Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/pydantic/_internal/_model_construction.py: 58%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

340 statements  

1"""Private logic for creating models.""" 

2 

3from __future__ import annotations as _annotations 

4 

5import builtins 

6import operator 

7import sys 

8import typing 

9import warnings 

10import weakref 

11from abc import ABCMeta 

12from functools import cache, partial, wraps 

13from types import FunctionType 

14from typing import Any, Callable, Generic, Literal, NoReturn, cast 

15 

16from pydantic_core import PydanticUndefined, SchemaSerializer 

17from typing_extensions import TypeAliasType, dataclass_transform, deprecated, get_args, get_origin 

18from typing_inspection import typing_objects 

19 

20from ..errors import PydanticUndefinedAnnotation, PydanticUserError 

21from ..plugin._schema_validator import create_schema_validator 

22from ..warnings import GenericBeforeBaseModelWarning, PydanticDeprecatedSince20 

23from ._config import ConfigWrapper 

24from ._decorators import DecoratorInfos, PydanticDescriptorProxy, get_attribute_from_bases, unwrap_wrapped_function 

25from ._fields import collect_model_fields, is_valid_field_name, is_valid_privateattr_name 

26from ._generate_schema import GenerateSchema, InvalidSchemaError 

27from ._generics import PydanticGenericMetadata, get_model_typevars_map 

28from ._import_utils import import_cached_base_model, import_cached_field_info 

29from ._mock_val_ser import set_model_mocks 

30from ._namespace_utils import NsResolver 

31from ._signature import generate_pydantic_signature 

32from ._typing_extra import ( 

33 _make_forward_ref, 

34 eval_type_backport, 

35 is_classvar_annotation, 

36 parent_frame_namespace, 

37) 

38from ._utils import LazyClassAttribute, SafeGetItemProxy 

39 

40if typing.TYPE_CHECKING: 

41 from ..fields import Field as PydanticModelField 

42 from ..fields import FieldInfo, ModelPrivateAttr 

43 from ..fields import PrivateAttr as PydanticModelPrivateAttr 

44 from ..main import BaseModel 

45else: 

46 # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 

47 # and https://youtrack.jetbrains.com/issue/PY-51428 

48 DeprecationWarning = PydanticDeprecatedSince20 

49 PydanticModelField = object() 

50 PydanticModelPrivateAttr = object() 

51 

52object_setattr = object.__setattr__ 

53 

54 

55class _ModelNamespaceDict(dict): 

56 """A dictionary subclass that intercepts attribute setting on model classes and 

57 warns about overriding of decorators. 

58 """ 

59 

60 def __setitem__(self, k: str, v: object) -> None: 

61 existing: Any = self.get(k, None) 

62 if existing and v is not existing and isinstance(existing, PydanticDescriptorProxy): 

63 warnings.warn(f'`{k}` overrides an existing Pydantic `{existing.decorator_info.decorator_repr}` decorator') 

64 

65 return super().__setitem__(k, v) 

66 

67 

68def NoInitField( 

69 *, 

70 init: Literal[False] = False, 

71) -> Any: 

72 """Only for typing purposes. Used as default value of `__pydantic_fields_set__`, 

73 `__pydantic_extra__`, `__pydantic_private__`, so they could be ignored when 

74 synthesizing the `__init__` signature. 

75 """ 

76 

77 

78@dataclass_transform(kw_only_default=True, field_specifiers=(PydanticModelField, PydanticModelPrivateAttr, NoInitField)) 

79class ModelMetaclass(ABCMeta): 

80 def __new__( 

81 mcs, 

82 cls_name: str, 

83 bases: tuple[type[Any], ...], 

84 namespace: dict[str, Any], 

85 __pydantic_generic_metadata__: PydanticGenericMetadata | None = None, 

86 __pydantic_reset_parent_namespace__: bool = True, 

87 _create_model_module: str | None = None, 

88 **kwargs: Any, 

89 ) -> type: 

90 """Metaclass for creating Pydantic models. 

91 

92 Args: 

93 cls_name: The name of the class to be created. 

94 bases: The base classes of the class to be created. 

95 namespace: The attribute dictionary of the class to be created. 

96 __pydantic_generic_metadata__: Metadata for generic models. 

97 __pydantic_reset_parent_namespace__: Reset parent namespace. 

98 _create_model_module: The module of the class to be created, if created by `create_model`. 

99 **kwargs: Catch-all for any other keyword arguments. 

100 

101 Returns: 

102 The new class created by the metaclass. 

103 """ 

104 # Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we rely on the fact 

105 # that `BaseModel` itself won't have any bases, but any subclass of it will, to determine whether the `__new__` 

106 # call we're in the middle of is for the `BaseModel` class. 

107 if bases: 

108 base_field_names, class_vars, base_private_attributes = mcs._collect_bases_data(bases) 

109 

110 config_wrapper = ConfigWrapper.for_model(bases, namespace, kwargs) 

111 namespace['model_config'] = config_wrapper.config_dict 

112 private_attributes = inspect_namespace( 

113 namespace, config_wrapper.ignored_types, class_vars, base_field_names 

114 ) 

115 if private_attributes or base_private_attributes: 

116 original_model_post_init = get_model_post_init(namespace, bases) 

117 if original_model_post_init is not None: 

118 # if there are private_attributes and a model_post_init function, we handle both 

119 

120 @wraps(original_model_post_init) 

121 def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None: 

122 """We need to both initialize private attributes and call the user-defined model_post_init 

123 method. 

124 """ 

125 init_private_attributes(self, context) 

126 original_model_post_init(self, context) 

127 

128 namespace['model_post_init'] = wrapped_model_post_init 

129 else: 

130 namespace['model_post_init'] = init_private_attributes 

131 

132 namespace['__class_vars__'] = class_vars 

133 namespace['__private_attributes__'] = {**base_private_attributes, **private_attributes} 

134 

135 cls = cast('type[BaseModel]', super().__new__(mcs, cls_name, bases, namespace, **kwargs)) 

136 BaseModel_ = import_cached_base_model() 

137 

138 mro = cls.__mro__ 

139 if Generic in mro and mro.index(Generic) < mro.index(BaseModel_): 

140 warnings.warn( 

141 GenericBeforeBaseModelWarning( 

142 'Classes should inherit from `BaseModel` before generic classes (e.g. `typing.Generic[T]`) ' 

143 'for pydantic generics to work properly.' 

144 ), 

145 stacklevel=2, 

146 ) 

147 

148 cls.__pydantic_custom_init__ = not getattr(cls.__init__, '__pydantic_base_init__', False) 

149 cls.__pydantic_post_init__ = ( 

150 None if cls.model_post_init is BaseModel_.model_post_init else 'model_post_init' 

151 ) 

152 

153 cls.__pydantic_setattr_handlers__ = {} 

154 

155 cls.__pydantic_decorators__ = DecoratorInfos.build(cls) 

156 

157 # Use the getattr below to grab the __parameters__ from the `typing.Generic` parent class 

158 if __pydantic_generic_metadata__: 

159 cls.__pydantic_generic_metadata__ = __pydantic_generic_metadata__ 

160 else: 

161 parent_parameters = getattr(cls, '__pydantic_generic_metadata__', {}).get('parameters', ()) 

162 parameters = getattr(cls, '__parameters__', None) or parent_parameters 

163 if parameters and parent_parameters and not all(x in parameters for x in parent_parameters): 

164 from ..root_model import RootModelRootType 

165 

166 missing_parameters = tuple(x for x in parameters if x not in parent_parameters) 

167 if RootModelRootType in parent_parameters and RootModelRootType not in parameters: 

168 # This is a special case where the user has subclassed `RootModel`, but has not parametrized 

169 # RootModel with the generic type identifiers being used. Ex: 

170 # class MyModel(RootModel, Generic[T]): 

171 # root: T 

172 # Should instead just be: 

173 # class MyModel(RootModel[T]): 

174 # root: T 

175 parameters_str = ', '.join([x.__name__ for x in missing_parameters]) 

176 error_message = ( 

177 f'{cls.__name__} is a subclass of `RootModel`, but does not include the generic type identifier(s) ' 

178 f'{parameters_str} in its parameters. ' 

179 f'You should parametrize RootModel directly, e.g., `class {cls.__name__}(RootModel[{parameters_str}]): ...`.' 

180 ) 

181 else: 

182 combined_parameters = parent_parameters + missing_parameters 

183 parameters_str = ', '.join([str(x) for x in combined_parameters]) 

184 generic_type_label = f'typing.Generic[{parameters_str}]' 

185 error_message = ( 

186 f'All parameters must be present on typing.Generic;' 

187 f' you should inherit from {generic_type_label}.' 

188 ) 

189 if Generic not in bases: # pragma: no cover 

190 # We raise an error here not because it is desirable, but because some cases are mishandled. 

191 # It would be nice to remove this error and still have things behave as expected, it's just 

192 # challenging because we are using a custom `__class_getitem__` to parametrize generic models, 

193 # and not returning a typing._GenericAlias from it. 

194 bases_str = ', '.join([x.__name__ for x in bases] + [generic_type_label]) 

195 error_message += ( 

196 f' Note: `typing.Generic` must go last: `class {cls.__name__}({bases_str}): ...`)' 

197 ) 

198 raise TypeError(error_message) 

199 

200 cls.__pydantic_generic_metadata__ = { 

201 'origin': None, 

202 'args': (), 

203 'parameters': parameters, 

204 } 

205 

206 cls.__pydantic_complete__ = False # Ensure this specific class gets completed 

207 

208 # preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487 

209 # for attributes not in `new_namespace` (e.g. private attributes) 

210 for name, obj in private_attributes.items(): 

211 obj.__set_name__(cls, name) 

212 

213 if __pydantic_reset_parent_namespace__: 

214 cls.__pydantic_parent_namespace__ = build_lenient_weakvaluedict(parent_frame_namespace()) 

215 parent_namespace: dict[str, Any] | None = getattr(cls, '__pydantic_parent_namespace__', None) 

216 if isinstance(parent_namespace, dict): 

217 parent_namespace = unpack_lenient_weakvaluedict(parent_namespace) 

218 

219 ns_resolver = NsResolver(parent_namespace=parent_namespace) 

220 

221 set_model_fields(cls, config_wrapper=config_wrapper, ns_resolver=ns_resolver) 

222 

223 # This is also set in `complete_model_class()`, after schema gen because they are recreated. 

224 # We set them here as well for backwards compatibility: 

225 cls.__pydantic_computed_fields__ = { 

226 k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items() 

227 } 

228 

229 if config_wrapper.defer_build: 

230 # TODO we can also stop there if `__pydantic_fields_complete__` is False. 

231 # However, `set_model_fields()` is currently lenient and we don't have access to the `NameError`. 

232 # (which is useful as we can provide the name in the error message: `set_model_mock(cls, e.name)`) 

233 set_model_mocks(cls) 

234 else: 

235 # Any operation that requires accessing the field infos instances should be put inside 

236 # `complete_model_class()`: 

237 complete_model_class( 

238 cls, 

239 config_wrapper, 

240 raise_errors=False, 

241 ns_resolver=ns_resolver, 

242 create_model_module=_create_model_module, 

243 ) 

244 

245 if config_wrapper.frozen and '__hash__' not in namespace: 

246 set_default_hash_func(cls, bases) 

247 

248 # using super(cls, cls) on the next line ensures we only call the parent class's __pydantic_init_subclass__ 

249 # I believe the `type: ignore` is only necessary because mypy doesn't realize that this code branch is 

250 # only hit for _proper_ subclasses of BaseModel 

251 super(cls, cls).__pydantic_init_subclass__(**kwargs) # type: ignore[misc] 

252 return cls 

253 else: 

254 # These are instance variables, but have been assigned to `NoInitField` to trick the type checker. 

255 for instance_slot in '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__': 

256 namespace.pop( 

257 instance_slot, 

258 None, # In case the metaclass is used with a class other than `BaseModel`. 

259 ) 

260 namespace.get('__annotations__', {}).clear() 

261 return super().__new__(mcs, cls_name, bases, namespace, **kwargs) 

262 

263 if not typing.TYPE_CHECKING: # pragma: no branch 

264 # We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access 

265 

266 def __getattr__(self, item: str) -> Any: 

267 """This is necessary to keep attribute access working for class attribute access.""" 

268 private_attributes = self.__dict__.get('__private_attributes__') 

269 if private_attributes and item in private_attributes: 

270 return private_attributes[item] 

271 raise AttributeError(item) 

272 

273 @classmethod 

274 def __prepare__(cls, *args: Any, **kwargs: Any) -> dict[str, object]: 

275 return _ModelNamespaceDict() 

276 

277 def __instancecheck__(self, instance: Any) -> bool: 

278 """Avoid calling ABC _abc_instancecheck unless we're pretty sure. 

279 

280 See #3829 and python/cpython#92810 

281 """ 

282 return hasattr(instance, '__pydantic_decorators__') and super().__instancecheck__(instance) 

283 

284 def __subclasscheck__(self, subclass: type[Any]) -> bool: 

285 """Avoid calling ABC _abc_subclasscheck unless we're pretty sure. 

286 

287 See #3829 and python/cpython#92810 

288 """ 

289 return hasattr(subclass, '__pydantic_decorators__') and super().__subclasscheck__(subclass) 

290 

291 @staticmethod 

292 def _collect_bases_data(bases: tuple[type[Any], ...]) -> tuple[set[str], set[str], dict[str, ModelPrivateAttr]]: 

293 BaseModel = import_cached_base_model() 

294 

295 field_names: set[str] = set() 

296 class_vars: set[str] = set() 

297 private_attributes: dict[str, ModelPrivateAttr] = {} 

298 for base in bases: 

299 if issubclass(base, BaseModel) and base is not BaseModel: 

300 # model_fields might not be defined yet in the case of generics, so we use getattr here: 

301 field_names.update(getattr(base, '__pydantic_fields__', {}).keys()) 

302 class_vars.update(base.__class_vars__) 

303 private_attributes.update(base.__private_attributes__) 

304 return field_names, class_vars, private_attributes 

305 

306 @property 

307 @deprecated('The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None) 

308 def __fields__(self) -> dict[str, FieldInfo]: 

309 warnings.warn( 

310 'The `__fields__` attribute is deprecated, use `model_fields` instead.', 

311 PydanticDeprecatedSince20, 

312 stacklevel=2, 

313 ) 

314 return getattr(self, '__pydantic_fields__', {}) 

315 

316 @property 

317 def __pydantic_fields_complete__(self) -> bool: 

318 """Whether the fields where successfully collected (i.e. type hints were successfully resolves). 

319 

320 This is a private attribute, not meant to be used outside Pydantic. 

321 """ 

322 if not hasattr(self, '__pydantic_fields__'): 

323 return False 

324 

325 field_infos = cast('dict[str, FieldInfo]', self.__pydantic_fields__) # pyright: ignore[reportAttributeAccessIssue] 

326 

327 return all(field_info._complete for field_info in field_infos.values()) 

328 

329 def __dir__(self) -> list[str]: 

330 attributes = list(super().__dir__()) 

331 if '__fields__' in attributes: 

332 attributes.remove('__fields__') 

333 return attributes 

334 

335 

336def init_private_attributes(self: BaseModel, context: Any, /) -> None: 

337 """This function is meant to behave like a BaseModel method to initialise private attributes. 

338 

339 It takes context as an argument since that's what pydantic-core passes when calling it. 

340 

341 Args: 

342 self: The BaseModel instance. 

343 context: The context. 

344 """ 

345 if getattr(self, '__pydantic_private__', None) is None: 

346 pydantic_private = {} 

347 for name, private_attr in self.__private_attributes__.items(): 

348 default = private_attr.get_default() 

349 if default is not PydanticUndefined: 

350 pydantic_private[name] = default 

351 object_setattr(self, '__pydantic_private__', pydantic_private) 

352 

353 

354def get_model_post_init(namespace: dict[str, Any], bases: tuple[type[Any], ...]) -> Callable[..., Any] | None: 

355 """Get the `model_post_init` method from the namespace or the class bases, or `None` if not defined.""" 

356 if 'model_post_init' in namespace: 

357 return namespace['model_post_init'] 

358 

359 BaseModel = import_cached_base_model() 

360 

361 model_post_init = get_attribute_from_bases(bases, 'model_post_init') 

362 if model_post_init is not BaseModel.model_post_init: 

363 return model_post_init 

364 

365 

366def inspect_namespace( # noqa C901 

367 namespace: dict[str, Any], 

368 ignored_types: tuple[type[Any], ...], 

369 base_class_vars: set[str], 

370 base_class_fields: set[str], 

371) -> dict[str, ModelPrivateAttr]: 

372 """Iterate over the namespace and: 

373 * gather private attributes 

374 * check for items which look like fields but are not (e.g. have no annotation) and warn. 

375 

376 Args: 

377 namespace: The attribute dictionary of the class to be created. 

378 ignored_types: A tuple of ignore types. 

379 base_class_vars: A set of base class class variables. 

380 base_class_fields: A set of base class fields. 

381 

382 Returns: 

383 A dict contains private attributes info. 

384 

385 Raises: 

386 TypeError: If there is a `__root__` field in model. 

387 NameError: If private attribute name is invalid. 

388 PydanticUserError: 

389 - If a field does not have a type annotation. 

390 - If a field on base class was overridden by a non-annotated attribute. 

391 """ 

392 from ..fields import ModelPrivateAttr, PrivateAttr 

393 

394 FieldInfo = import_cached_field_info() 

395 

396 all_ignored_types = ignored_types + default_ignored_types() 

397 

398 private_attributes: dict[str, ModelPrivateAttr] = {} 

399 raw_annotations = namespace.get('__annotations__', {}) 

400 

401 if '__root__' in raw_annotations or '__root__' in namespace: 

402 raise TypeError("To define root models, use `pydantic.RootModel` rather than a field called '__root__'") 

403 

404 ignored_names: set[str] = set() 

405 for var_name, value in list(namespace.items()): 

406 if var_name == 'model_config' or var_name == '__pydantic_extra__': 

407 continue 

408 elif ( 

409 isinstance(value, type) 

410 and value.__module__ == namespace['__module__'] 

411 and '__qualname__' in namespace 

412 and value.__qualname__.startswith(namespace['__qualname__']) 

413 ): 

414 # `value` is a nested type defined in this namespace; don't error 

415 continue 

416 elif isinstance(value, all_ignored_types) or value.__class__.__module__ == 'functools': 

417 ignored_names.add(var_name) 

418 continue 

419 elif isinstance(value, ModelPrivateAttr): 

420 if var_name.startswith('__'): 

421 raise NameError( 

422 'Private attributes must not use dunder names;' 

423 f' use a single underscore prefix instead of {var_name!r}.' 

424 ) 

425 elif is_valid_field_name(var_name): 

426 raise NameError( 

427 'Private attributes must not use valid field names;' 

428 f' use sunder names, e.g. {"_" + var_name!r} instead of {var_name!r}.' 

429 ) 

430 private_attributes[var_name] = value 

431 del namespace[var_name] 

432 elif isinstance(value, FieldInfo) and not is_valid_field_name(var_name): 

433 suggested_name = var_name.lstrip('_') or 'my_field' # don't suggest '' for all-underscore name 

434 raise NameError( 

435 f'Fields must not use names with leading underscores;' 

436 f' e.g., use {suggested_name!r} instead of {var_name!r}.' 

437 ) 

438 

439 elif var_name.startswith('__'): 

440 continue 

441 elif is_valid_privateattr_name(var_name): 

442 if var_name not in raw_annotations or not is_classvar_annotation(raw_annotations[var_name]): 

443 private_attributes[var_name] = cast(ModelPrivateAttr, PrivateAttr(default=value)) 

444 del namespace[var_name] 

445 elif var_name in base_class_vars: 

446 continue 

447 elif var_name not in raw_annotations: 

448 if var_name in base_class_fields: 

449 raise PydanticUserError( 

450 f'Field {var_name!r} defined on a base class was overridden by a non-annotated attribute. ' 

451 f'All field definitions, including overrides, require a type annotation.', 

452 code='model-field-overridden', 

453 ) 

454 elif isinstance(value, FieldInfo): 

455 raise PydanticUserError( 

456 f'Field {var_name!r} requires a type annotation', code='model-field-missing-annotation' 

457 ) 

458 else: 

459 raise PydanticUserError( 

460 f'A non-annotated attribute was detected: `{var_name} = {value!r}`. All model fields require a ' 

461 f'type annotation; if `{var_name}` is not meant to be a field, you may be able to resolve this ' 

462 f"error by annotating it as a `ClassVar` or updating `model_config['ignored_types']`.", 

463 code='model-field-missing-annotation', 

464 ) 

465 

466 for ann_name, ann_type in raw_annotations.items(): 

467 if ( 

468 is_valid_privateattr_name(ann_name) 

469 and ann_name not in private_attributes 

470 and ann_name not in ignored_names 

471 # This condition can be a false negative when `ann_type` is stringified, 

472 # but it is handled in most cases in `set_model_fields`: 

473 and not is_classvar_annotation(ann_type) 

474 and ann_type not in all_ignored_types 

475 and getattr(ann_type, '__module__', None) != 'functools' 

476 ): 

477 if isinstance(ann_type, str): 

478 # Walking up the frames to get the module namespace where the model is defined 

479 # (as the model class wasn't created yet, we unfortunately can't use `cls.__module__`): 

480 frame = sys._getframe(2) 

481 if frame is not None: 

482 try: 

483 ann_type = eval_type_backport( 

484 _make_forward_ref(ann_type, is_argument=False, is_class=True), 

485 globalns=frame.f_globals, 

486 localns=frame.f_locals, 

487 ) 

488 except (NameError, TypeError): 

489 pass 

490 

491 if typing_objects.is_annotated(get_origin(ann_type)): 

492 _, *metadata = get_args(ann_type) 

493 private_attr = next((v for v in metadata if isinstance(v, ModelPrivateAttr)), None) 

494 if private_attr is not None: 

495 private_attributes[ann_name] = private_attr 

496 continue 

497 private_attributes[ann_name] = PrivateAttr() 

498 

499 return private_attributes 

500 

501 

502def set_default_hash_func(cls: type[BaseModel], bases: tuple[type[Any], ...]) -> None: 

503 base_hash_func = get_attribute_from_bases(bases, '__hash__') 

504 new_hash_func = make_hash_func(cls) 

505 if base_hash_func in {None, object.__hash__} or getattr(base_hash_func, '__code__', None) == new_hash_func.__code__: 

506 # If `__hash__` is some default, we generate a hash function. 

507 # It will be `None` if not overridden from BaseModel. 

508 # It may be `object.__hash__` if there is another 

509 # parent class earlier in the bases which doesn't override `__hash__` (e.g. `typing.Generic`). 

510 # It may be a value set by `set_default_hash_func` if `cls` is a subclass of another frozen model. 

511 # In the last case we still need a new hash function to account for new `model_fields`. 

512 cls.__hash__ = new_hash_func 

513 

514 

515def make_hash_func(cls: type[BaseModel]) -> Any: 

516 getter = operator.itemgetter(*cls.__pydantic_fields__.keys()) if cls.__pydantic_fields__ else lambda _: 0 

517 

518 def hash_func(self: Any) -> int: 

519 try: 

520 return hash(getter(self.__dict__)) 

521 except KeyError: 

522 # In rare cases (such as when using the deprecated copy method), the __dict__ may not contain 

523 # all model fields, which is how we can get here. 

524 # getter(self.__dict__) is much faster than any 'safe' method that accounts for missing keys, 

525 # and wrapping it in a `try` doesn't slow things down much in the common case. 

526 return hash(getter(SafeGetItemProxy(self.__dict__))) 

527 

528 return hash_func 

529 

530 

531def set_model_fields( 

532 cls: type[BaseModel], 

533 config_wrapper: ConfigWrapper, 

534 ns_resolver: NsResolver | None, 

535) -> None: 

536 """Collect and set `cls.__pydantic_fields__` and `cls.__class_vars__`. 

537 

538 Args: 

539 cls: BaseModel or dataclass. 

540 config_wrapper: The config wrapper instance. 

541 ns_resolver: Namespace resolver to use when getting model annotations. 

542 """ 

543 typevars_map = get_model_typevars_map(cls) 

544 fields, class_vars = collect_model_fields(cls, config_wrapper, ns_resolver, typevars_map=typevars_map) 

545 

546 cls.__pydantic_fields__ = fields 

547 cls.__class_vars__.update(class_vars) 

548 

549 for k in class_vars: 

550 # Class vars should not be private attributes 

551 # We remove them _here_ and not earlier because we rely on inspecting the class to determine its classvars, 

552 # but private attributes are determined by inspecting the namespace _prior_ to class creation. 

553 # In the case that a classvar with a leading-'_' is defined via a ForwardRef (e.g., when using 

554 # `__future__.annotations`), we want to remove the private attribute which was detected _before_ we knew it 

555 # evaluated to a classvar 

556 

557 value = cls.__private_attributes__.pop(k, None) 

558 if value is not None and value.default is not PydanticUndefined: 

559 setattr(cls, k, value.default) 

560 

561 

562def complete_model_class( 

563 cls: type[BaseModel], 

564 config_wrapper: ConfigWrapper, 

565 *, 

566 raise_errors: bool = True, 

567 ns_resolver: NsResolver | None = None, 

568 create_model_module: str | None = None, 

569) -> bool: 

570 """Finish building a model class. 

571 

572 This logic must be called after class has been created since validation functions must be bound 

573 and `get_type_hints` requires a class object. 

574 

575 Args: 

576 cls: BaseModel or dataclass. 

577 config_wrapper: The config wrapper instance. 

578 raise_errors: Whether to raise errors. 

579 ns_resolver: The namespace resolver instance to use during schema building. 

580 create_model_module: The module of the class to be created, if created by `create_model`. 

581 

582 Returns: 

583 `True` if the model is successfully completed, else `False`. 

584 

585 Raises: 

586 PydanticUndefinedAnnotation: If `PydanticUndefinedAnnotation` occurs in`__get_pydantic_core_schema__` 

587 and `raise_errors=True`. 

588 """ 

589 typevars_map = get_model_typevars_map(cls) 

590 gen_schema = GenerateSchema( 

591 config_wrapper, 

592 ns_resolver, 

593 typevars_map, 

594 ) 

595 

596 try: 

597 schema = gen_schema.generate_schema(cls) 

598 except PydanticUndefinedAnnotation as e: 

599 if raise_errors: 

600 raise 

601 set_model_mocks(cls, f'`{e.name}`') 

602 return False 

603 

604 core_config = config_wrapper.core_config(title=cls.__name__) 

605 

606 try: 

607 schema = gen_schema.clean_schema(schema) 

608 except InvalidSchemaError: 

609 set_model_mocks(cls) 

610 return False 

611 

612 # This needs to happen *after* model schema generation, as the return type 

613 # of the properties are evaluated and the `ComputedFieldInfo` are recreated: 

614 cls.__pydantic_computed_fields__ = {k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items()} 

615 

616 set_deprecated_descriptors(cls) 

617 

618 cls.__pydantic_core_schema__ = schema 

619 

620 cls.__pydantic_validator__ = create_schema_validator( 

621 schema, 

622 cls, 

623 create_model_module or cls.__module__, 

624 cls.__qualname__, 

625 'create_model' if create_model_module else 'BaseModel', 

626 core_config, 

627 config_wrapper.plugin_settings, 

628 ) 

629 cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config) 

630 cls.__pydantic_complete__ = True 

631 

632 # set __signature__ attr only for model class, but not for its instances 

633 # (because instances can define `__call__`, and `inspect.signature` shouldn't 

634 # use the `__signature__` attribute and instead generate from `__call__`). 

635 cls.__signature__ = LazyClassAttribute( 

636 '__signature__', 

637 partial( 

638 generate_pydantic_signature, 

639 init=cls.__init__, 

640 fields=cls.__pydantic_fields__, 

641 validate_by_name=config_wrapper.validate_by_name, 

642 extra=config_wrapper.extra, 

643 ), 

644 ) 

645 return True 

646 

647 

648def set_deprecated_descriptors(cls: type[BaseModel]) -> None: 

649 """Set data descriptors on the class for deprecated fields.""" 

650 for field, field_info in cls.__pydantic_fields__.items(): 

651 if (msg := field_info.deprecation_message) is not None: 

652 desc = _DeprecatedFieldDescriptor(msg) 

653 desc.__set_name__(cls, field) 

654 setattr(cls, field, desc) 

655 

656 for field, computed_field_info in cls.__pydantic_computed_fields__.items(): 

657 if ( 

658 (msg := computed_field_info.deprecation_message) is not None 

659 # Avoid having two warnings emitted: 

660 and not hasattr(unwrap_wrapped_function(computed_field_info.wrapped_property), '__deprecated__') 

661 ): 

662 desc = _DeprecatedFieldDescriptor(msg, computed_field_info.wrapped_property) 

663 desc.__set_name__(cls, field) 

664 setattr(cls, field, desc) 

665 

666 

667class _DeprecatedFieldDescriptor: 

668 """Read-only data descriptor used to emit a runtime deprecation warning before accessing a deprecated field. 

669 

670 Attributes: 

671 msg: The deprecation message to be emitted. 

672 wrapped_property: The property instance if the deprecated field is a computed field, or `None`. 

673 field_name: The name of the field being deprecated. 

674 """ 

675 

676 field_name: str 

677 

678 def __init__(self, msg: str, wrapped_property: property | None = None) -> None: 

679 self.msg = msg 

680 self.wrapped_property = wrapped_property 

681 

682 def __set_name__(self, cls: type[BaseModel], name: str) -> None: 

683 self.field_name = name 

684 

685 def __get__(self, obj: BaseModel | None, obj_type: type[BaseModel] | None = None) -> Any: 

686 if obj is None: 

687 if self.wrapped_property is not None: 

688 return self.wrapped_property.__get__(None, obj_type) 

689 raise AttributeError(self.field_name) 

690 

691 warnings.warn(self.msg, builtins.DeprecationWarning, stacklevel=2) 

692 

693 if self.wrapped_property is not None: 

694 return self.wrapped_property.__get__(obj, obj_type) 

695 return obj.__dict__[self.field_name] 

696 

697 # Defined to make it a data descriptor and take precedence over the instance's dictionary. 

698 # Note that it will not be called when setting a value on a model instance 

699 # as `BaseModel.__setattr__` is defined and takes priority. 

700 def __set__(self, obj: Any, value: Any) -> NoReturn: 

701 raise AttributeError(self.field_name) 

702 

703 

704class _PydanticWeakRef: 

705 """Wrapper for `weakref.ref` that enables `pickle` serialization. 

706 

707 Cloudpickle fails to serialize `weakref.ref` objects due to an arcane error related 

708 to abstract base classes (`abc.ABC`). This class works around the issue by wrapping 

709 `weakref.ref` instead of subclassing it. 

710 

711 See https://github.com/pydantic/pydantic/issues/6763 for context. 

712 

713 Semantics: 

714 - If not pickled, behaves the same as a `weakref.ref`. 

715 - If pickled along with the referenced object, the same `weakref.ref` behavior 

716 will be maintained between them after unpickling. 

717 - If pickled without the referenced object, after unpickling the underlying 

718 reference will be cleared (`__call__` will always return `None`). 

719 """ 

720 

721 def __init__(self, obj: Any): 

722 if obj is None: 

723 # The object will be `None` upon deserialization if the serialized weakref 

724 # had lost its underlying object. 

725 self._wr = None 

726 else: 

727 self._wr = weakref.ref(obj) 

728 

729 def __call__(self) -> Any: 

730 if self._wr is None: 

731 return None 

732 else: 

733 return self._wr() 

734 

735 def __reduce__(self) -> tuple[Callable, tuple[weakref.ReferenceType | None]]: 

736 return _PydanticWeakRef, (self(),) 

737 

738 

739def build_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None: 

740 """Takes an input dictionary, and produces a new value that (invertibly) replaces the values with weakrefs. 

741 

742 We can't just use a WeakValueDictionary because many types (including int, str, etc.) can't be stored as values 

743 in a WeakValueDictionary. 

744 

745 The `unpack_lenient_weakvaluedict` function can be used to reverse this operation. 

746 """ 

747 if d is None: 

748 return None 

749 result = {} 

750 for k, v in d.items(): 

751 try: 

752 proxy = _PydanticWeakRef(v) 

753 except TypeError: 

754 proxy = v 

755 result[k] = proxy 

756 return result 

757 

758 

759def unpack_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None: 

760 """Inverts the transform performed by `build_lenient_weakvaluedict`.""" 

761 if d is None: 

762 return None 

763 

764 result = {} 

765 for k, v in d.items(): 

766 if isinstance(v, _PydanticWeakRef): 

767 v = v() 

768 if v is not None: 

769 result[k] = v 

770 else: 

771 result[k] = v 

772 return result 

773 

774 

775@cache 

776def default_ignored_types() -> tuple[type[Any], ...]: 

777 from ..fields import ComputedFieldInfo 

778 

779 ignored_types = [ 

780 FunctionType, 

781 property, 

782 classmethod, 

783 staticmethod, 

784 PydanticDescriptorProxy, 

785 ComputedFieldInfo, 

786 TypeAliasType, # from `typing_extensions` 

787 ] 

788 

789 if sys.version_info >= (3, 12): 

790 ignored_types.append(typing.TypeAliasType) 

791 

792 return tuple(ignored_types)