Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/pydantic/config.py: 89%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

137 statements  

1"""Configuration for Pydantic models.""" 

2 

3from __future__ import annotations as _annotations 

4 

5import warnings 

6from re import Pattern 

7from typing import TYPE_CHECKING, Any, Callable, Literal, TypeVar, Union, cast, overload 

8 

9from typing_extensions import TypeAlias, TypedDict, Unpack, deprecated 

10 

11from ._migration import getattr_migration 

12from .aliases import AliasGenerator 

13from .errors import PydanticUserError 

14from .warnings import PydanticDeprecatedSince211 

15 

16if TYPE_CHECKING: 

17 from ._internal._generate_schema import GenerateSchema as _GenerateSchema 

18 from .fields import ComputedFieldInfo, FieldInfo 

19 

20__all__ = ('ConfigDict', 'with_config') 

21 

22 

23JsonValue: TypeAlias = Union[int, float, str, bool, None, list['JsonValue'], 'JsonDict'] 

24JsonDict: TypeAlias = dict[str, JsonValue] 

25 

26JsonEncoder = Callable[[Any], Any] 

27 

28JsonSchemaExtraCallable: TypeAlias = Union[ 

29 Callable[[JsonDict], None], 

30 Callable[[JsonDict, type[Any]], None], 

31] 

32 

33ExtraValues = Literal['allow', 'ignore', 'forbid'] 

34 

35 

36class ConfigDict(TypedDict, total=False): 

37 """A TypedDict for configuring Pydantic behaviour.""" 

38 

39 title: str | None 

40 """The title for the generated JSON schema, defaults to the model's name""" 

41 

42 model_title_generator: Callable[[type], str] | None 

43 """A callable that takes a model class and returns the title for it. Defaults to `None`.""" 

44 

45 field_title_generator: Callable[[str, FieldInfo | ComputedFieldInfo], str] | None 

46 """A callable that takes a field's name and info and returns title for it. Defaults to `None`.""" 

47 

48 str_to_lower: bool 

49 """Whether to convert all characters to lowercase for str types. Defaults to `False`.""" 

50 

51 str_to_upper: bool 

52 """Whether to convert all characters to uppercase for str types. Defaults to `False`.""" 

53 

54 str_strip_whitespace: bool 

55 """Whether to strip leading and trailing whitespace for str types.""" 

56 

57 str_min_length: int 

58 """The minimum length for str types. Defaults to `None`.""" 

59 

60 str_max_length: int | None 

61 """The maximum length for str types. Defaults to `None`.""" 

62 

63 extra: ExtraValues | None 

64 ''' 

65 Whether to ignore, allow, or forbid extra data during model initialization. Defaults to `'ignore'`. 

66 

67 Three configuration values are available: 

68 

69 - `'ignore'`: Providing extra data is ignored (the default): 

70 ```python 

71 from pydantic import BaseModel, ConfigDict 

72 

73 class User(BaseModel): 

74 model_config = ConfigDict(extra='ignore') # (1)! 

75 

76 name: str 

77 

78 user = User(name='John Doe', age=20) # (2)! 

79 print(user) 

80 #> name='John Doe' 

81 ``` 

82 

83 1. This is the default behaviour. 

84 2. The `age` argument is ignored. 

85 

86 - `'forbid'`: Providing extra data is not permitted, and a [`ValidationError`][pydantic_core.ValidationError] 

87 will be raised if this is the case: 

88 ```python 

89 from pydantic import BaseModel, ConfigDict, ValidationError 

90 

91 

92 class Model(BaseModel): 

93 x: int 

94 

95 model_config = ConfigDict(extra='forbid') 

96 

97 

98 try: 

99 Model(x=1, y='a') 

100 except ValidationError as exc: 

101 print(exc) 

102 """ 

103 1 validation error for Model 

104 y 

105 Extra inputs are not permitted [type=extra_forbidden, input_value='a', input_type=str] 

106 """ 

107 ``` 

108 

109 - `'allow'`: Providing extra data is allowed and stored in the `__pydantic_extra__` dictionary attribute: 

110 ```python 

111 from pydantic import BaseModel, ConfigDict 

112 

113 

114 class Model(BaseModel): 

115 x: int 

116 

117 model_config = ConfigDict(extra='allow') 

118 

119 

120 m = Model(x=1, y='a') 

121 assert m.__pydantic_extra__ == {'y': 'a'} 

122 ``` 

123 By default, no validation will be applied to these extra items, but you can set a type for the values by overriding 

124 the type annotation for `__pydantic_extra__`: 

125 ```python 

126 from pydantic import BaseModel, ConfigDict, Field, ValidationError 

127 

128 

129 class Model(BaseModel): 

130 __pydantic_extra__: dict[str, int] = Field(init=False) # (1)! 

131 

132 x: int 

133 

134 model_config = ConfigDict(extra='allow') 

135 

136 

137 try: 

138 Model(x=1, y='a') 

139 except ValidationError as exc: 

140 print(exc) 

141 """ 

142 1 validation error for Model 

143 y 

144 Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str] 

145 """ 

146 

147 m = Model(x=1, y='2') 

148 assert m.x == 1 

149 assert m.y == 2 

150 assert m.model_dump() == {'x': 1, 'y': 2} 

151 assert m.__pydantic_extra__ == {'y': 2} 

152 ``` 

153 

154 1. The `= Field(init=False)` does not have any effect at runtime, but prevents the `__pydantic_extra__` field from 

155 being included as a parameter to the model's `__init__` method by type checkers. 

156 

157 As well as specifying an `extra` configuration value on the model, you can also provide it as an argument to the validation methods. 

158 This will override any `extra` configuration value set on the model: 

159 ```python 

160 from pydantic import BaseModel, ConfigDict, ValidationError 

161 

162 class Model(BaseModel): 

163 x: int 

164 model_config = ConfigDict(extra="allow") 

165 

166 try: 

167 # Override model config and forbid extra fields just this time 

168 Model.model_validate({"x": 1, "y": 2}, extra="forbid") 

169 except ValidationError as exc: 

170 print(exc) 

171 """ 

172 1 validation error for Model 

173 y 

174 Extra inputs are not permitted [type=extra_forbidden, input_value=2, input_type=int] 

175 """ 

176 ``` 

177 ''' 

178 

179 frozen: bool 

180 """ 

181 Whether models are faux-immutable, i.e. whether `__setattr__` is allowed, and also generates 

182 a `__hash__()` method for the model. This makes instances of the model potentially hashable if all the 

183 attributes are hashable. Defaults to `False`. 

184 

185 Note: 

186 On V1, the inverse of this setting was called `allow_mutation`, and was `True` by default. 

187 """ 

188 

189 populate_by_name: bool 

190 """ 

191 Whether an aliased field may be populated by its name as given by the model 

192 attribute, as well as the alias. Defaults to `False`. 

193 

194 !!! warning 

195 `populate_by_name` usage is not recommended in v2.11+ and will be deprecated in v3. 

196 Instead, you should use the [`validate_by_name`][pydantic.config.ConfigDict.validate_by_name] configuration setting. 

197 

198 When `validate_by_name=True` and `validate_by_alias=True`, this is strictly equivalent to the 

199 previous behavior of `populate_by_name=True`. 

200 

201 In v2.11, we also introduced a [`validate_by_alias`][pydantic.config.ConfigDict.validate_by_alias] setting that introduces more fine grained 

202 control for validation behavior. 

203 

204 Here's how you might go about using the new settings to achieve the same behavior: 

205 

206 ```python 

207 from pydantic import BaseModel, ConfigDict, Field 

208 

209 class Model(BaseModel): 

210 model_config = ConfigDict(validate_by_name=True, validate_by_alias=True) 

211 

212 my_field: str = Field(alias='my_alias') # (1)! 

213 

214 m = Model(my_alias='foo') # (2)! 

215 print(m) 

216 #> my_field='foo' 

217 

218 m = Model(my_field='foo') # (3)! 

219 print(m) 

220 #> my_field='foo' 

221 ``` 

222 

223 1. The field `'my_field'` has an alias `'my_alias'`. 

224 2. The model is populated by the alias `'my_alias'`. 

225 3. The model is populated by the attribute name `'my_field'`. 

226 """ 

227 

228 use_enum_values: bool 

229 """ 

230 Whether to populate models with the `value` property of enums, rather than the raw enum. 

231 This may be useful if you want to serialize `model.model_dump()` later. Defaults to `False`. 

232 

233 !!! note 

234 If you have an `Optional[Enum]` value that you set a default for, you need to use `validate_default=True` 

235 for said Field to ensure that the `use_enum_values` flag takes effect on the default, as extracting an 

236 enum's value occurs during validation, not serialization. 

237 

238 ```python 

239 from enum import Enum 

240 from typing import Optional 

241 

242 from pydantic import BaseModel, ConfigDict, Field 

243 

244 class SomeEnum(Enum): 

245 FOO = 'foo' 

246 BAR = 'bar' 

247 BAZ = 'baz' 

248 

249 class SomeModel(BaseModel): 

250 model_config = ConfigDict(use_enum_values=True) 

251 

252 some_enum: SomeEnum 

253 another_enum: Optional[SomeEnum] = Field( 

254 default=SomeEnum.FOO, validate_default=True 

255 ) 

256 

257 model1 = SomeModel(some_enum=SomeEnum.BAR) 

258 print(model1.model_dump()) 

259 #> {'some_enum': 'bar', 'another_enum': 'foo'} 

260 

261 model2 = SomeModel(some_enum=SomeEnum.BAR, another_enum=SomeEnum.BAZ) 

262 print(model2.model_dump()) 

263 #> {'some_enum': 'bar', 'another_enum': 'baz'} 

264 ``` 

265 """ 

266 

267 validate_assignment: bool 

268 """ 

269 Whether to validate the data when the model is changed. Defaults to `False`. 

270 

271 The default behavior of Pydantic is to validate the data when the model is created. 

272 

273 In case the user changes the data after the model is created, the model is _not_ revalidated. 

274 

275 ```python 

276 from pydantic import BaseModel 

277 

278 class User(BaseModel): 

279 name: str 

280 

281 user = User(name='John Doe') # (1)! 

282 print(user) 

283 #> name='John Doe' 

284 user.name = 123 # (1)! 

285 print(user) 

286 #> name=123 

287 ``` 

288 

289 1. The validation happens only when the model is created. 

290 2. The validation does not happen when the data is changed. 

291 

292 In case you want to revalidate the model when the data is changed, you can use `validate_assignment=True`: 

293 

294 ```python 

295 from pydantic import BaseModel, ValidationError 

296 

297 class User(BaseModel, validate_assignment=True): # (1)! 

298 name: str 

299 

300 user = User(name='John Doe') # (2)! 

301 print(user) 

302 #> name='John Doe' 

303 try: 

304 user.name = 123 # (3)! 

305 except ValidationError as e: 

306 print(e) 

307 ''' 

308 1 validation error for User 

309 name 

310 Input should be a valid string [type=string_type, input_value=123, input_type=int] 

311 ''' 

312 ``` 

313 

314 1. You can either use class keyword arguments, or `model_config` to set `validate_assignment=True`. 

315 2. The validation happens when the model is created. 

316 3. The validation _also_ happens when the data is changed. 

317 """ 

318 

319 arbitrary_types_allowed: bool 

320 """ 

321 Whether arbitrary types are allowed for field types. Defaults to `False`. 

322 

323 ```python 

324 from pydantic import BaseModel, ConfigDict, ValidationError 

325 

326 # This is not a pydantic model, it's an arbitrary class 

327 class Pet: 

328 def __init__(self, name: str): 

329 self.name = name 

330 

331 class Model(BaseModel): 

332 model_config = ConfigDict(arbitrary_types_allowed=True) 

333 

334 pet: Pet 

335 owner: str 

336 

337 pet = Pet(name='Hedwig') 

338 # A simple check of instance type is used to validate the data 

339 model = Model(owner='Harry', pet=pet) 

340 print(model) 

341 #> pet=<__main__.Pet object at 0x0123456789ab> owner='Harry' 

342 print(model.pet) 

343 #> <__main__.Pet object at 0x0123456789ab> 

344 print(model.pet.name) 

345 #> Hedwig 

346 print(type(model.pet)) 

347 #> <class '__main__.Pet'> 

348 try: 

349 # If the value is not an instance of the type, it's invalid 

350 Model(owner='Harry', pet='Hedwig') 

351 except ValidationError as e: 

352 print(e) 

353 ''' 

354 1 validation error for Model 

355 pet 

356 Input should be an instance of Pet [type=is_instance_of, input_value='Hedwig', input_type=str] 

357 ''' 

358 

359 # Nothing in the instance of the arbitrary type is checked 

360 # Here name probably should have been a str, but it's not validated 

361 pet2 = Pet(name=42) 

362 model2 = Model(owner='Harry', pet=pet2) 

363 print(model2) 

364 #> pet=<__main__.Pet object at 0x0123456789ab> owner='Harry' 

365 print(model2.pet) 

366 #> <__main__.Pet object at 0x0123456789ab> 

367 print(model2.pet.name) 

368 #> 42 

369 print(type(model2.pet)) 

370 #> <class '__main__.Pet'> 

371 ``` 

372 """ 

373 

374 from_attributes: bool 

375 """ 

376 Whether to build models and look up discriminators of tagged unions using python object attributes. 

377 """ 

378 

379 loc_by_alias: bool 

380 """Whether to use the actual key provided in the data (e.g. alias) for error `loc`s rather than the field's name. Defaults to `True`.""" 

381 

382 alias_generator: Callable[[str], str] | AliasGenerator | None 

383 """ 

384 A callable that takes a field name and returns an alias for it 

385 or an instance of [`AliasGenerator`][pydantic.aliases.AliasGenerator]. Defaults to `None`. 

386 

387 When using a callable, the alias generator is used for both validation and serialization. 

388 If you want to use different alias generators for validation and serialization, you can use 

389 [`AliasGenerator`][pydantic.aliases.AliasGenerator] instead. 

390 

391 If data source field names do not match your code style (e.g. CamelCase fields), 

392 you can automatically generate aliases using `alias_generator`. Here's an example with 

393 a basic callable: 

394 

395 ```python 

396 from pydantic import BaseModel, ConfigDict 

397 from pydantic.alias_generators import to_pascal 

398 

399 class Voice(BaseModel): 

400 model_config = ConfigDict(alias_generator=to_pascal) 

401 

402 name: str 

403 language_code: str 

404 

405 voice = Voice(Name='Filiz', LanguageCode='tr-TR') 

406 print(voice.language_code) 

407 #> tr-TR 

408 print(voice.model_dump(by_alias=True)) 

409 #> {'Name': 'Filiz', 'LanguageCode': 'tr-TR'} 

410 ``` 

411 

412 If you want to use different alias generators for validation and serialization, you can use 

413 [`AliasGenerator`][pydantic.aliases.AliasGenerator]. 

414 

415 ```python 

416 from pydantic import AliasGenerator, BaseModel, ConfigDict 

417 from pydantic.alias_generators import to_camel, to_pascal 

418 

419 class Athlete(BaseModel): 

420 first_name: str 

421 last_name: str 

422 sport: str 

423 

424 model_config = ConfigDict( 

425 alias_generator=AliasGenerator( 

426 validation_alias=to_camel, 

427 serialization_alias=to_pascal, 

428 ) 

429 ) 

430 

431 athlete = Athlete(firstName='John', lastName='Doe', sport='track') 

432 print(athlete.model_dump(by_alias=True)) 

433 #> {'FirstName': 'John', 'LastName': 'Doe', 'Sport': 'track'} 

434 ``` 

435 

436 Note: 

437 Pydantic offers three built-in alias generators: [`to_pascal`][pydantic.alias_generators.to_pascal], 

438 [`to_camel`][pydantic.alias_generators.to_camel], and [`to_snake`][pydantic.alias_generators.to_snake]. 

439 """ 

440 

441 ignored_types: tuple[type, ...] 

442 """A tuple of types that may occur as values of class attributes without annotations. This is 

443 typically used for custom descriptors (classes that behave like `property`). If an attribute is set on a 

444 class without an annotation and has a type that is not in this tuple (or otherwise recognized by 

445 _pydantic_), an error will be raised. Defaults to `()`. 

446 """ 

447 

448 allow_inf_nan: bool 

449 """Whether to allow infinity (`+inf` an `-inf`) and NaN values to float and decimal fields. Defaults to `True`.""" 

450 

451 json_schema_extra: JsonDict | JsonSchemaExtraCallable | None 

452 """A dict or callable to provide extra JSON schema properties. Defaults to `None`.""" 

453 

454 json_encoders: dict[type[object], JsonEncoder] | None 

455 """ 

456 A `dict` of custom JSON encoders for specific types. Defaults to `None`. 

457 

458 /// version-deprecated | v2 

459 This configuration option is a carryover from v1. We originally planned to remove it in v2 but didn't have a 1:1 replacement 

460 so we are keeping it for now. It is still deprecated and will likely be removed in the future. 

461 /// 

462 """ 

463 

464 # new in V2 

465 strict: bool 

466 """ 

467 Whether strict validation is applied to all fields on the model. 

468 

469 By default, Pydantic attempts to coerce values to the correct type, when possible. 

470 

471 There are situations in which you may want to disable this behavior, and instead raise an error if a value's type 

472 does not match the field's type annotation. 

473 

474 To configure strict mode for all fields on a model, you can set `strict=True` on the model. 

475 

476 ```python 

477 from pydantic import BaseModel, ConfigDict 

478 

479 class Model(BaseModel): 

480 model_config = ConfigDict(strict=True) 

481 

482 name: str 

483 age: int 

484 ``` 

485 

486 See [Strict Mode](../concepts/strict_mode.md) for more details. 

487 

488 See the [Conversion Table](../concepts/conversion_table.md) for more details on how Pydantic converts data in both 

489 strict and lax modes. 

490 

491 /// version-added | v2 

492 /// 

493 """ 

494 # whether instances of models and dataclasses (including subclass instances) should re-validate, default 'never' 

495 revalidate_instances: Literal['always', 'never', 'subclass-instances'] 

496 """ 

497 When and how to revalidate models and dataclasses during validation. Can be one of: 

498 

499 - `'never'`: will *not* revalidate models and dataclasses during validation 

500 - `'always'`: will revalidate models and dataclasses during validation 

501 - `'subclass-instances'`: will revalidate models and dataclasses during validation if the instance is a 

502 subclass of the model or dataclass 

503 

504 The default is `'never'` (no revalidation). 

505 

506 This configuration only affects *the current model* it is applied on, and does *not* populate to the models 

507 referenced in fields. 

508 

509 ```python 

510 from pydantic import BaseModel 

511 

512 class User(BaseModel, revalidate_instances='never'): # (1)! 

513 name: str 

514 

515 class Transaction(BaseModel): 

516 user: User 

517 

518 my_user = User(name='John') 

519 t = Transaction(user=my_user) 

520 

521 my_user.name = 1 # (2)! 

522 t = Transaction(user=my_user) # (3)! 

523 print(t) 

524 #> user=User(name=1) 

525 ``` 

526 

527 1. This is the default behavior. 

528 2. The assignment is *not* validated, unless you set [`validate_assignment`][pydantic.ConfigDict.validate_assignment] in the configuration. 

529 3. Since `revalidate_instances` is set to `'never'`, the user instance is not revalidated. 

530 

531 Here is an example demonstrating the behavior of `'subclass-instances'`: 

532 

533 ```python 

534 from pydantic import BaseModel 

535 

536 class User(BaseModel, revalidate_instances='subclass-instances'): 

537 name: str 

538 

539 class SubUser(User): 

540 age: int 

541 

542 class Transaction(BaseModel): 

543 user: User 

544 

545 my_user = User(name='John') 

546 my_user.name = 1 # (1)! 

547 t = Transaction(user=my_user) # (2)! 

548 print(t) 

549 #> user=User(name=1) 

550 

551 my_sub_user = SubUser(name='John', age=20) 

552 t = Transaction(user=my_sub_user) 

553 print(t) # (3)! 

554 #> user=User(name='John') 

555 ``` 

556 

557 1. The assignment is *not* validated, unless you set [`validate_assignment`][pydantic.ConfigDict.validate_assignment] in the configuration. 

558 2. Because `my_user` is a "direct" instance of `User`, it is *not* being revalidated. It would have been the case if 

559 `revalidate_instances` was set to `'always'`. 

560 3. Because `my_sub_user` is an instance of a `User` subclass, it is being revalidated. In this case, Pydantic coerces `my_sub_user` to the defined 

561 `User` class defined on `Transaction`. If one of its fields had an invalid value, a validation error would have been raised. 

562 

563 /// version-added | v2 

564 /// 

565 """ 

566 

567 ser_json_timedelta: Literal['iso8601', 'float'] 

568 """ 

569 The format of JSON serialized timedeltas. Accepts the string values of `'iso8601'` and 

570 `'float'`. Defaults to `'iso8601'`. 

571 

572 - `'iso8601'` will serialize timedeltas to [ISO 8601 text format](https://en.wikipedia.org/wiki/ISO_8601#Durations). 

573 - `'float'` will serialize timedeltas to the total number of seconds. 

574 

575 /// version-changed | v2.12 

576 It is now recommended to use the [`ser_json_temporal`][pydantic.config.ConfigDict.ser_json_temporal] 

577 setting. `ser_json_timedelta` will be deprecated in v3. 

578 /// 

579 """ 

580 

581 ser_json_temporal: Literal['iso8601', 'seconds', 'milliseconds'] 

582 """ 

583 The format of JSON serialized temporal types from the [`datetime`][] module. This includes: 

584 

585 - [`datetime.datetime`][] 

586 - [`datetime.date`][] 

587 - [`datetime.time`][] 

588 - [`datetime.timedelta`][] 

589 

590 Can be one of: 

591 

592 - `'iso8601'` will serialize date-like types to [ISO 8601 text format](https://en.wikipedia.org/wiki/ISO_8601#Durations). 

593 - `'milliseconds'` will serialize date-like types to a floating point number of milliseconds since the epoch. 

594 - `'seconds'` will serialize date-like types to a floating point number of seconds since the epoch. 

595 

596 Defaults to `'iso8601'`. 

597 

598 /// version-added | v2.12 

599 This setting replaces [`ser_json_timedelta`][pydantic.config.ConfigDict.ser_json_timedelta], 

600 which will be deprecated in v3. `ser_json_temporal` adds more configurability for the other temporal types. 

601 /// 

602 """ 

603 

604 val_temporal_unit: Literal['seconds', 'milliseconds', 'infer'] 

605 """ 

606 The unit to assume for validating numeric input for datetime-like types ([`datetime.datetime`][] and [`datetime.date`][]). Can be one of: 

607 

608 - `'seconds'` will validate date or time numeric inputs as seconds since the [epoch]. 

609 - `'milliseconds'` will validate date or time numeric inputs as milliseconds since the [epoch]. 

610 - `'infer'` will infer the unit from the string numeric input on unix time as: 

611 

612 * seconds since the [epoch] if $-2^{10} <= v <= 2^{10}$ 

613 * milliseconds since the [epoch] (if $v < -2^{10}$ or $v > 2^{10}$). 

614 

615 Defaults to `'infer'`. 

616 

617 /// version-added | v2.12 

618 /// 

619 

620 [epoch]: https://en.wikipedia.org/wiki/Unix_time 

621 """ 

622 

623 ser_json_bytes: Literal['utf8', 'base64', 'hex'] 

624 """ 

625 The encoding of JSON serialized bytes. Defaults to `'utf8'`. 

626 Set equal to `val_json_bytes` to get back an equal value after serialization round trip. 

627 

628 - `'utf8'` will serialize bytes to UTF-8 strings. 

629 - `'base64'` will serialize bytes to URL safe base64 strings. 

630 - `'hex'` will serialize bytes to hexadecimal strings. 

631 """ 

632 

633 val_json_bytes: Literal['utf8', 'base64', 'hex'] 

634 """ 

635 The encoding of JSON serialized bytes to decode. Defaults to `'utf8'`. 

636 Set equal to `ser_json_bytes` to get back an equal value after serialization round trip. 

637 

638 - `'utf8'` will deserialize UTF-8 strings to bytes. 

639 - `'base64'` will deserialize URL safe base64 strings to bytes. 

640 - `'hex'` will deserialize hexadecimal strings to bytes. 

641 """ 

642 

643 ser_json_inf_nan: Literal['null', 'constants', 'strings'] 

644 """ 

645 The encoding of JSON serialized infinity and NaN float values. Defaults to `'null'`. 

646 

647 - `'null'` will serialize infinity and NaN values as `null`. 

648 - `'constants'` will serialize infinity and NaN values as `Infinity` and `NaN`. 

649 - `'strings'` will serialize infinity as string `"Infinity"` and NaN as string `"NaN"`. 

650 """ 

651 

652 # whether to validate default values during validation, default False 

653 validate_default: bool 

654 """Whether to validate default values during validation. Defaults to `False`.""" 

655 

656 validate_return: bool 

657 """Whether to validate the return value from call validators. Defaults to `False`.""" 

658 

659 protected_namespaces: tuple[str | Pattern[str], ...] 

660 """ 

661 A tuple of strings and/or regex patterns that prevent models from having fields with names that conflict with its existing members/methods. 

662 

663 Strings are matched on a prefix basis. For instance, with `'dog'`, having a field named `'dog_name'` will be disallowed. 

664 

665 Regex patterns are matched on the entire field name. For instance, with the pattern `'^dog$'`, having a field named `'dog'` will be disallowed, 

666 but `'dog_name'` will be accepted. 

667 

668 Defaults to `('model_validate', 'model_dump')`. This default is used to prevent collisions with the existing (and possibly future) 

669 [validation](../concepts/models.md#validating-data) and [serialization](../concepts/serialization.md#serializing-data) methods. 

670 

671 ```python 

672 import warnings 

673 

674 from pydantic import BaseModel 

675 

676 warnings.filterwarnings('error') # Raise warnings as errors 

677 

678 try: 

679 

680 class Model(BaseModel): 

681 model_dump_something: str 

682 

683 except UserWarning as e: 

684 print(e) 

685 ''' 

686 Field 'model_dump_something' in 'Model' conflicts with protected namespace 'model_dump'. 

687 

688 You may be able to solve this by setting the 'protected_namespaces' configuration to ('model_validate',). 

689 ''' 

690 ``` 

691 

692 You can customize this behavior using the `protected_namespaces` setting: 

693 

694 ```python {test="skip"} 

695 import re 

696 import warnings 

697 

698 from pydantic import BaseModel, ConfigDict 

699 

700 with warnings.catch_warnings(record=True) as caught_warnings: 

701 warnings.simplefilter('always') # Catch all warnings 

702 

703 class Model(BaseModel): 

704 safe_field: str 

705 also_protect_field: str 

706 protect_this: str 

707 

708 model_config = ConfigDict( 

709 protected_namespaces=( 

710 'protect_me_', 

711 'also_protect_', 

712 re.compile('^protect_this$'), 

713 ) 

714 ) 

715 

716 for warning in caught_warnings: 

717 print(f'{warning.message}') 

718 ''' 

719 Field 'also_protect_field' in 'Model' conflicts with protected namespace 'also_protect_'. 

720 You may be able to solve this by setting the 'protected_namespaces' configuration to ('protect_me_', re.compile('^protect_this$'))`. 

721 

722 Field 'protect_this' in 'Model' conflicts with protected namespace 're.compile('^protect_this$')'. 

723 You may be able to solve this by setting the 'protected_namespaces' configuration to ('protect_me_', 'also_protect_')`. 

724 ''' 

725 ``` 

726 

727 While Pydantic will only emit a warning when an item is in a protected namespace but does not actually have a collision, 

728 an error _is_ raised if there is an actual collision with an existing attribute: 

729 

730 ```python 

731 from pydantic import BaseModel, ConfigDict 

732 

733 try: 

734 

735 class Model(BaseModel): 

736 model_validate: str 

737 

738 model_config = ConfigDict(protected_namespaces=('model_',)) 

739 

740 except ValueError as e: 

741 print(e) 

742 ''' 

743 Field 'model_validate' conflicts with member <bound method BaseModel.model_validate of <class 'pydantic.main.BaseModel'>> of protected namespace 'model_'. 

744 ''' 

745 ``` 

746 

747 /// version-changed | v2.10 

748 The default protected namespaces was changed from `('model_',)` to `('model_validate', 'model_dump')`, to allow 

749 for fields like `model_id`, `model_name` to be used. 

750 /// 

751 """ 

752 

753 hide_input_in_errors: bool 

754 """ 

755 Whether to hide inputs when printing errors. Defaults to `False`. 

756 

757 Pydantic shows the input value and type when it raises `ValidationError` during the validation. 

758 

759 ```python 

760 from pydantic import BaseModel, ValidationError 

761 

762 class Model(BaseModel): 

763 a: str 

764 

765 try: 

766 Model(a=123) 

767 except ValidationError as e: 

768 print(e) 

769 ''' 

770 1 validation error for Model 

771 a 

772 Input should be a valid string [type=string_type, input_value=123, input_type=int] 

773 ''' 

774 ``` 

775 

776 You can hide the input value and type by setting the `hide_input_in_errors` config to `True`. 

777 

778 ```python 

779 from pydantic import BaseModel, ConfigDict, ValidationError 

780 

781 class Model(BaseModel): 

782 a: str 

783 model_config = ConfigDict(hide_input_in_errors=True) 

784 

785 try: 

786 Model(a=123) 

787 except ValidationError as e: 

788 print(e) 

789 ''' 

790 1 validation error for Model 

791 a 

792 Input should be a valid string [type=string_type] 

793 ''' 

794 ``` 

795 """ 

796 

797 defer_build: bool 

798 """ 

799 Whether to defer model validator and serializer construction until the first model validation. Defaults to False. 

800 

801 This can be useful to avoid the overhead of building models which are only 

802 used nested within other models, or when you want to manually define type namespace via 

803 [`Model.model_rebuild(_types_namespace=...)`][pydantic.BaseModel.model_rebuild]. 

804 

805 /// version-changed | v2.10 

806 The setting also applies to [Pydantic dataclasses](../concepts/dataclasses.md) and [type adapters](../concepts/type_adapter.md). 

807 /// 

808 """ 

809 

810 plugin_settings: dict[str, object] | None 

811 """A `dict` of settings for plugins. Defaults to `None`.""" 

812 

813 schema_generator: type[_GenerateSchema] | None 

814 """ 

815 The `GenerateSchema` class to use during core schema generation. 

816 

817 /// version-deprecated | v2.10 

818 The `GenerateSchema` class is private and highly subject to change. 

819 /// 

820 """ 

821 

822 json_schema_serialization_defaults_required: bool 

823 """ 

824 Whether fields with default values should be marked as required in the serialization schema. Defaults to `False`. 

825 

826 This ensures that the serialization schema will reflect the fact a field with a default will always be present 

827 when serializing the model, even though it is not required for validation. 

828 

829 However, there are scenarios where this may be undesirable — in particular, if you want to share the schema 

830 between validation and serialization, and don't mind fields with defaults being marked as not required during 

831 serialization. See [#7209](https://github.com/pydantic/pydantic/issues/7209) for more details. 

832 

833 ```python 

834 from pydantic import BaseModel, ConfigDict 

835 

836 class Model(BaseModel): 

837 a: str = 'a' 

838 

839 model_config = ConfigDict(json_schema_serialization_defaults_required=True) 

840 

841 print(Model.model_json_schema(mode='validation')) 

842 ''' 

843 { 

844 'properties': {'a': {'default': 'a', 'title': 'A', 'type': 'string'}}, 

845 'title': 'Model', 

846 'type': 'object', 

847 } 

848 ''' 

849 print(Model.model_json_schema(mode='serialization')) 

850 ''' 

851 { 

852 'properties': {'a': {'default': 'a', 'title': 'A', 'type': 'string'}}, 

853 'required': ['a'], 

854 'title': 'Model', 

855 'type': 'object', 

856 } 

857 ''' 

858 ``` 

859 

860 /// version-added | v2.4 

861 /// 

862 """ 

863 

864 json_schema_mode_override: Literal['validation', 'serialization', None] 

865 """ 

866 If not `None`, the specified mode will be used to generate the JSON schema regardless of what `mode` was passed to 

867 the function call. Defaults to `None`. 

868 

869 This provides a way to force the JSON schema generation to reflect a specific mode, e.g., to always use the 

870 validation schema. 

871 

872 It can be useful when using frameworks (such as FastAPI) that may generate different schemas for validation 

873 and serialization that must both be referenced from the same schema; when this happens, we automatically append 

874 `-Input` to the definition reference for the validation schema and `-Output` to the definition reference for the 

875 serialization schema. By specifying a `json_schema_mode_override` though, this prevents the conflict between 

876 the validation and serialization schemas (since both will use the specified schema), and so prevents the suffixes 

877 from being added to the definition references. 

878 

879 ```python 

880 from pydantic import BaseModel, ConfigDict, Json 

881 

882 class Model(BaseModel): 

883 a: Json[int] # requires a string to validate, but will dump an int 

884 

885 print(Model.model_json_schema(mode='serialization')) 

886 ''' 

887 { 

888 'properties': {'a': {'title': 'A', 'type': 'integer'}}, 

889 'required': ['a'], 

890 'title': 'Model', 

891 'type': 'object', 

892 } 

893 ''' 

894 

895 class ForceInputModel(Model): 

896 # the following ensures that even with mode='serialization', we 

897 # will get the schema that would be generated for validation. 

898 model_config = ConfigDict(json_schema_mode_override='validation') 

899 

900 print(ForceInputModel.model_json_schema(mode='serialization')) 

901 ''' 

902 { 

903 'properties': { 

904 'a': { 

905 'contentMediaType': 'application/json', 

906 'contentSchema': {'type': 'integer'}, 

907 'title': 'A', 

908 'type': 'string', 

909 } 

910 }, 

911 'required': ['a'], 

912 'title': 'ForceInputModel', 

913 'type': 'object', 

914 } 

915 ''' 

916 ``` 

917 

918 /// version-added | v2.4 

919 /// 

920 """ 

921 

922 coerce_numbers_to_str: bool 

923 """ 

924 If `True`, enables automatic coercion of any `Number` type to `str` in "lax" (non-strict) mode. Defaults to `False`. 

925 

926 Pydantic doesn't allow number types (`int`, `float`, `Decimal`) to be coerced as type `str` by default. 

927 

928 ```python 

929 from decimal import Decimal 

930 

931 from pydantic import BaseModel, ConfigDict, ValidationError 

932 

933 class Model(BaseModel): 

934 value: str 

935 

936 try: 

937 print(Model(value=42)) 

938 except ValidationError as e: 

939 print(e) 

940 ''' 

941 1 validation error for Model 

942 value 

943 Input should be a valid string [type=string_type, input_value=42, input_type=int] 

944 ''' 

945 

946 class Model(BaseModel): 

947 model_config = ConfigDict(coerce_numbers_to_str=True) 

948 

949 value: str 

950 

951 repr(Model(value=42).value) 

952 #> "42" 

953 repr(Model(value=42.13).value) 

954 #> "42.13" 

955 repr(Model(value=Decimal('42.13')).value) 

956 #> "42.13" 

957 ``` 

958 """ 

959 

960 regex_engine: Literal['rust-regex', 'python-re'] 

961 """ 

962 The regex engine to be used for pattern validation. 

963 Defaults to `'rust-regex'`. 

964 

965 - `'rust-regex'` uses the [`regex`](https://docs.rs/regex) Rust crate, 

966 which is non-backtracking and therefore more DDoS resistant, but does not support all regex features. 

967 - `'python-re'` use the [`re`][] module, which supports all regex features, but may be slower. 

968 

969 !!! note 

970 If you use a compiled regex pattern, the `'python-re'` engine will be used regardless of this setting. 

971 This is so that flags such as [`re.IGNORECASE`][] are respected. 

972 

973 ```python 

974 from pydantic import BaseModel, ConfigDict, Field, ValidationError 

975 

976 class Model(BaseModel): 

977 model_config = ConfigDict(regex_engine='python-re') 

978 

979 value: str = Field(pattern=r'^abc(?=def)') 

980 

981 print(Model(value='abcdef').value) 

982 #> abcdef 

983 

984 try: 

985 print(Model(value='abxyzcdef')) 

986 except ValidationError as e: 

987 print(e) 

988 ''' 

989 1 validation error for Model 

990 value 

991 String should match pattern '^abc(?=def)' [type=string_pattern_mismatch, input_value='abxyzcdef', input_type=str] 

992 ''' 

993 ``` 

994 

995 /// version-added | v2.5 

996 /// 

997 """ 

998 

999 validation_error_cause: bool 

1000 """ 

1001 If `True`, Python exceptions that were part of a validation failure will be shown as an exception group as a cause. Can be useful for debugging. Defaults to `False`. 

1002 

1003 Note: 

1004 Python 3.10 and older don't support exception groups natively. <=3.10, backport must be installed: `pip install exceptiongroup`. 

1005 

1006 Note: 

1007 The structure of validation errors are likely to change in future Pydantic versions. Pydantic offers no guarantees about their structure. Should be used for visual traceback debugging only. 

1008 

1009 /// version-added | v2.5 

1010 /// 

1011 """ 

1012 

1013 use_attribute_docstrings: bool 

1014 ''' 

1015 Whether docstrings of attributes (bare string literals immediately following the attribute declaration) 

1016 should be used for field descriptions. Defaults to `False`. 

1017 

1018 ```python 

1019 from pydantic import BaseModel, ConfigDict, Field 

1020 

1021 

1022 class Model(BaseModel): 

1023 model_config = ConfigDict(use_attribute_docstrings=True) 

1024 

1025 x: str 

1026 """ 

1027 Example of an attribute docstring 

1028 """ 

1029 

1030 y: int = Field(description="Description in Field") 

1031 """ 

1032 Description in Field overrides attribute docstring 

1033 """ 

1034 

1035 

1036 print(Model.model_fields["x"].description) 

1037 # > Example of an attribute docstring 

1038 print(Model.model_fields["y"].description) 

1039 # > Description in Field 

1040 ``` 

1041 This requires the source code of the class to be available at runtime. 

1042 

1043 !!! warning "Usage with `TypedDict` and stdlib dataclasses" 

1044 Due to current limitations, attribute docstrings detection may not work as expected when using 

1045 [`TypedDict`][typing.TypedDict] and stdlib dataclasses, in particular when: 

1046 

1047 - inheritance is being used. 

1048 - multiple classes have the same name in the same source file (unless Python 3.13 or greater is used). 

1049 

1050 /// version-added | v2.7 

1051 /// 

1052 ''' 

1053 

1054 cache_strings: bool | Literal['all', 'keys', 'none'] 

1055 """ 

1056 Whether to cache strings to avoid constructing new Python objects. Defaults to True. 

1057 

1058 Enabling this setting should significantly improve validation performance while increasing memory usage slightly. 

1059 

1060 - `True` or `'all'` (the default): cache all strings 

1061 - `'keys'`: cache only dictionary keys 

1062 - `False` or `'none'`: no caching 

1063 

1064 !!! note 

1065 `True` or `'all'` is required to cache strings during general validation because 

1066 validators don't know if they're in a key or a value. 

1067 

1068 !!! tip 

1069 If repeated strings are rare, it's recommended to use `'keys'` or `'none'` to reduce memory usage, 

1070 as the performance difference is minimal if repeated strings are rare. 

1071 

1072 /// version-added | v2.7 

1073 /// 

1074 """ 

1075 

1076 validate_by_alias: bool 

1077 """ 

1078 Whether an aliased field may be populated by its alias. Defaults to `True`. 

1079 

1080 Here's an example of disabling validation by alias: 

1081 

1082 ```py 

1083 from pydantic import BaseModel, ConfigDict, Field 

1084 

1085 class Model(BaseModel): 

1086 model_config = ConfigDict(validate_by_name=True, validate_by_alias=False) 

1087 

1088 my_field: str = Field(validation_alias='my_alias') # (1)! 

1089 

1090 m = Model(my_field='foo') # (2)! 

1091 print(m) 

1092 #> my_field='foo' 

1093 ``` 

1094 

1095 1. The field `'my_field'` has an alias `'my_alias'`. 

1096 2. The model can only be populated by the attribute name `'my_field'`. 

1097 

1098 !!! warning 

1099 You cannot set both `validate_by_alias` and `validate_by_name` to `False`. 

1100 This would make it impossible to populate an attribute. 

1101 

1102 See [usage errors](../errors/usage_errors.md#validate-by-alias-and-name-false) for an example. 

1103 

1104 If you set `validate_by_alias` to `False`, under the hood, Pydantic dynamically sets 

1105 `validate_by_name` to `True` to ensure that validation can still occur. 

1106 

1107 /// version-added | v2.11 

1108 This setting was introduced in conjunction with [`validate_by_name`][pydantic.ConfigDict.validate_by_name] 

1109 to empower users with more fine grained validation control. 

1110 /// 

1111 """ 

1112 

1113 validate_by_name: bool 

1114 """ 

1115 Whether an aliased field may be populated by its name as given by the model 

1116 attribute. Defaults to `False`. 

1117 

1118 ```python 

1119 from pydantic import BaseModel, ConfigDict, Field 

1120 

1121 class Model(BaseModel): 

1122 model_config = ConfigDict(validate_by_name=True, validate_by_alias=True) 

1123 

1124 my_field: str = Field(validation_alias='my_alias') # (1)! 

1125 

1126 m = Model(my_alias='foo') # (2)! 

1127 print(m) 

1128 #> my_field='foo' 

1129 

1130 m = Model(my_field='foo') # (3)! 

1131 print(m) 

1132 #> my_field='foo' 

1133 ``` 

1134 

1135 1. The field `'my_field'` has an alias `'my_alias'`. 

1136 2. The model is populated by the alias `'my_alias'`. 

1137 3. The model is populated by the attribute name `'my_field'`. 

1138 

1139 !!! warning 

1140 You cannot set both `validate_by_alias` and `validate_by_name` to `False`. 

1141 This would make it impossible to populate an attribute. 

1142 

1143 See [usage errors](../errors/usage_errors.md#validate-by-alias-and-name-false) for an example. 

1144 

1145 /// version-added | v2.11 

1146 This setting was introduced in conjunction with [`validate_by_alias`][pydantic.ConfigDict.validate_by_alias] 

1147 to empower users with more fine grained validation control. It is an alternative to [`populate_by_name`][pydantic.ConfigDict.populate_by_name], 

1148 that enables validation by name **and** by alias. 

1149 /// 

1150 """ 

1151 

1152 serialize_by_alias: bool 

1153 """ 

1154 Whether an aliased field should be serialized by its alias. Defaults to `False`. 

1155 

1156 Note: In v2.11, `serialize_by_alias` was introduced to address the 

1157 [popular request](https://github.com/pydantic/pydantic/issues/8379) 

1158 for consistency with alias behavior for validation and serialization settings. 

1159 In v3, the default value is expected to change to `True` for consistency with the validation default. 

1160 

1161 ```python 

1162 from pydantic import BaseModel, ConfigDict, Field 

1163 

1164 class Model(BaseModel): 

1165 model_config = ConfigDict(serialize_by_alias=True) 

1166 

1167 my_field: str = Field(serialization_alias='my_alias') # (1)! 

1168 

1169 m = Model(my_field='foo') 

1170 print(m.model_dump()) # (2)! 

1171 #> {'my_alias': 'foo'} 

1172 ``` 

1173 

1174 1. The field `'my_field'` has an alias `'my_alias'`. 

1175 2. The model is serialized using the alias `'my_alias'` for the `'my_field'` attribute. 

1176 

1177 

1178 /// version-added | v2.11 

1179 This setting was introduced to address the [popular request](https://github.com/pydantic/pydantic/issues/8379) 

1180 for consistency with alias behavior for validation and serialization. 

1181 

1182 In v3, the default value is expected to change to `True` for consistency with the validation default. 

1183 /// 

1184 """ 

1185 

1186 url_preserve_empty_path: bool 

1187 """ 

1188 Whether to preserve empty URL paths when validating values for a URL type. Defaults to `False`. 

1189 

1190 ```python 

1191 from pydantic import AnyUrl, BaseModel, ConfigDict 

1192 

1193 class Model(BaseModel): 

1194 model_config = ConfigDict(url_preserve_empty_path=True) 

1195 

1196 url: AnyUrl 

1197 

1198 m = Model(url='http://example.com') 

1199 print(m.url) 

1200 #> http://example.com 

1201 ``` 

1202 

1203 /// version-added | v2.12 

1204 /// 

1205 """ 

1206 

1207 

1208_TypeT = TypeVar('_TypeT', bound=type) 

1209 

1210 

1211@overload 

1212@deprecated('Passing `config` as a keyword argument is deprecated. Pass `config` as a positional argument instead.') 

1213def with_config(*, config: ConfigDict) -> Callable[[_TypeT], _TypeT]: ... 

1214 

1215 

1216@overload 

1217def with_config(config: ConfigDict, /) -> Callable[[_TypeT], _TypeT]: ... 

1218 

1219 

1220@overload 

1221def with_config(**config: Unpack[ConfigDict]) -> Callable[[_TypeT], _TypeT]: ... 

1222 

1223 

1224def with_config(config: ConfigDict | None = None, /, **kwargs: Any) -> Callable[[_TypeT], _TypeT]: 

1225 """!!! abstract "Usage Documentation" 

1226 [Configuration with other types](../concepts/config.md#configuration-on-other-supported-types) 

1227 

1228 A convenience decorator to set a [Pydantic configuration](config.md) on a `TypedDict` or a `dataclass` from the standard library. 

1229 

1230 Although the configuration can be set using the `__pydantic_config__` attribute, it does not play well with type checkers, 

1231 especially with `TypedDict`. 

1232 

1233 !!! example "Usage" 

1234 

1235 ```python 

1236 from typing_extensions import TypedDict 

1237 

1238 from pydantic import ConfigDict, TypeAdapter, with_config 

1239 

1240 @with_config(ConfigDict(str_to_lower=True)) 

1241 class TD(TypedDict): 

1242 x: str 

1243 

1244 ta = TypeAdapter(TD) 

1245 

1246 print(ta.validate_python({'x': 'ABC'})) 

1247 #> {'x': 'abc'} 

1248 ``` 

1249 

1250 /// deprecated-removed | v2.11 v3 

1251 Passing `config` as a keyword argument. 

1252 /// 

1253 

1254 /// version-changed | v2.11 

1255 Keyword arguments can be provided directly instead of a config dictionary. 

1256 /// 

1257 """ 

1258 if config is not None and kwargs: 

1259 raise ValueError('Cannot specify both `config` and keyword arguments') 

1260 

1261 if len(kwargs) == 1 and (kwargs_conf := kwargs.get('config')) is not None: 

1262 warnings.warn( 

1263 'Passing `config` as a keyword argument is deprecated. Pass `config` as a positional argument instead', 

1264 category=PydanticDeprecatedSince211, 

1265 stacklevel=2, 

1266 ) 

1267 final_config = cast(ConfigDict, kwargs_conf) 

1268 else: 

1269 final_config = config if config is not None else cast(ConfigDict, kwargs) 

1270 

1271 def inner(class_: _TypeT, /) -> _TypeT: 

1272 # Ideally, we would check for `class_` to either be a `TypedDict` or a stdlib dataclass. 

1273 # However, the `@with_config` decorator can be applied *after* `@dataclass`. To avoid 

1274 # common mistakes, we at least check for `class_` to not be a Pydantic model. 

1275 from ._internal._utils import is_model_class 

1276 

1277 if is_model_class(class_): 

1278 raise PydanticUserError( 

1279 f'Cannot use `with_config` on {class_.__name__} as it is a Pydantic model', 

1280 code='with-config-on-model', 

1281 ) 

1282 class_.__pydantic_config__ = final_config 

1283 return class_ 

1284 

1285 return inner 

1286 

1287 

1288__getattr__ = getattr_migration(__name__)