Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/pydantic/_internal/_fields.py: 55%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

259 statements  

1"""Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`.""" 

2 

3from __future__ import annotations as _annotations 

4 

5import dataclasses 

6import warnings 

7from collections.abc import Mapping 

8from functools import cache 

9from inspect import Parameter, ismethoddescriptor, signature 

10from re import Pattern 

11from typing import TYPE_CHECKING, Any, Callable, TypeVar 

12 

13from pydantic_core import PydanticUndefined 

14from typing_extensions import TypeIs 

15from typing_inspection.introspection import AnnotationSource 

16 

17from pydantic import PydanticDeprecatedSince211 

18from pydantic.errors import PydanticUserError 

19 

20from ..aliases import AliasGenerator 

21from . import _generics, _typing_extra 

22from ._config import ConfigWrapper 

23from ._docs_extraction import extract_docstrings_from_cls 

24from ._import_utils import import_cached_base_model, import_cached_field_info 

25from ._namespace_utils import NsResolver 

26from ._repr import Representation 

27from ._utils import can_be_positional, get_first_not_none 

28 

29if TYPE_CHECKING: 

30 from annotated_types import BaseMetadata 

31 

32 from ..fields import FieldInfo 

33 from ..main import BaseModel 

34 from ._dataclasses import PydanticDataclass, StandardDataclass 

35 from ._decorators import DecoratorInfos 

36 

37 

38class PydanticMetadata(Representation): 

39 """Base class for annotation markers like `Strict`.""" 

40 

41 __slots__ = () 

42 

43 

44def pydantic_general_metadata(**metadata: Any) -> BaseMetadata: 

45 """Create a new `_PydanticGeneralMetadata` class with the given metadata. 

46 

47 Args: 

48 **metadata: The metadata to add. 

49 

50 Returns: 

51 The new `_PydanticGeneralMetadata` class. 

52 """ 

53 return _general_metadata_cls()(metadata) # type: ignore 

54 

55 

56@cache 

57def _general_metadata_cls() -> type[BaseMetadata]: 

58 """Do it this way to avoid importing `annotated_types` at import time.""" 

59 from annotated_types import BaseMetadata 

60 

61 class _PydanticGeneralMetadata(PydanticMetadata, BaseMetadata): 

62 """Pydantic general metadata like `max_digits`.""" 

63 

64 def __init__(self, metadata: Any): 

65 self.__dict__ = metadata 

66 

67 return _PydanticGeneralMetadata # type: ignore 

68 

69 

70def _check_protected_namespaces( 

71 protected_namespaces: tuple[str | Pattern[str], ...], 

72 ann_name: str, 

73 bases: tuple[type[Any], ...], 

74 cls_name: str, 

75) -> None: 

76 BaseModel = import_cached_base_model() 

77 

78 for protected_namespace in protected_namespaces: 

79 ns_violation = False 

80 if isinstance(protected_namespace, Pattern): 

81 ns_violation = protected_namespace.match(ann_name) is not None 

82 elif isinstance(protected_namespace, str): 

83 ns_violation = ann_name.startswith(protected_namespace) 

84 

85 if ns_violation: 

86 for b in bases: 

87 if hasattr(b, ann_name): 

88 if not (issubclass(b, BaseModel) and ann_name in getattr(b, '__pydantic_fields__', {})): 

89 raise ValueError( 

90 f'Field {ann_name!r} conflicts with member {getattr(b, ann_name)}' 

91 f' of protected namespace {protected_namespace!r}.' 

92 ) 

93 else: 

94 valid_namespaces: list[str] = [] 

95 for pn in protected_namespaces: 

96 if isinstance(pn, Pattern): 

97 if not pn.match(ann_name): 

98 valid_namespaces.append(f're.compile({pn.pattern!r})') 

99 else: 

100 if not ann_name.startswith(pn): 

101 valid_namespaces.append(f"'{pn}'") 

102 

103 valid_namespaces_str = f'({", ".join(valid_namespaces)}{",)" if len(valid_namespaces) == 1 else ")"}' 

104 

105 warnings.warn( 

106 f'Field {ann_name!r} in {cls_name!r} conflicts with protected namespace {protected_namespace!r}.\n\n' 

107 f"You may be able to solve this by setting the 'protected_namespaces' configuration to {valid_namespaces_str}.", 

108 UserWarning, 

109 stacklevel=5, 

110 ) 

111 

112 

113def _update_fields_from_docstrings(cls: type[Any], fields: dict[str, FieldInfo], use_inspect: bool = False) -> None: 

114 fields_docs = extract_docstrings_from_cls(cls, use_inspect=use_inspect) 

115 for ann_name, field_info in fields.items(): 

116 if field_info.description is None and ann_name in fields_docs: 

117 field_info.description = fields_docs[ann_name] 

118 

119 

120def _apply_field_title_generator_to_field_info( 

121 title_generator: Callable[[str, FieldInfo], str], 

122 field_name: str, 

123 field_info: FieldInfo, 

124): 

125 if field_info.title is None: 

126 title = title_generator(field_name, field_info) 

127 if not isinstance(title, str): 

128 raise TypeError(f'field_title_generator {title_generator} must return str, not {title.__class__}') 

129 

130 field_info.title = title 

131 

132 

133def _apply_alias_generator_to_field_info( 

134 alias_generator: Callable[[str], str] | AliasGenerator, field_name: str, field_info: FieldInfo 

135): 

136 """Apply an alias generator to aliases on a `FieldInfo` instance if appropriate. 

137 

138 Args: 

139 alias_generator: A callable that takes a string and returns a string, or an `AliasGenerator` instance. 

140 field_name: The name of the field from which to generate the alias. 

141 field_info: The `FieldInfo` instance to which the alias generator is (maybe) applied. 

142 """ 

143 # Apply an alias_generator if 

144 # 1. An alias is not specified 

145 # 2. An alias is specified, but the priority is <= 1 

146 if ( 

147 field_info.alias_priority is None 

148 or field_info.alias_priority <= 1 

149 or field_info.alias is None 

150 or field_info.validation_alias is None 

151 or field_info.serialization_alias is None 

152 ): 

153 alias, validation_alias, serialization_alias = None, None, None 

154 

155 if isinstance(alias_generator, AliasGenerator): 

156 alias, validation_alias, serialization_alias = alias_generator.generate_aliases(field_name) 

157 elif callable(alias_generator): 

158 alias = alias_generator(field_name) 

159 if not isinstance(alias, str): 

160 raise TypeError(f'alias_generator {alias_generator} must return str, not {alias.__class__}') 

161 

162 # if priority is not set, we set to 1 

163 # which supports the case where the alias_generator from a child class is used 

164 # to generate an alias for a field in a parent class 

165 if field_info.alias_priority is None or field_info.alias_priority <= 1: 

166 field_info.alias_priority = 1 

167 

168 # if the priority is 1, then we set the aliases to the generated alias 

169 if field_info.alias_priority == 1: 

170 field_info.serialization_alias = get_first_not_none(serialization_alias, alias) 

171 field_info.validation_alias = get_first_not_none(validation_alias, alias) 

172 field_info.alias = alias 

173 

174 # if any of the aliases are not set, then we set them to the corresponding generated alias 

175 if field_info.alias is None: 

176 field_info.alias = alias 

177 if field_info.serialization_alias is None: 

178 field_info.serialization_alias = get_first_not_none(serialization_alias, alias) 

179 if field_info.validation_alias is None: 

180 field_info.validation_alias = get_first_not_none(validation_alias, alias) 

181 

182 

183def update_field_from_config(config_wrapper: ConfigWrapper, field_name: str, field_info: FieldInfo) -> None: 

184 """Update the `FieldInfo` instance from the configuration set on the model it belongs to. 

185 

186 This will apply the title and alias generators from the configuration. 

187 

188 Args: 

189 config_wrapper: The configuration from the model. 

190 field_name: The field name the `FieldInfo` instance is attached to. 

191 field_info: The `FieldInfo` instance to update. 

192 """ 

193 field_title_generator = field_info.field_title_generator or config_wrapper.field_title_generator 

194 if field_title_generator is not None: 

195 _apply_field_title_generator_to_field_info(field_title_generator, field_name, field_info) 

196 if config_wrapper.alias_generator is not None: 

197 _apply_alias_generator_to_field_info(config_wrapper.alias_generator, field_name, field_info) 

198 

199 

200_deprecated_method_names = {'dict', 'json', 'copy', '_iter', '_copy_and_set_values', '_calculate_keys'} 

201 

202_deprecated_classmethod_names = { 

203 'parse_obj', 

204 'parse_raw', 

205 'parse_file', 

206 'from_orm', 

207 'construct', 

208 'schema', 

209 'schema_json', 

210 'validate', 

211 'update_forward_refs', 

212 '_get_value', 

213} 

214 

215 

216def collect_model_fields( # noqa: C901 

217 cls: type[BaseModel], 

218 config_wrapper: ConfigWrapper, 

219 ns_resolver: NsResolver | None, 

220 *, 

221 typevars_map: Mapping[TypeVar, Any] | None = None, 

222) -> tuple[dict[str, FieldInfo], set[str]]: 

223 """Collect the fields and class variables names of a nascent Pydantic model. 

224 

225 The fields collection process is *lenient*, meaning it won't error if string annotations 

226 fail to evaluate. If this happens, the original annotation (and assigned value, if any) 

227 is stored on the created `FieldInfo` instance. 

228 

229 The `rebuild_model_fields()` should be called at a later point (e.g. when rebuilding the model), 

230 and will make use of these stored attributes. 

231 

232 Args: 

233 cls: BaseModel or dataclass. 

234 config_wrapper: The config wrapper instance. 

235 ns_resolver: Namespace resolver to use when getting model annotations. 

236 typevars_map: A dictionary mapping type variables to their concrete types. 

237 

238 Returns: 

239 A two-tuple containing model fields and class variables names. 

240 

241 Raises: 

242 NameError: 

243 - If there is a conflict between a field name and protected namespaces. 

244 - If there is a field other than `root` in `RootModel`. 

245 - If a field shadows an attribute in the parent model. 

246 """ 

247 FieldInfo_ = import_cached_field_info() 

248 BaseModel_ = import_cached_base_model() 

249 

250 bases = cls.__bases__ 

251 parent_fields_lookup: dict[str, FieldInfo] = {} 

252 for base in reversed(bases): 

253 if model_fields := getattr(base, '__pydantic_fields__', None): 

254 parent_fields_lookup.update(model_fields) 

255 

256 type_hints = _typing_extra.get_model_type_hints(cls, ns_resolver=ns_resolver) 

257 

258 # https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older 

259 # annotations is only used for finding fields in parent classes 

260 annotations = _typing_extra.safe_get_annotations(cls) 

261 

262 fields: dict[str, FieldInfo] = {} 

263 

264 class_vars: set[str] = set() 

265 for ann_name, (ann_type, evaluated) in type_hints.items(): 

266 if ann_name == 'model_config': 

267 # We never want to treat `model_config` as a field 

268 # Note: we may need to change this logic if/when we introduce a `BareModel` class with no 

269 # protected namespaces (where `model_config` might be allowed as a field name) 

270 continue 

271 

272 _check_protected_namespaces( 

273 protected_namespaces=config_wrapper.protected_namespaces, 

274 ann_name=ann_name, 

275 bases=bases, 

276 cls_name=cls.__name__, 

277 ) 

278 

279 if _typing_extra.is_classvar_annotation(ann_type): 

280 class_vars.add(ann_name) 

281 continue 

282 

283 assigned_value = getattr(cls, ann_name, PydanticUndefined) 

284 if assigned_value is not PydanticUndefined and ( 

285 # One of the deprecated instance methods was used as a field name (e.g. `dict()`): 

286 any(getattr(BaseModel_, depr_name, None) is assigned_value for depr_name in _deprecated_method_names) 

287 # One of the deprecated class methods was used as a field name (e.g. `schema()`): 

288 or ( 

289 hasattr(assigned_value, '__func__') 

290 and any( 

291 getattr(getattr(BaseModel_, depr_name, None), '__func__', None) is assigned_value.__func__ # pyright: ignore[reportAttributeAccessIssue] 

292 for depr_name in _deprecated_classmethod_names 

293 ) 

294 ) 

295 ): 

296 # Then `assigned_value` would be the method, even though no default was specified: 

297 assigned_value = PydanticUndefined 

298 

299 if not is_valid_field_name(ann_name): 

300 continue 

301 if cls.__pydantic_root_model__ and ann_name != 'root': 

302 raise NameError( 

303 f"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`" 

304 ) 

305 

306 # when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get 

307 # "... shadows an attribute" warnings 

308 generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin') 

309 for base in bases: 

310 dataclass_fields = { 

311 field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ()) 

312 } 

313 if hasattr(base, ann_name): 

314 if base is generic_origin: 

315 # Don't warn when "shadowing" of attributes in parametrized generics 

316 continue 

317 

318 if ann_name in dataclass_fields: 

319 # Don't warn when inheriting stdlib dataclasses whose fields are "shadowed" by defaults being set 

320 # on the class instance. 

321 continue 

322 

323 if ann_name not in annotations: 

324 # Don't warn when a field exists in a parent class but has not been defined in the current class 

325 continue 

326 

327 warnings.warn( 

328 f'Field name "{ann_name}" in "{cls.__qualname__}" shadows an attribute in parent ' 

329 f'"{base.__qualname__}"', 

330 UserWarning, 

331 stacklevel=4, 

332 ) 

333 

334 if assigned_value is PydanticUndefined: # no assignment, just a plain annotation 

335 if ann_name in annotations or ann_name not in parent_fields_lookup: 

336 # field is either: 

337 # - present in the current model's annotations (and *not* from parent classes) 

338 # - not found on any base classes; this seems to be caused by fields bot getting 

339 # generated due to models not being fully defined while initializing recursive models. 

340 # Nothing stops us from just creating a `FieldInfo` for this type hint, so we do this. 

341 field_info = FieldInfo_.from_annotation(ann_type, _source=AnnotationSource.CLASS) 

342 if not evaluated: 

343 field_info._complete = False 

344 # Store the original annotation that should be used to rebuild 

345 # the field info later: 

346 field_info._original_annotation = ann_type 

347 else: 

348 # The field was present on one of the (possibly multiple) base classes 

349 # copy the field to make sure typevar substitutions don't cause issues with the base classes 

350 field_info = parent_fields_lookup[ann_name]._copy() 

351 

352 else: # An assigned value is present (either the default value, or a `Field()` function) 

353 if isinstance(assigned_value, FieldInfo_) and ismethoddescriptor(assigned_value.default): 

354 # `assigned_value` was fetched using `getattr`, which triggers a call to `__get__` 

355 # for descriptors, so we do the same if the `= field(default=...)` form is used. 

356 # Note that we only do this for method descriptors for now, we might want to 

357 # extend this to any descriptor in the future (by simply checking for 

358 # `hasattr(assigned_value.default, '__get__')`). 

359 default = assigned_value.default.__get__(None, cls) 

360 assigned_value.default = default 

361 assigned_value._attributes_set['default'] = default 

362 

363 field_info = FieldInfo_.from_annotated_attribute(ann_type, assigned_value, _source=AnnotationSource.CLASS) 

364 # Store the original annotation and assignment value that should be used to rebuild the field info later. 

365 # Note that the assignment is always stored as the annotation might contain a type var that is later 

366 # parameterized with an unknown forward reference (and we'll need it to rebuild the field info): 

367 field_info._original_assignment = assigned_value 

368 if not evaluated: 

369 field_info._complete = False 

370 field_info._original_annotation = ann_type 

371 elif 'final' in field_info._qualifiers and not field_info.is_required(): 

372 warnings.warn( 

373 f'Annotation {ann_name!r} is marked as final and has a default value. Pydantic treats {ann_name!r} as a ' 

374 'class variable, but it will be considered as a normal field in V3 to be aligned with dataclasses. If you ' 

375 f'still want {ann_name!r} to be considered as a class variable, annotate it as: `ClassVar[<type>] = <default>.`', 

376 category=PydanticDeprecatedSince211, 

377 # Incorrect when `create_model` is used, but the chance that final with a default is used is low in that case: 

378 stacklevel=4, 

379 ) 

380 class_vars.add(ann_name) 

381 continue 

382 

383 # attributes which are fields are removed from the class namespace: 

384 # 1. To match the behaviour of annotation-only fields 

385 # 2. To avoid false positives in the NameError check above 

386 try: 

387 delattr(cls, ann_name) 

388 except AttributeError: 

389 pass # indicates the attribute was on a parent class 

390 

391 # Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__ 

392 # to make sure the decorators have already been built for this exact class 

393 decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__'] 

394 if ann_name in decorators.computed_fields: 

395 raise TypeError( 

396 f'Field {ann_name!r} of class {cls.__name__!r} overrides symbol of same name in a parent class. ' 

397 'This override with a computed_field is incompatible.' 

398 ) 

399 fields[ann_name] = field_info 

400 

401 if field_info._complete: 

402 # If not complete, this will be called in `rebuild_model_fields()`: 

403 update_field_from_config(config_wrapper, ann_name, field_info) 

404 

405 if typevars_map: 

406 for field in fields.values(): 

407 if field._complete: 

408 field.apply_typevars_map(typevars_map) 

409 

410 if config_wrapper.use_attribute_docstrings: 

411 _update_fields_from_docstrings(cls, fields) 

412 return fields, class_vars 

413 

414 

415def rebuild_model_fields( 

416 cls: type[BaseModel], 

417 *, 

418 config_wrapper: ConfigWrapper, 

419 ns_resolver: NsResolver, 

420 typevars_map: Mapping[TypeVar, Any], 

421) -> dict[str, FieldInfo]: 

422 """Rebuild the (already present) model fields by trying to reevaluate annotations. 

423 

424 This function should be called whenever a model with incomplete fields is encountered. 

425 

426 Raises: 

427 NameError: If one of the annotations failed to evaluate. 

428 

429 Note: 

430 This function *doesn't* mutate the model fields in place, as it can be called during 

431 schema generation, where you don't want to mutate other model's fields. 

432 """ 

433 FieldInfo_ = import_cached_field_info() 

434 

435 rebuilt_fields: dict[str, FieldInfo] = {} 

436 with ns_resolver.push(cls): 

437 for f_name, field_info in cls.__pydantic_fields__.items(): 

438 if field_info._complete: 

439 rebuilt_fields[f_name] = field_info 

440 else: 

441 existing_desc = field_info.description 

442 ann = _typing_extra.eval_type( 

443 field_info._original_annotation, 

444 *ns_resolver.types_namespace, 

445 ) 

446 ann = _generics.replace_types(ann, typevars_map) 

447 

448 if (assign := field_info._original_assignment) is PydanticUndefined: 

449 new_field = FieldInfo_.from_annotation(ann, _source=AnnotationSource.CLASS) 

450 else: 

451 new_field = FieldInfo_.from_annotated_attribute(ann, assign, _source=AnnotationSource.CLASS) 

452 # The description might come from the docstring if `use_attribute_docstrings` was `True`: 

453 new_field.description = new_field.description if new_field.description is not None else existing_desc 

454 update_field_from_config(config_wrapper, f_name, new_field) 

455 rebuilt_fields[f_name] = new_field 

456 

457 return rebuilt_fields 

458 

459 

460def collect_dataclass_fields( 

461 cls: type[StandardDataclass], 

462 *, 

463 config_wrapper: ConfigWrapper, 

464 ns_resolver: NsResolver | None = None, 

465 typevars_map: dict[Any, Any] | None = None, 

466) -> dict[str, FieldInfo]: 

467 """Collect the fields of a dataclass. 

468 

469 Args: 

470 cls: dataclass. 

471 config_wrapper: The config wrapper instance. 

472 ns_resolver: Namespace resolver to use when getting dataclass annotations. 

473 Defaults to an empty instance. 

474 typevars_map: A dictionary mapping type variables to their concrete types. 

475 

476 Returns: 

477 The dataclass fields. 

478 """ 

479 FieldInfo_ = import_cached_field_info() 

480 

481 fields: dict[str, FieldInfo] = {} 

482 ns_resolver = ns_resolver or NsResolver() 

483 dataclass_fields = cls.__dataclass_fields__ 

484 

485 # The logic here is similar to `_typing_extra.get_cls_type_hints`, 

486 # although we do it manually as stdlib dataclasses already have annotations 

487 # collected in each class: 

488 for base in reversed(cls.__mro__): 

489 if not dataclasses.is_dataclass(base): 

490 continue 

491 

492 with ns_resolver.push(base): 

493 for ann_name, dataclass_field in dataclass_fields.items(): 

494 base_anns = _typing_extra.safe_get_annotations(base) 

495 

496 if ann_name not in base_anns: 

497 # `__dataclass_fields__`contains every field, even the ones from base classes. 

498 # Only collect the ones defined on `base`. 

499 continue 

500 

501 globalns, localns = ns_resolver.types_namespace 

502 ann_type, evaluated = _typing_extra.try_eval_type(dataclass_field.type, globalns, localns) 

503 

504 if _typing_extra.is_classvar_annotation(ann_type): 

505 continue 

506 

507 if ( 

508 not dataclass_field.init 

509 and dataclass_field.default is dataclasses.MISSING 

510 and dataclass_field.default_factory is dataclasses.MISSING 

511 ): 

512 # TODO: We should probably do something with this so that validate_assignment behaves properly 

513 # Issue: https://github.com/pydantic/pydantic/issues/5470 

514 continue 

515 

516 if isinstance(dataclass_field.default, FieldInfo_): 

517 if dataclass_field.default.init_var: 

518 if dataclass_field.default.init is False: 

519 raise PydanticUserError( 

520 f'Dataclass field {ann_name} has init=False and init_var=True, but these are mutually exclusive.', 

521 code='clashing-init-and-init-var', 

522 ) 

523 

524 # TODO: same note as above re validate_assignment 

525 continue 

526 field_info = FieldInfo_.from_annotated_attribute( 

527 ann_type, dataclass_field.default, _source=AnnotationSource.DATACLASS 

528 ) 

529 field_info._original_assignment = dataclass_field.default 

530 else: 

531 field_info = FieldInfo_.from_annotated_attribute( 

532 ann_type, dataclass_field, _source=AnnotationSource.DATACLASS 

533 ) 

534 field_info._original_assignment = dataclass_field 

535 

536 if not evaluated: 

537 field_info._complete = False 

538 field_info._original_annotation = ann_type 

539 

540 fields[ann_name] = field_info 

541 update_field_from_config(config_wrapper, ann_name, field_info) 

542 

543 if field_info.default is not PydanticUndefined and isinstance( 

544 getattr(cls, ann_name, field_info), FieldInfo_ 

545 ): 

546 # We need this to fix the default when the "default" from __dataclass_fields__ is a pydantic.FieldInfo 

547 setattr(cls, ann_name, field_info.default) 

548 

549 if typevars_map: 

550 for field in fields.values(): 

551 # We don't pass any ns, as `field.annotation` 

552 # was already evaluated. TODO: is this method relevant? 

553 # Can't we juste use `_generics.replace_types`? 

554 field.apply_typevars_map(typevars_map) 

555 

556 if config_wrapper.use_attribute_docstrings: 

557 _update_fields_from_docstrings( 

558 cls, 

559 fields, 

560 # We can't rely on the (more reliable) frame inspection method 

561 # for stdlib dataclasses: 

562 use_inspect=not hasattr(cls, '__is_pydantic_dataclass__'), 

563 ) 

564 

565 return fields 

566 

567 

568def rebuild_dataclass_fields( 

569 cls: type[PydanticDataclass], 

570 *, 

571 config_wrapper: ConfigWrapper, 

572 ns_resolver: NsResolver, 

573 typevars_map: Mapping[TypeVar, Any], 

574) -> dict[str, FieldInfo]: 

575 """Rebuild the (already present) dataclass fields by trying to reevaluate annotations. 

576 

577 This function should be called whenever a dataclass with incomplete fields is encountered. 

578 

579 Raises: 

580 NameError: If one of the annotations failed to evaluate. 

581 

582 Note: 

583 This function *doesn't* mutate the dataclass fields in place, as it can be called during 

584 schema generation, where you don't want to mutate other dataclass's fields. 

585 """ 

586 FieldInfo_ = import_cached_field_info() 

587 

588 rebuilt_fields: dict[str, FieldInfo] = {} 

589 with ns_resolver.push(cls): 

590 for f_name, field_info in cls.__pydantic_fields__.items(): 

591 if field_info._complete: 

592 rebuilt_fields[f_name] = field_info 

593 else: 

594 existing_desc = field_info.description 

595 ann = _typing_extra.eval_type( 

596 field_info._original_annotation, 

597 *ns_resolver.types_namespace, 

598 ) 

599 ann = _generics.replace_types(ann, typevars_map) 

600 new_field = FieldInfo_.from_annotated_attribute( 

601 ann, 

602 field_info._original_assignment, 

603 _source=AnnotationSource.DATACLASS, 

604 ) 

605 

606 # The description might come from the docstring if `use_attribute_docstrings` was `True`: 

607 new_field.description = new_field.description if new_field.description is not None else existing_desc 

608 update_field_from_config(config_wrapper, f_name, new_field) 

609 rebuilt_fields[f_name] = new_field 

610 

611 return rebuilt_fields 

612 

613 

614def is_valid_field_name(name: str) -> bool: 

615 return not name.startswith('_') 

616 

617 

618def is_valid_privateattr_name(name: str) -> bool: 

619 return name.startswith('_') and not name.startswith('__') 

620 

621 

622def takes_validated_data_argument( 

623 default_factory: Callable[[], Any] | Callable[[dict[str, Any]], Any], 

624) -> TypeIs[Callable[[dict[str, Any]], Any]]: 

625 """Whether the provided default factory callable has a validated data parameter.""" 

626 try: 

627 sig = signature(default_factory) 

628 except (ValueError, TypeError): 

629 # `inspect.signature` might not be able to infer a signature, e.g. with C objects. 

630 # In this case, we assume no data argument is present: 

631 return False 

632 

633 parameters = list(sig.parameters.values()) 

634 

635 return len(parameters) == 1 and can_be_positional(parameters[0]) and parameters[0].default is Parameter.empty