/src/skia/src/core/SkClipStack.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2011 Google Inc. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license that can be |
5 | | * found in the LICENSE file. |
6 | | */ |
7 | | |
8 | | #include "src/core/SkClipStack.h" |
9 | | |
10 | | #include "include/core/SkBlendMode.h" |
11 | | #include "include/core/SkPath.h" |
12 | | #include "include/core/SkPathTypes.h" |
13 | | #include "include/core/SkScalar.h" |
14 | | #include "include/private/base/SkDebug.h" |
15 | | #include "src/core/SkRectPriv.h" |
16 | | #include "src/shaders/SkShaderBase.h" |
17 | | |
18 | | #include <array> |
19 | | #include <atomic> |
20 | | #include <new> |
21 | | |
22 | 6.48k | SkClipStack::Element::Element(const Element& that) { |
23 | 6.48k | switch (that.getDeviceSpaceType()) { |
24 | 0 | case DeviceSpaceType::kEmpty: |
25 | 0 | fDeviceSpaceRRect.setEmpty(); |
26 | 0 | fDeviceSpacePath.reset(); |
27 | 0 | fShader.reset(); |
28 | 0 | break; |
29 | 4.46k | case DeviceSpaceType::kRect: // Rect uses rrect |
30 | 4.69k | case DeviceSpaceType::kRRect: |
31 | 4.69k | fDeviceSpacePath.reset(); |
32 | 4.69k | fShader.reset(); |
33 | 4.69k | fDeviceSpaceRRect = that.fDeviceSpaceRRect; |
34 | 4.69k | break; |
35 | 1.79k | case DeviceSpaceType::kPath: |
36 | 1.79k | fShader.reset(); |
37 | 1.79k | fDeviceSpacePath.set(that.getDeviceSpacePath()); |
38 | 1.79k | break; |
39 | 0 | case DeviceSpaceType::kShader: |
40 | 0 | fDeviceSpacePath.reset(); |
41 | 0 | fShader = that.fShader; |
42 | 0 | break; |
43 | 6.48k | } |
44 | | |
45 | 6.48k | fSaveCount = that.fSaveCount; |
46 | 6.48k | fOp = that.fOp; |
47 | 6.48k | fDeviceSpaceType = that.fDeviceSpaceType; |
48 | 6.48k | fDoAA = that.fDoAA; |
49 | 6.48k | fIsReplace = that.fIsReplace; |
50 | 6.48k | fFiniteBoundType = that.fFiniteBoundType; |
51 | 6.48k | fFiniteBound = that.fFiniteBound; |
52 | 6.48k | fIsIntersectionOfRects = that.fIsIntersectionOfRects; |
53 | 6.48k | fGenID = that.fGenID; |
54 | 6.48k | } |
55 | | |
56 | 13.5k | SkClipStack::Element::~Element() = default; |
57 | | |
58 | 0 | bool SkClipStack::Element::operator== (const Element& element) const { |
59 | 0 | if (this == &element) { |
60 | 0 | return true; |
61 | 0 | } |
62 | 0 | if (fOp != element.fOp || fDeviceSpaceType != element.fDeviceSpaceType || |
63 | 0 | fDoAA != element.fDoAA || fIsReplace != element.fIsReplace || |
64 | 0 | fSaveCount != element.fSaveCount) { |
65 | 0 | return false; |
66 | 0 | } |
67 | 0 | switch (fDeviceSpaceType) { |
68 | 0 | case DeviceSpaceType::kShader: |
69 | 0 | return this->getShader() == element.getShader(); |
70 | 0 | case DeviceSpaceType::kPath: |
71 | 0 | return this->getDeviceSpacePath() == element.getDeviceSpacePath(); |
72 | 0 | case DeviceSpaceType::kRRect: |
73 | 0 | return fDeviceSpaceRRect == element.fDeviceSpaceRRect; |
74 | 0 | case DeviceSpaceType::kRect: |
75 | 0 | return this->getDeviceSpaceRect() == element.getDeviceSpaceRect(); |
76 | 0 | case DeviceSpaceType::kEmpty: |
77 | 0 | return true; |
78 | 0 | default: |
79 | 0 | SkDEBUGFAIL("Unexpected type."); |
80 | 0 | return false; |
81 | 0 | } |
82 | 0 | } |
83 | | |
84 | 512 | const SkRect& SkClipStack::Element::getBounds() const { |
85 | 512 | static const SkRect kEmpty = {0, 0, 0, 0}; |
86 | 512 | static const SkRect kInfinite = SkRectPriv::MakeLargeS32(); |
87 | 512 | switch (fDeviceSpaceType) { |
88 | 75 | case DeviceSpaceType::kRect: // fallthrough |
89 | 475 | case DeviceSpaceType::kRRect: |
90 | 475 | return fDeviceSpaceRRect.getBounds(); |
91 | 37 | case DeviceSpaceType::kPath: |
92 | 37 | return fDeviceSpacePath->getBounds(); |
93 | 0 | case DeviceSpaceType::kShader: |
94 | | // Shaders have infinite bounds since any pixel could have clipped or full coverage |
95 | | // (which is different from wide-open, where every pixel has 1.0 coverage, or empty |
96 | | // where every pixel has 0.0 coverage). |
97 | 0 | return kInfinite; |
98 | 0 | case DeviceSpaceType::kEmpty: |
99 | 0 | return kEmpty; |
100 | 0 | default: |
101 | 0 | SkDEBUGFAIL("Unexpected type."); |
102 | 0 | return kEmpty; |
103 | 512 | } |
104 | 512 | } |
105 | | |
106 | 0 | bool SkClipStack::Element::contains(const SkRect& rect) const { |
107 | 0 | switch (fDeviceSpaceType) { |
108 | 0 | case DeviceSpaceType::kRect: |
109 | 0 | return this->getDeviceSpaceRect().contains(rect); |
110 | 0 | case DeviceSpaceType::kRRect: |
111 | 0 | return fDeviceSpaceRRect.contains(rect); |
112 | 0 | case DeviceSpaceType::kPath: |
113 | 0 | return fDeviceSpacePath->conservativelyContainsRect(rect); |
114 | 0 | case DeviceSpaceType::kEmpty: |
115 | 0 | case DeviceSpaceType::kShader: |
116 | 0 | return false; |
117 | 0 | default: |
118 | 0 | SkDEBUGFAIL("Unexpected type."); |
119 | 0 | return false; |
120 | 0 | } |
121 | 0 | } |
122 | | |
123 | 0 | bool SkClipStack::Element::contains(const SkRRect& rrect) const { |
124 | 0 | switch (fDeviceSpaceType) { |
125 | 0 | case DeviceSpaceType::kRect: |
126 | 0 | return this->getDeviceSpaceRect().contains(rrect.getBounds()); |
127 | 0 | case DeviceSpaceType::kRRect: |
128 | | // We don't currently have a generalized rrect-rrect containment. |
129 | 0 | return fDeviceSpaceRRect.contains(rrect.getBounds()) || rrect == fDeviceSpaceRRect; |
130 | 0 | case DeviceSpaceType::kPath: |
131 | 0 | return fDeviceSpacePath->conservativelyContainsRect(rrect.getBounds()); |
132 | 0 | case DeviceSpaceType::kEmpty: |
133 | 0 | case DeviceSpaceType::kShader: |
134 | 0 | return false; |
135 | 0 | default: |
136 | 0 | SkDEBUGFAIL("Unexpected type."); |
137 | 0 | return false; |
138 | 0 | } |
139 | 0 | } |
140 | | |
141 | 0 | void SkClipStack::Element::invertShapeFillType() { |
142 | 0 | switch (fDeviceSpaceType) { |
143 | 0 | case DeviceSpaceType::kRect: |
144 | 0 | fDeviceSpacePath.init(); |
145 | 0 | fDeviceSpacePath->addRect(this->getDeviceSpaceRect()); |
146 | 0 | fDeviceSpacePath->setFillType(SkPathFillType::kInverseEvenOdd); |
147 | 0 | fDeviceSpaceType = DeviceSpaceType::kPath; |
148 | 0 | break; |
149 | 0 | case DeviceSpaceType::kRRect: |
150 | 0 | fDeviceSpacePath.init(); |
151 | 0 | fDeviceSpacePath->addRRect(fDeviceSpaceRRect); |
152 | 0 | fDeviceSpacePath->setFillType(SkPathFillType::kInverseEvenOdd); |
153 | 0 | fDeviceSpaceType = DeviceSpaceType::kPath; |
154 | 0 | break; |
155 | 0 | case DeviceSpaceType::kPath: |
156 | 0 | fDeviceSpacePath->toggleInverseFillType(); |
157 | 0 | break; |
158 | 0 | case DeviceSpaceType::kShader: |
159 | 0 | fShader = as_SB(fShader)->makeInvertAlpha(); |
160 | 0 | break; |
161 | 0 | case DeviceSpaceType::kEmpty: |
162 | | // Should this set to an empty, inverse filled path? |
163 | 0 | break; |
164 | 0 | } |
165 | 0 | } |
166 | | |
167 | 7.09k | void SkClipStack::Element::initCommon(int saveCount, SkClipOp op, bool doAA) { |
168 | 7.09k | fSaveCount = saveCount; |
169 | 7.09k | fOp = op; |
170 | 7.09k | fDoAA = doAA; |
171 | 7.09k | fIsReplace = false; |
172 | | // A default of inside-out and empty bounds means the bounds are effectively void as it |
173 | | // indicates that nothing is known to be outside the clip. |
174 | 7.09k | fFiniteBoundType = kInsideOut_BoundsType; |
175 | 7.09k | fFiniteBound.setEmpty(); |
176 | 7.09k | fIsIntersectionOfRects = false; |
177 | 7.09k | fGenID = kInvalidGenID; |
178 | 7.09k | } |
179 | | |
180 | | void SkClipStack::Element::initRect(int saveCount, const SkRect& rect, const SkMatrix& m, |
181 | 5.47k | SkClipOp op, bool doAA) { |
182 | 5.47k | if (m.rectStaysRect()) { |
183 | 4.69k | SkRect devRect; |
184 | 4.69k | m.mapRect(&devRect, rect); |
185 | 4.69k | fDeviceSpaceRRect.setRect(devRect); |
186 | 4.69k | fDeviceSpaceType = DeviceSpaceType::kRect; |
187 | 4.69k | this->initCommon(saveCount, op, doAA); |
188 | 4.69k | return; |
189 | 4.69k | } |
190 | 780 | SkPath path; |
191 | 780 | path.addRect(rect); |
192 | 780 | path.setIsVolatile(true); |
193 | 780 | this->initAsPath(saveCount, path, m, op, doAA); |
194 | 780 | } |
195 | | |
196 | | void SkClipStack::Element::initRRect(int saveCount, const SkRRect& rrect, const SkMatrix& m, |
197 | 530 | SkClipOp op, bool doAA) { |
198 | 530 | if (rrect.transform(m, &fDeviceSpaceRRect)) { |
199 | 376 | SkRRect::Type type = fDeviceSpaceRRect.getType(); |
200 | 376 | if (SkRRect::kRect_Type == type || SkRRect::kEmpty_Type == type) { |
201 | 99 | fDeviceSpaceType = DeviceSpaceType::kRect; |
202 | 277 | } else { |
203 | 277 | fDeviceSpaceType = DeviceSpaceType::kRRect; |
204 | 277 | } |
205 | 376 | this->initCommon(saveCount, op, doAA); |
206 | 376 | return; |
207 | 376 | } |
208 | 154 | SkPath path; |
209 | 154 | path.addRRect(rrect); |
210 | 154 | path.setIsVolatile(true); |
211 | 154 | this->initAsPath(saveCount, path, m, op, doAA); |
212 | 154 | } |
213 | | |
214 | | void SkClipStack::Element::initPath(int saveCount, const SkPath& path, const SkMatrix& m, |
215 | 1.18k | SkClipOp op, bool doAA) { |
216 | 1.18k | if (!path.isInverseFillType()) { |
217 | 536 | SkRect r; |
218 | 536 | if (path.isRect(&r)) { |
219 | 90 | this->initRect(saveCount, r, m, op, doAA); |
220 | 90 | return; |
221 | 90 | } |
222 | 446 | SkRect ovalRect; |
223 | 446 | if (path.isOval(&ovalRect)) { |
224 | 0 | SkRRect rrect; |
225 | 0 | rrect.setOval(ovalRect); |
226 | 0 | this->initRRect(saveCount, rrect, m, op, doAA); |
227 | 0 | return; |
228 | 0 | } |
229 | 446 | } |
230 | 1.09k | this->initAsPath(saveCount, path, m, op, doAA); |
231 | 1.09k | } |
232 | | |
233 | | void SkClipStack::Element::initAsPath(int saveCount, const SkPath& path, const SkMatrix& m, |
234 | 2.02k | SkClipOp op, bool doAA) { |
235 | 2.02k | path.transform(m, fDeviceSpacePath.init()); |
236 | 2.02k | fDeviceSpacePath->setIsVolatile(true); |
237 | 2.02k | fDeviceSpaceType = DeviceSpaceType::kPath; |
238 | 2.02k | this->initCommon(saveCount, op, doAA); |
239 | 2.02k | } |
240 | | |
241 | 0 | void SkClipStack::Element::initShader(int saveCount, sk_sp<SkShader> shader) { |
242 | 0 | SkASSERT(shader); |
243 | 0 | fDeviceSpaceType = DeviceSpaceType::kShader; |
244 | 0 | fShader = std::move(shader); |
245 | 0 | this->initCommon(saveCount, SkClipOp::kIntersect, false); |
246 | 0 | } |
247 | | |
248 | 0 | void SkClipStack::Element::initReplaceRect(int saveCount, const SkRect& rect, bool doAA) { |
249 | 0 | fDeviceSpaceRRect.setRect(rect); |
250 | 0 | fDeviceSpaceType = DeviceSpaceType::kRect; |
251 | 0 | this->initCommon(saveCount, SkClipOp::kIntersect, doAA); |
252 | 0 | fIsReplace = true; |
253 | 0 | } |
254 | | |
255 | 0 | void SkClipStack::Element::asDeviceSpacePath(SkPath* path) const { |
256 | 0 | switch (fDeviceSpaceType) { |
257 | 0 | case DeviceSpaceType::kEmpty: |
258 | 0 | path->reset(); |
259 | 0 | break; |
260 | 0 | case DeviceSpaceType::kRect: |
261 | 0 | path->reset(); |
262 | 0 | path->addRect(this->getDeviceSpaceRect()); |
263 | 0 | break; |
264 | 0 | case DeviceSpaceType::kRRect: |
265 | 0 | path->reset(); |
266 | 0 | path->addRRect(fDeviceSpaceRRect); |
267 | 0 | break; |
268 | 0 | case DeviceSpaceType::kPath: |
269 | 0 | *path = *fDeviceSpacePath; |
270 | 0 | break; |
271 | 0 | case DeviceSpaceType::kShader: |
272 | 0 | path->reset(); |
273 | 0 | path->addRect(SkRectPriv::MakeLargeS32()); |
274 | 0 | break; |
275 | 0 | } |
276 | 0 | path->setIsVolatile(true); |
277 | 0 | } |
278 | | |
279 | 305 | void SkClipStack::Element::setEmpty() { |
280 | 305 | fDeviceSpaceType = DeviceSpaceType::kEmpty; |
281 | 305 | fFiniteBound.setEmpty(); |
282 | 305 | fFiniteBoundType = kNormal_BoundsType; |
283 | 305 | fIsIntersectionOfRects = false; |
284 | 305 | fDeviceSpaceRRect.setEmpty(); |
285 | 305 | fDeviceSpacePath.reset(); |
286 | 305 | fShader.reset(); |
287 | 305 | fGenID = kEmptyGenID; |
288 | 305 | SkDEBUGCODE(this->checkEmpty();) |
289 | 305 | } |
290 | | |
291 | 0 | void SkClipStack::Element::checkEmpty() const { |
292 | 0 | SkASSERT(fFiniteBound.isEmpty()); |
293 | 0 | SkASSERT(kNormal_BoundsType == fFiniteBoundType); |
294 | 0 | SkASSERT(!fIsIntersectionOfRects); |
295 | 0 | SkASSERT(kEmptyGenID == fGenID); |
296 | 0 | SkASSERT(fDeviceSpaceRRect.isEmpty()); |
297 | 0 | SkASSERT(!fDeviceSpacePath.isValid()); |
298 | 0 | SkASSERT(!fShader); |
299 | 0 | } |
300 | | |
301 | 2.09k | bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkClipOp op) const { |
302 | 2.09k | if (DeviceSpaceType::kEmpty == fDeviceSpaceType && |
303 | 2.09k | (SkClipOp::kDifference == op || SkClipOp::kIntersect == op)) { |
304 | 584 | return true; |
305 | 584 | } |
306 | | // Only clips within the same save/restore frame (as captured by |
307 | | // the save count) can be merged |
308 | 1.50k | return fSaveCount == saveCount && |
309 | 1.50k | SkClipOp::kIntersect == op && |
310 | 1.50k | (SkClipOp::kIntersect == fOp || this->isReplaceOp()); |
311 | 2.09k | } |
312 | | |
313 | 140 | bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const { |
314 | 140 | SkASSERT(DeviceSpaceType::kRect == fDeviceSpaceType); |
315 | | |
316 | 140 | if (fDoAA == newAA) { |
317 | | // if the AA setting is the same there is no issue |
318 | 122 | return true; |
319 | 122 | } |
320 | | |
321 | 18 | if (!SkRect::Intersects(this->getDeviceSpaceRect(), newR)) { |
322 | | // The calling code will correctly set the result to the empty clip |
323 | 18 | return true; |
324 | 18 | } |
325 | | |
326 | 0 | if (this->getDeviceSpaceRect().contains(newR)) { |
327 | | // if the new rect carves out a portion of the old one there is no |
328 | | // issue |
329 | 0 | return true; |
330 | 0 | } |
331 | | |
332 | | // So either the two overlap in some complex manner or newR contains oldR. |
333 | | // In the first, case the edges will require different AA. In the second, |
334 | | // the AA setting that would be carried forward is incorrect (e.g., oldR |
335 | | // is AA while newR is BW but since newR contains oldR, oldR will be |
336 | | // drawn BW) since the new AA setting will predominate. |
337 | 0 | return false; |
338 | 0 | } |
339 | | |
340 | | // a mirror of combineBoundsRevDiff |
341 | 996 | void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) { |
342 | 996 | switch (combination) { |
343 | 255 | case kInvPrev_InvCur_FillCombo: |
344 | | // In this case the only pixels that can remain set |
345 | | // are inside the current clip rect since the extensions |
346 | | // to infinity of both clips cancel out and whatever |
347 | | // is outside of the current clip is removed |
348 | 255 | fFiniteBoundType = kNormal_BoundsType; |
349 | 255 | break; |
350 | 575 | case kInvPrev_Cur_FillCombo: |
351 | | // In this case the current op is finite so the only pixels |
352 | | // that aren't set are whatever isn't set in the previous |
353 | | // clip and whatever this clip carves out |
354 | 575 | fFiniteBound.join(prevFinite); |
355 | 575 | fFiniteBoundType = kInsideOut_BoundsType; |
356 | 575 | break; |
357 | 0 | case kPrev_InvCur_FillCombo: |
358 | | // In this case everything outside of this clip's bound |
359 | | // is erased, so the only pixels that can remain set |
360 | | // occur w/in the intersection of the two finite bounds |
361 | 0 | if (!fFiniteBound.intersect(prevFinite)) { |
362 | 0 | fFiniteBound.setEmpty(); |
363 | 0 | fGenID = kEmptyGenID; |
364 | 0 | } |
365 | 0 | fFiniteBoundType = kNormal_BoundsType; |
366 | 0 | break; |
367 | 166 | case kPrev_Cur_FillCombo: |
368 | | // The most conservative result bound is that of the |
369 | | // prior clip. This could be wildly incorrect if the |
370 | | // second clip either exactly matches the first clip |
371 | | // (which should yield the empty set) or reduces the |
372 | | // size of the prior bound (e.g., if the second clip |
373 | | // exactly matched the bottom half of the prior clip). |
374 | | // We ignore these two possibilities. |
375 | 166 | fFiniteBound = prevFinite; |
376 | 166 | break; |
377 | 0 | default: |
378 | 0 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination"); |
379 | 0 | break; |
380 | 996 | } |
381 | 996 | } |
382 | | |
383 | | // a mirror of combineBoundsUnion |
384 | 5.49k | void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) { |
385 | | |
386 | 5.49k | switch (combination) { |
387 | 382 | case kInvPrev_InvCur_FillCombo: |
388 | | // The only pixels that aren't writable in this case |
389 | | // occur in the union of the two finite bounds |
390 | 382 | fFiniteBound.join(prevFinite); |
391 | 382 | fFiniteBoundType = kInsideOut_BoundsType; |
392 | 382 | break; |
393 | 4.57k | case kInvPrev_Cur_FillCombo: |
394 | | // In this case the only pixels that will remain writeable |
395 | | // are within the current clip |
396 | 4.57k | break; |
397 | 8 | case kPrev_InvCur_FillCombo: |
398 | | // In this case the only pixels that will remain writeable |
399 | | // are with the previous clip |
400 | 8 | fFiniteBound = prevFinite; |
401 | 8 | fFiniteBoundType = kNormal_BoundsType; |
402 | 8 | break; |
403 | 530 | case kPrev_Cur_FillCombo: |
404 | 530 | if (!fFiniteBound.intersect(prevFinite)) { |
405 | 288 | this->setEmpty(); |
406 | 288 | } |
407 | 530 | break; |
408 | 0 | default: |
409 | 0 | SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination"); |
410 | 0 | break; |
411 | 5.49k | } |
412 | 5.49k | } |
413 | | |
414 | 6.49k | void SkClipStack::Element::updateBoundAndGenID(const Element* prior) { |
415 | | // We set this first here but we may overwrite it later if we determine that the clip is |
416 | | // either wide-open or empty. |
417 | 6.49k | fGenID = GetNextGenID(); |
418 | | |
419 | | // First, optimistically update the current Element's bound information |
420 | | // with the current clip's bound |
421 | 6.49k | fIsIntersectionOfRects = false; |
422 | 6.49k | switch (fDeviceSpaceType) { |
423 | 4.47k | case DeviceSpaceType::kRect: |
424 | 4.47k | fFiniteBound = this->getDeviceSpaceRect(); |
425 | 4.47k | fFiniteBoundType = kNormal_BoundsType; |
426 | | |
427 | 4.47k | if (this->isReplaceOp() || |
428 | 4.47k | (SkClipOp::kIntersect == fOp && nullptr == prior) || |
429 | 4.47k | (SkClipOp::kIntersect == fOp && prior->fIsIntersectionOfRects && |
430 | 3.80k | prior->rectRectIntersectAllowed(this->getDeviceSpaceRect(), fDoAA))) { |
431 | 3.80k | fIsIntersectionOfRects = true; |
432 | 3.80k | } |
433 | 4.47k | break; |
434 | 229 | case DeviceSpaceType::kRRect: |
435 | 229 | fFiniteBound = fDeviceSpaceRRect.getBounds(); |
436 | 229 | fFiniteBoundType = kNormal_BoundsType; |
437 | 229 | break; |
438 | 1.79k | case DeviceSpaceType::kPath: |
439 | 1.79k | fFiniteBound = fDeviceSpacePath->getBounds(); |
440 | | |
441 | 1.79k | if (fDeviceSpacePath->isInverseFillType()) { |
442 | 645 | fFiniteBoundType = kInsideOut_BoundsType; |
443 | 1.14k | } else { |
444 | 1.14k | fFiniteBoundType = kNormal_BoundsType; |
445 | 1.14k | } |
446 | 1.79k | break; |
447 | 0 | case DeviceSpaceType::kShader: |
448 | | // A shader is infinite. We don't act as wide-open here (which is an empty bounds with |
449 | | // the inside out type). This is because when the bounds is empty and inside-out, we |
450 | | // know there's full coverage everywhere. With a shader, there's *unknown* coverage |
451 | | // everywhere. |
452 | 0 | fFiniteBound = SkRectPriv::MakeLargeS32(); |
453 | 0 | fFiniteBoundType = kNormal_BoundsType; |
454 | 0 | break; |
455 | 0 | case DeviceSpaceType::kEmpty: |
456 | 0 | SkDEBUGFAIL("We shouldn't get here with an empty element."); |
457 | 0 | break; |
458 | 6.49k | } |
459 | | |
460 | | // Now determine the previous Element's bound information taking into |
461 | | // account that there may be no previous clip |
462 | 6.49k | SkRect prevFinite; |
463 | 6.49k | SkClipStack::BoundsType prevType; |
464 | | |
465 | 6.49k | if (nullptr == prior) { |
466 | | // no prior clip means the entire plane is writable |
467 | 5.00k | prevFinite.setEmpty(); // there are no pixels that cannot be drawn to |
468 | 5.00k | prevType = kInsideOut_BoundsType; |
469 | 5.00k | } else { |
470 | 1.48k | prevFinite = prior->fFiniteBound; |
471 | 1.48k | prevType = prior->fFiniteBoundType; |
472 | 1.48k | } |
473 | | |
474 | 6.49k | FillCombo combination = kPrev_Cur_FillCombo; |
475 | 6.49k | if (kInsideOut_BoundsType == fFiniteBoundType) { |
476 | 645 | combination = (FillCombo) (combination | 0x01); |
477 | 645 | } |
478 | 6.49k | if (kInsideOut_BoundsType == prevType) { |
479 | 5.78k | combination = (FillCombo) (combination | 0x02); |
480 | 5.78k | } |
481 | | |
482 | 6.49k | SkASSERT(kInvPrev_InvCur_FillCombo == combination || |
483 | 6.49k | kInvPrev_Cur_FillCombo == combination || |
484 | 6.49k | kPrev_InvCur_FillCombo == combination || |
485 | 6.49k | kPrev_Cur_FillCombo == combination); |
486 | | |
487 | | // Now integrate with clip with the prior clips |
488 | 6.49k | if (!this->isReplaceOp()) { |
489 | 6.49k | switch (fOp) { |
490 | 996 | case SkClipOp::kDifference: |
491 | 996 | this->combineBoundsDiff(combination, prevFinite); |
492 | 996 | break; |
493 | 5.49k | case SkClipOp::kIntersect: |
494 | 5.49k | this->combineBoundsIntersection(combination, prevFinite); |
495 | 5.49k | break; |
496 | 0 | default: |
497 | 0 | SkDebugf("SkClipOp error\n"); |
498 | 0 | SkASSERT(0); |
499 | 0 | break; |
500 | 6.49k | } |
501 | 6.49k | } // else Replace just ignores everything prior and should already have filled in bounds. |
502 | 6.49k | } |
503 | | |
504 | | // This constant determines how many Element's are allocated together as a block in |
505 | | // the deque. As such it needs to balance allocating too much memory vs. |
506 | | // incurring allocation/deallocation thrashing. It should roughly correspond to |
507 | | // the deepest save/restore stack we expect to see. |
508 | | static const int kDefaultElementAllocCnt = 8; |
509 | | |
510 | | SkClipStack::SkClipStack() |
511 | | : fDeque(sizeof(Element), kDefaultElementAllocCnt) |
512 | 0 | , fSaveCount(0) { |
513 | 0 | } |
514 | | |
515 | | SkClipStack::SkClipStack(void* storage, size_t size) |
516 | | : fDeque(sizeof(Element), storage, size, kDefaultElementAllocCnt) |
517 | 5.12k | , fSaveCount(0) { |
518 | 5.12k | } |
519 | | |
520 | | SkClipStack::SkClipStack(const SkClipStack& b) |
521 | 0 | : fDeque(sizeof(Element), kDefaultElementAllocCnt) { |
522 | 0 | *this = b; |
523 | 0 | } |
524 | | |
525 | 5.12k | SkClipStack::~SkClipStack() { |
526 | 5.12k | reset(); |
527 | 5.12k | } |
528 | | |
529 | 0 | SkClipStack& SkClipStack::operator=(const SkClipStack& b) { |
530 | 0 | if (this == &b) { |
531 | 0 | return *this; |
532 | 0 | } |
533 | 0 | reset(); |
534 | |
|
535 | 0 | fSaveCount = b.fSaveCount; |
536 | 0 | SkDeque::F2BIter recIter(b.fDeque); |
537 | 0 | for (const Element* element = (const Element*)recIter.next(); |
538 | 0 | element != nullptr; |
539 | 0 | element = (const Element*)recIter.next()) { |
540 | 0 | new (fDeque.push_back()) Element(*element); |
541 | 0 | } |
542 | |
|
543 | 0 | return *this; |
544 | 0 | } |
545 | | |
546 | 0 | bool SkClipStack::operator==(const SkClipStack& b) const { |
547 | 0 | if (this->getTopmostGenID() == b.getTopmostGenID()) { |
548 | 0 | return true; |
549 | 0 | } |
550 | 0 | if (fSaveCount != b.fSaveCount || |
551 | 0 | fDeque.count() != b.fDeque.count()) { |
552 | 0 | return false; |
553 | 0 | } |
554 | 0 | SkDeque::F2BIter myIter(fDeque); |
555 | 0 | SkDeque::F2BIter bIter(b.fDeque); |
556 | 0 | const Element* myElement = (const Element*)myIter.next(); |
557 | 0 | const Element* bElement = (const Element*)bIter.next(); |
558 | |
|
559 | 0 | while (myElement != nullptr && bElement != nullptr) { |
560 | 0 | if (*myElement != *bElement) { |
561 | 0 | return false; |
562 | 0 | } |
563 | 0 | myElement = (const Element*)myIter.next(); |
564 | 0 | bElement = (const Element*)bIter.next(); |
565 | 0 | } |
566 | 0 | return myElement == nullptr && bElement == nullptr; |
567 | 0 | } |
568 | | |
569 | 5.12k | void SkClipStack::reset() { |
570 | | // We used a placement new for each object in fDeque, so we're responsible |
571 | | // for calling the destructor on each of them as well. |
572 | 6.38k | while (!fDeque.empty()) { |
573 | 1.26k | Element* element = (Element*)fDeque.back(); |
574 | 1.26k | element->~Element(); |
575 | 1.26k | fDeque.pop_back(); |
576 | 1.26k | } |
577 | | |
578 | 5.12k | fSaveCount = 0; |
579 | 5.12k | } |
580 | | |
581 | 6.43k | void SkClipStack::save() { |
582 | 6.43k | fSaveCount += 1; |
583 | 6.43k | } |
584 | | |
585 | 6.43k | void SkClipStack::restore() { |
586 | 6.43k | fSaveCount -= 1; |
587 | 6.43k | restoreTo(fSaveCount); |
588 | 6.43k | } |
589 | | |
590 | 6.43k | void SkClipStack::restoreTo(int saveCount) { |
591 | 11.6k | while (!fDeque.empty()) { |
592 | 6.90k | Element* element = (Element*)fDeque.back(); |
593 | 6.90k | if (element->fSaveCount <= saveCount) { |
594 | 1.68k | break; |
595 | 1.68k | } |
596 | 5.21k | element->~Element(); |
597 | 5.21k | fDeque.pop_back(); |
598 | 5.21k | } |
599 | 6.43k | } |
600 | | |
601 | 50.2k | SkRect SkClipStack::bounds(const SkIRect& deviceBounds) const { |
602 | | // TODO: optimize this. |
603 | 50.2k | SkRect r; |
604 | 50.2k | SkClipStack::BoundsType bounds; |
605 | 50.2k | this->getBounds(&r, &bounds); |
606 | 50.2k | if (bounds == SkClipStack::kInsideOut_BoundsType) { |
607 | 41.0k | return SkRect::Make(deviceBounds); |
608 | 41.0k | } |
609 | 9.14k | return r.intersect(SkRect::Make(deviceBounds)) ? r : SkRect::MakeEmpty(); |
610 | 50.2k | } |
611 | | |
612 | | // TODO: optimize this. |
613 | 25.1k | bool SkClipStack::isEmpty(const SkIRect& r) const { return this->bounds(r).isEmpty(); } |
614 | | |
615 | | void SkClipStack::getBounds(SkRect* canvFiniteBound, |
616 | | BoundsType* boundType, |
617 | 50.2k | bool* isIntersectionOfRects) const { |
618 | 50.2k | SkASSERT(canvFiniteBound && boundType); |
619 | | |
620 | 50.2k | const Element* element = (const Element*)fDeque.back(); |
621 | | |
622 | 50.2k | if (nullptr == element) { |
623 | | // the clip is wide open - the infinite plane w/ no pixels un-writeable |
624 | 36.3k | canvFiniteBound->setEmpty(); |
625 | 36.3k | *boundType = kInsideOut_BoundsType; |
626 | 36.3k | if (isIntersectionOfRects) { |
627 | 0 | *isIntersectionOfRects = false; |
628 | 0 | } |
629 | 36.3k | return; |
630 | 36.3k | } |
631 | | |
632 | 13.8k | *canvFiniteBound = element->fFiniteBound; |
633 | 13.8k | *boundType = element->fFiniteBoundType; |
634 | 13.8k | if (isIntersectionOfRects) { |
635 | 0 | *isIntersectionOfRects = element->fIsIntersectionOfRects; |
636 | 0 | } |
637 | 13.8k | } |
638 | | |
639 | 0 | bool SkClipStack::internalQuickContains(const SkRect& rect) const { |
640 | 0 | Iter iter(*this, Iter::kTop_IterStart); |
641 | 0 | const Element* element = iter.prev(); |
642 | 0 | while (element != nullptr) { |
643 | | // TODO: Once expanding ops are removed, this condition is equiv. to op == kDifference. |
644 | 0 | if (SkClipOp::kIntersect != element->getOp() && !element->isReplaceOp()) { |
645 | 0 | return false; |
646 | 0 | } |
647 | 0 | if (element->isInverseFilled()) { |
648 | | // Part of 'rect' could be trimmed off by the inverse-filled clip element |
649 | 0 | if (SkRect::Intersects(element->getBounds(), rect)) { |
650 | 0 | return false; |
651 | 0 | } |
652 | 0 | } else { |
653 | 0 | if (!element->contains(rect)) { |
654 | 0 | return false; |
655 | 0 | } |
656 | 0 | } |
657 | 0 | if (element->isReplaceOp()) { |
658 | 0 | break; |
659 | 0 | } |
660 | 0 | element = iter.prev(); |
661 | 0 | } |
662 | 0 | return true; |
663 | 0 | } |
664 | | |
665 | 0 | bool SkClipStack::internalQuickContains(const SkRRect& rrect) const { |
666 | 0 | Iter iter(*this, Iter::kTop_IterStart); |
667 | 0 | const Element* element = iter.prev(); |
668 | 0 | while (element != nullptr) { |
669 | | // TODO: Once expanding ops are removed, this condition is equiv. to op == kDifference. |
670 | 0 | if (SkClipOp::kIntersect != element->getOp() && !element->isReplaceOp()) { |
671 | 0 | return false; |
672 | 0 | } |
673 | 0 | if (element->isInverseFilled()) { |
674 | | // Part of 'rrect' could be trimmed off by the inverse-filled clip element |
675 | 0 | if (SkRect::Intersects(element->getBounds(), rrect.getBounds())) { |
676 | 0 | return false; |
677 | 0 | } |
678 | 0 | } else { |
679 | 0 | if (!element->contains(rrect)) { |
680 | 0 | return false; |
681 | 0 | } |
682 | 0 | } |
683 | 0 | if (element->isReplaceOp()) { |
684 | 0 | break; |
685 | 0 | } |
686 | 0 | element = iter.prev(); |
687 | 0 | } |
688 | 0 | return true; |
689 | 0 | } |
690 | | |
691 | 7.09k | void SkClipStack::pushElement(const Element& element) { |
692 | | // Use reverse iterator instead of back because Rect path may need previous |
693 | 7.09k | SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
694 | 7.09k | Element* prior = (Element*) iter.prev(); |
695 | | |
696 | 7.09k | if (prior) { |
697 | 2.09k | if (element.isReplaceOp()) { |
698 | 0 | this->restoreTo(fSaveCount - 1); |
699 | 0 | prior = (Element*) fDeque.back(); |
700 | 2.09k | } else if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) { |
701 | 848 | switch (prior->fDeviceSpaceType) { |
702 | 584 | case Element::DeviceSpaceType::kEmpty: |
703 | 584 | SkDEBUGCODE(prior->checkEmpty();) |
704 | 584 | return; |
705 | 0 | case Element::DeviceSpaceType::kShader: |
706 | 0 | if (Element::DeviceSpaceType::kShader == element.getDeviceSpaceType()) { |
707 | 0 | prior->fShader = SkShaders::Blend(SkBlendMode::kSrcIn, |
708 | 0 | element.fShader, prior->fShader); |
709 | 0 | Element* priorPrior = (Element*) iter.prev(); |
710 | 0 | prior->updateBoundAndGenID(priorPrior); |
711 | 0 | return; |
712 | 0 | } |
713 | 0 | break; |
714 | 46 | case Element::DeviceSpaceType::kRect: |
715 | 46 | if (Element::DeviceSpaceType::kRect == element.getDeviceSpaceType()) { |
716 | 8 | if (prior->rectRectIntersectAllowed(element.getDeviceSpaceRect(), |
717 | 8 | element.isAA())) { |
718 | 8 | SkRect isectRect; |
719 | 8 | if (!isectRect.intersect(prior->getDeviceSpaceRect(), |
720 | 8 | element.getDeviceSpaceRect())) { |
721 | 1 | prior->setEmpty(); |
722 | 1 | return; |
723 | 1 | } |
724 | | |
725 | 7 | prior->fDeviceSpaceRRect.setRect(isectRect); |
726 | 7 | prior->fDoAA = element.isAA(); |
727 | 7 | Element* priorPrior = (Element*) iter.prev(); |
728 | 7 | prior->updateBoundAndGenID(priorPrior); |
729 | 7 | return; |
730 | 8 | } |
731 | 0 | break; |
732 | 8 | } |
733 | 46 | [[fallthrough]]; |
734 | 256 | default: |
735 | 256 | if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) { |
736 | 16 | prior->setEmpty(); |
737 | 16 | return; |
738 | 16 | } |
739 | 240 | break; |
740 | 848 | } |
741 | 848 | } |
742 | 2.09k | } |
743 | 6.48k | Element* newElement = new (fDeque.push_back()) Element(element); |
744 | 6.48k | newElement->updateBoundAndGenID(prior); |
745 | 6.48k | } |
746 | | |
747 | 530 | void SkClipStack::clipRRect(const SkRRect& rrect, const SkMatrix& matrix, SkClipOp op, bool doAA) { |
748 | 530 | Element element(fSaveCount, rrect, matrix, op, doAA); |
749 | 530 | this->pushElement(element); |
750 | 530 | } |
751 | | |
752 | 5.38k | void SkClipStack::clipRect(const SkRect& rect, const SkMatrix& matrix, SkClipOp op, bool doAA) { |
753 | 5.38k | Element element(fSaveCount, rect, matrix, op, doAA); |
754 | 5.38k | this->pushElement(element); |
755 | 5.38k | } |
756 | | |
757 | | void SkClipStack::clipPath(const SkPath& path, const SkMatrix& matrix, SkClipOp op, |
758 | 1.18k | bool doAA) { |
759 | 1.18k | Element element(fSaveCount, path, matrix, op, doAA); |
760 | 1.18k | this->pushElement(element); |
761 | 1.18k | } |
762 | | |
763 | 0 | void SkClipStack::clipShader(sk_sp<SkShader> shader) { |
764 | 0 | Element element(fSaveCount, std::move(shader)); |
765 | 0 | this->pushElement(element); |
766 | 0 | } |
767 | | |
768 | 0 | void SkClipStack::replaceClip(const SkRect& rect, bool doAA) { |
769 | 0 | Element element(fSaveCount, rect, doAA); |
770 | 0 | this->pushElement(element); |
771 | 0 | } |
772 | | |
773 | 0 | void SkClipStack::clipEmpty() { |
774 | 0 | Element* element = (Element*) fDeque.back(); |
775 | |
|
776 | 0 | if (element && element->canBeIntersectedInPlace(fSaveCount, SkClipOp::kIntersect)) { |
777 | 0 | element->setEmpty(); |
778 | 0 | } |
779 | 0 | new (fDeque.push_back()) Element(fSaveCount); |
780 | |
|
781 | 0 | ((Element*)fDeque.back())->fGenID = kEmptyGenID; |
782 | 0 | } |
783 | | |
784 | | /////////////////////////////////////////////////////////////////////////////// |
785 | | |
786 | 0 | SkClipStack::Iter::Iter() : fStack(nullptr) { |
787 | 0 | } |
788 | | |
789 | | SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc) |
790 | 4.30k | : fStack(&stack) { |
791 | 4.30k | this->reset(stack, startLoc); |
792 | 4.30k | } |
793 | | |
794 | 5.10k | const SkClipStack::Element* SkClipStack::Iter::next() { |
795 | 5.10k | return (const SkClipStack::Element*)fIter.next(); |
796 | 5.10k | } |
797 | | |
798 | 0 | const SkClipStack::Element* SkClipStack::Iter::prev() { |
799 | 0 | return (const SkClipStack::Element*)fIter.prev(); |
800 | 0 | } |
801 | | |
802 | 0 | const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkClipOp op) { |
803 | 0 | if (nullptr == fStack) { |
804 | 0 | return nullptr; |
805 | 0 | } |
806 | | |
807 | 0 | fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart); |
808 | |
|
809 | 0 | const SkClipStack::Element* element = nullptr; |
810 | |
|
811 | 0 | for (element = (const SkClipStack::Element*) fIter.prev(); |
812 | 0 | element; |
813 | 0 | element = (const SkClipStack::Element*) fIter.prev()) { |
814 | |
|
815 | 0 | if (op == element->fOp) { |
816 | | // The Deque's iterator is actually one pace ahead of the |
817 | | // returned value. So while "element" is the element we want to |
818 | | // return, the iterator is actually pointing at (and will |
819 | | // return on the next "next" or "prev" call) the element |
820 | | // in front of it in the deque. Bump the iterator forward a |
821 | | // step so we get the expected result. |
822 | 0 | if (nullptr == fIter.next()) { |
823 | | // The reverse iterator has run off the front of the deque |
824 | | // (i.e., the "op" clip is the first clip) and can't |
825 | | // recover. Reset the iterator to start at the front. |
826 | 0 | fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
827 | 0 | } |
828 | 0 | break; |
829 | 0 | } |
830 | 0 | } |
831 | |
|
832 | 0 | if (nullptr == element) { |
833 | | // There were no "op" clips |
834 | 0 | fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart); |
835 | 0 | } |
836 | |
|
837 | 0 | return this->next(); |
838 | 0 | } |
839 | | |
840 | 4.30k | void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) { |
841 | 4.30k | fStack = &stack; |
842 | 4.30k | fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc)); |
843 | 4.30k | } |
844 | | |
845 | | // helper method |
846 | | void SkClipStack::getConservativeBounds(int offsetX, |
847 | | int offsetY, |
848 | | int maxWidth, |
849 | | int maxHeight, |
850 | | SkRect* devBounds, |
851 | 0 | bool* isIntersectionOfRects) const { |
852 | 0 | SkASSERT(devBounds); |
853 | |
|
854 | 0 | devBounds->setLTRB(0, 0, |
855 | 0 | SkIntToScalar(maxWidth), SkIntToScalar(maxHeight)); |
856 | |
|
857 | 0 | SkRect temp; |
858 | 0 | SkClipStack::BoundsType boundType; |
859 | | |
860 | | // temp starts off in canvas space here |
861 | 0 | this->getBounds(&temp, &boundType, isIntersectionOfRects); |
862 | 0 | if (SkClipStack::kInsideOut_BoundsType == boundType) { |
863 | 0 | return; |
864 | 0 | } |
865 | | |
866 | | // but is converted to device space here |
867 | 0 | temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY)); |
868 | |
|
869 | 0 | if (!devBounds->intersect(temp)) { |
870 | 0 | devBounds->setEmpty(); |
871 | 0 | } |
872 | 0 | } |
873 | | |
874 | 0 | bool SkClipStack::isRRect(const SkRect& bounds, SkRRect* rrect, bool* aa) const { |
875 | 0 | const Element* back = static_cast<const Element*>(fDeque.back()); |
876 | 0 | if (!back) { |
877 | | // TODO: return bounds? |
878 | 0 | return false; |
879 | 0 | } |
880 | | // First check if the entire stack is known to be a rect by the top element. |
881 | 0 | if (back->fIsIntersectionOfRects && back->fFiniteBoundType == BoundsType::kNormal_BoundsType) { |
882 | 0 | rrect->setRect(back->fFiniteBound); |
883 | 0 | *aa = back->isAA(); |
884 | 0 | return true; |
885 | 0 | } |
886 | | |
887 | 0 | if (back->getDeviceSpaceType() != SkClipStack::Element::DeviceSpaceType::kRect && |
888 | 0 | back->getDeviceSpaceType() != SkClipStack::Element::DeviceSpaceType::kRRect) { |
889 | 0 | return false; |
890 | 0 | } |
891 | 0 | if (back->isReplaceOp()) { |
892 | 0 | *rrect = back->asDeviceSpaceRRect(); |
893 | 0 | *aa = back->isAA(); |
894 | 0 | return true; |
895 | 0 | } |
896 | | |
897 | 0 | if (back->getOp() == SkClipOp::kIntersect) { |
898 | 0 | SkRect backBounds; |
899 | 0 | if (!backBounds.intersect(bounds, back->asDeviceSpaceRRect().rect())) { |
900 | 0 | return false; |
901 | 0 | } |
902 | | // We limit to 17 elements. This means the back element will be bounds checked at most 16 |
903 | | // times if it is an rrect. |
904 | 0 | int cnt = fDeque.count(); |
905 | 0 | if (cnt > 17) { |
906 | 0 | return false; |
907 | 0 | } |
908 | 0 | if (cnt > 1) { |
909 | 0 | SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart); |
910 | 0 | SkAssertResult(static_cast<const Element*>(iter.prev()) == back); |
911 | 0 | while (const Element* prior = (const Element*)iter.prev()) { |
912 | | // TODO: Once expanding clip ops are removed, this is equiv. to op == kDifference |
913 | 0 | if ((prior->getOp() != SkClipOp::kIntersect && !prior->isReplaceOp()) || |
914 | 0 | !prior->contains(backBounds)) { |
915 | 0 | return false; |
916 | 0 | } |
917 | 0 | if (prior->isReplaceOp()) { |
918 | 0 | break; |
919 | 0 | } |
920 | 0 | } |
921 | 0 | } |
922 | 0 | *rrect = back->asDeviceSpaceRRect(); |
923 | 0 | *aa = back->isAA(); |
924 | 0 | return true; |
925 | 0 | } |
926 | 0 | return false; |
927 | 0 | } |
928 | | |
929 | 6.49k | uint32_t SkClipStack::GetNextGenID() { |
930 | | // 0-2 are reserved for invalid, empty & wide-open |
931 | 6.49k | static const uint32_t kFirstUnreservedGenID = 3; |
932 | 6.49k | static std::atomic<uint32_t> nextID{kFirstUnreservedGenID}; |
933 | | |
934 | 6.49k | uint32_t id; |
935 | 6.49k | do { |
936 | 6.49k | id = nextID.fetch_add(1, std::memory_order_relaxed); |
937 | 6.49k | } while (id < kFirstUnreservedGenID); |
938 | 6.49k | return id; |
939 | 6.49k | } |
940 | | |
941 | 0 | uint32_t SkClipStack::getTopmostGenID() const { |
942 | 0 | if (fDeque.empty()) { |
943 | 0 | return kWideOpenGenID; |
944 | 0 | } |
945 | | |
946 | 0 | const Element* back = static_cast<const Element*>(fDeque.back()); |
947 | 0 | if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty() && |
948 | 0 | Element::DeviceSpaceType::kShader != back->fDeviceSpaceType) { |
949 | 0 | return kWideOpenGenID; |
950 | 0 | } |
951 | | |
952 | 0 | return back->getGenID(); |
953 | 0 | } |
954 | | |
955 | | #ifdef SK_DEBUG |
956 | | void SkClipStack::Element::dump() const { |
957 | | static const char* kTypeStrings[] = { |
958 | | "empty", |
959 | | "rect", |
960 | | "rrect", |
961 | | "path", |
962 | | "shader" |
963 | | }; |
964 | | static_assert(0 == static_cast<int>(DeviceSpaceType::kEmpty), "enum mismatch"); |
965 | | static_assert(1 == static_cast<int>(DeviceSpaceType::kRect), "enum mismatch"); |
966 | | static_assert(2 == static_cast<int>(DeviceSpaceType::kRRect), "enum mismatch"); |
967 | | static_assert(3 == static_cast<int>(DeviceSpaceType::kPath), "enum mismatch"); |
968 | | static_assert(4 == static_cast<int>(DeviceSpaceType::kShader), "enum mismatch"); |
969 | | static_assert(std::size(kTypeStrings) == kTypeCnt, "enum mismatch"); |
970 | | |
971 | | const char* opName = this->isReplaceOp() ? "replace" : |
972 | | (fOp == SkClipOp::kDifference ? "difference" : "intersect"); |
973 | | SkDebugf("Type: %s, Op: %s, AA: %s, Save Count: %d\n", kTypeStrings[(int)fDeviceSpaceType], |
974 | | opName, (fDoAA ? "yes" : "no"), fSaveCount); |
975 | | switch (fDeviceSpaceType) { |
976 | | case DeviceSpaceType::kEmpty: |
977 | | SkDebugf("\n"); |
978 | | break; |
979 | | case DeviceSpaceType::kRect: |
980 | | this->getDeviceSpaceRect().dump(); |
981 | | SkDebugf("\n"); |
982 | | break; |
983 | | case DeviceSpaceType::kRRect: |
984 | | this->getDeviceSpaceRRect().dump(); |
985 | | SkDebugf("\n"); |
986 | | break; |
987 | | case DeviceSpaceType::kPath: |
988 | | this->getDeviceSpacePath().dump(nullptr, false); |
989 | | break; |
990 | | case DeviceSpaceType::kShader: |
991 | | // SkShaders don't provide much introspection that's worth while. |
992 | | break; |
993 | | } |
994 | | } |
995 | | |
996 | | void SkClipStack::dump() const { |
997 | | B2TIter iter(*this); |
998 | | const Element* e; |
999 | | while ((e = iter.next())) { |
1000 | | e->dump(); |
1001 | | SkDebugf("\n"); |
1002 | | } |
1003 | | } |
1004 | | #endif |