Coverage Report

Created: 2025-07-11 06:12

/work/include/simdutf/internal/isadetection.h
Line
Count
Source (jump to first uncovered line)
1
/* From
2
https://github.com/endorno/pytorch/blob/master/torch/lib/TH/generic/simd/simd.h
3
Highly modified.
4
5
Copyright (c) 2016-     Facebook, Inc            (Adam Paszke)
6
Copyright (c) 2014-     Facebook, Inc            (Soumith Chintala)
7
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
8
Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
9
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
10
Copyright (c) 2011-2013 NYU                      (Clement Farabet)
11
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou,
12
Iain Melvin, Jason Weston) Copyright (c) 2006      Idiap Research Institute
13
(Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert,
14
Samy Bengio, Johnny Mariethoz)
15
16
All rights reserved.
17
18
Redistribution and use in source and binary forms, with or without
19
modification, are permitted provided that the following conditions are met:
20
21
1. Redistributions of source code must retain the above copyright
22
   notice, this list of conditions and the following disclaimer.
23
24
2. Redistributions in binary form must reproduce the above copyright
25
   notice, this list of conditions and the following disclaimer in the
26
   documentation and/or other materials provided with the distribution.
27
28
3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories
29
America and IDIAP Research Institute nor the names of its contributors may be
30
   used to endorse or promote products derived from this software without
31
   specific prior written permission.
32
33
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
34
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
37
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
38
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
39
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
40
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
41
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
43
POSSIBILITY OF SUCH DAMAGE.
44
*/
45
46
#ifndef SIMDutf_INTERNAL_ISADETECTION_H
47
#define SIMDutf_INTERNAL_ISADETECTION_H
48
49
#include <cstdint>
50
#include <cstdlib>
51
#if defined(_MSC_VER)
52
  #include <intrin.h>
53
#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
54
  #include <cpuid.h>
55
#endif
56
57
#include "simdutf/portability.h"
58
59
// RISC-V ISA detection utilities
60
#if SIMDUTF_IS_RISCV64 && defined(__linux__)
61
  #include <unistd.h> // for syscall
62
// We define these ourselves, for backwards compatibility
63
struct simdutf_riscv_hwprobe {
64
  int64_t key;
65
  uint64_t value;
66
};
67
  #define simdutf_riscv_hwprobe(...) syscall(258, __VA_ARGS__)
68
  #define SIMDUTF_RISCV_HWPROBE_KEY_IMA_EXT_0 4
69
  #define SIMDUTF_RISCV_HWPROBE_IMA_V (1 << 2)
70
  #define SIMDUTF_RISCV_HWPROBE_EXT_ZVBB (1 << 17)
71
#endif // SIMDUTF_IS_RISCV64 && defined(__linux__)
72
73
#if defined(__loongarch__) && defined(__linux__)
74
  #include <sys/auxv.h>
75
// bits/hwcap.h
76
// #define HWCAP_LOONGARCH_LSX             (1 << 4)
77
// #define HWCAP_LOONGARCH_LASX            (1 << 5)
78
#endif
79
80
namespace simdutf {
81
namespace internal {
82
83
enum instruction_set {
84
  DEFAULT = 0x0,
85
  NEON = 0x1,
86
  AVX2 = 0x4,
87
  SSE42 = 0x8,
88
  PCLMULQDQ = 0x10,
89
  BMI1 = 0x20,
90
  BMI2 = 0x40,
91
  ALTIVEC = 0x80,
92
  AVX512F = 0x100,
93
  AVX512DQ = 0x200,
94
  AVX512IFMA = 0x400,
95
  AVX512PF = 0x800,
96
  AVX512ER = 0x1000,
97
  AVX512CD = 0x2000,
98
  AVX512BW = 0x4000,
99
  AVX512VL = 0x8000,
100
  AVX512VBMI2 = 0x10000,
101
  AVX512VPOPCNTDQ = 0x2000,
102
  RVV = 0x4000,
103
  ZVBB = 0x8000,
104
  LSX = 0x40000,
105
  LASX = 0x80000,
106
};
107
108
#if defined(__PPC64__)
109
110
static inline uint32_t detect_supported_architectures() {
111
  return instruction_set::ALTIVEC;
112
}
113
114
#elif SIMDUTF_IS_RISCV64
115
116
static inline uint32_t detect_supported_architectures() {
117
  uint32_t host_isa = instruction_set::DEFAULT;
118
  #if SIMDUTF_IS_RVV
119
  host_isa |= instruction_set::RVV;
120
  #endif
121
  #if SIMDUTF_IS_ZVBB
122
  host_isa |= instruction_set::ZVBB;
123
  #endif
124
  #if defined(__linux__)
125
  simdutf_riscv_hwprobe probes[] = {{SIMDUTF_RISCV_HWPROBE_KEY_IMA_EXT_0, 0}};
126
  long ret = simdutf_riscv_hwprobe(&probes, sizeof probes / sizeof *probes, 0,
127
                                   nullptr, 0);
128
  if (ret == 0) {
129
    uint64_t extensions = probes[0].value;
130
    if (extensions & SIMDUTF_RISCV_HWPROBE_IMA_V)
131
      host_isa |= instruction_set::RVV;
132
    if (extensions & SIMDUTF_RISCV_HWPROBE_EXT_ZVBB)
133
      host_isa |= instruction_set::ZVBB;
134
  }
135
  #endif
136
  #if defined(RUN_IN_SPIKE_SIMULATOR)
137
  // Proxy Kernel does not implement yet hwprobe syscall
138
  host_isa |= instruction_set::RVV;
139
  #endif
140
  return host_isa;
141
}
142
143
#elif defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)
144
145
static inline uint32_t detect_supported_architectures() {
146
  return instruction_set::NEON;
147
}
148
149
#elif defined(__x86_64__) || defined(_M_AMD64) // x64
150
151
namespace {
152
namespace cpuid_bit {
153
// Can be found on Intel ISA Reference for CPUID
154
155
// EAX = 0x01
156
constexpr uint32_t pclmulqdq = uint32_t(1)
157
                               << 1; ///< @private bit  1 of ECX for EAX=0x1
158
constexpr uint32_t sse42 = uint32_t(1)
159
                           << 20; ///< @private bit 20 of ECX for EAX=0x1
160
constexpr uint32_t osxsave =
161
    (uint32_t(1) << 26) |
162
    (uint32_t(1) << 27); ///< @private bits 26+27 of ECX for EAX=0x1
163
164
// EAX = 0x7f (Structured Extended Feature Flags), ECX = 0x00 (Sub-leaf)
165
// See: "Table 3-8. Information Returned by CPUID Instruction"
166
namespace ebx {
167
constexpr uint32_t bmi1 = uint32_t(1) << 3;
168
constexpr uint32_t avx2 = uint32_t(1) << 5;
169
constexpr uint32_t bmi2 = uint32_t(1) << 8;
170
constexpr uint32_t avx512f = uint32_t(1) << 16;
171
constexpr uint32_t avx512dq = uint32_t(1) << 17;
172
constexpr uint32_t avx512ifma = uint32_t(1) << 21;
173
constexpr uint32_t avx512cd = uint32_t(1) << 28;
174
constexpr uint32_t avx512bw = uint32_t(1) << 30;
175
constexpr uint32_t avx512vl = uint32_t(1) << 31;
176
} // namespace ebx
177
178
namespace ecx {
179
constexpr uint32_t avx512vbmi = uint32_t(1) << 1;
180
constexpr uint32_t avx512vbmi2 = uint32_t(1) << 6;
181
constexpr uint32_t avx512vnni = uint32_t(1) << 11;
182
constexpr uint32_t avx512bitalg = uint32_t(1) << 12;
183
constexpr uint32_t avx512vpopcnt = uint32_t(1) << 14;
184
} // namespace ecx
185
namespace edx {
186
constexpr uint32_t avx512vp2intersect = uint32_t(1) << 8;
187
}
188
namespace xcr0_bit {
189
constexpr uint64_t avx256_saved = uint64_t(1) << 2; ///< @private bit 2 = AVX
190
constexpr uint64_t avx512_saved =
191
    uint64_t(7) << 5; ///< @private bits 5,6,7 = opmask, ZMM_hi256, hi16_ZMM
192
} // namespace xcr0_bit
193
} // namespace cpuid_bit
194
} // namespace
195
196
static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx,
197
0
                         uint32_t *edx) {
198
0
  #if defined(_MSC_VER)
199
0
  int cpu_info[4];
200
0
  __cpuidex(cpu_info, *eax, *ecx);
201
0
  *eax = cpu_info[0];
202
0
  *ebx = cpu_info[1];
203
0
  *ecx = cpu_info[2];
204
0
  *edx = cpu_info[3];
205
0
  #elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
206
0
  uint32_t level = *eax;
207
0
  __get_cpuid(level, eax, ebx, ecx, edx);
208
0
  #else
209
0
  uint32_t a = *eax, b, c = *ecx, d;
210
0
  asm volatile("cpuid\n\t" : "+a"(a), "=b"(b), "+c"(c), "=d"(d));
211
0
  *eax = a;
212
0
  *ebx = b;
213
0
  *ecx = c;
214
0
  *edx = d;
215
0
  #endif
216
0
}
217
218
0
static inline uint64_t xgetbv() {
219
0
  #if defined(_MSC_VER)
220
0
  return _xgetbv(0);
221
0
  #else
222
0
  uint32_t xcr0_lo, xcr0_hi;
223
0
  asm volatile("xgetbv\n\t" : "=a"(xcr0_lo), "=d"(xcr0_hi) : "c"(0));
224
0
  return xcr0_lo | ((uint64_t)xcr0_hi << 32);
225
0
  #endif
226
0
}
227
228
0
static inline uint32_t detect_supported_architectures() {
229
0
  uint32_t eax;
230
0
  uint32_t ebx = 0;
231
0
  uint32_t ecx = 0;
232
0
  uint32_t edx = 0;
233
0
  uint32_t host_isa = 0x0;
234
0
235
0
  // EBX for EAX=0x1
236
0
  eax = 0x1;
237
0
  cpuid(&eax, &ebx, &ecx, &edx);
238
0
239
0
  if (ecx & cpuid_bit::sse42) {
240
0
    host_isa |= instruction_set::SSE42;
241
0
  }
242
0
243
0
  if (ecx & cpuid_bit::pclmulqdq) {
244
0
    host_isa |= instruction_set::PCLMULQDQ;
245
0
  }
246
0
247
0
  if ((ecx & cpuid_bit::osxsave) != cpuid_bit::osxsave) {
248
0
    return host_isa;
249
0
  }
250
0
251
0
  // xgetbv for checking if the OS saves registers
252
0
  uint64_t xcr0 = xgetbv();
253
0
254
0
  if ((xcr0 & cpuid_bit::xcr0_bit::avx256_saved) == 0) {
255
0
    return host_isa;
256
0
  }
257
0
  // ECX for EAX=0x7
258
0
  eax = 0x7;
259
0
  ecx = 0x0; // Sub-leaf = 0
260
0
  cpuid(&eax, &ebx, &ecx, &edx);
261
0
  if (ebx & cpuid_bit::ebx::avx2) {
262
0
    host_isa |= instruction_set::AVX2;
263
0
  }
264
0
  if (ebx & cpuid_bit::ebx::bmi1) {
265
0
    host_isa |= instruction_set::BMI1;
266
0
  }
267
0
  if (ebx & cpuid_bit::ebx::bmi2) {
268
0
    host_isa |= instruction_set::BMI2;
269
0
  }
270
0
  if (!((xcr0 & cpuid_bit::xcr0_bit::avx512_saved) ==
271
0
        cpuid_bit::xcr0_bit::avx512_saved)) {
272
0
    return host_isa;
273
0
  }
274
0
  if (ebx & cpuid_bit::ebx::avx512f) {
275
0
    host_isa |= instruction_set::AVX512F;
276
0
  }
277
0
  if (ebx & cpuid_bit::ebx::avx512bw) {
278
0
    host_isa |= instruction_set::AVX512BW;
279
0
  }
280
0
  if (ebx & cpuid_bit::ebx::avx512cd) {
281
0
    host_isa |= instruction_set::AVX512CD;
282
0
  }
283
0
  if (ebx & cpuid_bit::ebx::avx512dq) {
284
0
    host_isa |= instruction_set::AVX512DQ;
285
0
  }
286
0
  if (ebx & cpuid_bit::ebx::avx512vl) {
287
0
    host_isa |= instruction_set::AVX512VL;
288
0
  }
289
0
  if (ecx & cpuid_bit::ecx::avx512vbmi2) {
290
0
    host_isa |= instruction_set::AVX512VBMI2;
291
0
  }
292
0
  if (ecx & cpuid_bit::ecx::avx512vpopcnt) {
293
0
    host_isa |= instruction_set::AVX512VPOPCNTDQ;
294
0
  }
295
0
  return host_isa;
296
0
}
297
#elif defined(__loongarch__)
298
299
static inline uint32_t detect_supported_architectures() {
300
  uint32_t host_isa = instruction_set::DEFAULT;
301
  #if defined(__linux__)
302
  uint64_t hwcap = 0;
303
  hwcap = getauxval(AT_HWCAP);
304
  if (hwcap & HWCAP_LOONGARCH_LSX) {
305
    host_isa |= instruction_set::LSX;
306
  }
307
  if (hwcap & HWCAP_LOONGARCH_LASX) {
308
    host_isa |= instruction_set::LASX;
309
  }
310
  #endif
311
  return host_isa;
312
}
313
#else // fallback
314
315
// includes 32-bit ARM.
316
static inline uint32_t detect_supported_architectures() {
317
  return instruction_set::DEFAULT;
318
}
319
320
#endif // end SIMD extension detection code
321
322
} // namespace internal
323
} // namespace simdutf
324
325
#endif // SIMDutf_INTERNAL_ISADETECTION_H