // |
9915 | | // 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them. |
9916 | | // |
9917 | | // 3. Create a return sequence: copy the return value (if any) from the PCF to a |
9918 | | // (non-sanitized) output variable. In case this may involve multiple copies, such as for |
9919 | | // an arrayed variable, a temporary copy of the PCF output is created to avoid multiple |
9920 | | // indirections into a complex R-value coming from the call to the PCF. |
9921 | | // |
9922 | | // 4. Create a barrier. |
9923 | | // |
9924 | | // 5/5B. Call the PCF inside an if test for (invocation id == 0). |
9925 | |
|
9926 | 0 | TFunction* patchConstantFunctionPtr = const_cast<TFunction*>(findPatchConstantFunction(loc)); |
9927 | |
|
9928 | 0 | if (patchConstantFunctionPtr == nullptr) |
9929 | 0 | return; |
9930 | | |
9931 | 0 | TFunction& patchConstantFunction = *patchConstantFunctionPtr; |
9932 | |
|
9933 | 0 | const int pcfParamCount = patchConstantFunction.getParamCount(); |
9934 | 0 | TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId); |
9935 | 0 | TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence(); |
9936 | |
|
9937 | 0 | int outPatchParam = -1; // -1 means there isn't one. |
9938 | | |
9939 | | // ================ Step 1A: Union Interfaces ================ |
9940 | | // Our patch constant function. |
9941 | 0 | { |
9942 | 0 | std::set<tInterstageIoData> pcfBuiltIns; // patch constant function built-ins |
9943 | 0 | std::set<tInterstageIoData> epfBuiltIns; // entry point function built-ins |
9944 | |
|
9945 | 0 | assert(entryPointFunction); |
9946 | 0 | assert(entryPointFunctionBody); |
9947 | |
|
9948 | 0 | findBuiltIns(patchConstantFunction, pcfBuiltIns); |
9949 | 0 | findBuiltIns(*entryPointFunction, epfBuiltIns); |
9950 | | |
9951 | | // Find the set of built-ins in the PCF that are not present in the entry point. |
9952 | 0 | std::set<tInterstageIoData> notInEntryPoint; |
9953 | |
|
9954 | 0 | notInEntryPoint = pcfBuiltIns; |
9955 | | |
9956 | | // std::set_difference not usable on unordered containers |
9957 | 0 | for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi) |
9958 | 0 | notInEntryPoint.erase(*bi); |
9959 | | |
9960 | | // Now we'll add those to the entry and to the linkage. |
9961 | 0 | for (int p=0; p<pcfParamCount; ++p) { |
9962 | 0 | const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn(); |
9963 | 0 | TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage; |
9964 | | |
9965 | | // Track whether there is an output patch param |
9966 | 0 | if (isOutputPatch(patchConstantFunction, p)) { |
9967 | 0 | if (outPatchParam >= 0) { |
9968 | | // Presently we only support one per ctrl pt input. |
9969 | 0 | error(loc, "unimplemented: multiple output patches in patch constant function", "", ""); |
9970 | 0 | return; |
9971 | 0 | } |
9972 | 0 | outPatchParam = p; |
9973 | 0 | } |
9974 | | |
9975 | 0 | if (biType != EbvNone) { |
9976 | 0 | TType* paramType = patchConstantFunction[p].type->clone(); |
9977 | |
|
9978 | 0 | if (storage == EvqConstReadOnly) // treated identically to input |
9979 | 0 | storage = EvqIn; |
9980 | | |
9981 | | // Presently, the only non-built-in we support is InputPatch, which is treated as |
9982 | | // a pseudo-built-in. |
9983 | 0 | if (biType == EbvInputPatch) { |
9984 | 0 | builtInTessLinkageSymbols[biType] = inputPatch; |
9985 | 0 | } else if (biType == EbvOutputPatch) { |
9986 | | // Nothing... |
9987 | 0 | } else { |
9988 | | // Use the original declaration type for the linkage |
9989 | 0 | paramType->getQualifier().builtIn = biType; |
9990 | 0 | if (biType == EbvTessLevelInner || biType == EbvTessLevelOuter) |
9991 | 0 | paramType->getQualifier().patch = true; |
9992 | |
|
9993 | 0 | if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1) |
9994 | 0 | addToLinkage(*paramType, patchConstantFunction[p].name, nullptr); |
9995 | 0 | } |
9996 | 0 | } |
9997 | 0 | } |
9998 | | |
9999 | | // If we didn't find it because the shader made one, add our own. |
10000 | 0 | if (invocationIdSym == nullptr) { |
10001 | 0 | TType invocationIdType(EbtUint, EvqIn, 1); |
10002 | 0 | TString* invocationIdName = NewPoolTString("InvocationId"); |
10003 | 0 | invocationIdType.getQualifier().builtIn = EbvInvocationId; |
10004 | 0 | addToLinkage(invocationIdType, invocationIdName, &invocationIdSym); |
10005 | 0 | } |
10006 | |
|
10007 | 0 | assert(invocationIdSym); |
10008 | 0 | } |
10009 | | |
10010 | 0 | TIntermTyped* pcfArguments = nullptr; |
10011 | 0 | TVariable* perCtrlPtVar = nullptr; |
10012 | | |
10013 | | // ================ Step 1B: Argument synthesis ================ |
10014 | | // Create pcfArguments for synthesis of patchconstantfunction invocation |
10015 | 0 | { |
10016 | 0 | for (int p=0; p<pcfParamCount; ++p) { |
10017 | 0 | TIntermTyped* inputArg = nullptr; |
10018 | |
|
10019 | 0 | if (p == outPatchParam) { |
10020 | 0 | if (perCtrlPtVar == nullptr) { |
10021 | 0 | perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name, |
10022 | 0 | *patchConstantFunction[outPatchParam].type); |
10023 | |
|
10024 | 0 | perCtrlPtVar->getWritableType().getQualifier().makeTemporary(); |
10025 | 0 | } |
10026 | 0 | inputArg = intermediate.addSymbol(*perCtrlPtVar, loc); |
10027 | 0 | } else { |
10028 | | // find which built-in it is |
10029 | 0 | const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn(); |
10030 | |
|
10031 | 0 | if (biType == EbvInputPatch && inputPatch == nullptr) { |
10032 | 0 | error(loc, "unimplemented: PCF input patch without entry point input patch parameter", "", ""); |
10033 | 0 | return; |
10034 | 0 | } |
10035 | | |
10036 | 0 | inputArg = findTessLinkageSymbol(biType); |
10037 | |
|
10038 | 0 | if (inputArg == nullptr) { |
10039 | 0 | error(loc, "unable to find patch constant function built-in variable", "", ""); |
10040 | 0 | return; |
10041 | 0 | } |
10042 | 0 | } |
10043 | | |
10044 | 0 | if (pcfParamCount == 1) |
10045 | 0 | pcfArguments = inputArg; |
10046 | 0 | else |
10047 | 0 | pcfArguments = intermediate.growAggregate(pcfArguments, inputArg); |
10048 | 0 | } |
10049 | 0 | } |
10050 | | |
10051 | | // ================ Step 2: Synthesize call to PCF ================ |
10052 | 0 | TIntermAggregate* pcfCallSequence = nullptr; |
10053 | 0 | TIntermTyped* pcfCall = nullptr; |
10054 | |
|
10055 | 0 | { |
10056 | | // Create a function call to the patchconstantfunction |
10057 | 0 | if (pcfArguments) |
10058 | 0 | addInputArgumentConversions(patchConstantFunction, pcfArguments); |
10059 | | |
10060 | | // Synthetic call. |
10061 | 0 | pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc); |
10062 | 0 | pcfCall->getAsAggregate()->setUserDefined(); |
10063 | 0 | pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName()); |
10064 | 0 | intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(), |
10065 | 0 | patchConstantFunction.getMangledName()); |
10066 | |
|
10067 | 0 | if (pcfCall->getAsAggregate()) { |
10068 | 0 | TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList(); |
10069 | 0 | for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) { |
10070 | 0 | TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage; |
10071 | 0 | qualifierList.push_back(qual); |
10072 | 0 | } |
10073 | 0 | pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator()); |
10074 | 0 | } |
10075 | 0 | } |
10076 | | |
10077 | | // ================ Step 2B: Per Control Point synthesis ================ |
10078 | | // If there is per control point data, we must either emulate that with multiple |
10079 | | // invocations of the entry point to build up an array, or (TODO:) use a yet |
10080 | | // unavailable extension to look across the SIMD lanes. This is the former |
10081 | | // as a placeholder for the latter. |
10082 | 0 | if (outPatchParam >= 0) { |
10083 | | // We must introduce a local temp variable of the type wanted by the PCF input. |
10084 | 0 | const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize(); |
10085 | |
|
10086 | 0 | if (entryPointFunction->getType().getBasicType() == EbtVoid) { |
10087 | 0 | error(loc, "entry point must return a value for use with patch constant function", "", ""); |
10088 | 0 | return; |
10089 | 0 | } |
10090 | | |
10091 | | // Create calls to wrapped main to fill in the array. We will substitute fixed values |
10092 | | // of invocation ID when calling the wrapped main. |
10093 | | |
10094 | | // This is the type of the each member of the per ctrl point array. |
10095 | 0 | const TType derefType(perCtrlPtVar->getType(), 0); |
10096 | |
|
10097 | 0 | for (int cpt = 0; cpt < arraySize; ++cpt) { |
10098 | | // TODO: improve. substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab |
10099 | | // for this function. |
10100 | 0 | const TString origName = entryPointFunction->getName().substr(1); |
10101 | 0 | TFunction callee(&origName, TType(EbtVoid)); |
10102 | 0 | TIntermTyped* callingArgs = nullptr; |
10103 | |
|
10104 | 0 | for (int i = 0; i < entryPointFunction->getParamCount(); i++) { |
10105 | 0 | TParameter& param = (*entryPointFunction)[i]; |
10106 | 0 | TType& paramType = *param.type; |
10107 | |
|
10108 | 0 | if (paramType.getQualifier().isParamOutput()) { |
10109 | 0 | error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", ""); |
10110 | 0 | return; |
10111 | 0 | } |
10112 | | |
10113 | 0 | if (paramType.getQualifier().isParamInput()) { |
10114 | 0 | TIntermTyped* arg = nullptr; |
10115 | 0 | if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) { |
10116 | | // substitute invocation ID with the array element ID |
10117 | 0 | arg = intermediate.addConstantUnion(cpt, loc); |
10118 | 0 | } else { |
10119 | 0 | TVariable* argVar = makeInternalVariable(*param.name, *param.type); |
10120 | 0 | argVar->getWritableType().getQualifier().makeTemporary(); |
10121 | 0 | arg = intermediate.addSymbol(*argVar); |
10122 | 0 | } |
10123 | |
|
10124 | 0 | handleFunctionArgument(&callee, callingArgs, arg); |
10125 | 0 | } |
10126 | 0 | } |
10127 | | |
10128 | | // Call and assign to per ctrl point variable |
10129 | 0 | currentCaller = intermediate.getEntryPointMangledName().c_str(); |
10130 | 0 | TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs); |
10131 | 0 | TIntermTyped* index = intermediate.addConstantUnion(cpt, loc); |
10132 | 0 | TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc); |
10133 | 0 | TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc); |
10134 | 0 | element->setType(derefType); |
10135 | 0 | element->setLoc(loc); |
10136 | |
|
10137 | 0 | pcfCallSequence = intermediate.growAggregate(pcfCallSequence, |
10138 | 0 | handleAssign(loc, EOpAssign, element, callReturn)); |
10139 | 0 | } |
10140 | 0 | } |
10141 | | |
10142 | | // ================ Step 3: Create return Sequence ================ |
10143 | | // Return sequence: copy PCF result to a temporary, then to shader output variable. |
10144 | 0 | if (pcfCall->getBasicType() != EbtVoid) { |
10145 | 0 | const TType* retType = &patchConstantFunction.getType(); // return type from the PCF |
10146 | 0 | TType outType; // output type that goes with the return type. |
10147 | 0 | outType.shallowCopy(*retType); |
10148 | | |
10149 | | // substitute the output type |
10150 | 0 | const auto newLists = ioTypeMap.find(retType->getStruct()); |
10151 | 0 | if (newLists != ioTypeMap.end()) |
10152 | 0 | outType.setStruct(newLists->second.output); |
10153 | | |
10154 | | // Substitute the top level type's built-in type |
10155 | 0 | if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone) |
10156 | 0 | outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType(); |
10157 | |
|
10158 | 0 | outType.getQualifier().patch = true; // make it a per-patch variable |
10159 | |
|
10160 | 0 | TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType); |
10161 | 0 | pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut; |
10162 | |
|
10163 | 0 | if (pcfOutput->getType().isStruct()) |
10164 | 0 | flatten(*pcfOutput, false); |
10165 | |
|
10166 | 0 | assignToInterface(*pcfOutput); |
10167 | |
|
10168 | 0 | TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc); |
10169 | | |
10170 | | // The call to the PCF is a complex R-value: we want to store it in a temp to avoid |
10171 | | // repeated calls to the PCF: |
10172 | 0 | TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType); |
10173 | 0 | pcfCallResult->getWritableType().getQualifier().makeTemporary(); |
10174 | |
|
10175 | 0 | TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc); |
10176 | 0 | TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall); |
10177 | 0 | TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym, |
10178 | 0 | intermediate.addSymbol(*pcfCallResult, loc)); |
10179 | |
|
10180 | 0 | pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign); |
10181 | 0 | pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut); |
10182 | 0 | } else { |
10183 | 0 | pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall); |
10184 | 0 | } |
10185 | | |
10186 | | // ================ Step 4: Barrier ================ |
10187 | 0 | TIntermTyped* barrier = new TIntermAggregate(EOpBarrier); |
10188 | 0 | barrier->setLoc(loc); |
10189 | 0 | barrier->setType(TType(EbtVoid)); |
10190 | 0 | epBodySeq.insert(epBodySeq.end(), barrier); |
10191 | | |
10192 | | // ================ Step 5: Test on invocation ID ================ |
10193 | 0 | TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true); |
10194 | 0 | TIntermTyped* cmp = intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool)); |
10195 | | |
10196 | | |
10197 | | // ================ Step 5B: Create if statement on Invocation ID == 0 ================ |
10198 | 0 | intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc); |
10199 | 0 | TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr); |
10200 | 0 | invocationIdTest->setLoc(loc); |
10201 | | |
10202 | | // add our test sequence before the return. |
10203 | 0 | epBodySeq.insert(epBodySeq.end(), invocationIdTest); |
10204 | 0 | } |
10205 | | |
10206 | | // Finalization step: remove unused buffer blocks from linkage (we don't know until the |
10207 | | // shader is entirely compiled). |
10208 | | // Preserve order of remaining symbols. |
10209 | | void HlslParseContext::removeUnusedStructBufferCounters() |
10210 | 1.75k | { |
10211 | 1.75k | const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(), |
10212 | 1.75k | [this](const TSymbol* sym) { |
10213 | 1.50k | const auto sbcIt = structBufferCounter.find(sym->getName()); |
10214 | 1.50k | return sbcIt != structBufferCounter.end() && !sbcIt->second; |
10215 | 1.50k | }); |
10216 | | |
10217 | 1.75k | linkageSymbols.erase(endIt, linkageSymbols.end()); |
10218 | 1.75k | } |
10219 | | |
10220 | | // Finalization step: patch texture shadow modes to match samplers they were combined with |
10221 | | void HlslParseContext::fixTextureShadowModes() |
10222 | 1.75k | { |
10223 | 3.22k | for (auto symbol = linkageSymbols.begin(); symbol != linkageSymbols.end(); ++symbol) { |
10224 | 1.46k | TSampler& sampler = (*symbol)->getWritableType().getSampler(); |
10225 | | |
10226 | 1.46k | if (sampler.isTexture()) { |
10227 | 1.19k | const auto shadowMode = textureShadowVariant.find((*symbol)->getUniqueId()); |
10228 | 1.19k | if (shadowMode != textureShadowVariant.end()) { |
10229 | | |
10230 | 6 | if (shadowMode->second->overloaded()) |
10231 | | // Texture needs legalization if it's been seen with both shadow and non-shadow modes. |
10232 | 0 | intermediate.setNeedsLegalization(); |
10233 | | |
10234 | 6 | sampler.shadow = shadowMode->second->isShadowId((*symbol)->getUniqueId()); |
10235 | 6 | } |
10236 | 1.19k | } |
10237 | 1.46k | } |
10238 | 1.75k | } |
10239 | | |
10240 | | // Finalization step: patch append methods to use proper stream output, which isn't known until |
10241 | | // main is parsed, which could happen after the append method is parsed. |
10242 | | void HlslParseContext::finalizeAppendMethods() |
10243 | 1.75k | { |
10244 | 1.75k | TSourceLoc loc; |
10245 | 1.75k | loc.init(); |
10246 | | |
10247 | | // Nothing to do: bypass test for valid stream output. |
10248 | 1.75k | if (gsAppends.empty()) |
10249 | 1.75k | return; |
10250 | | |
10251 | 0 | if (gsStreamOutput == nullptr) { |
10252 | 0 | error(loc, "unable to find output symbol for Append()", "", ""); |
10253 | 0 | return; |
10254 | 0 | } |
10255 | | |
10256 | | // Patch append sequences, now that we know the stream output symbol. |
10257 | 0 | for (auto append = gsAppends.begin(); append != gsAppends.end(); ++append) { |
10258 | 0 | append->node->getSequence()[0] = |
10259 | 0 | handleAssign(append->loc, EOpAssign, |
10260 | 0 | intermediate.addSymbol(*gsStreamOutput, append->loc), |
10261 | 0 | append->node->getSequence()[0]->getAsTyped()); |
10262 | 0 | } |
10263 | 0 | } |
10264 | | |
10265 | | // post-processing |
10266 | | void HlslParseContext::finish() |
10267 | 1.75k | { |
10268 | | // Error check: There was a dangling .mips operator. These are not nested constructs in the grammar, so |
10269 | | // cannot be detected there. This is not strictly needed in a non-validating parser; it's just helpful. |
10270 | 1.75k | if (! mipsOperatorMipArg.empty()) { |
10271 | 0 | error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", ""); |
10272 | 0 | } |
10273 | | |
10274 | 1.75k | removeUnusedStructBufferCounters(); |
10275 | 1.75k | addPatchConstantInvocation(); |
10276 | 1.75k | fixTextureShadowModes(); |
10277 | 1.75k | finalizeAppendMethods(); |
10278 | | |
10279 | | // Communicate out (esp. for command line) that we formed AST that will make |
10280 | | // illegal AST SPIR-V and it needs transforms to legalize it. |
10281 | 1.75k | if (intermediate.needsLegalization() && (messages & EShMsgHlslLegalization)) |
10282 | 0 | infoSink.info << "WARNING: AST will form illegal SPIR-V; need to transform to legalize"; |
10283 | | |
10284 | 1.75k | TParseContextBase::finish(); |
10285 | 1.75k | } |
10286 | | |
10287 | | } // end namespace glslang |