Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/pydantic/_internal/_model_construction.py: 59%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

361 statements  

1"""Private logic for creating models.""" 

2 

3from __future__ import annotations as _annotations 

4 

5import operator 

6import sys 

7import typing 

8import warnings 

9import weakref 

10from abc import ABCMeta 

11from functools import cache, partial, wraps 

12from types import FunctionType 

13from typing import TYPE_CHECKING, Any, Callable, Generic, Literal, NoReturn, TypeVar, cast 

14 

15from pydantic_core import PydanticUndefined, SchemaSerializer 

16from typing_extensions import TypeAliasType, dataclass_transform, deprecated, get_args, get_origin 

17from typing_inspection import typing_objects 

18 

19from ..errors import PydanticUndefinedAnnotation, PydanticUserError 

20from ..plugin._schema_validator import create_schema_validator 

21from ..warnings import GenericBeforeBaseModelWarning, PydanticDeprecatedSince20 

22from ._config import ConfigWrapper 

23from ._decorators import DecoratorInfos, PydanticDescriptorProxy, get_attribute_from_bases, unwrap_wrapped_function 

24from ._fields import collect_model_fields, is_valid_field_name, is_valid_privateattr_name, rebuild_model_fields 

25from ._generate_schema import GenerateSchema, InvalidSchemaError 

26from ._generics import PydanticGenericMetadata, get_model_typevars_map 

27from ._import_utils import import_cached_base_model, import_cached_field_info 

28from ._mock_val_ser import set_model_mocks 

29from ._namespace_utils import NsResolver 

30from ._signature import generate_pydantic_signature 

31from ._typing_extra import ( 

32 _make_forward_ref, 

33 eval_type_backport, 

34 is_classvar_annotation, 

35 parent_frame_namespace, 

36) 

37from ._utils import LazyClassAttribute, SafeGetItemProxy 

38 

39if TYPE_CHECKING: 

40 from ..fields import Field as PydanticModelField 

41 from ..fields import FieldInfo, ModelPrivateAttr 

42 from ..fields import PrivateAttr as PydanticModelPrivateAttr 

43 from ..main import BaseModel 

44else: 

45 PydanticModelField = object() 

46 PydanticModelPrivateAttr = object() 

47 

48object_setattr = object.__setattr__ 

49 

50 

51class _ModelNamespaceDict(dict): 

52 """A dictionary subclass that intercepts attribute setting on model classes and 

53 warns about overriding of decorators. 

54 """ 

55 

56 def __setitem__(self, k: str, v: object) -> None: 

57 existing: Any = self.get(k, None) 

58 if existing and v is not existing and isinstance(existing, PydanticDescriptorProxy): 

59 warnings.warn( 

60 f'`{k}` overrides an existing Pydantic `{existing.decorator_info.decorator_repr}` decorator', 

61 stacklevel=2, 

62 ) 

63 

64 return super().__setitem__(k, v) 

65 

66 

67def NoInitField( 

68 *, 

69 init: Literal[False] = False, 

70) -> Any: 

71 """Only for typing purposes. Used as default value of `__pydantic_fields_set__`, 

72 `__pydantic_extra__`, `__pydantic_private__`, so they could be ignored when 

73 synthesizing the `__init__` signature. 

74 """ 

75 

76 

77# For ModelMetaclass.register(): 

78_T = TypeVar('_T') 

79 

80 

81@dataclass_transform(kw_only_default=True, field_specifiers=(PydanticModelField, PydanticModelPrivateAttr, NoInitField)) 

82class ModelMetaclass(ABCMeta): 

83 def __new__( 

84 mcs, 

85 cls_name: str, 

86 bases: tuple[type[Any], ...], 

87 namespace: dict[str, Any], 

88 __pydantic_generic_metadata__: PydanticGenericMetadata | None = None, 

89 __pydantic_reset_parent_namespace__: bool = True, 

90 _create_model_module: str | None = None, 

91 **kwargs: Any, 

92 ) -> type: 

93 """Metaclass for creating Pydantic models. 

94 

95 Args: 

96 cls_name: The name of the class to be created. 

97 bases: The base classes of the class to be created. 

98 namespace: The attribute dictionary of the class to be created. 

99 __pydantic_generic_metadata__: Metadata for generic models. 

100 __pydantic_reset_parent_namespace__: Reset parent namespace. 

101 _create_model_module: The module of the class to be created, if created by `create_model`. 

102 **kwargs: Catch-all for any other keyword arguments. 

103 

104 Returns: 

105 The new class created by the metaclass. 

106 """ 

107 # Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we rely on the fact 

108 # that `BaseModel` itself won't have any bases, but any subclass of it will, to determine whether the `__new__` 

109 # call we're in the middle of is for the `BaseModel` class. 

110 if bases: 

111 raw_annotations: dict[str, Any] 

112 if sys.version_info >= (3, 14): 

113 if ( 

114 '__annotations__' in namespace 

115 ): # `from __future__ import annotations` was used in the model's module 

116 raw_annotations = namespace['__annotations__'] 

117 else: 

118 # See https://docs.python.org/3.14/library/annotationlib.html#using-annotations-in-a-metaclass: 

119 from annotationlib import Format, call_annotate_function, get_annotate_from_class_namespace 

120 

121 if annotate := get_annotate_from_class_namespace(namespace): 

122 raw_annotations = call_annotate_function(annotate, format=Format.FORWARDREF) 

123 else: 

124 raw_annotations = {} 

125 else: 

126 raw_annotations = namespace.get('__annotations__', {}) 

127 

128 base_field_names, class_vars, base_private_attributes = mcs._collect_bases_data(bases) 

129 

130 config_wrapper = ConfigWrapper.for_model(bases, namespace, raw_annotations, kwargs) 

131 namespace['model_config'] = config_wrapper.config_dict 

132 private_attributes = inspect_namespace( 

133 namespace, raw_annotations, config_wrapper.ignored_types, class_vars, base_field_names 

134 ) 

135 if private_attributes or base_private_attributes: 

136 original_model_post_init = get_model_post_init(namespace, bases) 

137 if original_model_post_init is not None: 

138 # if there are private_attributes and a model_post_init function, we handle both 

139 

140 @wraps(original_model_post_init) 

141 def wrapped_model_post_init(self: BaseModel, context: Any, /) -> None: 

142 """We need to both initialize private attributes and call the user-defined model_post_init 

143 method. 

144 """ 

145 init_private_attributes(self, context) 

146 original_model_post_init(self, context) 

147 

148 namespace['model_post_init'] = wrapped_model_post_init 

149 else: 

150 namespace['model_post_init'] = init_private_attributes 

151 

152 namespace['__class_vars__'] = class_vars 

153 namespace['__private_attributes__'] = {**base_private_attributes, **private_attributes} 

154 

155 cls = cast('type[BaseModel]', super().__new__(mcs, cls_name, bases, namespace, **kwargs)) 

156 BaseModel_ = import_cached_base_model() 

157 

158 mro = cls.__mro__ 

159 if Generic in mro and mro.index(Generic) < mro.index(BaseModel_): 

160 warnings.warn( 

161 GenericBeforeBaseModelWarning( 

162 'Classes should inherit from `BaseModel` before generic classes (e.g. `typing.Generic[T]`) ' 

163 'for pydantic generics to work properly.' 

164 ), 

165 stacklevel=2, 

166 ) 

167 

168 cls.__pydantic_custom_init__ = not getattr(cls.__init__, '__pydantic_base_init__', False) 

169 cls.__pydantic_post_init__ = ( 

170 None if cls.model_post_init is BaseModel_.model_post_init else 'model_post_init' 

171 ) 

172 

173 cls.__pydantic_setattr_handlers__ = {} 

174 

175 cls.__pydantic_decorators__ = DecoratorInfos.build(cls) 

176 cls.__pydantic_decorators__.update_from_config(config_wrapper) 

177 

178 # Use the getattr below to grab the __parameters__ from the `typing.Generic` parent class 

179 if __pydantic_generic_metadata__: 

180 cls.__pydantic_generic_metadata__ = __pydantic_generic_metadata__ 

181 else: 

182 parent_parameters = getattr(cls, '__pydantic_generic_metadata__', {}).get('parameters', ()) 

183 parameters = getattr(cls, '__parameters__', None) or parent_parameters 

184 if parameters and parent_parameters and not all(x in parameters for x in parent_parameters): 

185 from ..root_model import RootModelRootType 

186 

187 missing_parameters = tuple(x for x in parameters if x not in parent_parameters) 

188 if RootModelRootType in parent_parameters and RootModelRootType not in parameters: 

189 # This is a special case where the user has subclassed `RootModel`, but has not parametrized 

190 # RootModel with the generic type identifiers being used. Ex: 

191 # class MyModel(RootModel, Generic[T]): 

192 # root: T 

193 # Should instead just be: 

194 # class MyModel(RootModel[T]): 

195 # root: T 

196 parameters_str = ', '.join([x.__name__ for x in missing_parameters]) 

197 error_message = ( 

198 f'{cls.__name__} is a subclass of `RootModel`, but does not include the generic type identifier(s) ' 

199 f'{parameters_str} in its parameters. ' 

200 f'You should parametrize RootModel directly, e.g., `class {cls.__name__}(RootModel[{parameters_str}]): ...`.' 

201 ) 

202 else: 

203 combined_parameters = parent_parameters + missing_parameters 

204 parameters_str = ', '.join([str(x) for x in combined_parameters]) 

205 generic_type_label = f'typing.Generic[{parameters_str}]' 

206 error_message = ( 

207 f'All parameters must be present on typing.Generic;' 

208 f' you should inherit from {generic_type_label}.' 

209 ) 

210 if Generic not in bases: # pragma: no cover 

211 # We raise an error here not because it is desirable, but because some cases are mishandled. 

212 # It would be nice to remove this error and still have things behave as expected, it's just 

213 # challenging because we are using a custom `__class_getitem__` to parametrize generic models, 

214 # and not returning a typing._GenericAlias from it. 

215 bases_str = ', '.join([x.__name__ for x in bases] + [generic_type_label]) 

216 error_message += ( 

217 f' Note: `typing.Generic` must go last: `class {cls.__name__}({bases_str}): ...`)' 

218 ) 

219 raise TypeError(error_message) 

220 

221 cls.__pydantic_generic_metadata__ = { 

222 'origin': None, 

223 'args': (), 

224 'parameters': parameters, 

225 } 

226 

227 cls.__pydantic_complete__ = False # Ensure this specific class gets completed 

228 

229 # preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487 

230 # for attributes not in `new_namespace` (e.g. private attributes) 

231 for name, obj in private_attributes.items(): 

232 obj.__set_name__(cls, name) 

233 

234 if __pydantic_reset_parent_namespace__: 

235 cls.__pydantic_parent_namespace__ = build_lenient_weakvaluedict(parent_frame_namespace()) 

236 parent_namespace: dict[str, Any] | None = getattr(cls, '__pydantic_parent_namespace__', None) 

237 if isinstance(parent_namespace, dict): 

238 parent_namespace = unpack_lenient_weakvaluedict(parent_namespace) 

239 

240 ns_resolver = NsResolver(parent_namespace=parent_namespace) 

241 

242 set_model_fields(cls, config_wrapper=config_wrapper, ns_resolver=ns_resolver) 

243 

244 # This is also set in `complete_model_class()`, after schema gen because they are recreated. 

245 # We set them here as well for backwards compatibility: 

246 cls.__pydantic_computed_fields__ = { 

247 k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items() 

248 } 

249 

250 if config_wrapper.defer_build: 

251 set_model_mocks(cls) 

252 else: 

253 # Any operation that requires accessing the field infos instances should be put inside 

254 # `complete_model_class()`: 

255 complete_model_class( 

256 cls, 

257 config_wrapper, 

258 ns_resolver, 

259 raise_errors=False, 

260 create_model_module=_create_model_module, 

261 ) 

262 

263 if config_wrapper.frozen and '__hash__' not in namespace: 

264 set_default_hash_func(cls, bases) 

265 

266 # using super(cls, cls) on the next line ensures we only call the parent class's __pydantic_init_subclass__ 

267 # I believe the `type: ignore` is only necessary because mypy doesn't realize that this code branch is 

268 # only hit for _proper_ subclasses of BaseModel 

269 super(cls, cls).__pydantic_init_subclass__(**kwargs) # type: ignore[misc] 

270 return cls 

271 else: 

272 # These are instance variables, but have been assigned to `NoInitField` to trick the type checker. 

273 for instance_slot in '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__': 

274 namespace.pop( 

275 instance_slot, 

276 None, # In case the metaclass is used with a class other than `BaseModel`. 

277 ) 

278 namespace.get('__annotations__', {}).clear() 

279 return super().__new__(mcs, cls_name, bases, namespace, **kwargs) 

280 

281 if not TYPE_CHECKING: # pragma: no branch 

282 # We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access 

283 

284 def __getattr__(self, item: str) -> Any: 

285 """This is necessary to keep attribute access working for class attribute access.""" 

286 private_attributes = self.__dict__.get('__private_attributes__') 

287 if private_attributes and item in private_attributes: 

288 return private_attributes[item] 

289 raise AttributeError(item) 

290 

291 @classmethod 

292 def __prepare__(cls, *args: Any, **kwargs: Any) -> dict[str, object]: 

293 return _ModelNamespaceDict() 

294 

295 # Due to performance and memory issues, in the ABCMeta.__subclasscheck__ implementation, we don't support 

296 # registered virtual subclasses. See https://github.com/python/cpython/issues/92810#issuecomment-2762454345. 

297 # This may change once the CPython gets fixed (possibly in 3.15), in which case we should conditionally 

298 # define `register()`. 

299 def register(self, subclass: type[_T]) -> type[_T]: 

300 warnings.warn( 

301 f"For performance reasons, virtual subclasses registered using '{self.__qualname__}.register()' " 

302 "are not supported in 'isinstance()' and 'issubclass()' checks.", 

303 stacklevel=2, 

304 ) 

305 return super().register(subclass) 

306 

307 __instancecheck__ = type.__instancecheck__ # pyright: ignore[reportAssignmentType] 

308 __subclasscheck__ = type.__subclasscheck__ # pyright: ignore[reportAssignmentType] 

309 

310 @staticmethod 

311 def _collect_bases_data(bases: tuple[type[Any], ...]) -> tuple[set[str], set[str], dict[str, ModelPrivateAttr]]: 

312 BaseModel = import_cached_base_model() 

313 

314 field_names: set[str] = set() 

315 class_vars: set[str] = set() 

316 private_attributes: dict[str, ModelPrivateAttr] = {} 

317 for base in bases: 

318 if issubclass(base, BaseModel) and base is not BaseModel: 

319 # model_fields might not be defined yet in the case of generics, so we use getattr here: 

320 field_names.update(getattr(base, '__pydantic_fields__', {}).keys()) 

321 class_vars.update(base.__class_vars__) 

322 private_attributes.update(base.__private_attributes__) 

323 return field_names, class_vars, private_attributes 

324 

325 @property 

326 @deprecated( 

327 'The `__fields__` attribute is deprecated, use the `model_fields` class property instead.', category=None 

328 ) 

329 def __fields__(self) -> dict[str, FieldInfo]: 

330 warnings.warn( 

331 'The `__fields__` attribute is deprecated, use the `model_fields` class property instead.', 

332 PydanticDeprecatedSince20, 

333 stacklevel=2, 

334 ) 

335 return getattr(self, '__pydantic_fields__', {}) 

336 

337 @property 

338 def __pydantic_fields_complete__(self) -> bool: 

339 """Whether the fields where successfully collected (i.e. type hints were successfully resolves). 

340 

341 This is a private attribute, not meant to be used outside Pydantic. 

342 """ 

343 if not hasattr(self, '__pydantic_fields__'): 

344 return False 

345 

346 field_infos = cast('dict[str, FieldInfo]', self.__pydantic_fields__) # pyright: ignore[reportAttributeAccessIssue] 

347 

348 return all(field_info._complete for field_info in field_infos.values()) 

349 

350 def __dir__(self) -> list[str]: 

351 attributes = list(super().__dir__()) 

352 if '__fields__' in attributes: 

353 attributes.remove('__fields__') 

354 return attributes 

355 

356 

357def init_private_attributes(self: BaseModel, context: Any, /) -> None: 

358 """This function is meant to behave like a BaseModel method to initialise private attributes. 

359 

360 It takes context as an argument since that's what pydantic-core passes when calling it. 

361 

362 Args: 

363 self: The BaseModel instance. 

364 context: The context. 

365 """ 

366 if getattr(self, '__pydantic_private__', None) is None: 

367 pydantic_private = {} 

368 for name, private_attr in self.__private_attributes__.items(): 

369 default = private_attr.get_default() 

370 if default is not PydanticUndefined: 

371 pydantic_private[name] = default 

372 object_setattr(self, '__pydantic_private__', pydantic_private) 

373 

374 

375def get_model_post_init(namespace: dict[str, Any], bases: tuple[type[Any], ...]) -> Callable[..., Any] | None: 

376 """Get the `model_post_init` method from the namespace or the class bases, or `None` if not defined.""" 

377 if 'model_post_init' in namespace: 

378 return namespace['model_post_init'] 

379 

380 BaseModel = import_cached_base_model() 

381 

382 model_post_init = get_attribute_from_bases(bases, 'model_post_init') 

383 if model_post_init is not BaseModel.model_post_init: 

384 return model_post_init 

385 

386 

387def inspect_namespace( # noqa C901 

388 namespace: dict[str, Any], 

389 raw_annotations: dict[str, Any], 

390 ignored_types: tuple[type[Any], ...], 

391 base_class_vars: set[str], 

392 base_class_fields: set[str], 

393) -> dict[str, ModelPrivateAttr]: 

394 """Iterate over the namespace and: 

395 * gather private attributes 

396 * check for items which look like fields but are not (e.g. have no annotation) and warn. 

397 

398 Args: 

399 namespace: The attribute dictionary of the class to be created. 

400 raw_annotations: The (non-evaluated) annotations of the model. 

401 ignored_types: A tuple of ignore types. 

402 base_class_vars: A set of base class class variables. 

403 base_class_fields: A set of base class fields. 

404 

405 Returns: 

406 A dict contains private attributes info. 

407 

408 Raises: 

409 TypeError: If there is a `__root__` field in model. 

410 NameError: If private attribute name is invalid. 

411 PydanticUserError: 

412 - If a field does not have a type annotation. 

413 - If a field on base class was overridden by a non-annotated attribute. 

414 """ 

415 from ..fields import ModelPrivateAttr, PrivateAttr 

416 

417 FieldInfo = import_cached_field_info() 

418 

419 all_ignored_types = ignored_types + default_ignored_types() 

420 

421 private_attributes: dict[str, ModelPrivateAttr] = {} 

422 

423 if '__root__' in raw_annotations or '__root__' in namespace: 

424 raise TypeError("To define root models, use `pydantic.RootModel` rather than a field called '__root__'") 

425 

426 ignored_names: set[str] = set() 

427 for var_name, value in list(namespace.items()): 

428 if var_name == 'model_config' or var_name == '__pydantic_extra__': 

429 continue 

430 elif ( 

431 isinstance(value, type) 

432 and value.__module__ == namespace['__module__'] 

433 and '__qualname__' in namespace 

434 and value.__qualname__.startswith(f'{namespace["__qualname__"]}.') 

435 ): 

436 # `value` is a nested type defined in this namespace; don't error 

437 continue 

438 elif isinstance(value, all_ignored_types) or value.__class__.__module__ == 'functools': 

439 ignored_names.add(var_name) 

440 continue 

441 elif isinstance(value, ModelPrivateAttr): 

442 if var_name.startswith('__'): 

443 raise NameError( 

444 'Private attributes must not use dunder names;' 

445 f' use a single underscore prefix instead of {var_name!r}.' 

446 ) 

447 elif is_valid_field_name(var_name): 

448 raise NameError( 

449 'Private attributes must not use valid field names;' 

450 f' use sunder names, e.g. {"_" + var_name!r} instead of {var_name!r}.' 

451 ) 

452 private_attributes[var_name] = value 

453 del namespace[var_name] 

454 elif isinstance(value, FieldInfo) and not is_valid_field_name(var_name): 

455 suggested_name = var_name.lstrip('_') or 'my_field' # don't suggest '' for all-underscore name 

456 raise NameError( 

457 f'Fields must not use names with leading underscores;' 

458 f' e.g., use {suggested_name!r} instead of {var_name!r}.' 

459 ) 

460 

461 elif var_name.startswith('__'): 

462 continue 

463 elif is_valid_privateattr_name(var_name): 

464 if var_name not in raw_annotations or not is_classvar_annotation(raw_annotations[var_name]): 

465 private_attributes[var_name] = cast(ModelPrivateAttr, PrivateAttr(default=value)) 

466 del namespace[var_name] 

467 elif var_name in base_class_vars: 

468 continue 

469 elif var_name not in raw_annotations: 

470 if var_name in base_class_fields: 

471 raise PydanticUserError( 

472 f'Field {var_name!r} defined on a base class was overridden by a non-annotated attribute. ' 

473 f'All field definitions, including overrides, require a type annotation.', 

474 code='model-field-overridden', 

475 ) 

476 elif isinstance(value, FieldInfo): 

477 raise PydanticUserError( 

478 f'Field {var_name!r} requires a type annotation', code='model-field-missing-annotation' 

479 ) 

480 else: 

481 raise PydanticUserError( 

482 f'A non-annotated attribute was detected: `{var_name} = {value!r}`. All model fields require a ' 

483 f'type annotation; if `{var_name}` is not meant to be a field, you may be able to resolve this ' 

484 f"error by annotating it as a `ClassVar` or updating `model_config['ignored_types']`.", 

485 code='model-field-missing-annotation', 

486 ) 

487 

488 for ann_name, ann_type in raw_annotations.items(): 

489 if ( 

490 is_valid_privateattr_name(ann_name) 

491 and ann_name not in private_attributes 

492 and ann_name not in ignored_names 

493 # This condition can be a false negative when `ann_type` is stringified, 

494 # but it is handled in most cases in `set_model_fields`: 

495 and not is_classvar_annotation(ann_type) 

496 and ann_type not in all_ignored_types 

497 and getattr(ann_type, '__module__', None) != 'functools' 

498 ): 

499 if isinstance(ann_type, str): 

500 # Walking up the frames to get the module namespace where the model is defined 

501 # (as the model class wasn't created yet, we unfortunately can't use `cls.__module__`): 

502 frame = sys._getframe(2) 

503 if frame is not None: 

504 try: 

505 ann_type = eval_type_backport( 

506 _make_forward_ref(ann_type, is_argument=False, is_class=True), 

507 globalns=frame.f_globals, 

508 localns=frame.f_locals, 

509 ) 

510 except (NameError, TypeError): 

511 pass 

512 

513 if typing_objects.is_annotated(get_origin(ann_type)): 

514 _, *metadata = get_args(ann_type) 

515 private_attr = next((v for v in metadata if isinstance(v, ModelPrivateAttr)), None) 

516 if private_attr is not None: 

517 private_attributes[ann_name] = private_attr 

518 continue 

519 private_attributes[ann_name] = PrivateAttr() 

520 

521 return private_attributes 

522 

523 

524def set_default_hash_func(cls: type[BaseModel], bases: tuple[type[Any], ...]) -> None: 

525 base_hash_func = get_attribute_from_bases(bases, '__hash__') 

526 new_hash_func = make_hash_func(cls) 

527 if base_hash_func in {None, object.__hash__} or getattr(base_hash_func, '__code__', None) == new_hash_func.__code__: 

528 # If `__hash__` is some default, we generate a hash function. 

529 # It will be `None` if not overridden from BaseModel. 

530 # It may be `object.__hash__` if there is another 

531 # parent class earlier in the bases which doesn't override `__hash__` (e.g. `typing.Generic`). 

532 # It may be a value set by `set_default_hash_func` if `cls` is a subclass of another frozen model. 

533 # In the last case we still need a new hash function to account for new `model_fields`. 

534 cls.__hash__ = new_hash_func 

535 

536 

537def make_hash_func(cls: type[BaseModel]) -> Any: 

538 getter = operator.itemgetter(*cls.__pydantic_fields__.keys()) if cls.__pydantic_fields__ else lambda _: 0 

539 

540 def hash_func(self: Any) -> int: 

541 try: 

542 return hash(getter(self.__dict__)) 

543 except KeyError: 

544 # In rare cases (such as when using the deprecated copy method), the __dict__ may not contain 

545 # all model fields, which is how we can get here. 

546 # getter(self.__dict__) is much faster than any 'safe' method that accounts for missing keys, 

547 # and wrapping it in a `try` doesn't slow things down much in the common case. 

548 return hash(getter(SafeGetItemProxy(self.__dict__))) 

549 

550 return hash_func 

551 

552 

553def set_model_fields( 

554 cls: type[BaseModel], 

555 config_wrapper: ConfigWrapper, 

556 ns_resolver: NsResolver | None, 

557) -> None: 

558 """Collect and set `cls.__pydantic_fields__` and `cls.__class_vars__`. 

559 

560 Args: 

561 cls: BaseModel or dataclass. 

562 config_wrapper: The config wrapper instance. 

563 ns_resolver: Namespace resolver to use when getting model annotations. 

564 """ 

565 typevars_map = get_model_typevars_map(cls) 

566 fields, class_vars = collect_model_fields(cls, config_wrapper, ns_resolver, typevars_map=typevars_map) 

567 

568 cls.__pydantic_fields__ = fields 

569 cls.__class_vars__.update(class_vars) 

570 

571 for k in class_vars: 

572 # Class vars should not be private attributes 

573 # We remove them _here_ and not earlier because we rely on inspecting the class to determine its classvars, 

574 # but private attributes are determined by inspecting the namespace _prior_ to class creation. 

575 # In the case that a classvar with a leading-'_' is defined via a ForwardRef (e.g., when using 

576 # `__future__.annotations`), we want to remove the private attribute which was detected _before_ we knew it 

577 # evaluated to a classvar 

578 

579 value = cls.__private_attributes__.pop(k, None) 

580 if value is not None and value.default is not PydanticUndefined: 

581 setattr(cls, k, value.default) 

582 

583 

584def complete_model_class( 

585 cls: type[BaseModel], 

586 config_wrapper: ConfigWrapper, 

587 ns_resolver: NsResolver, 

588 *, 

589 raise_errors: bool = True, 

590 call_on_complete_hook: bool = True, 

591 create_model_module: str | None = None, 

592) -> bool: 

593 """Finish building a model class. 

594 

595 This logic must be called after class has been created since validation functions must be bound 

596 and `get_type_hints` requires a class object. 

597 

598 Args: 

599 cls: BaseModel or dataclass. 

600 config_wrapper: The config wrapper instance. 

601 ns_resolver: The namespace resolver instance to use during schema building. 

602 raise_errors: Whether to raise errors. 

603 call_on_complete_hook: Whether to call the `__pydantic_on_complete__` hook. 

604 create_model_module: The module of the class to be created, if created by `create_model`. 

605 

606 Returns: 

607 `True` if the model is successfully completed, else `False`. 

608 

609 Raises: 

610 PydanticUndefinedAnnotation: If `PydanticUndefinedAnnotation` occurs in`__get_pydantic_core_schema__` 

611 and `raise_errors=True`. 

612 """ 

613 typevars_map = get_model_typevars_map(cls) 

614 

615 if not cls.__pydantic_fields_complete__: 

616 # Note: when coming from `ModelMetaclass.__new__()`, this results in fields being built twice. 

617 # We do so a second time here so that we can get the `NameError` for the specific undefined annotation. 

618 # Alternatively, we could let `GenerateSchema()` raise the error, but there are cases where incomplete 

619 # fields are inherited in `collect_model_fields()` and can actually have their annotation resolved in the 

620 # generate schema process. As we want to avoid having `__pydantic_fields_complete__` set to `False` 

621 # when `__pydantic_complete__` is `True`, we rebuild here: 

622 try: 

623 cls.__pydantic_fields__ = rebuild_model_fields( 

624 cls, 

625 config_wrapper=config_wrapper, 

626 ns_resolver=ns_resolver, 

627 typevars_map=typevars_map, 

628 ) 

629 except NameError as e: 

630 exc = PydanticUndefinedAnnotation.from_name_error(e) 

631 set_model_mocks(cls, f'`{exc.name}`') 

632 if raise_errors: 

633 raise exc from e 

634 

635 if not raise_errors and not cls.__pydantic_fields_complete__: 

636 # No need to continue with schema gen, it is guaranteed to fail 

637 return False 

638 

639 assert cls.__pydantic_fields_complete__ 

640 

641 gen_schema = GenerateSchema( 

642 config_wrapper, 

643 ns_resolver, 

644 typevars_map, 

645 ) 

646 

647 try: 

648 schema = gen_schema.generate_schema(cls) 

649 except PydanticUndefinedAnnotation as e: 

650 if raise_errors: 

651 raise 

652 set_model_mocks(cls, f'`{e.name}`') 

653 return False 

654 

655 core_config = config_wrapper.core_config(title=cls.__name__) 

656 

657 try: 

658 schema = gen_schema.clean_schema(schema) 

659 except InvalidSchemaError: 

660 set_model_mocks(cls) 

661 return False 

662 

663 # This needs to happen *after* model schema generation, as the return type 

664 # of the properties are evaluated and the `ComputedFieldInfo` are recreated: 

665 cls.__pydantic_computed_fields__ = {k: v.info for k, v in cls.__pydantic_decorators__.computed_fields.items()} 

666 

667 set_deprecated_descriptors(cls) 

668 

669 cls.__pydantic_core_schema__ = schema 

670 

671 cls.__pydantic_validator__ = create_schema_validator( 

672 schema, 

673 cls, 

674 create_model_module or cls.__module__, 

675 cls.__qualname__, 

676 'create_model' if create_model_module else 'BaseModel', 

677 core_config, 

678 config_wrapper.plugin_settings, 

679 ) 

680 cls.__pydantic_serializer__ = SchemaSerializer(schema, core_config) 

681 

682 # set __signature__ attr only for model class, but not for its instances 

683 # (because instances can define `__call__`, and `inspect.signature` shouldn't 

684 # use the `__signature__` attribute and instead generate from `__call__`). 

685 cls.__signature__ = LazyClassAttribute( 

686 '__signature__', 

687 partial( 

688 generate_pydantic_signature, 

689 init=cls.__init__, 

690 fields=cls.__pydantic_fields__, 

691 validate_by_name=config_wrapper.validate_by_name, 

692 extra=config_wrapper.extra, 

693 ), 

694 ) 

695 

696 cls.__pydantic_complete__ = True 

697 

698 if call_on_complete_hook: 

699 cls.__pydantic_on_complete__() 

700 

701 return True 

702 

703 

704def set_deprecated_descriptors(cls: type[BaseModel]) -> None: 

705 """Set data descriptors on the class for deprecated fields.""" 

706 for field, field_info in cls.__pydantic_fields__.items(): 

707 if (msg := field_info.deprecation_message) is not None: 

708 desc = _DeprecatedFieldDescriptor(msg) 

709 desc.__set_name__(cls, field) 

710 setattr(cls, field, desc) 

711 

712 for field, computed_field_info in cls.__pydantic_computed_fields__.items(): 

713 if ( 

714 (msg := computed_field_info.deprecation_message) is not None 

715 # Avoid having two warnings emitted: 

716 and not hasattr(unwrap_wrapped_function(computed_field_info.wrapped_property), '__deprecated__') 

717 ): 

718 desc = _DeprecatedFieldDescriptor(msg, computed_field_info.wrapped_property) 

719 desc.__set_name__(cls, field) 

720 setattr(cls, field, desc) 

721 

722 

723class _DeprecatedFieldDescriptor: 

724 """Read-only data descriptor used to emit a runtime deprecation warning before accessing a deprecated field. 

725 

726 Attributes: 

727 msg: The deprecation message to be emitted. 

728 wrapped_property: The property instance if the deprecated field is a computed field, or `None`. 

729 field_name: The name of the field being deprecated. 

730 """ 

731 

732 field_name: str 

733 

734 def __init__(self, msg: str, wrapped_property: property | None = None) -> None: 

735 self.msg = msg 

736 self.wrapped_property = wrapped_property 

737 

738 def __set_name__(self, cls: type[BaseModel], name: str) -> None: 

739 self.field_name = name 

740 

741 def __get__(self, obj: BaseModel | None, obj_type: type[BaseModel] | None = None) -> Any: 

742 if obj is None: 

743 if self.wrapped_property is not None: 

744 return self.wrapped_property.__get__(None, obj_type) 

745 raise AttributeError(self.field_name) 

746 

747 warnings.warn(self.msg, DeprecationWarning, stacklevel=2) 

748 

749 if self.wrapped_property is not None: 

750 return self.wrapped_property.__get__(obj, obj_type) 

751 return obj.__dict__[self.field_name] 

752 

753 # Defined to make it a data descriptor and take precedence over the instance's dictionary. 

754 # Note that it will not be called when setting a value on a model instance 

755 # as `BaseModel.__setattr__` is defined and takes priority. 

756 def __set__(self, obj: Any, value: Any) -> NoReturn: 

757 raise AttributeError(self.field_name) 

758 

759 

760class _PydanticWeakRef: 

761 """Wrapper for `weakref.ref` that enables `pickle` serialization. 

762 

763 Cloudpickle fails to serialize `weakref.ref` objects due to an arcane error related 

764 to abstract base classes (`abc.ABC`). This class works around the issue by wrapping 

765 `weakref.ref` instead of subclassing it. 

766 

767 See https://github.com/pydantic/pydantic/issues/6763 for context. 

768 

769 Semantics: 

770 - If not pickled, behaves the same as a `weakref.ref`. 

771 - If pickled along with the referenced object, the same `weakref.ref` behavior 

772 will be maintained between them after unpickling. 

773 - If pickled without the referenced object, after unpickling the underlying 

774 reference will be cleared (`__call__` will always return `None`). 

775 """ 

776 

777 def __init__(self, obj: Any): 

778 if obj is None: 

779 # The object will be `None` upon deserialization if the serialized weakref 

780 # had lost its underlying object. 

781 self._wr = None 

782 else: 

783 self._wr = weakref.ref(obj) 

784 

785 def __call__(self) -> Any: 

786 if self._wr is None: 

787 return None 

788 else: 

789 return self._wr() 

790 

791 def __reduce__(self) -> tuple[Callable, tuple[weakref.ReferenceType | None]]: 

792 return _PydanticWeakRef, (self(),) 

793 

794 

795def build_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None: 

796 """Takes an input dictionary, and produces a new value that (invertibly) replaces the values with weakrefs. 

797 

798 We can't just use a WeakValueDictionary because many types (including int, str, etc.) can't be stored as values 

799 in a WeakValueDictionary. 

800 

801 The `unpack_lenient_weakvaluedict` function can be used to reverse this operation. 

802 """ 

803 if d is None: 

804 return None 

805 result = {} 

806 for k, v in d.items(): 

807 try: 

808 proxy = _PydanticWeakRef(v) 

809 except TypeError: 

810 proxy = v 

811 result[k] = proxy 

812 return result 

813 

814 

815def unpack_lenient_weakvaluedict(d: dict[str, Any] | None) -> dict[str, Any] | None: 

816 """Inverts the transform performed by `build_lenient_weakvaluedict`.""" 

817 if d is None: 

818 return None 

819 

820 result = {} 

821 for k, v in d.items(): 

822 if isinstance(v, _PydanticWeakRef): 

823 v = v() 

824 if v is not None: 

825 result[k] = v 

826 else: 

827 result[k] = v 

828 return result 

829 

830 

831@cache 

832def default_ignored_types() -> tuple[type[Any], ...]: 

833 from ..fields import ComputedFieldInfo 

834 

835 ignored_types = [ 

836 FunctionType, 

837 property, 

838 classmethod, 

839 staticmethod, 

840 PydanticDescriptorProxy, 

841 ComputedFieldInfo, 

842 TypeAliasType, # from `typing_extensions` 

843 ] 

844 

845 if sys.version_info >= (3, 12): 

846 ignored_types.append(typing.TypeAliasType) 

847 

848 return tuple(ignored_types)