Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/pydantic/functional_serializers.py: 46%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

108 statements  

1"""This module contains related classes and functions for serialization.""" 

2 

3from __future__ import annotations 

4 

5import dataclasses 

6from functools import partial, partialmethod 

7from typing import TYPE_CHECKING, Annotated, Any, Callable, Literal, TypeVar, overload 

8 

9from pydantic_core import PydanticUndefined, core_schema 

10from pydantic_core.core_schema import SerializationInfo, SerializerFunctionWrapHandler, WhenUsed 

11from typing_extensions import TypeAlias 

12 

13from . import PydanticUndefinedAnnotation 

14from ._internal import _decorators, _internal_dataclass 

15from .annotated_handlers import GetCoreSchemaHandler 

16 

17 

18@dataclasses.dataclass(**_internal_dataclass.slots_true, frozen=True) 

19class PlainSerializer: 

20 """Plain serializers use a function to modify the output of serialization. 

21 

22 This is particularly helpful when you want to customize the serialization for annotated types. 

23 Consider an input of `list`, which will be serialized into a space-delimited string. 

24 

25 ```python 

26 from typing import Annotated 

27 

28 from pydantic import BaseModel, PlainSerializer 

29 

30 CustomStr = Annotated[ 

31 list, PlainSerializer(lambda x: ' '.join(x), return_type=str) 

32 ] 

33 

34 class StudentModel(BaseModel): 

35 courses: CustomStr 

36 

37 student = StudentModel(courses=['Math', 'Chemistry', 'English']) 

38 print(student.model_dump()) 

39 #> {'courses': 'Math Chemistry English'} 

40 ``` 

41 

42 Attributes: 

43 func: The serializer function. 

44 return_type: The return type for the function. If omitted it will be inferred from the type annotation. 

45 when_used: Determines when this serializer should be used. Accepts a string with values `'always'`, 

46 `'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'. 

47 """ 

48 

49 func: core_schema.SerializerFunction 

50 return_type: Any = PydanticUndefined 

51 when_used: WhenUsed = 'always' 

52 

53 def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: 

54 """Gets the Pydantic core schema. 

55 

56 Args: 

57 source_type: The source type. 

58 handler: The `GetCoreSchemaHandler` instance. 

59 

60 Returns: 

61 The Pydantic core schema. 

62 """ 

63 schema = handler(source_type) 

64 if self.return_type is not PydanticUndefined: 

65 return_type = self.return_type 

66 else: 

67 try: 

68 # Do not pass in globals as the function could be defined in a different module. 

69 # Instead, let `get_callable_return_type` infer the globals to use, but still pass 

70 # in locals that may contain a parent/rebuild namespace: 

71 return_type = _decorators.get_callable_return_type( 

72 self.func, 

73 localns=handler._get_types_namespace().locals, 

74 ) 

75 except NameError as e: 

76 raise PydanticUndefinedAnnotation.from_name_error(e) from e 

77 

78 return_schema = None if return_type is PydanticUndefined else handler.generate_schema(return_type) 

79 schema['serialization'] = core_schema.plain_serializer_function_ser_schema( 

80 function=self.func, 

81 info_arg=_decorators.inspect_annotated_serializer(self.func, 'plain'), 

82 return_schema=return_schema, 

83 when_used=self.when_used, 

84 ) 

85 return schema 

86 

87 

88@dataclasses.dataclass(**_internal_dataclass.slots_true, frozen=True) 

89class WrapSerializer: 

90 """Wrap serializers receive the raw inputs along with a handler function that applies the standard serialization 

91 logic, and can modify the resulting value before returning it as the final output of serialization. 

92 

93 For example, here's a scenario in which a wrap serializer transforms timezones to UTC **and** utilizes the existing `datetime` serialization logic. 

94 

95 ```python 

96 from datetime import datetime, timezone 

97 from typing import Annotated, Any 

98 

99 from pydantic import BaseModel, WrapSerializer 

100 

101 class EventDatetime(BaseModel): 

102 start: datetime 

103 end: datetime 

104 

105 def convert_to_utc(value: Any, handler, info) -> dict[str, datetime]: 

106 # Note that `handler` can actually help serialize the `value` for 

107 # further custom serialization in case it's a subclass. 

108 partial_result = handler(value, info) 

109 if info.mode == 'json': 

110 return { 

111 k: datetime.fromisoformat(v).astimezone(timezone.utc) 

112 for k, v in partial_result.items() 

113 } 

114 return {k: v.astimezone(timezone.utc) for k, v in partial_result.items()} 

115 

116 UTCEventDatetime = Annotated[EventDatetime, WrapSerializer(convert_to_utc)] 

117 

118 class EventModel(BaseModel): 

119 event_datetime: UTCEventDatetime 

120 

121 dt = EventDatetime( 

122 start='2024-01-01T07:00:00-08:00', end='2024-01-03T20:00:00+06:00' 

123 ) 

124 event = EventModel(event_datetime=dt) 

125 print(event.model_dump()) 

126 ''' 

127 { 

128 'event_datetime': { 

129 'start': datetime.datetime( 

130 2024, 1, 1, 15, 0, tzinfo=datetime.timezone.utc 

131 ), 

132 'end': datetime.datetime( 

133 2024, 1, 3, 14, 0, tzinfo=datetime.timezone.utc 

134 ), 

135 } 

136 } 

137 ''' 

138 

139 print(event.model_dump_json()) 

140 ''' 

141 {"event_datetime":{"start":"2024-01-01T15:00:00Z","end":"2024-01-03T14:00:00Z"}} 

142 ''' 

143 ``` 

144 

145 Attributes: 

146 func: The serializer function to be wrapped. 

147 return_type: The return type for the function. If omitted it will be inferred from the type annotation. 

148 when_used: Determines when this serializer should be used. Accepts a string with values `'always'`, 

149 `'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'. 

150 """ 

151 

152 func: core_schema.WrapSerializerFunction 

153 return_type: Any = PydanticUndefined 

154 when_used: WhenUsed = 'always' 

155 

156 def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: 

157 """This method is used to get the Pydantic core schema of the class. 

158 

159 Args: 

160 source_type: Source type. 

161 handler: Core schema handler. 

162 

163 Returns: 

164 The generated core schema of the class. 

165 """ 

166 schema = handler(source_type) 

167 if self.return_type is not PydanticUndefined: 

168 return_type = self.return_type 

169 else: 

170 try: 

171 # Do not pass in globals as the function could be defined in a different module. 

172 # Instead, let `get_callable_return_type` infer the globals to use, but still pass 

173 # in locals that may contain a parent/rebuild namespace: 

174 return_type = _decorators.get_callable_return_type( 

175 self.func, 

176 localns=handler._get_types_namespace().locals, 

177 ) 

178 except NameError as e: 

179 raise PydanticUndefinedAnnotation.from_name_error(e) from e 

180 

181 return_schema = None if return_type is PydanticUndefined else handler.generate_schema(return_type) 

182 schema['serialization'] = core_schema.wrap_serializer_function_ser_schema( 

183 function=self.func, 

184 info_arg=_decorators.inspect_annotated_serializer(self.func, 'wrap'), 

185 return_schema=return_schema, 

186 when_used=self.when_used, 

187 ) 

188 return schema 

189 

190 

191if TYPE_CHECKING: 

192 _Partial: TypeAlias = 'partial[Any] | partialmethod[Any]' 

193 

194 FieldPlainSerializer: TypeAlias = 'core_schema.SerializerFunction | _Partial' 

195 """A field serializer method or function in `plain` mode.""" 

196 

197 FieldWrapSerializer: TypeAlias = 'core_schema.WrapSerializerFunction | _Partial' 

198 """A field serializer method or function in `wrap` mode.""" 

199 

200 FieldSerializer: TypeAlias = 'FieldPlainSerializer | FieldWrapSerializer' 

201 """A field serializer method or function.""" 

202 

203 _FieldPlainSerializerT = TypeVar('_FieldPlainSerializerT', bound=FieldPlainSerializer) 

204 _FieldWrapSerializerT = TypeVar('_FieldWrapSerializerT', bound=FieldWrapSerializer) 

205 

206 

207@overload 

208def field_serializer( 

209 field: str, 

210 /, 

211 *fields: str, 

212 mode: Literal['wrap'], 

213 return_type: Any = ..., 

214 when_used: WhenUsed = ..., 

215 check_fields: bool | None = ..., 

216) -> Callable[[_FieldWrapSerializerT], _FieldWrapSerializerT]: ... 

217 

218 

219@overload 

220def field_serializer( 

221 field: str, 

222 /, 

223 *fields: str, 

224 mode: Literal['plain'] = ..., 

225 return_type: Any = ..., 

226 when_used: WhenUsed = ..., 

227 check_fields: bool | None = ..., 

228) -> Callable[[_FieldPlainSerializerT], _FieldPlainSerializerT]: ... 

229 

230 

231def field_serializer( 

232 *fields: str, 

233 mode: Literal['plain', 'wrap'] = 'plain', 

234 # TODO PEP 747 (grep for 'return_type' on the whole code base): 

235 return_type: Any = PydanticUndefined, 

236 when_used: WhenUsed = 'always', 

237 check_fields: bool | None = None, 

238) -> ( 

239 Callable[[_FieldWrapSerializerT], _FieldWrapSerializerT] 

240 | Callable[[_FieldPlainSerializerT], _FieldPlainSerializerT] 

241): 

242 """Decorator that enables custom field serialization. 

243 

244 In the below example, a field of type `set` is used to mitigate duplication. A `field_serializer` is used to serialize the data as a sorted list. 

245 

246 ```python 

247 from pydantic import BaseModel, field_serializer 

248 

249 class StudentModel(BaseModel): 

250 name: str = 'Jane' 

251 courses: set[str] 

252 

253 @field_serializer('courses', when_used='json') 

254 def serialize_courses_in_order(self, courses: set[str]): 

255 return sorted(courses) 

256 

257 student = StudentModel(courses={'Math', 'Chemistry', 'English'}) 

258 print(student.model_dump_json()) 

259 #> {"name":"Jane","courses":["Chemistry","English","Math"]} 

260 ``` 

261 

262 See [the usage documentation](../concepts/serialization.md#serializers) for more information. 

263 

264 Four signatures are supported: 

265 

266 - `(self, value: Any, info: FieldSerializationInfo)` 

267 - `(self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)` 

268 - `(value: Any, info: SerializationInfo)` 

269 - `(value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)` 

270 

271 Args: 

272 fields: Which field(s) the method should be called on. 

273 mode: The serialization mode. 

274 

275 - `plain` means the function will be called instead of the default serialization logic, 

276 - `wrap` means the function will be called with an argument to optionally call the 

277 default serialization logic. 

278 return_type: Optional return type for the function, if omitted it will be inferred from the type annotation. 

279 when_used: Determines the serializer will be used for serialization. 

280 check_fields: Whether to check that the fields actually exist on the model. 

281 

282 Returns: 

283 The decorator function. 

284 """ 

285 

286 def dec(f: FieldSerializer) -> _decorators.PydanticDescriptorProxy[Any]: 

287 dec_info = _decorators.FieldSerializerDecoratorInfo( 

288 fields=fields, 

289 mode=mode, 

290 return_type=return_type, 

291 when_used=when_used, 

292 check_fields=check_fields, 

293 ) 

294 return _decorators.PydanticDescriptorProxy(f, dec_info) # pyright: ignore[reportArgumentType] 

295 

296 return dec # pyright: ignore[reportReturnType] 

297 

298 

299if TYPE_CHECKING: 

300 # The first argument in the following callables represent the `self` type: 

301 

302 ModelPlainSerializerWithInfo: TypeAlias = Callable[[Any, SerializationInfo[Any]], Any] 

303 """A model serializer method with the `info` argument, in `plain` mode.""" 

304 

305 ModelPlainSerializerWithoutInfo: TypeAlias = Callable[[Any], Any] 

306 """A model serializer method without the `info` argument, in `plain` mode.""" 

307 

308 ModelPlainSerializer: TypeAlias = 'ModelPlainSerializerWithInfo | ModelPlainSerializerWithoutInfo' 

309 """A model serializer method in `plain` mode.""" 

310 

311 ModelWrapSerializerWithInfo: TypeAlias = Callable[[Any, SerializerFunctionWrapHandler, SerializationInfo[Any]], Any] 

312 """A model serializer method with the `info` argument, in `wrap` mode.""" 

313 

314 ModelWrapSerializerWithoutInfo: TypeAlias = Callable[[Any, SerializerFunctionWrapHandler], Any] 

315 """A model serializer method without the `info` argument, in `wrap` mode.""" 

316 

317 ModelWrapSerializer: TypeAlias = 'ModelWrapSerializerWithInfo | ModelWrapSerializerWithoutInfo' 

318 """A model serializer method in `wrap` mode.""" 

319 

320 ModelSerializer: TypeAlias = 'ModelPlainSerializer | ModelWrapSerializer' 

321 

322 _ModelPlainSerializerT = TypeVar('_ModelPlainSerializerT', bound=ModelPlainSerializer) 

323 _ModelWrapSerializerT = TypeVar('_ModelWrapSerializerT', bound=ModelWrapSerializer) 

324 

325 

326@overload 

327def model_serializer(f: _ModelPlainSerializerT, /) -> _ModelPlainSerializerT: ... 

328 

329 

330@overload 

331def model_serializer( 

332 *, mode: Literal['wrap'], when_used: WhenUsed = 'always', return_type: Any = ... 

333) -> Callable[[_ModelWrapSerializerT], _ModelWrapSerializerT]: ... 

334 

335 

336@overload 

337def model_serializer( 

338 *, 

339 mode: Literal['plain'] = ..., 

340 when_used: WhenUsed = 'always', 

341 return_type: Any = ..., 

342) -> Callable[[_ModelPlainSerializerT], _ModelPlainSerializerT]: ... 

343 

344 

345def model_serializer( 

346 f: _ModelPlainSerializerT | _ModelWrapSerializerT | None = None, 

347 /, 

348 *, 

349 mode: Literal['plain', 'wrap'] = 'plain', 

350 when_used: WhenUsed = 'always', 

351 return_type: Any = PydanticUndefined, 

352) -> ( 

353 _ModelPlainSerializerT 

354 | Callable[[_ModelWrapSerializerT], _ModelWrapSerializerT] 

355 | Callable[[_ModelPlainSerializerT], _ModelPlainSerializerT] 

356): 

357 """Decorator that enables custom model serialization. 

358 

359 This is useful when a model need to be serialized in a customized manner, allowing for flexibility beyond just specific fields. 

360 

361 An example would be to serialize temperature to the same temperature scale, such as degrees Celsius. 

362 

363 ```python 

364 from typing import Literal 

365 

366 from pydantic import BaseModel, model_serializer 

367 

368 class TemperatureModel(BaseModel): 

369 unit: Literal['C', 'F'] 

370 value: int 

371 

372 @model_serializer() 

373 def serialize_model(self): 

374 if self.unit == 'F': 

375 return {'unit': 'C', 'value': int((self.value - 32) / 1.8)} 

376 return {'unit': self.unit, 'value': self.value} 

377 

378 temperature = TemperatureModel(unit='F', value=212) 

379 print(temperature.model_dump()) 

380 #> {'unit': 'C', 'value': 100} 

381 ``` 

382 

383 Two signatures are supported for `mode='plain'`, which is the default: 

384 

385 - `(self)` 

386 - `(self, info: SerializationInfo)` 

387 

388 And two other signatures for `mode='wrap'`: 

389 

390 - `(self, nxt: SerializerFunctionWrapHandler)` 

391 - `(self, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)` 

392 

393 See [the usage documentation](../concepts/serialization.md#serializers) for more information. 

394 

395 Args: 

396 f: The function to be decorated. 

397 mode: The serialization mode. 

398 

399 - `'plain'` means the function will be called instead of the default serialization logic 

400 - `'wrap'` means the function will be called with an argument to optionally call the default 

401 serialization logic. 

402 when_used: Determines when this serializer should be used. 

403 return_type: The return type for the function. If omitted it will be inferred from the type annotation. 

404 

405 Returns: 

406 The decorator function. 

407 """ 

408 

409 def dec(f: ModelSerializer) -> _decorators.PydanticDescriptorProxy[Any]: 

410 dec_info = _decorators.ModelSerializerDecoratorInfo(mode=mode, return_type=return_type, when_used=when_used) 

411 return _decorators.PydanticDescriptorProxy(f, dec_info) 

412 

413 if f is None: 

414 return dec # pyright: ignore[reportReturnType] 

415 else: 

416 return dec(f) # pyright: ignore[reportReturnType] 

417 

418 

419AnyType = TypeVar('AnyType') 

420 

421 

422if TYPE_CHECKING: 

423 SerializeAsAny = Annotated[AnyType, ...] # SerializeAsAny[list[str]] will be treated by type checkers as list[str] 

424 """Annotation used to mark a type as having duck-typing serialization behavior. 

425 

426 See [usage documentation](../concepts/serialization.md#serializing-with-duck-typing) for more details. 

427 """ 

428else: 

429 

430 @dataclasses.dataclass(**_internal_dataclass.slots_true) 

431 class SerializeAsAny: 

432 """Annotation used to mark a type as having duck-typing serialization behavior. 

433 

434 See [usage documentation](../concepts/serialization.md#serializing-with-duck-typing) for more details. 

435 """ 

436 

437 def __class_getitem__(cls, item: Any) -> Any: 

438 return Annotated[item, SerializeAsAny()] 

439 

440 def __get_pydantic_core_schema__( 

441 self, source_type: Any, handler: GetCoreSchemaHandler 

442 ) -> core_schema.CoreSchema: 

443 schema = handler(source_type) 

444 schema_to_update = schema 

445 while schema_to_update['type'] == 'definitions': 

446 schema_to_update = schema_to_update.copy() 

447 schema_to_update = schema_to_update['schema'] 

448 schema_to_update['serialization'] = core_schema.simple_ser_schema('any') 

449 return schema 

450 

451 __hash__ = object.__hash__