Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/pydantic/dataclasses.py: 10%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

136 statements  

1"""Provide an enhanced dataclass that performs validation.""" 

2 

3from __future__ import annotations as _annotations 

4 

5import dataclasses 

6import functools 

7import sys 

8import types 

9from typing import TYPE_CHECKING, Any, Callable, Generic, Literal, NoReturn, TypeVar, overload 

10from warnings import warn 

11 

12from typing_extensions import TypeGuard, dataclass_transform 

13 

14from ._internal import _config, _decorators, _namespace_utils, _typing_extra 

15from ._internal import _dataclasses as _pydantic_dataclasses 

16from ._migration import getattr_migration 

17from .config import ConfigDict 

18from .errors import PydanticUserError 

19from .fields import Field, FieldInfo, PrivateAttr 

20 

21if TYPE_CHECKING: 

22 from ._internal._dataclasses import PydanticDataclass 

23 from ._internal._namespace_utils import MappingNamespace 

24 

25__all__ = 'dataclass', 'rebuild_dataclass' 

26 

27_T = TypeVar('_T') 

28 

29if sys.version_info >= (3, 10): 

30 

31 @dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr)) 

32 @overload 

33 def dataclass( 

34 *, 

35 init: Literal[False] = False, 

36 repr: bool = True, 

37 eq: bool = True, 

38 order: bool = False, 

39 unsafe_hash: bool = False, 

40 frozen: bool = False, 

41 config: ConfigDict | type[object] | None = None, 

42 validate_on_init: bool | None = None, 

43 kw_only: bool = ..., 

44 slots: bool = ..., 

45 ) -> Callable[[type[_T]], type[PydanticDataclass]]: # type: ignore 

46 ... 

47 

48 @dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr)) 

49 @overload 

50 def dataclass( 

51 _cls: type[_T], # type: ignore 

52 *, 

53 init: Literal[False] = False, 

54 repr: bool = True, 

55 eq: bool = True, 

56 order: bool = False, 

57 unsafe_hash: bool = False, 

58 frozen: bool | None = None, 

59 config: ConfigDict | type[object] | None = None, 

60 validate_on_init: bool | None = None, 

61 kw_only: bool = ..., 

62 slots: bool = ..., 

63 ) -> type[PydanticDataclass]: ... 

64 

65else: 

66 

67 @dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr)) 

68 @overload 

69 def dataclass( 

70 *, 

71 init: Literal[False] = False, 

72 repr: bool = True, 

73 eq: bool = True, 

74 order: bool = False, 

75 unsafe_hash: bool = False, 

76 frozen: bool | None = None, 

77 config: ConfigDict | type[object] | None = None, 

78 validate_on_init: bool | None = None, 

79 ) -> Callable[[type[_T]], type[PydanticDataclass]]: # type: ignore 

80 ... 

81 

82 @dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr)) 

83 @overload 

84 def dataclass( 

85 _cls: type[_T], # type: ignore 

86 *, 

87 init: Literal[False] = False, 

88 repr: bool = True, 

89 eq: bool = True, 

90 order: bool = False, 

91 unsafe_hash: bool = False, 

92 frozen: bool | None = None, 

93 config: ConfigDict | type[object] | None = None, 

94 validate_on_init: bool | None = None, 

95 ) -> type[PydanticDataclass]: ... 

96 

97 

98@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr)) 

99def dataclass( 

100 _cls: type[_T] | None = None, 

101 *, 

102 init: Literal[False] = False, 

103 repr: bool = True, 

104 eq: bool = True, 

105 order: bool = False, 

106 unsafe_hash: bool = False, 

107 frozen: bool | None = None, 

108 config: ConfigDict | type[object] | None = None, 

109 validate_on_init: bool | None = None, 

110 kw_only: bool = False, 

111 slots: bool = False, 

112) -> Callable[[type[_T]], type[PydanticDataclass]] | type[PydanticDataclass]: 

113 """!!! abstract "Usage Documentation" 

114 [`dataclasses`](../concepts/dataclasses.md) 

115 

116 A decorator used to create a Pydantic-enhanced dataclass, similar to the standard Python `dataclass`, 

117 but with added validation. 

118 

119 This function should be used similarly to `dataclasses.dataclass`. 

120 

121 Args: 

122 _cls: The target `dataclass`. 

123 init: Included for signature compatibility with `dataclasses.dataclass`, and is passed through to 

124 `dataclasses.dataclass` when appropriate. If specified, must be set to `False`, as pydantic inserts its 

125 own `__init__` function. 

126 repr: A boolean indicating whether to include the field in the `__repr__` output. 

127 eq: Determines if a `__eq__` method should be generated for the class. 

128 order: Determines if comparison magic methods should be generated, such as `__lt__`, but not `__eq__`. 

129 unsafe_hash: Determines if a `__hash__` method should be included in the class, as in `dataclasses.dataclass`. 

130 frozen: Determines if the generated class should be a 'frozen' `dataclass`, which does not allow its 

131 attributes to be modified after it has been initialized. If not set, the value from the provided `config` argument will be used (and will default to `False` otherwise). 

132 config: The Pydantic config to use for the `dataclass`. 

133 validate_on_init: A deprecated parameter included for backwards compatibility; in V2, all Pydantic dataclasses 

134 are validated on init. 

135 kw_only: Determines if `__init__` method parameters must be specified by keyword only. Defaults to `False`. 

136 slots: Determines if the generated class should be a 'slots' `dataclass`, which does not allow the addition of 

137 new attributes after instantiation. 

138 

139 Returns: 

140 A decorator that accepts a class as its argument and returns a Pydantic `dataclass`. 

141 

142 Raises: 

143 AssertionError: Raised if `init` is not `False` or `validate_on_init` is `False`. 

144 """ 

145 assert init is False, 'pydantic.dataclasses.dataclass only supports init=False' 

146 assert validate_on_init is not False, 'validate_on_init=False is no longer supported' 

147 

148 if sys.version_info >= (3, 10): 

149 kwargs = {'kw_only': kw_only, 'slots': slots} 

150 else: 

151 kwargs = {} 

152 

153 def create_dataclass(cls: type[Any]) -> type[PydanticDataclass]: 

154 """Create a Pydantic dataclass from a regular dataclass. 

155 

156 Args: 

157 cls: The class to create the Pydantic dataclass from. 

158 

159 Returns: 

160 A Pydantic dataclass. 

161 """ 

162 from ._internal._utils import is_model_class 

163 

164 if is_model_class(cls): 

165 raise PydanticUserError( 

166 f'Cannot create a Pydantic dataclass from {cls.__name__} as it is already a Pydantic model', 

167 code='dataclass-on-model', 

168 ) 

169 

170 original_cls = cls 

171 

172 # we warn on conflicting config specifications, but only if the class doesn't have a dataclass base 

173 # because a dataclass base might provide a __pydantic_config__ attribute that we don't want to warn about 

174 has_dataclass_base = any(dataclasses.is_dataclass(base) for base in cls.__bases__) 

175 if not has_dataclass_base and config is not None and hasattr(cls, '__pydantic_config__'): 

176 warn( 

177 f'`config` is set via both the `dataclass` decorator and `__pydantic_config__` for dataclass {cls.__name__}. ' 

178 f'The `config` specification from `dataclass` decorator will take priority.', 

179 category=UserWarning, 

180 stacklevel=2, 

181 ) 

182 

183 # if config is not explicitly provided, try to read it from the type 

184 config_dict = config if config is not None else getattr(cls, '__pydantic_config__', None) 

185 config_wrapper = _config.ConfigWrapper(config_dict) 

186 decorators = _decorators.DecoratorInfos.build(cls) 

187 decorators.update_from_config(config_wrapper) 

188 

189 # Keep track of the original __doc__ so that we can restore it after applying the dataclasses decorator 

190 # Otherwise, classes with no __doc__ will have their signature added into the JSON schema description, 

191 # since dataclasses.dataclass will set this as the __doc__ 

192 original_doc = cls.__doc__ 

193 

194 if _pydantic_dataclasses.is_stdlib_dataclass(cls): 

195 # Vanilla dataclasses include a default docstring (representing the class signature), 

196 # which we don't want to preserve. 

197 original_doc = None 

198 

199 # We don't want to add validation to the existing std lib dataclass, so we will subclass it 

200 # If the class is generic, we need to make sure the subclass also inherits from Generic 

201 # with all the same parameters. 

202 bases = (cls,) 

203 if issubclass(cls, Generic): 

204 generic_base = Generic[cls.__parameters__] # type: ignore 

205 bases = bases + (generic_base,) 

206 cls = types.new_class(cls.__name__, bases) 

207 

208 # Respect frozen setting from dataclass constructor and fallback to config setting if not provided 

209 if frozen is not None: 

210 frozen_ = frozen 

211 if config_wrapper.frozen: 

212 # It's not recommended to define both, as the setting from the dataclass decorator will take priority. 

213 warn( 

214 f'`frozen` is set via both the `dataclass` decorator and `config` for dataclass {cls.__name__!r}.' 

215 'This is not recommended. The `frozen` specification on `dataclass` will take priority.', 

216 category=UserWarning, 

217 stacklevel=2, 

218 ) 

219 else: 

220 frozen_ = config_wrapper.frozen or False 

221 

222 # Make Pydantic's `Field()` function compatible with stdlib dataclasses. As we'll decorate 

223 # `cls` with the stdlib `@dataclass` decorator first, there are two attributes, `kw_only` and 

224 # `repr` that need to be understood *during* the stdlib creation. We do so in two steps: 

225 

226 # 1. On the decorated class, wrap `Field()` assignment with `dataclass.field()`, with the 

227 # two attributes set (done in `as_dataclass_field()`) 

228 cls_anns = _typing_extra.safe_get_annotations(cls) 

229 for field_name in cls_anns: 

230 # We should look for assignments in `__dict__` instead, but for now we follow 

231 # the same behavior as stdlib dataclasses (see https://github.com/python/cpython/issues/88609) 

232 field_value = getattr(cls, field_name, None) 

233 if isinstance(field_value, FieldInfo): 

234 setattr(cls, field_name, _pydantic_dataclasses.as_dataclass_field(field_value)) 

235 

236 # 2. For bases of `cls` that are stdlib dataclasses, we temporarily patch their fields 

237 # (see the docstring of the context manager): 

238 with _pydantic_dataclasses.patch_base_fields(cls): 

239 cls = dataclasses.dataclass( # pyright: ignore[reportCallIssue] 

240 cls, 

241 # the value of init here doesn't affect anything except that it makes it easier to generate a signature 

242 init=True, 

243 repr=repr, 

244 eq=eq, 

245 order=order, 

246 unsafe_hash=unsafe_hash, 

247 frozen=frozen_, 

248 **kwargs, 

249 ) 

250 

251 if config_wrapper.validate_assignment: 

252 original_setattr = cls.__setattr__ 

253 

254 @functools.wraps(cls.__setattr__) 

255 def validated_setattr(instance: PydanticDataclass, name: str, value: Any, /) -> None: 

256 if frozen_: 

257 return original_setattr(instance, name, value) # pyright: ignore[reportCallIssue] 

258 inst_cls = type(instance) 

259 attr = getattr(inst_cls, name, None) 

260 

261 if isinstance(attr, property): 

262 attr.__set__(instance, value) 

263 elif isinstance(attr, functools.cached_property): 

264 instance.__dict__.__setitem__(name, value) 

265 else: 

266 inst_cls.__pydantic_validator__.validate_assignment(instance, name, value) 

267 

268 cls.__setattr__ = validated_setattr.__get__(None, cls) # type: ignore 

269 

270 if slots and not hasattr(cls, '__setstate__'): 

271 # If slots is set, `pickle` (relied on by `copy.copy()`) will use 

272 # `__setattr__()` to reconstruct the dataclass. However, the custom 

273 # `__setattr__()` set above relies on `validate_assignment()`, which 

274 # in turn expects all the field values to be already present on the 

275 # instance, resulting in attribute errors. 

276 # As such, we make use of `object.__setattr__()` instead. 

277 # Note that we do so only if `__setstate__()` isn't already set (this is the 

278 # case if on top of `slots`, `frozen` is used). 

279 

280 # Taken from `dataclasses._dataclass_get/setstate()`: 

281 def _dataclass_getstate(self: Any) -> list[Any]: 

282 return [getattr(self, f.name) for f in dataclasses.fields(self)] 

283 

284 def _dataclass_setstate(self: Any, state: list[Any]) -> None: 

285 for field, value in zip(dataclasses.fields(self), state): 

286 object.__setattr__(self, field.name, value) 

287 

288 cls.__getstate__ = _dataclass_getstate # pyright: ignore[reportAttributeAccessIssue] 

289 cls.__setstate__ = _dataclass_setstate # pyright: ignore[reportAttributeAccessIssue] 

290 

291 # This is an undocumented attribute to distinguish stdlib/Pydantic dataclasses. 

292 # It should be set as early as possible: 

293 cls.__is_pydantic_dataclass__ = True 

294 cls.__pydantic_decorators__ = decorators # type: ignore 

295 cls.__doc__ = original_doc 

296 # Can be non-existent for dynamically created classes: 

297 firstlineno = getattr(original_cls, '__firstlineno__', None) 

298 cls.__module__ = original_cls.__module__ 

299 if sys.version_info >= (3, 13) and firstlineno is not None: 

300 # As per https://docs.python.org/3/reference/datamodel.html#type.__firstlineno__: 

301 # Setting the `__module__` attribute removes the `__firstlineno__` item from the type’s dictionary. 

302 original_cls.__firstlineno__ = firstlineno 

303 cls.__firstlineno__ = firstlineno 

304 cls.__qualname__ = original_cls.__qualname__ 

305 cls.__pydantic_fields_complete__ = classmethod(_pydantic_fields_complete) 

306 cls.__pydantic_complete__ = False # `complete_dataclass` will set it to `True` if successful. 

307 # TODO `parent_namespace` is currently None, but we could do the same thing as Pydantic models: 

308 # fetch the parent ns using `parent_frame_namespace` (if the dataclass was defined in a function), 

309 # and possibly cache it (see the `__pydantic_parent_namespace__` logic for models). 

310 _pydantic_dataclasses.complete_dataclass(cls, config_wrapper, raise_errors=False) 

311 return cls 

312 

313 return create_dataclass if _cls is None else create_dataclass(_cls) 

314 

315 

316def _pydantic_fields_complete(cls: type[PydanticDataclass]) -> bool: 

317 """Return whether the fields where successfully collected (i.e. type hints were successfully resolves). 

318 

319 This is a private property, not meant to be used outside Pydantic. 

320 """ 

321 return all(field_info._complete for field_info in cls.__pydantic_fields__.values()) 

322 

323 

324__getattr__ = getattr_migration(__name__) 

325 

326if sys.version_info < (3, 11): 

327 # Monkeypatch dataclasses.InitVar so that typing doesn't error if it occurs as a type when evaluating type hints 

328 # Starting in 3.11, typing.get_type_hints will not raise an error if the retrieved type hints are not callable. 

329 

330 def _call_initvar(*args: Any, **kwargs: Any) -> NoReturn: 

331 """This function does nothing but raise an error that is as similar as possible to what you'd get 

332 if you were to try calling `InitVar[int]()` without this monkeypatch. The whole purpose is just 

333 to ensure typing._type_check does not error if the type hint evaluates to `InitVar[<parameter>]`. 

334 """ 

335 raise TypeError("'InitVar' object is not callable") 

336 

337 dataclasses.InitVar.__call__ = _call_initvar 

338 

339 

340def rebuild_dataclass( 

341 cls: type[PydanticDataclass], 

342 *, 

343 force: bool = False, 

344 raise_errors: bool = True, 

345 _parent_namespace_depth: int = 2, 

346 _types_namespace: MappingNamespace | None = None, 

347) -> bool | None: 

348 """Try to rebuild the pydantic-core schema for the dataclass. 

349 

350 This may be necessary when one of the annotations is a ForwardRef which could not be resolved during 

351 the initial attempt to build the schema, and automatic rebuilding fails. 

352 

353 This is analogous to `BaseModel.model_rebuild`. 

354 

355 Args: 

356 cls: The class to rebuild the pydantic-core schema for. 

357 force: Whether to force the rebuilding of the schema, defaults to `False`. 

358 raise_errors: Whether to raise errors, defaults to `True`. 

359 _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. 

360 _types_namespace: The types namespace, defaults to `None`. 

361 

362 Returns: 

363 Returns `None` if the schema is already "complete" and rebuilding was not required. 

364 If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`. 

365 """ 

366 if not force and cls.__pydantic_complete__: 

367 return None 

368 

369 for attr in ('__pydantic_core_schema__', '__pydantic_validator__', '__pydantic_serializer__'): 

370 if attr in cls.__dict__: 

371 # Deleting the validator/serializer is necessary as otherwise they can get reused in 

372 # pydantic-core. Same applies for the core schema that can be reused in schema generation. 

373 delattr(cls, attr) 

374 

375 cls.__pydantic_complete__ = False 

376 

377 if _types_namespace is not None: 

378 rebuild_ns = _types_namespace 

379 elif _parent_namespace_depth > 0: 

380 rebuild_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth, force=True) or {} 

381 else: 

382 rebuild_ns = {} 

383 

384 ns_resolver = _namespace_utils.NsResolver( 

385 parent_namespace=rebuild_ns, 

386 ) 

387 

388 return _pydantic_dataclasses.complete_dataclass( 

389 cls, 

390 _config.ConfigWrapper(cls.__pydantic_config__, check=False), 

391 raise_errors=raise_errors, 

392 ns_resolver=ns_resolver, 

393 # We could provide a different config instead (with `'defer_build'` set to `True`) 

394 # of this explicit `_force_build` argument, but because config can come from the 

395 # decorator parameter or the `__pydantic_config__` attribute, `complete_dataclass` 

396 # will overwrite `__pydantic_config__` with the provided config above: 

397 _force_build=True, 

398 ) 

399 

400 

401def is_pydantic_dataclass(class_: type[Any], /) -> TypeGuard[type[PydanticDataclass]]: 

402 """Whether a class is a pydantic dataclass. 

403 

404 Args: 

405 class_: The class. 

406 

407 Returns: 

408 `True` if the class is a pydantic dataclass, `False` otherwise. 

409 """ 

410 try: 

411 return '__is_pydantic_dataclass__' in class_.__dict__ and dataclasses.is_dataclass(class_) 

412 except AttributeError: 

413 return False