1"""Private logic for creating models."""
2
3from __future__ import annotations as _annotations
4
5import builtins
6import operator
7import sys
8import typing
9import warnings
10import weakref
11from abc import ABCMeta
12from functools import cache, partial, wraps
13from types import FunctionType
14from typing import Any, Callable, Generic, Literal, NoReturn, cast
15
16from pydantic_core import PydanticUndefined, SchemaSerializer
17from typing_extensions import TypeAliasType, dataclass_transform, deprecated, get_args, get_origin
18from typing_inspection import typing_objects
19
20from ..errors import PydanticUndefinedAnnotation, PydanticUserError
21from ..plugin._schema_validator import create_schema_validator
22from ..warnings import GenericBeforeBaseModelWarning, PydanticDeprecatedSince20
23from ._config import ConfigWrapper
24from ._decorators import DecoratorInfos, PydanticDescriptorProxy, get_attribute_from_bases, unwrap_wrapped_function
25from ._fields import collect_model_fields, is_valid_field_name, is_valid_privateattr_name
26from ._generate_schema import GenerateSchema, InvalidSchemaError
27from ._generics import PydanticGenericMetadata, get_model_typevars_map
28from ._import_utils import import_cached_base_model, import_cached_field_info
29from ._mock_val_ser import set_model_mocks
30from ._namespace_utils import NsResolver
31from ._signature import generate_pydantic_signature
32from ._typing_extra import (
33 _make_forward_ref,
34 eval_type_backport,
35 is_classvar_annotation,
36 parent_frame_namespace,
37)
38from ._utils import LazyClassAttribute, SafeGetItemProxy
39
40if typing.TYPE_CHECKING:
41 from ..fields import Field as PydanticModelField
42 from ..fields import FieldInfo, ModelPrivateAttr
43 from ..fields import PrivateAttr as PydanticModelPrivateAttr
44 from ..main import BaseModel
45else:
46 # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
47 # and https://youtrack.jetbrains.com/issue/PY-51428
48 DeprecationWarning = PydanticDeprecatedSince20
49 PydanticModelField = object()
50 PydanticModelPrivateAttr = object()
51
52object_setattr = object.__setattr__
53
54
55class _ModelNamespaceDict(dict):
56 """A dictionary subclass that intercepts attribute setting on model classes and
57 warns about overriding of decorators.
58 """
59
60 def __setitem__(self, k: str, v: object) -> None:
61 existing: Any = self.get(k, None)
62 if existing and v is not existing and isinstance(existing, PydanticDescriptorProxy):
63 warnings.warn(f'`{k}` overrides an existing Pydantic `{existing.decorator_info.decorator_repr}` decorator')
64
65 return super().__setitem__(k, v)
66
67
68def NoInitField(
69 *,
70 init: Literal[False] = False,
71) -> Any:
72 """Only for typing purposes. Used as default value of `__pydantic_fields_set__`,
73 `__pydantic_extra__`, `__pydantic_private__`, so they could be ignored when
74 synthesizing the `__init__` signature.
75 """
76
77
78@dataclass_transform(kw_only_default=True, field_specifiers=(PydanticModelField, PydanticModelPrivateAttr, NoInitField))
79class ModelMetaclass(ABCMeta):
80 def __new__(
81 mcs,
82 cls_name: str,
83 bases: tuple[type[Any], ...],
84 namespace: dict[str, Any],
85 __pydantic_generic_metadata__: PydanticGenericMetadata | None = None,
86 __pydantic_reset_parent_namespace__: bool = True,
87 _create_model_module: str | None = None,
88 **kwargs: Any,
89 ) -> type:
90 """Metaclass for creating Pydantic models.
91
92 Args:
93 cls_name: The name of the class to be created.
94 bases: The base classes of the class to be created.
95 namespace: The attribute dictionary of the class to be created.
96 __pydantic_generic_metadata__: Metadata for generic models.
97 __pydantic_reset_parent_namespace__: Reset parent namespace.
98 _create_model_module: The module of the class to be created, if created by `create_model`.
99 **kwargs: Catch-all for any other keyword arguments.
100
101 Returns:
102 The new class created by the metaclass.
103 """
104 # Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we rely on the fact
105 # that `BaseModel` itself won't have any bases, but any subclass of it will, to determine whether the `__new__`
106 # call we're in the middle of is for the `BaseModel` class.
107 if bases:
108 base_field_names, class_vars, base_private_attributes = mcs._collect_bases_data(bases)
109
110 config_wrapper = ConfigWrapper.for_model(bases, namespace, kwargs)
111 namespace['model_config'] = config_wrapper.config_dict
112 private_attributes = inspect_namespace(
113 namespace, config_wrapper.ignored_types, class_vars, base_field_names
114 )
115 if private_attributes or base_private_attributes:
116 original_model_post_init = get_model_post_init(namespace, bases)
117 if original_model_post_init is not None:
118 # if there are private_attributes and a model_post_init function, we handle both
119
120 @wraps(original_model_post_init)
121 def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None:
122 """We need to both initialize private attributes and call the user-defined model_post_init
123 method.
124 """
125 init_private_attributes(self, context)
126 original_model_post_init(self, context)
127
128 namespace['model_post_init'] = wrapped_model_post_init
129 else:
130 namespace['model_post_init'] = init_private_attributes
131
132 namespace['__class_vars__'] = class_vars
133 namespace['__private_attributes__'] = {**base_private_attributes, **private_attributes}
134
135 cls = cast('type[BaseModel]', super().__new__(mcs, cls_name, bases, namespace, **kwargs))
136 BaseModel_ = import_cached_base_model()
137
138 mro = cls.__mro__
139 if Generic in mro and mro.index(Generic) < mro.index(BaseModel_):
140 warnings.warn(
141 GenericBeforeBaseModelWarning(
142 'Classes should inherit from `BaseModel` before generic classes (e.g. `typing.Generic[T]`) '
143 'for pydantic generics to work properly.'
144 ),
145 stacklevel=2,
146 )
147
148 cls.__pydantic_custom_init__ = not getattr(cls.__init__, '__pydantic_base_init__', False)
149 cls.__pydantic_post_init__ = (
150 None if cls.model_post_init is BaseModel_.model_post_init else 'model_post_init'
151 )
152
153 cls.__pydantic_setattr_handlers__ = {}
154
155 cls.__pydantic_decorators__ = DecoratorInfos.build(cls)
156
157 # Use the getattr below to grab the __parameters__ from the `typing.Generic` parent class
158 if __pydantic_generic_metadata__:
159 cls.__pydantic_generic_metadata__ = __pydantic_generic_metadata__
160 else:
161 parent_parameters = getattr(cls, '__pydantic_generic_metadata__', {}).get('parameters', ())
162 parameters = getattr(cls, '__parameters__', None) or parent_parameters
163 if parameters and parent_parameters and not all(x in parameters for x in parent_parameters):
164 from ..root_model import RootModelRootType
165
166 missing_parameters = tuple(x for x in parameters if x not in parent_parameters)
167 if RootModelRootType in parent_parameters and RootModelRootType not in parameters:
168 # This is a special case where the user has subclassed `RootModel`, but has not parametrized
169 # RootModel with the generic type identifiers being used. Ex:
170 # class MyModel(RootModel, Generic[T]):
171 # root: T
172 # Should instead just be:
173 # class MyModel(RootModel[T]):
174 # root: T
175 parameters_str = ', '.join([x.__name__ for x in missing_parameters])
176 error_message = (
177 f'{cls.__name__} is a subclass of `RootModel`, but does not include the generic type identifier(s) '
178 f'{parameters_str} in its parameters. '
179 f'You should parametrize RootModel directly, e.g., `class {cls.__name__}(RootModel[{parameters_str}]): ...`.'
180 )
181 else:
182 combined_parameters = parent_parameters + missing_parameters
183 parameters_str = ', '.join([str(x) for x in combined_parameters])
184 generic_type_label = f'typing.Generic[{parameters_str}]'
185 error_message = (
186 f'All parameters must be present on typing.Generic;'
187 f' you should inherit from {generic_type_label}.'
188 )
189 if Generic not in bases: # pragma: no cover
190 # We raise an error here not because it is desirable, but because some cases are mishandled.
191 # It would be nice to remove this error and still have things behave as expected, it's just
192 # challenging because we are using a custom `__class_getitem__` to parametrize generic models,
193 # and not returning a typing._GenericAlias from it.
194 bases_str = ', '.join([x.__name__ for x in bases] + [generic_type_label])
195 error_message += (
196 f' Note: `typing.Generic` must go last: `class {cls.__name__}({bases_str}): ...`)'
197 )
198 raise TypeError(error_message)
199
200 cls.__pydantic_generic_metadata__ = {
201 'origin': None,
202 'args': (),
203 'parameters': parameters,
204 }
205
206 cls.__pydantic_complete__ = False # Ensure this specific class gets completed
207
208 # preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487
209 # for attributes not in `new_namespace` (e.g. private attributes)
210 for name, obj in private_attributes.items():
211 obj.__set_name__(cls, name)
212
213 if __pydantic_reset_parent_namespace__:
214 cls.__pydantic_parent_namespace__ = build_lenient_weakvaluedict(parent_frame_namespace())
215 parent_namespace: dict[str, Any] | None = getattr(cls, '__pydantic_parent_namespace__', None)
216 if isinstance(parent_namespace, dict):
217 parent_namespace = unpack_lenient_weakvaluedict(parent_namespace)
218
219 ns_resolver = NsResolver(parent_namespace=parent_namespace)
220
221 set_model_fields(cls, config_wrapper=config_wrapper, ns_resolver=ns_resolver)
222
223 # This is also set in `complete_model_class()`, after schema gen because they are recreated.
224 # We set them here as well for backwards compatibility:
225 cls.__pydantic_computed_fields__ = {
226 k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items()
227 }
228
229 if config_wrapper.defer_build:
230 # TODO we can also stop there if `__pydantic_fields_complete__` is False.
231 # However, `set_model_fields()` is currently lenient and we don't have access to the `NameError`.
232 # (which is useful as we can provide the name in the error message: `set_model_mock(cls, e.name)`)
233 set_model_mocks(cls)
234 else:
235 # Any operation that requires accessing the field infos instances should be put inside
236 # `complete_model_class()`:
237 complete_model_class(
238 cls,
239 config_wrapper,
240 raise_errors=False,
241 ns_resolver=ns_resolver,
242 create_model_module=_create_model_module,
243 )
244
245 if config_wrapper.frozen and '__hash__' not in namespace:
246 set_default_hash_func(cls, bases)
247
248 # using super(cls, cls) on the next line ensures we only call the parent class's __pydantic_init_subclass__
249 # I believe the `type: ignore` is only necessary because mypy doesn't realize that this code branch is
250 # only hit for _proper_ subclasses of BaseModel
251 super(cls, cls).__pydantic_init_subclass__(**kwargs) # type: ignore[misc]
252 return cls
253 else:
254 # These are instance variables, but have been assigned to `NoInitField` to trick the type checker.
255 for instance_slot in '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__':
256 namespace.pop(
257 instance_slot,
258 None, # In case the metaclass is used with a class other than `BaseModel`.
259 )
260 namespace.get('__annotations__', {}).clear()
261 return super().__new__(mcs, cls_name, bases, namespace, **kwargs)
262
263 if not typing.TYPE_CHECKING: # pragma: no branch
264 # We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access
265
266 def __getattr__(self, item: str) -> Any:
267 """This is necessary to keep attribute access working for class attribute access."""
268 private_attributes = self.__dict__.get('__private_attributes__')
269 if private_attributes and item in private_attributes:
270 return private_attributes[item]
271 raise AttributeError(item)
272
273 @classmethod
274 def __prepare__(cls, *args: Any, **kwargs: Any) -> dict[str, object]:
275 return _ModelNamespaceDict()
276
277 def __instancecheck__(self, instance: Any) -> bool:
278 """Avoid calling ABC _abc_instancecheck unless we're pretty sure.
279
280 See #3829 and python/cpython#92810
281 """
282 return hasattr(instance, '__pydantic_decorators__') and super().__instancecheck__(instance)
283
284 def __subclasscheck__(self, subclass: type[Any]) -> bool:
285 """Avoid calling ABC _abc_subclasscheck unless we're pretty sure.
286
287 See #3829 and python/cpython#92810
288 """
289 return hasattr(subclass, '__pydantic_decorators__') and super().__subclasscheck__(subclass)
290
291 @staticmethod
292 def _collect_bases_data(bases: tuple[type[Any], ...]) -> tuple[set[str], set[str], dict[str, ModelPrivateAttr]]:
293 BaseModel = import_cached_base_model()
294
295 field_names: set[str] = set()
296 class_vars: set[str] = set()
297 private_attributes: dict[str, ModelPrivateAttr] = {}
298 for base in bases:
299 if issubclass(base, BaseModel) and base is not BaseModel:
300 # model_fields might not be defined yet in the case of generics, so we use getattr here:
301 field_names.update(getattr(base, '__pydantic_fields__', {}).keys())
302 class_vars.update(base.__class_vars__)
303 private_attributes.update(base.__private_attributes__)
304 return field_names, class_vars, private_attributes
305
306 @property
307 @deprecated('The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None)
308 def __fields__(self) -> dict[str, FieldInfo]:
309 warnings.warn(
310 'The `__fields__` attribute is deprecated, use `model_fields` instead.',
311 PydanticDeprecatedSince20,
312 stacklevel=2,
313 )
314 return getattr(self, '__pydantic_fields__', {})
315
316 @property
317 def __pydantic_fields_complete__(self) -> bool:
318 """Whether the fields where successfully collected (i.e. type hints were successfully resolves).
319
320 This is a private attribute, not meant to be used outside Pydantic.
321 """
322 if not hasattr(self, '__pydantic_fields__'):
323 return False
324
325 field_infos = cast('dict[str, FieldInfo]', self.__pydantic_fields__) # pyright: ignore[reportAttributeAccessIssue]
326
327 return all(field_info._complete for field_info in field_infos.values())
328
329 def __dir__(self) -> list[str]:
330 attributes = list(super().__dir__())
331 if '__fields__' in attributes:
332 attributes.remove('__fields__')
333 return attributes
334
335
336def init_private_attributes(self: BaseModel, context: Any, /) -> None:
337 """This function is meant to behave like a BaseModel method to initialise private attributes.
338
339 It takes context as an argument since that's what pydantic-core passes when calling it.
340
341 Args:
342 self: The BaseModel instance.
343 context: The context.
344 """
345 if getattr(self, '__pydantic_private__', None) is None:
346 pydantic_private = {}
347 for name, private_attr in self.__private_attributes__.items():
348 default = private_attr.get_default()
349 if default is not PydanticUndefined:
350 pydantic_private[name] = default
351 object_setattr(self, '__pydantic_private__', pydantic_private)
352
353
354def get_model_post_init(namespace: dict[str, Any], bases: tuple[type[Any], ...]) -> Callable[..., Any] | None:
355 """Get the `model_post_init` method from the namespace or the class bases, or `None` if not defined."""
356 if 'model_post_init' in namespace:
357 return namespace['model_post_init']
358
359 BaseModel = import_cached_base_model()
360
361 model_post_init = get_attribute_from_bases(bases, 'model_post_init')
362 if model_post_init is not BaseModel.model_post_init:
363 return model_post_init
364
365
366def inspect_namespace( # noqa C901
367 namespace: dict[str, Any],
368 ignored_types: tuple[type[Any], ...],
369 base_class_vars: set[str],
370 base_class_fields: set[str],
371) -> dict[str, ModelPrivateAttr]:
372 """Iterate over the namespace and:
373 * gather private attributes
374 * check for items which look like fields but are not (e.g. have no annotation) and warn.
375
376 Args:
377 namespace: The attribute dictionary of the class to be created.
378 ignored_types: A tuple of ignore types.
379 base_class_vars: A set of base class class variables.
380 base_class_fields: A set of base class fields.
381
382 Returns:
383 A dict contains private attributes info.
384
385 Raises:
386 TypeError: If there is a `__root__` field in model.
387 NameError: If private attribute name is invalid.
388 PydanticUserError:
389 - If a field does not have a type annotation.
390 - If a field on base class was overridden by a non-annotated attribute.
391 """
392 from ..fields import ModelPrivateAttr, PrivateAttr
393
394 FieldInfo = import_cached_field_info()
395
396 all_ignored_types = ignored_types + default_ignored_types()
397
398 private_attributes: dict[str, ModelPrivateAttr] = {}
399 raw_annotations = namespace.get('__annotations__', {})
400
401 if '__root__' in raw_annotations or '__root__' in namespace:
402 raise TypeError("To define root models, use `pydantic.RootModel` rather than a field called '__root__'")
403
404 ignored_names: set[str] = set()
405 for var_name, value in list(namespace.items()):
406 if var_name == 'model_config' or var_name == '__pydantic_extra__':
407 continue
408 elif (
409 isinstance(value, type)
410 and value.__module__ == namespace['__module__']
411 and '__qualname__' in namespace
412 and value.__qualname__.startswith(namespace['__qualname__'])
413 ):
414 # `value` is a nested type defined in this namespace; don't error
415 continue
416 elif isinstance(value, all_ignored_types) or value.__class__.__module__ == 'functools':
417 ignored_names.add(var_name)
418 continue
419 elif isinstance(value, ModelPrivateAttr):
420 if var_name.startswith('__'):
421 raise NameError(
422 'Private attributes must not use dunder names;'
423 f' use a single underscore prefix instead of {var_name!r}.'
424 )
425 elif is_valid_field_name(var_name):
426 raise NameError(
427 'Private attributes must not use valid field names;'
428 f' use sunder names, e.g. {"_" + var_name!r} instead of {var_name!r}.'
429 )
430 private_attributes[var_name] = value
431 del namespace[var_name]
432 elif isinstance(value, FieldInfo) and not is_valid_field_name(var_name):
433 suggested_name = var_name.lstrip('_') or 'my_field' # don't suggest '' for all-underscore name
434 raise NameError(
435 f'Fields must not use names with leading underscores;'
436 f' e.g., use {suggested_name!r} instead of {var_name!r}.'
437 )
438
439 elif var_name.startswith('__'):
440 continue
441 elif is_valid_privateattr_name(var_name):
442 if var_name not in raw_annotations or not is_classvar_annotation(raw_annotations[var_name]):
443 private_attributes[var_name] = cast(ModelPrivateAttr, PrivateAttr(default=value))
444 del namespace[var_name]
445 elif var_name in base_class_vars:
446 continue
447 elif var_name not in raw_annotations:
448 if var_name in base_class_fields:
449 raise PydanticUserError(
450 f'Field {var_name!r} defined on a base class was overridden by a non-annotated attribute. '
451 f'All field definitions, including overrides, require a type annotation.',
452 code='model-field-overridden',
453 )
454 elif isinstance(value, FieldInfo):
455 raise PydanticUserError(
456 f'Field {var_name!r} requires a type annotation', code='model-field-missing-annotation'
457 )
458 else:
459 raise PydanticUserError(
460 f'A non-annotated attribute was detected: `{var_name} = {value!r}`. All model fields require a '
461 f'type annotation; if `{var_name}` is not meant to be a field, you may be able to resolve this '
462 f"error by annotating it as a `ClassVar` or updating `model_config['ignored_types']`.",
463 code='model-field-missing-annotation',
464 )
465
466 for ann_name, ann_type in raw_annotations.items():
467 if (
468 is_valid_privateattr_name(ann_name)
469 and ann_name not in private_attributes
470 and ann_name not in ignored_names
471 # This condition can be a false negative when `ann_type` is stringified,
472 # but it is handled in most cases in `set_model_fields`:
473 and not is_classvar_annotation(ann_type)
474 and ann_type not in all_ignored_types
475 and getattr(ann_type, '__module__', None) != 'functools'
476 ):
477 if isinstance(ann_type, str):
478 # Walking up the frames to get the module namespace where the model is defined
479 # (as the model class wasn't created yet, we unfortunately can't use `cls.__module__`):
480 frame = sys._getframe(2)
481 if frame is not None:
482 try:
483 ann_type = eval_type_backport(
484 _make_forward_ref(ann_type, is_argument=False, is_class=True),
485 globalns=frame.f_globals,
486 localns=frame.f_locals,
487 )
488 except (NameError, TypeError):
489 pass
490
491 if typing_objects.is_annotated(get_origin(ann_type)):
492 _, *metadata = get_args(ann_type)
493 private_attr = next((v for v in metadata if isinstance(v, ModelPrivateAttr)), None)
494 if private_attr is not None:
495 private_attributes[ann_name] = private_attr
496 continue
497 private_attributes[ann_name] = PrivateAttr()
498
499 return private_attributes
500
501
502def set_default_hash_func(cls: type[BaseModel], bases: tuple[type[Any], ...]) -> None:
503 base_hash_func = get_attribute_from_bases(bases, '__hash__')
504 new_hash_func = make_hash_func(cls)
505 if base_hash_func in {None, object.__hash__} or getattr(base_hash_func, '__code__', None) == new_hash_func.__code__:
506 # If `__hash__` is some default, we generate a hash function.
507 # It will be `None` if not overridden from BaseModel.
508 # It may be `object.__hash__` if there is another
509 # parent class earlier in the bases which doesn't override `__hash__` (e.g. `typing.Generic`).
510 # It may be a value set by `set_default_hash_func` if `cls` is a subclass of another frozen model.
511 # In the last case we still need a new hash function to account for new `model_fields`.
512 cls.__hash__ = new_hash_func
513
514
515def make_hash_func(cls: type[BaseModel]) -> Any:
516 getter = operator.itemgetter(*cls.__pydantic_fields__.keys()) if cls.__pydantic_fields__ else lambda _: 0
517
518 def hash_func(self: Any) -> int:
519 try:
520 return hash(getter(self.__dict__))
521 except KeyError:
522 # In rare cases (such as when using the deprecated copy method), the __dict__ may not contain
523 # all model fields, which is how we can get here.
524 # getter(self.__dict__) is much faster than any 'safe' method that accounts for missing keys,
525 # and wrapping it in a `try` doesn't slow things down much in the common case.
526 return hash(getter(SafeGetItemProxy(self.__dict__)))
527
528 return hash_func
529
530
531def set_model_fields(
532 cls: type[BaseModel],
533 config_wrapper: ConfigWrapper,
534 ns_resolver: NsResolver | None,
535) -> None:
536 """Collect and set `cls.__pydantic_fields__` and `cls.__class_vars__`.
537
538 Args:
539 cls: BaseModel or dataclass.
540 config_wrapper: The config wrapper instance.
541 ns_resolver: Namespace resolver to use when getting model annotations.
542 """
543 typevars_map = get_model_typevars_map(cls)
544 fields, class_vars = collect_model_fields(cls, config_wrapper, ns_resolver, typevars_map=typevars_map)
545
546 cls.__pydantic_fields__ = fields
547 cls.__class_vars__.update(class_vars)
548
549 for k in class_vars:
550 # Class vars should not be private attributes
551 # We remove them _here_ and not earlier because we rely on inspecting the class to determine its classvars,
552 # but private attributes are determined by inspecting the namespace _prior_ to class creation.
553 # In the case that a classvar with a leading-'_' is defined via a ForwardRef (e.g., when using
554 # `__future__.annotations`), we want to remove the private attribute which was detected _before_ we knew it
555 # evaluated to a classvar
556
557 value = cls.__private_attributes__.pop(k, None)
558 if value is not None and value.default is not PydanticUndefined:
559 setattr(cls, k, value.default)
560
561
562def complete_model_class(
563 cls: type[BaseModel],
564 config_wrapper: ConfigWrapper,
565 *,
566 raise_errors: bool = True,
567 ns_resolver: NsResolver | None = None,
568 create_model_module: str | None = None,
569) -> bool:
570 """Finish building a model class.
571
572 This logic must be called after class has been created since validation functions must be bound
573 and `get_type_hints` requires a class object.
574
575 Args:
576 cls: BaseModel or dataclass.
577 config_wrapper: The config wrapper instance.
578 raise_errors: Whether to raise errors.
579 ns_resolver: The namespace resolver instance to use during schema building.
580 create_model_module: The module of the class to be created, if created by `create_model`.
581
582 Returns:
583 `True` if the model is successfully completed, else `False`.
584
585 Raises:
586 PydanticUndefinedAnnotation: If `PydanticUndefinedAnnotation` occurs in`__get_pydantic_core_schema__`
587 and `raise_errors=True`.
588 """
589 typevars_map = get_model_typevars_map(cls)
590 gen_schema = GenerateSchema(
591 config_wrapper,
592 ns_resolver,
593 typevars_map,
594 )
595
596 try:
597 schema = gen_schema.generate_schema(cls)
598 except PydanticUndefinedAnnotation as e:
599 if raise_errors:
600 raise
601 set_model_mocks(cls, f'`{e.name}`')
602 return False
603
604 core_config = config_wrapper.core_config(title=cls.__name__)
605
606 try:
607 schema = gen_schema.clean_schema(schema)
608 except InvalidSchemaError:
609 set_model_mocks(cls)
610 return False
611
612 # This needs to happen *after* model schema generation, as the return type
613 # of the properties are evaluated and the `ComputedFieldInfo` are recreated:
614 cls.__pydantic_computed_fields__ = {k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items()}
615
616 set_deprecated_descriptors(cls)
617
618 cls.__pydantic_core_schema__ = schema
619
620 cls.__pydantic_validator__ = create_schema_validator(
621 schema,
622 cls,
623 create_model_module or cls.__module__,
624 cls.__qualname__,
625 'create_model' if create_model_module else 'BaseModel',
626 core_config,
627 config_wrapper.plugin_settings,
628 )
629 cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config)
630 cls.__pydantic_complete__ = True
631
632 # set __signature__ attr only for model class, but not for its instances
633 # (because instances can define `__call__`, and `inspect.signature` shouldn't
634 # use the `__signature__` attribute and instead generate from `__call__`).
635 cls.__signature__ = LazyClassAttribute(
636 '__signature__',
637 partial(
638 generate_pydantic_signature,
639 init=cls.__init__,
640 fields=cls.__pydantic_fields__,
641 validate_by_name=config_wrapper.validate_by_name,
642 extra=config_wrapper.extra,
643 ),
644 )
645 return True
646
647
648def set_deprecated_descriptors(cls: type[BaseModel]) -> None:
649 """Set data descriptors on the class for deprecated fields."""
650 for field, field_info in cls.__pydantic_fields__.items():
651 if (msg := field_info.deprecation_message) is not None:
652 desc = _DeprecatedFieldDescriptor(msg)
653 desc.__set_name__(cls, field)
654 setattr(cls, field, desc)
655
656 for field, computed_field_info in cls.__pydantic_computed_fields__.items():
657 if (
658 (msg := computed_field_info.deprecation_message) is not None
659 # Avoid having two warnings emitted:
660 and not hasattr(unwrap_wrapped_function(computed_field_info.wrapped_property), '__deprecated__')
661 ):
662 desc = _DeprecatedFieldDescriptor(msg, computed_field_info.wrapped_property)
663 desc.__set_name__(cls, field)
664 setattr(cls, field, desc)
665
666
667class _DeprecatedFieldDescriptor:
668 """Read-only data descriptor used to emit a runtime deprecation warning before accessing a deprecated field.
669
670 Attributes:
671 msg: The deprecation message to be emitted.
672 wrapped_property: The property instance if the deprecated field is a computed field, or `None`.
673 field_name: The name of the field being deprecated.
674 """
675
676 field_name: str
677
678 def __init__(self, msg: str, wrapped_property: property | None = None) -> None:
679 self.msg = msg
680 self.wrapped_property = wrapped_property
681
682 def __set_name__(self, cls: type[BaseModel], name: str) -> None:
683 self.field_name = name
684
685 def __get__(self, obj: BaseModel | None, obj_type: type[BaseModel] | None = None) -> Any:
686 if obj is None:
687 if self.wrapped_property is not None:
688 return self.wrapped_property.__get__(None, obj_type)
689 raise AttributeError(self.field_name)
690
691 warnings.warn(self.msg, builtins.DeprecationWarning, stacklevel=2)
692
693 if self.wrapped_property is not None:
694 return self.wrapped_property.__get__(obj, obj_type)
695 return obj.__dict__[self.field_name]
696
697 # Defined to make it a data descriptor and take precedence over the instance's dictionary.
698 # Note that it will not be called when setting a value on a model instance
699 # as `BaseModel.__setattr__` is defined and takes priority.
700 def __set__(self, obj: Any, value: Any) -> NoReturn:
701 raise AttributeError(self.field_name)
702
703
704class _PydanticWeakRef:
705 """Wrapper for `weakref.ref` that enables `pickle` serialization.
706
707 Cloudpickle fails to serialize `weakref.ref` objects due to an arcane error related
708 to abstract base classes (`abc.ABC`). This class works around the issue by wrapping
709 `weakref.ref` instead of subclassing it.
710
711 See https://github.com/pydantic/pydantic/issues/6763 for context.
712
713 Semantics:
714 - If not pickled, behaves the same as a `weakref.ref`.
715 - If pickled along with the referenced object, the same `weakref.ref` behavior
716 will be maintained between them after unpickling.
717 - If pickled without the referenced object, after unpickling the underlying
718 reference will be cleared (`__call__` will always return `None`).
719 """
720
721 def __init__(self, obj: Any):
722 if obj is None:
723 # The object will be `None` upon deserialization if the serialized weakref
724 # had lost its underlying object.
725 self._wr = None
726 else:
727 self._wr = weakref.ref(obj)
728
729 def __call__(self) -> Any:
730 if self._wr is None:
731 return None
732 else:
733 return self._wr()
734
735 def __reduce__(self) -> tuple[Callable, tuple[weakref.ReferenceType | None]]:
736 return _PydanticWeakRef, (self(),)
737
738
739def build_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None:
740 """Takes an input dictionary, and produces a new value that (invertibly) replaces the values with weakrefs.
741
742 We can't just use a WeakValueDictionary because many types (including int, str, etc.) can't be stored as values
743 in a WeakValueDictionary.
744
745 The `unpack_lenient_weakvaluedict` function can be used to reverse this operation.
746 """
747 if d is None:
748 return None
749 result = {}
750 for k, v in d.items():
751 try:
752 proxy = _PydanticWeakRef(v)
753 except TypeError:
754 proxy = v
755 result[k] = proxy
756 return result
757
758
759def unpack_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None:
760 """Inverts the transform performed by `build_lenient_weakvaluedict`."""
761 if d is None:
762 return None
763
764 result = {}
765 for k, v in d.items():
766 if isinstance(v, _PydanticWeakRef):
767 v = v()
768 if v is not None:
769 result[k] = v
770 else:
771 result[k] = v
772 return result
773
774
775@cache
776def default_ignored_types() -> tuple[type[Any], ...]:
777 from ..fields import ComputedFieldInfo
778
779 ignored_types = [
780 FunctionType,
781 property,
782 classmethod,
783 staticmethod,
784 PydanticDescriptorProxy,
785 ComputedFieldInfo,
786 TypeAliasType, # from `typing_extensions`
787 ]
788
789 if sys.version_info >= (3, 12):
790 ignored_types.append(typing.TypeAliasType)
791
792 return tuple(ignored_types)