/src/skia/include/core/SkPoint3.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2015 Google Inc. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license that can be |
5 | | * found in the LICENSE file. |
6 | | */ |
7 | | |
8 | | #ifndef SkPoint3_DEFINED |
9 | | #define SkPoint3_DEFINED |
10 | | |
11 | | #include "include/core/SkScalar.h" |
12 | | #include "include/private/base/SkAPI.h" |
13 | | #include "include/private/base/SkFloatingPoint.h" |
14 | | |
15 | | struct SK_API SkPoint3 { |
16 | | SkScalar fX, fY, fZ; |
17 | | |
18 | 0 | static SkPoint3 Make(SkScalar x, SkScalar y, SkScalar z) { |
19 | 0 | SkPoint3 pt; |
20 | 0 | pt.set(x, y, z); |
21 | 0 | return pt; |
22 | 0 | } |
23 | | |
24 | 3 | SkScalar x() const { return fX; } |
25 | 3 | SkScalar y() const { return fY; } |
26 | 3 | SkScalar z() const { return fZ; } |
27 | | |
28 | 12.9M | void set(SkScalar x, SkScalar y, SkScalar z) { fX = x; fY = y; fZ = z; } |
29 | | |
30 | 0 | friend bool operator==(const SkPoint3& a, const SkPoint3& b) { |
31 | 0 | return a.fX == b.fX && a.fY == b.fY && a.fZ == b.fZ; |
32 | 0 | } |
33 | | |
34 | 0 | friend bool operator!=(const SkPoint3& a, const SkPoint3& b) { |
35 | 0 | return !(a == b); |
36 | 0 | } |
37 | | |
38 | | /** Returns the Euclidian distance from (0,0,0) to (x,y,z) |
39 | | */ |
40 | | static SkScalar Length(SkScalar x, SkScalar y, SkScalar z); |
41 | | |
42 | | /** Return the Euclidian distance from (0,0,0) to the point |
43 | | */ |
44 | 0 | SkScalar length() const { return SkPoint3::Length(fX, fY, fZ); } |
45 | | |
46 | | /** Set the point (vector) to be unit-length in the same direction as it |
47 | | already points. If the point has a degenerate length (i.e., nearly 0) |
48 | | then set it to (0,0,0) and return false; otherwise return true. |
49 | | */ |
50 | | bool normalize(); |
51 | | |
52 | | /** Return a new point whose X, Y and Z coordinates are scaled. |
53 | | */ |
54 | 0 | SkPoint3 makeScale(SkScalar scale) const { |
55 | 0 | SkPoint3 p; |
56 | 0 | p.set(scale * fX, scale * fY, scale * fZ); |
57 | 0 | return p; |
58 | 0 | } |
59 | | |
60 | | /** Scale the point's coordinates by scale. |
61 | | */ |
62 | 0 | void scale(SkScalar value) { |
63 | 0 | fX *= value; |
64 | 0 | fY *= value; |
65 | 0 | fZ *= value; |
66 | 0 | } |
67 | | |
68 | | /** Return a new point whose X, Y and Z coordinates are the negative of the |
69 | | original point's |
70 | | */ |
71 | 0 | SkPoint3 operator-() const { |
72 | 0 | SkPoint3 neg; |
73 | 0 | neg.fX = -fX; |
74 | 0 | neg.fY = -fY; |
75 | 0 | neg.fZ = -fZ; |
76 | 0 | return neg; |
77 | 0 | } |
78 | | |
79 | | /** Returns a new point whose coordinates are the difference between |
80 | | a and b (i.e., a - b) |
81 | | */ |
82 | 34.7k | friend SkPoint3 operator-(const SkPoint3& a, const SkPoint3& b) { |
83 | 34.7k | return { a.fX - b.fX, a.fY - b.fY, a.fZ - b.fZ }; |
84 | 34.7k | } |
85 | | |
86 | | /** Returns a new point whose coordinates are the sum of a and b (a + b) |
87 | | */ |
88 | 30.3k | friend SkPoint3 operator+(const SkPoint3& a, const SkPoint3& b) { |
89 | 30.3k | return { a.fX + b.fX, a.fY + b.fY, a.fZ + b.fZ }; |
90 | 30.3k | } |
91 | | |
92 | | /** Add v's coordinates to the point's |
93 | | */ |
94 | 0 | void operator+=(const SkPoint3& v) { |
95 | 0 | fX += v.fX; |
96 | 0 | fY += v.fY; |
97 | 0 | fZ += v.fZ; |
98 | 0 | } |
99 | | |
100 | | /** Subtract v's coordinates from the point's |
101 | | */ |
102 | 0 | void operator-=(const SkPoint3& v) { |
103 | 0 | fX -= v.fX; |
104 | 0 | fY -= v.fY; |
105 | 0 | fZ -= v.fZ; |
106 | 0 | } |
107 | | |
108 | 30.3k | friend SkPoint3 operator*(SkScalar t, SkPoint3 p) { |
109 | 30.3k | return { t * p.fX, t * p.fY, t * p.fZ }; |
110 | 30.3k | } |
111 | | |
112 | | /** Returns true if fX, fY, and fZ are measurable values. |
113 | | |
114 | | @return true for values other than infinities and NaN |
115 | | */ |
116 | 0 | bool isFinite() const { |
117 | 0 | return SkIsFinite(fX, fY, fZ); |
118 | 0 | } |
119 | | |
120 | | /** Returns the dot product of a and b, treating them as 3D vectors |
121 | | */ |
122 | 0 | static SkScalar DotProduct(const SkPoint3& a, const SkPoint3& b) { |
123 | 0 | return a.fX * b.fX + a.fY * b.fY + a.fZ * b.fZ; |
124 | 0 | } |
125 | | |
126 | 0 | SkScalar dot(const SkPoint3& vec) const { |
127 | 0 | return DotProduct(*this, vec); |
128 | 0 | } |
129 | | |
130 | | /** Returns the cross product of a and b, treating them as 3D vectors |
131 | | */ |
132 | 0 | static SkPoint3 CrossProduct(const SkPoint3& a, const SkPoint3& b) { |
133 | 0 | SkPoint3 result; |
134 | 0 | result.fX = a.fY*b.fZ - a.fZ*b.fY; |
135 | 0 | result.fY = a.fZ*b.fX - a.fX*b.fZ; |
136 | 0 | result.fZ = a.fX*b.fY - a.fY*b.fX; |
137 | |
|
138 | 0 | return result; |
139 | 0 | } |
140 | | |
141 | 0 | SkPoint3 cross(const SkPoint3& vec) const { |
142 | 0 | return CrossProduct(*this, vec); |
143 | 0 | } |
144 | | }; |
145 | | |
146 | | typedef SkPoint3 SkVector3; |
147 | | typedef SkPoint3 SkColor3f; |
148 | | |
149 | | #endif |