/src/skia/src/core/SkWriteBuffer.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2012 Google Inc. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license that can be |
5 | | * found in the LICENSE file. |
6 | | */ |
7 | | |
8 | | #include "src/core/SkWriteBuffer.h" |
9 | | |
10 | | #include "include/core/SkAlphaType.h" |
11 | | #include "include/core/SkData.h" |
12 | | #include "include/core/SkFlattenable.h" |
13 | | #include "include/core/SkImage.h" |
14 | | #include "include/core/SkPoint.h" |
15 | | #include "include/core/SkPoint3.h" |
16 | | #include "include/core/SkRect.h" |
17 | | #include "include/core/SkTypeface.h" |
18 | | #include "include/private/base/SkAssert.h" |
19 | | #include "include/private/base/SkTFitsIn.h" |
20 | | #include "include/private/base/SkTo.h" |
21 | | #include "src/core/SkMatrixPriv.h" |
22 | | #include "src/core/SkMipmap.h" |
23 | | #include "src/core/SkPaintPriv.h" |
24 | | #include "src/core/SkPtrRecorder.h" |
25 | | #include "src/image/SkImage_Base.h" |
26 | | |
27 | | #if !defined(SK_DISABLE_LEGACY_PNG_WRITEBUFFER) |
28 | | #include "include/core/SkBitmap.h" |
29 | | #include "include/core/SkStream.h" |
30 | | #include "include/encode/SkPngEncoder.h" |
31 | | #endif |
32 | | |
33 | | #include <cstring> |
34 | | #include <utility> |
35 | | |
36 | | class SkMatrix; |
37 | | class SkPaint; |
38 | | class SkRegion; |
39 | | |
40 | | /////////////////////////////////////////////////////////////////////////////////////////////////// |
41 | | |
42 | | SkBinaryWriteBuffer::SkBinaryWriteBuffer(const SkSerialProcs& p) |
43 | 131k | : SkWriteBuffer(p), fFactorySet(nullptr), fTFSet(nullptr) {} |
44 | | |
45 | | SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize, const SkSerialProcs& p) |
46 | 0 | : SkWriteBuffer(p), fFactorySet(nullptr), fTFSet(nullptr), fWriter(storage, storageSize) {} |
47 | | |
48 | 131k | SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {} |
49 | | |
50 | 0 | bool SkBinaryWriteBuffer::usingInitialStorage() const { |
51 | 0 | return fWriter.usingInitialStorage(); |
52 | 0 | } |
53 | | |
54 | 0 | void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { |
55 | 0 | fWriter.write32(SkToU32(size)); |
56 | 0 | fWriter.writePad(data, size); |
57 | 0 | } |
58 | | |
59 | 0 | void SkBinaryWriteBuffer::writeBool(bool value) { |
60 | 0 | fWriter.writeBool(value); |
61 | 0 | } |
62 | | |
63 | 28.1k | void SkBinaryWriteBuffer::writeScalar(SkScalar value) { |
64 | 28.1k | fWriter.writeScalar(value); |
65 | 28.1k | } |
66 | | |
67 | 795 | void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { |
68 | 795 | fWriter.write32(count); |
69 | 795 | fWriter.write(value, count * sizeof(SkScalar)); |
70 | 795 | } |
71 | | |
72 | 6.77k | void SkBinaryWriteBuffer::writeInt(int32_t value) { |
73 | 6.77k | fWriter.write32(value); |
74 | 6.77k | } |
75 | | |
76 | 0 | void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { |
77 | 0 | fWriter.write32(count); |
78 | 0 | fWriter.write(value, count * sizeof(int32_t)); |
79 | 0 | } |
80 | | |
81 | 30.7k | void SkBinaryWriteBuffer::writeUInt(uint32_t value) { |
82 | 30.7k | fWriter.write32(value); |
83 | 30.7k | } |
84 | | |
85 | 24.0k | void SkBinaryWriteBuffer::writeString(std::string_view value) { |
86 | 24.0k | fWriter.writeString(value.data(), value.size()); |
87 | 24.0k | } |
88 | | |
89 | 0 | void SkBinaryWriteBuffer::writeColor(SkColor color) { |
90 | 0 | fWriter.write32(color); |
91 | 0 | } |
92 | | |
93 | 0 | void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { |
94 | 0 | fWriter.write32(count); |
95 | 0 | fWriter.write(color, count * sizeof(SkColor)); |
96 | 0 | } |
97 | | |
98 | 0 | void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) { |
99 | 0 | fWriter.write(&color, sizeof(SkColor4f)); |
100 | 0 | } |
101 | | |
102 | 0 | void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) { |
103 | 0 | fWriter.write32(count); |
104 | 0 | fWriter.write(color, count * sizeof(SkColor4f)); |
105 | 0 | } |
106 | | |
107 | 0 | void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { |
108 | 0 | fWriter.writeScalar(point.fX); |
109 | 0 | fWriter.writeScalar(point.fY); |
110 | 0 | } |
111 | | |
112 | 0 | void SkBinaryWriteBuffer::writePoint3(const SkPoint3& point) { |
113 | 0 | this->writePad32(&point, sizeof(SkPoint3)); |
114 | 0 | } |
115 | | |
116 | 0 | void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { |
117 | 0 | fWriter.write32(count); |
118 | 0 | fWriter.write(point, count * sizeof(SkPoint)); |
119 | 0 | } |
120 | | |
121 | 0 | void SkBinaryWriteBuffer::write(const SkM44& matrix) { |
122 | 0 | fWriter.write(SkMatrixPriv::M44ColMajor(matrix), sizeof(float) * 16); |
123 | 0 | } |
124 | | |
125 | 3.84k | void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { |
126 | 3.84k | fWriter.writeMatrix(matrix); |
127 | 3.84k | } |
128 | | |
129 | 0 | void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { |
130 | 0 | fWriter.write(&rect, sizeof(SkIRect)); |
131 | 0 | } |
132 | | |
133 | 0 | void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { |
134 | 0 | fWriter.writeRect(rect); |
135 | 0 | } |
136 | | |
137 | 0 | void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { |
138 | 0 | fWriter.writeRegion(region); |
139 | 0 | } |
140 | | |
141 | 0 | void SkBinaryWriteBuffer::writeSampling(const SkSamplingOptions& sampling) { |
142 | 0 | fWriter.writeSampling(sampling); |
143 | 0 | } |
144 | | |
145 | 4.05k | void SkBinaryWriteBuffer::writePath(const SkPath& path) { |
146 | 4.05k | fWriter.writePath(path); |
147 | 4.05k | } |
148 | | |
149 | 0 | size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { |
150 | 0 | fWriter.write32(SkToU32(length)); |
151 | 0 | size_t bytesWritten = fWriter.readFromStream(stream, length); |
152 | 0 | if (bytesWritten < length) { |
153 | 0 | fWriter.reservePad(length - bytesWritten); |
154 | 0 | } |
155 | 0 | return bytesWritten; |
156 | 0 | } |
157 | | |
158 | 0 | bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) const { |
159 | 0 | return fWriter.writeToStream(stream); |
160 | 0 | } |
161 | | |
162 | 0 | static sk_sp<SkData> serialize_image(const SkImage* image, SkSerialProcs procs) { |
163 | 0 | sk_sp<SkData> data; |
164 | 0 | if (procs.fImageProc) { |
165 | 0 | data = procs.fImageProc(const_cast<SkImage*>(image), procs.fImageCtx); |
166 | 0 | } |
167 | 0 | if (data) { |
168 | 0 | return data; |
169 | 0 | } |
170 | | // Check to see if the image's source was an encoded block of data. |
171 | | // If so, just use that. |
172 | 0 | data = image->refEncodedData(); |
173 | 0 | if (data) { |
174 | 0 | return data; |
175 | 0 | } |
176 | 0 | #if !defined(SK_DISABLE_LEGACY_PNG_WRITEBUFFER) |
177 | 0 | SkBitmap bm; |
178 | 0 | auto ib = as_IB(image); |
179 | 0 | if (!ib->getROPixels(ib->directContext(), &bm)) { |
180 | 0 | return nullptr; |
181 | 0 | } |
182 | 0 | SkDynamicMemoryWStream stream; |
183 | 0 | if (SkPngEncoder::Encode(&stream, bm.pixmap(), SkPngEncoder::Options())) { |
184 | 0 | return stream.detachAsData(); |
185 | 0 | } |
186 | 0 | #endif |
187 | 0 | return nullptr; |
188 | 0 | } |
189 | | |
190 | 0 | static sk_sp<SkData> serialize_mipmap(const SkMipmap* mipmap, SkSerialProcs procs) { |
191 | | /* Format |
192 | | count_levels:32 |
193 | | for each level, starting with the biggest (index 0 in our iterator) |
194 | | encoded_size:32 |
195 | | encoded_data (padded) |
196 | | */ |
197 | 0 | const int count = mipmap->countLevels(); |
198 | | |
199 | | // This buffer does not need procs because it is just writing SkDatas |
200 | 0 | SkBinaryWriteBuffer buffer({}); |
201 | 0 | buffer.write32(count); |
202 | 0 | for (int i = 0; i < count; ++i) { |
203 | 0 | SkMipmap::Level level; |
204 | 0 | if (mipmap->getLevel(i, &level)) { |
205 | 0 | sk_sp<SkImage> levelImage = SkImages::RasterFromPixmap(level.fPixmap, nullptr, nullptr); |
206 | 0 | sk_sp<SkData> levelData = serialize_image(levelImage.get(), procs); |
207 | 0 | buffer.writeDataAsByteArray(levelData.get()); |
208 | 0 | } else { |
209 | 0 | return nullptr; |
210 | 0 | } |
211 | 0 | } |
212 | 0 | return buffer.snapshotAsData(); |
213 | 0 | } |
214 | | |
215 | | /* Format: |
216 | | * flags: U32 |
217 | | * encoded : size_32 + data[] |
218 | | * [subset: IRect] |
219 | | * [mips] : size_32 + data[] |
220 | | */ |
221 | 0 | void SkBinaryWriteBuffer::writeImage(const SkImage* image) { |
222 | 0 | uint32_t flags = 0; |
223 | 0 | const SkMipmap* mips = as_IB(image)->onPeekMips(); |
224 | 0 | if (mips) { |
225 | 0 | flags |= SkWriteBufferImageFlags::kHasMipmap; |
226 | 0 | } |
227 | 0 | if (image->alphaType() == kUnpremul_SkAlphaType) { |
228 | 0 | flags |= SkWriteBufferImageFlags::kUnpremul; |
229 | 0 | } |
230 | |
|
231 | 0 | this->write32(flags); |
232 | |
|
233 | 0 | sk_sp<SkData> data = serialize_image(image, fProcs); |
234 | 0 | SkASSERT(data); |
235 | 0 | this->writeDataAsByteArray(data.get()); |
236 | |
|
237 | 0 | if (flags & SkWriteBufferImageFlags::kHasMipmap) { |
238 | 0 | sk_sp<SkData> mipData = serialize_mipmap(mips, fProcs); |
239 | 0 | this->writeDataAsByteArray(mipData.get()); |
240 | 0 | } |
241 | 0 | } Unexecuted instantiation: SkBinaryWriteBuffer::writeImage(SkImage const*) Unexecuted instantiation: SkBinaryWriteBuffer::writeImage(SkImage const*) |
242 | | |
243 | 0 | void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { |
244 | | // Write 32 bits (signed) |
245 | | // 0 -- empty font |
246 | | // >0 -- index |
247 | | // <0 -- custom (serial procs) |
248 | |
|
249 | 0 | if (obj == nullptr) { |
250 | 0 | fWriter.write32(0); |
251 | 0 | } else if (fProcs.fTypefaceProc) { |
252 | 0 | auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx); |
253 | 0 | if (data) { |
254 | 0 | size_t size = data->size(); |
255 | 0 | if (!SkTFitsIn<int32_t>(size)) { |
256 | 0 | size = 0; // fall back to default font |
257 | 0 | } |
258 | 0 | int32_t ssize = SkToS32(size); |
259 | 0 | fWriter.write32(-ssize); // negative to signal custom |
260 | 0 | if (size) { |
261 | 0 | this->writePad32(data->data(), size); |
262 | 0 | } |
263 | 0 | return; |
264 | 0 | } |
265 | | // no data means fall through for std behavior |
266 | 0 | } |
267 | 0 | fWriter.write32(fTFSet ? fTFSet->add(obj) : 0); |
268 | 0 | } |
269 | | |
270 | 0 | void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { |
271 | 0 | SkPaintPriv::Flatten(paint, *this); |
272 | 0 | } |
273 | | |
274 | 0 | void SkBinaryWriteBuffer::setFactoryRecorder(sk_sp<SkFactorySet> rec) { |
275 | 0 | fFactorySet = std::move(rec); |
276 | 0 | } |
277 | | |
278 | 0 | void SkBinaryWriteBuffer::setTypefaceRecorder(sk_sp<SkRefCntSet> rec) { |
279 | 0 | fTFSet = std::move(rec); |
280 | 0 | } |
281 | | |
282 | 30.7k | void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
283 | 30.7k | if (nullptr == flattenable) { |
284 | 0 | this->write32(0); |
285 | 0 | return; |
286 | 0 | } |
287 | | |
288 | | /* |
289 | | * We can write 1 of 2 versions of the flattenable: |
290 | | * |
291 | | * 1. index into fFactorySet: This assumes the writer will later resolve the function-ptrs |
292 | | * into strings for its reader. SkPicture does exactly this, by writing a table of names |
293 | | * (matching the indices) up front in its serialized form. |
294 | | * |
295 | | * 2. string name of the flattenable or index into fFlattenableDict: We store the string to |
296 | | * allow the reader to specify its own factories after write time. In order to improve |
297 | | * compression, if we have already written the string, we write its index instead. |
298 | | */ |
299 | | |
300 | 30.7k | if (SkFlattenable::Factory factory = flattenable->getFactory(); factory && fFactorySet) { |
301 | 0 | this->write32(fFactorySet->add(factory)); |
302 | 30.7k | } else { |
303 | 30.7k | const char* name = flattenable->getTypeName(); |
304 | 30.7k | SkASSERT(name); |
305 | 30.7k | SkASSERT(0 != strcmp("", name)); |
306 | | |
307 | 30.7k | if (uint32_t* indexPtr = fFlattenableDict.find(name)) { |
308 | | // We will write the index as a 32-bit int. We want the first byte |
309 | | // that we send to be zero - this will act as a sentinel that we |
310 | | // have an index (not a string). This means that we will send the |
311 | | // the index shifted left by 8. The remaining 24-bits should be |
312 | | // plenty to store the index. Note that this strategy depends on |
313 | | // being little endian, and type names being non-empty. |
314 | 6.77k | SkASSERT(0 == *indexPtr >> 24); |
315 | 6.77k | this->write32(*indexPtr << 8); |
316 | 24.0k | } else { |
317 | 24.0k | this->writeString(name); |
318 | 24.0k | fFlattenableDict.set(name, fFlattenableDict.count() + 1); |
319 | 24.0k | } |
320 | 30.7k | } |
321 | | |
322 | | // make room for the size of the flattened object |
323 | 30.7k | (void)fWriter.reserve(sizeof(uint32_t)); |
324 | | // record the current size, so we can subtract after the object writes. |
325 | 30.7k | size_t offset = fWriter.bytesWritten(); |
326 | | // now flatten the object |
327 | 30.7k | flattenable->flatten(*this); |
328 | 30.7k | size_t objSize = fWriter.bytesWritten() - offset; |
329 | | // record the obj's size |
330 | 30.7k | fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
331 | 30.7k | } |